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Abstract. “Petri nets are monoids” is the title and the central idea of
the paper [7]. It provides an algebraic approach to define both nets and
their processes as terms. A crucial assumption for this concept is that
arbitrary concurrent composition of processes is defined, which holds true
for place/transition Petri nets where places can hold arbitrarily many
tokens.

A decade earlier, [10] presented a similar concept for elementary Petri
nets, i.e. nets where no place can ever carry more than one token. Since
markings of elementary Petri nets cannot be added arbitrarily, concur-
rent composition is defined as a partial operation.

The present papers provides a general approach to process term seman-
tics. Terms are equipped with the minimal necessary information to de-
termine if two process terms can be composed concurrently. Applying
the approach to elementary nets yields a concept very similar to the one
in [10].

The second result of this paper states that the semantics based on pro-
cess terms agrees with the classical partial-order process semantics for
elementary net systems. More precisely, we provide a syntactic equiva-
lence notion for process terms and a bijection from according equivalence
classes of process terms to isomorphism classes of partially ordered pro-
cesses. This result slightly generalizes a similar observation given in [11].

1 Introduction

One of the main advantages of Petri nets is their capability to express true con-
currency in a very natural way. Thus, Petri nets offer not only sequential seman-
tics, which correspond to classical marking graphs, but also process semantics.
Processes express possible runs of a system, in which independent transitions
can occur concurrently. ;From the very beginning of Petri net theory processes
were based on partial order between net elements.

In [7] it is observed that place/transition nets can be understood as graphs
whose vertices are multisets of places, and transitions are arcs with sources and
targets given by their pre-multisets and post-multisets. Reflexive arcs represent
markings. By multiset addition one can generate the concurrent marking graph

* supported by DFG: Project "SPECIMEN”

M. Nielsen, D. Simpson (Eds.): ICATPN 2000, LNCS 1825, pp. 146-165, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Process Semantics of Petri Nets over Partial Algebra 147

from a net. For example, using composition of a reflexive arc, given by a multi-
set X, and an arc representing a single transiton ¢ with pre-multiset pre(t) and
post-multiset post(t), the arc X 4t changes the marking M = X + pre(t) to the
marking M' = X + post(t) = M — pre(t) + post(t). Addition of non-reflexive
arcs represents their concurrent occurrence. Concatenating graph arcs with cor-
responding target and source yields a representation of processes, which again
can be composed concurrently or sequentially. Thus, process terms of a Petri
net are obtained in a very easy way using only few production rules. Since the
sum is defined for each pair of processes, this approach does not allow to express
situations in which processes interfere and therefore cannot occur concurrently.

Many classes of Petri nets do not allow arbitrary concurrent composition of
processes. For example, in processes of elementary net systems, no two conditions
representing tokens on the same place can be concurrent. Hence, for example, no
process can run concurrently with a copy of itself. A similar observation holds
for nets with capacity limitations. Also inhibitor arcs and read arcs [4,8] restrict
the possible concurrent composition of processes.

The aim of our work is to develop a unifying general framework to solve the
problem of concurrent process composition in a conceptual way. Therefore, we
employ Petri nets over partial algebra, defined in [5,6] as a unifying concept for
Petri nets with modified occurrence rules. We claim that this approach is also
suitable as a basis for process construction of different classes of Petri nets where
dependencies between processes that restrict concurrent composition are taken
into consideration.

In this paper, we show that Petri nets over partial algebra are suitable to
define processes and their concurrent composition for elementary net systems
and one-safe nets. Technically, we equip processes with the necessary informa-
tion used to decide whether they are independent. We show that the minimal
necessary information basically consists of the set of places associated to condi-
tions of a process. This result coincides with the observation of [10], where also
the set of involved places was used to define when two process terms can be
concurrently composed.

In order to justify the algebraic approach introduced in [7] it was shown in
[3] that process terms of place/transition nets from [7] are equivalent to pro-
cesses based on partial order defined in [1]. In a similar fashion we show in
this paper that process terms of elementary nets defined using partial algebra
correspond to the usual processes of elementary nets based on partial order.
Usually, processes are only defined for contact-free Petri nets, where the causal
order between events is always generated by the flow of a token between the
corresponding transitions. Our definition of elementary nets does not generally
assume contact-freeness, i.e. we also consider situations where a transition can
only occur after another transition because otherwise some place would carry
two tokens at the intermediate marking. The usual way to cope with contacts
is to introduce complement places in nets and according complement conditions
in processes (see e.g. [9]). Our result is also based on this approach for general
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elementary nets, generalizing a similar result of [11] for contact-free elementary
nets.

