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Abstract. This paper describes the verification module (the VipVerify Module)
of the VipTool [4]. VipVerify allows to verify whether a given scenario is an exe-
cution of a system model, given by a Petri net. Scenarios can be graphically spec-
ified by means of Labeled Partial Orders (LPOs). A specified LPO is an execution
of a Petri net if it is a (partial) sequentialization of an LPO generated by a process
of the net. We have shown in [2] that the executability of an LPO can be tested by
a polynomial algorithm. The VipVerify Module implements this algorithm. If the
test is positive, the corresponding process is computed and visualized. If the test
is negative, a maximal executable prefix of the LPO is computed and visualized,
together with a corresponding process and the set of those following events in the
LPO which are not enabled to occur after the occurrence of the prefix. Further, the
VipVerify Module allows to test in polynomial time whether a scenario equals an
execution with minimal causality. A small case study illustrates the verification
of scenarios w.r.t. business process models.

1 Introduction

Specifications of distributed systems are often formulated in terms of scenarios. In other
words, it is often part of the specification that some scenarios should or should not be
executable by the system. Given the system, a natural question is whether a scenario can
be executed. Answering this question can help to uncover system faults or requirements,
to evaluate design alternatives and to validate the system design.

There are basically two possibilities to express single executions of distributed sys-
tems, namely as sequences of actions (that means as totally ordered sets of action
names) or as partially ordered sets of action names. Since sequences lack any infor-
mation about independence and causality between actions, we consider executions (and
scenarios) as partially ordered sets of action names in case of distributed systems.

There exist several software packages, developed at universities or software compa-
nies, which support the design and verification of distributed systems based on scenar-
ios. Some of them allow to compute the unfolding of a distributed system (given as a
Petri net, a communicating automaton or a process algebra) in order to run LTL and



382

CTL model checking algorithms on this unfolding (the tool PEP and the Model Check-
ing Kit, [14, 15,16]). Other tools use message sequence charts (MSCs) or their ex-
tension to live sequence charts (LCSs) to describe scenario-based requirements. These
are used to guide the system design (the tool Mesa or the Playengine, [17, 18, 19, 20]),
for test generation and validation (the tool TestConductor integrated into Rhapsody,
[21,22]), or for the synthesis of SDL or statecharts models (the tool MSC2SDL,
[23,24]). In [25,26] a verification environment is described in which LSCs are used
to express requirements that are verified against a statemate model implementation,
where the verification is based on translating LSCs into automata.

Up to now, there exists no tool support to verify a given scenario to be an execution
of a distributed system. One reason might be that there were no efficient verification
algorithms so far for this problem. In case a scenario is given as a labeled partial order
(LPO) over the set of possible actions (events) and the distributed system is given as a
(place/transition) Petri net, we presented in [2] a polynomial algorithm.

The notion of executions of Petri nets is based on their non-sequential semantics
given by occurrence nets and processes [12, 13]. Abstracting from the conditions in a
process gives an LPO, called run. Runs capture the causal ordering of events. Events
which are independent can occur sequentially in any order. Thus, adding order to a run
still leads to a possible execution. For example, occurrence sequences of transitions
(understood as labeled total orders) sequentialize runs. Generalizing this relationship,
an LPO which (partially) sequentializes a run is an execution of the net. The process
represented by such a run is called corresponding to the specified LPO in the following.

If a specified LPO is an execution of a given Petri net, the mentioned algorithm com-
putes a process corresponding to the LPO. In the negative case a maximal executable
prefix of the LPO is computed as well as the set of those following events in the LPO,
which are not enabled to occur after the occurrence of the prefix. We further deduced
a polynomial algorithm to test if a specified LPO precisely matches a process w.r.t.
causality and concurrency of the events in the specification, if this process represents a
minimal ordering of events among all processes.

Actually, we implemented the above described algorithms as parts of the new Vip-
Verify Module of the VipTool [3,4,8]. The algorithms are based on computing the
maximal flow in a flow network [9]. While the maximal flow algorithm presented in
[9] is only pseudo-polynomial in general, there came up strict polynomial algorithms
running in cubic time (see e.g. [10]) and also faster (see [11] for an overview) during
the last decades. Since the basic algorithm from [9] turns out to be strict polynomial
(running in cubic time) in our special case, we started with an implementation of the
algorithms based on this basic algorithm. Moreover, we added a graphical interface (the
VipLpoEditor module) which allows the user to graphically specify scenarios of a given
Petri net in terms of LPOs over the set of transition names of the Petri net.

The paper is further organized as follows: In Section 2 we present a description of
the new modules of the VipTool. A simple case study illustrates the new functionali-
ties in Section 3. Then, in section 4, we briefly describe how the new functionalities
additionally fit into the existing validation and verification concept for business process
models the VipTool supports. In Section 5 we present some performance results for the
implemented algorithms. Finally, the conclusion outlines the future development.
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2 Description of the New VipTool Modules

To support the new functionalities, the VipEditor provides three graphical submod-
ules: In the existing VipNetEditor Petri net models of distributed systems can be
designed. In the new VipLpoEditor the user can specify scenarios in terms of LPOs.
Finally, processes (computed by the VipVerify Module) are visualized in the existing
VipProEditor.

The VipNetEditor is only slightly revised compared to the last version of VipTool.
Very briefly, it has the following main functionalities: Drawing and painting features
can be used analogously as by any standard Windows application. Size, colors, fonts
can by easily changed by the user for all draw elements such as places, transitions,
arcs, labels etc. Furthermore, all standard editing features such as select, move, copy,
paste etc. are implemented. Beyond that, for example automatic alignment and click-
and-drag-points of net arcs are supported. Usual token game simulation is also a part of
the VipNetEditor. Figure 1 shows a screen-shot of the VipNetEditor with an example of
a simple Petri net model of a business process.

Given a Petri net in the VipNetEditor, the user may take advantage of the VipLpoEd-
itor. Clicking the appropriate button splits the screen and the VipLpoEditor is avail-
able. A grid makes drawing the LPO easy. An arc is automatically added between two
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Fig. 1. Screenshot of the VipNetEditor, including an example net, which is explained later in a
case study
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Fig. 2. Screenshot of the VipLpoEditor, showing the popup menu for adding a new node

nodes arranged on top of each other. For each added node, the related transition is
chosen over a popup menu. For clarity, only the skeleton arcs of an LPO are drawn.
Figure 2 shows a screen-shot of the VipEditor consisting of the VipNetEditor and the
VipLpoEditor.

The last building block appears by starting the VipVerify Module to calculate if the
LPO drawn in the VipLpoEditor is executable in the Petri net given in the VipNetEditor.
The VipVerify Module distinguishes between the two following cases:

— If the LPO is executable, then a process corresponding to the LPO is computed
by the VipVerify Module and is visualized in the VipProEditor. Moreover, then the
VipVerify Module tests whether the LPO is minimal executable, 1.e. whether there
is another LPO with strictly less order between events which is also executable. If
there is such another LPO, there are arcs in the given LPO representing an unnec-
essary ordering between events. Such arcs are highlighted.

— If the LPO is not executable, then the VipVerify Module computes a maximal ex-
ecutable prefix of the LPO and a process corresponding to this prefix. The process
is visualized in the VipProEditor. In the VipLpoEditor, the prefix and the set of
those events which are not concurrently enabled to occur after the occurrence of
the prefix are highlighted by different colors.

Both cases will by described more precisely in the case study. The processes are
visualized using the existing VipVisualizer module, which is based on the Sugiyama
graph-drawing algorithm accommodated in [8]. Besides that, the objects of the visual-
ized processes remain movable.
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3 Functionality of the New VipTool Modules: A Case Study

In this section we briefly illustrate the functionality of the VipVerify Module and the
VipLpoEditor by a simple case study.

The Petri net model of Figure 1 represents a possible business process of some com-
pany. The company handles their tasks with two resources (places Res I and Res II).
After a prospective customer asks for a product (transition query) the business process
divides into two concurrent sub-processes. In the upper one the company first checks on
their offers or special conditions (transition check) and then makes offerings to the cus-
tomer (transition suggestion). Yet they may agree (transition agreement). In the lower
sub-process a parallel decision, for example on the solvency of the customer, has to take
place. Only if that decision is positive, the customer and the company close a bargain
(transition deal).

Figure 3 shows an LPO drawn in the VipLpoEditor, which represents a scenario that
should be supported by the business process model. For this simple example it is easy to
see that the specified scenario is minimal executable. By checking on the executability,
a process corresponding to the scenario is computed and visualized in the VipProEditor.
All nodes of the LPO are marked green.