After basic definitions in Section 2, Petri nets over partial algebras (shortly
PG nets) are defined in Section 3. In particular, it is shown how terms for pro-
cesses are constructed within this algebra and how independency between terms
is defined. An equivalence relation between such terms is introduced, which in
fact is a congruence with respect to the partial operations used for the construc-
tion of the terms. In Section 4 elementary nets with corresponding PG nets are
defined. Furthermore the notion of processes of elementary nets based on par-
tial order is recalled, and a concurrent composition and concatenation of such
processes is introduced. In Section 5 we present the main result of the paper,
namely we show the one to one correspondence between isomorphism classes of
processes of an elementary net and congruence classes of process terms of the
corresponding PG net.

2 Basic Definitions

We use N to denote the nonnegative integers. Given two arbitrary sets A and B,
the symbol B denotes the set of all functions from A to B. Given a function
f from A to B and a subset C of A we write f|c to denote the restriction of
f to the set C. The symbol 24 denotes the power set of a set A. The set of all
multi-sets over a set A is denoted by N4. Given a binary relation R C A x A
over a set A, the symbol RT denotes the transitive closure of R.

Definition 1. A partial groupoid is an ordered tuple H = (H,domy,+) where
H is the carrier of H, domj C H x H is the domain of +, and + : domj — H
is the partial operation of 'H.

Definition 2. We say that a partial groupoid H = (H,domy,+) can be embed-
ded into a commutative monoid if there exists a commutative monoid (H',+)
such that H C H' and the operation + restricted to domy is equal to the partial
operation +. The monoid (H',+) is called the embedding of H.

In the rest of the paper we will consider only partial groupoids (H, dom ., +)
which can be embedded into a commutative monoid, and moreover fulfil the
following conditions:

— The relation dom is symmetric.
— Va,b,c€ H: ((a+b,c) € domi = (a,c),(b,c) € domy).

We use the operation 4+ to express concurrent composition of processes. As
motivated in the introduction, not each pair of processes can be composed, hence
+ is a partial operation. domj contains the pairs of processes which are inde-
pendent and can be composed. Obviously, this relation should be symmetric.
The second requirement states that whenever the concurrent composition of two
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processes a and b is independent from ¢ then both a and b are independent from
c.

The partial groupoid (H,domy,+) is extended to the partial groupoid
(2H {domy},{+}) such that

— {domi} ={(X,Y) €2 x2H|X xY C dom}.
- X{+}Y ={zFylzre X AyeY}.

We will use more than one partial operations on the same carrier. Therefore
the following definition: A partial algebra is a set (called carrier) together with
a couple of partial operations on this set (with possibly different arity). Given a
partial algebra with carrier X, an equivalence ~ on X is a congruence if for every
n-ary partial operation op (n € N): If a1 ~ by,...,an ~ by, (a1,....a,) € dom,,
and (b1,...,by,) € dom,y, then op(as,...,ay) ~ op(b1,...,by,). If moreover a; ~
bi,...,an ~ by and (a1,...,an) € dom,, imply (b1,...,b,) € dom,, then the
congruence ~ is said to be closed. Thus, a congruence is an equivalence preserving
all operations of a partial algebra, while a closed congruence moreover preserves
the domains of the operations. Recall that the intersection of two congruences is
again a congruence. Given a binary relation on X, there always exists the least
congruence containing this relation. In general, the same does not hold for closed
congruences. Given a partial algebra X with carrier X and a closed congruence
~ on X, we write as usual, [z]~ = {y € X|z ~ y} and X/ = [J,cx[7]~.
The natural homomorphism h : X — X/ w.r.t. ~ is given by h(z) = [z]~.
Given a subset of A C X, we write [A]. = (J,c4la]~. A closed congruence ~
defines the partial algebra X'/. with an n-ary partial operation op/. defined
for each n-ary partial operation op : dom,, — X of X as follows: dom,,,, =
{(Ja1]~, .-, ]an]~)|(a1, ... an) € domey} and, for each (ay,....an) € domgy,
op([a]~, ..., [an]~) = [op(a1,...ay)]~. The partial algebra X/ is called factor
algebra of X with respect to the closed congruence ~.