Figure 4 shows another LPO which represents a scenario that should also be sup-
ported by the business process model. It is not an execution. In such a case, the VipVer-
ify Module computes four other helpful contributions:

— A maximal executable prefix of the LPO. It is highlighted green and consists of the
events query, check and suggestion in the example.
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Fig. 3. The VipLpoEditor shows an executable LPO, and the VipProEditor shows a corresponding
process of the Petri net
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— The successor events which fail to be concurrently enabled after the occurrence of
this prefix. They are highlighted red and are the events agreement and discard in
the example.

— The place in the Petri net which does not carry enough tokens after the occurrence
of the prefix to enable the red highlighted transitions. It is the place Res II in the
example and highlighted red.

— A process corresponding to the executable prefix, which is visualized in the Vip-
ProEditor.
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Fig. 4. Screenshot showing an LPO which is not executable in the given Petri net

For the interpretation of this information we have to describe the verification algo-
rithm more precisely. For this, we say an LPO is an execution w.rt. a place p, if this
LPO is an execution of the given Petri net restricted to the place set containing only p.
An inductive procedure verifies separately for every place p of the Petri net model, if
the given LPO is an execution w.r.t. p. This is done by considering prefixes of the LPO
increasing according to a calculated order over the set of nodes respecting the LPO. If
for a place p this procedure stops before all nodes were considered, a prefix of the LPO
is computed

— which is an execution w.r.t. p, and
— whose extension by the set of its direct successor nodes is not an execution w.r.t. p.

This prefix serves as input-LPO of this procedure for the next place. Thus, if there
are more places preventing the execution of the LPO, the VipVerify Module computes
that place (highlighted red in the VipNetEditor) with the smallest corresponding exe-
cutable prefix among all places (resp. one of them). Those direct successor nodes of
the prefix representing transitions which consume tokens from p are highlighted red
in the VipLpoEditor (and therewith all events preventing the executability of the LPO
w.r.t. p). Those direct successor nodes of the prefix representing transitions which do
not consume tokens from p are highlighted yellow. Observe that possibly several of the
red highlighted events are enabled after the occurrence of the prefix, but not all of them
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concurrently. Extending the prefix by such events would result in a bigger executable
prefix, but with less information about the non-executability. The executable prefix cor-
responding to a place p depends on the calculated total ordering of the LPO-nodes.
Nevertheless it is maximal w.r.t. the red highlighted nodes: A prefix corresponding to
p computed w.r.t. another total ordering, which contains a red highlighted node, can
not include the first prefix. Finally, a process corresponding to the prefix is visualized,
showing a possible distribution of tokens among the pre- and post-conditions of the
events of the prefix. In the example, that means:

— The prefix consisting of the events query, check and suggestion is an execution w.r.t.
all places.

— After the occurrence of the events query, check and suggestion, the events agree-
ment and discard are not concurrently enabled, since place Res II carries not enough
tokens.

— Each of the events agreement and discard is enabled on its own and could be used
to construct a bigger executable prefix. But then the user would get only the infor-
mation that the event agreement (or, resp. discard) consumes too much tokens from
place Res 11, and not the information that the combination of both events needs too
many tokens.

This gives the user clear information about how to change the model in order to
support the scenario given by the LPO (namely how to reorganize the distribution of the
resources), resp. about how the given distribution of the resources restricts the desired
behavior.

4 Relating Old and New Functionalities of VipTool

In this section, we discuss, how the new implemented functionalities described in the
previous two sections additionally fit into the existing validation and verification con-
cept supported by VipTool. For this we briefly introduce this concept, but omit a detailed
motivation, discussion and comparison to other approaches (here we refer to several
publications from the last years ([3, 6,7, 8]).

VipTool was originally developed at the University of Karlsruhe within the research
project VIP ! as a tool for modeling, simulation, validation and verification of business
processes using Petri nets. It was implemented in the scripting language Python [8]. In
[3] we presented a completely new and modular implementation in Java (using standard
object oriented design) that allows to add extensions in a more flexible way.

The paper [7] proposes the following iterative validation procedure of Petri net
models:

1. Arequirement to be implemented is identified and formalized in terms of the graph-
ical language of the model.

2. This formal specification is validated by distinction of those process nets that sat-
isfy the specification from all other process nets. This way, the question “what
behavior is excluded by the specification?” gets a clear and intuitive answer. The
specification is changed until it precisely matches the intended property.

! Verification of Information systems by evaluation of Partially ordered runs.
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3. The valid specification is implemented, i.e. new elements are added to the model
such that the extended model matches all previous and the new specifications. Ob-
viously this step requires creativity and cannot be automated. However, again by
generation and analysis of process nets it can be tested whether the extended model
satisfies the specifications (actually, when all runs are constructed, this test can be
viewed as a verification). At this stage, other verification methods can be applied
as well.

4. If some requirements are still missing, we start again with the first item, until all
specifications are validated and hold for the designed model.

VipTool supports all these four steps. In particular, process nets representing par-
tially ordered runs of Petri net models are generated. They are visualized, employing
particularly adopted graph-drawing algorithms. Specifications can be expressed on the
system level by graphical means. Process nets are analyzed w.r.t. these specified prop-
erties. The distinction of process nets that satisfy a specification is supported. For the
test phase, the simulation stops when an error was detected.

The new functionalities now complement the second and third step of the above de-
scribed validation procedure as follows: First, for complex Petri nets it can be (too) time
consuming to construct all processes. In such cases it is helpful to have the possibility
not to check on all the processes by unfolding the Petri net, but to directly test a partic-
ular scenario to be a possible execution of the Petri net or not. Second, the user now can
specify concurrency of events. If an LPO representing a desired behavior turns out to be
not executable, then the user gets detailed information about the reasons by visualizing
the first state of the system which does not enable a set of concurrent events of the LPO.
This facilitates the creative step of changing the specification in the second step as well
as changing the model in the third step. Finally, in the third step the user now can verify
particular concurrent runs directly.

S Experimental Results

In this Section we test the performance of the presented algorithms by means of ex-
perimental results for the example instances (V1 ,, Ipo1 ) and (N2, [pos ) shown

T
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a n times a
b b
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\_/_y\/
n n times
b b b
Nin IPo; Ny, Ipo,,

Fig. 5. Two place/transition Petri nets IV; ,, each together with an executable LPO Ilpo; n, i =
1, 2, dependent on the parameter n € N
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Table 1. Results of the executability test

L (N1, 1po1.n) [ (NVonlpoan) |
mn][10 [ 50 ] 100 | 500 || 10 | 50 | 100 | 500 |
(A)][0.001] 0.008 [0.037 | 3.139 ][0.001]0.001]0.001] 0.013
(B)[[0.004] 0.679 | 8.564 [959.205[[0.001]0.008]0.031] 0.534
(©)|[0-027] 5.063 [55.356] —  [|0.039]0.198[1.273[78.413
D)][0-476[170.719] - — ||0:008]0.297[0.591] 7-396

in Figure 5 with n € N increasing. All experiments were performed on a Windows PC
with 256 MByte of RAM and 1 GHz Intel Pentium III CPU. The times are measured
in seconds. Table 1 shows the results for the following four procedures executed by the
VipVerify Module: (A) Translation into the associated flow network, (B) Test whether
Ipo; », is an execution of N; ,,, i € {1,2}, (C) Test whether Ipo; ,, is a minimal execu-
tion of V; ,,, ¢ € {1,2}, and (D) Computation and Visualization of the corresponding
process. The results show that the algorithms work better for LPOs with much con-
currency between events. The weaker performance for LPOs with little concurrency is
partially due to the quite general construction of the associated flow network, which
could be further optimized.

6 Conclusion

We have presented the new VipVerify Module of the VipTool supporting scenario based
verification of Petri net models of distributed systems and described its functionality
within a small case study. VipVerify fits in the existing functionalities of the VipTool
of supporting the step-wise design of business process models, employing validation
of non-sequential specifications and verification of the model in each step. The further
development of VipTool includes the following tasks:

— We plan to implement more efficient maximal flow algorithms underlying the pre-
sented verification algorithms.

— At present, VipTool only supports low level Petri nets. We plan to extend its func-
tionalities to an appropriate restricted kind of predicate/transition nets.

— We are currently working on the synthesis of place/transition nets from given sets
of LPOs. In [1] we present the first theoretical results which we plan to adapt for
practical use and then to implement into VipTool.

We acknowledge the work of all other members of the VipTool development team,
namely Niko Switek and Sebastian Mauser.
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