3 Process Terms of Petri Nets over Partial Algebras

Definition 3. A graph is a quadruple (H,T,pre,post), where H is a set of
vertices, T' is a set of arcs and pre,post : T — H are source and target functions,
respectively.

The formal definition of Petri nets over partial algebra was introduced in [5]
and extended in [6].

Definition 4. Given a partial groupoid (H,domy,+), a graph N =
(H,T,pre,post) is called a Petri net over the partial groupoid (H,domj,+)
(shortly a PG net).

We write ¢t : a — b € N to denote that t € T, pre(t) = a, post(t) = b.
Elements of H are called states or markings of the net, elements of 1" are
transitions, and pre, post denote sets of pre-conditions and post-conditions.
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t1 O t3 {p1,p3} {ps}

p3

t1 t3

Opl P2 Q <>p4 o O {p2} {pa}
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to ta {p1} {ps,ps}

Fig. 1. An elementary net and the corresponding net over the partial groupoid
(2{Prpst domy, W) with domy = {(M, M")|M N M’ =} and & = U|gom, -

We consider elementary nets as elementary net systems [9] with arbitrary
initial marking. Figure 1 illustrates the definition of a PG net and its relation
to standard terminology of Petri nets.

In this paper we omit the definition of the enabling and firing rule for single
transitions of PG nets, but rather directly define their process term semantics.
The treatment of different enabling and firing rules and their relationships is
discussed in [5,6].

To build process terms of a PG net, we need to have information about all
states reachable in a process in order to decide whether the process is indepen-
dent from another process. So we also have to consider an independence relation
between states. We call two processes independent if their respective state spaces
X and Y are independent, which means that every state z € X is independent
from every state y € Y. Given two independent processes with state spaces X
and Y, the state space Z of the process derived from the concurrent composition
+ of the two processes is defined by Z = X{+}Y.

Storing the set of all states which could be reached during a process can
cause exponential growth and therefore it is not feasible. Fortunately, this ex-
ponential information is not necessary in the case of elementary nets, as will be
shown in the next section. In general, for deriving a more compact information
we can use any equivalence = € 21 x 2 that is a closed congruence with respect
to the operations {4} (concurrent composition) and U (sequential composition).
Equivalence classes of the greatest (and hence coarsest) closed congruence repre-
sent the minimal information assigned to process terms necessary for concurrent
composition. This congruence is unique [2].

Thus, the process semantics of a PG net is a graph generated from PG net by
reflexive, additive and concatenative closure where addition respects partiality
of state independence and concatenation respects equality of target and source.

Definition 5. Let (H,dom,+) be a partial groupoid, =& 21 x 21 be the
greatest closed congruence of the partial algebra X = (2H,d0m{+},{—i-},u)
and supp : X — X/~ be the natural homomorphism. Given a PG net N =
(H, T, pre, post) over (H,dom,,+), the process term semantics of N is the graph
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{p1,ps} {ps} {p1,p3,p5} —
t1 /
{p1,p2,p3}
‘ btz Ps - (tistz) +p
{p2} {p1,p2,p3} + {ps} {p1, p2 Paypi}
to
{plap2}
{p1} {ps} ((t1;t2) + ps); ((tss ta) + p1)
{Pl,p27p3ap4ap5}
{p1,ps}
{ps} {p1}
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t3;ta D1 _ (ta; ta) + p1
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{ps,ps} {p1} {p1,p3,p5} ~

Fig. 2. Deriving a process term of the PG net from Figure 1

P(N) = (H,Tp,prep,postp) together with a function s : Tp — X/~. The el-
ements of Tp (the arrows of the graph) are called process terms. Tp, prep,
postp and s are defined inductively by the following production rules, where
a:a— be P(N) denotes that a € T'p, prep(a) = a,postp(a) = b:

ac H
a:a— a€P(N), s(a) = supp({a})

teTl
t: pre(t) — post(t) € P(N), s(t) = supp({pre(t), post(t)})
a:a—bAeP(N)ANB:c—d,BeP(N)AN(A,B) € domy [~
(a+B):a+ec—b+deP(N),s(a+5)=A+/~B

a:a—bAeP(N)ANB:b—c,BePWN)
(;8) :a — c€P(N),s(a; 3) = AU /=B

These rules define partial binary operations, called concurrent composition (+)
and concatenation (;) of process terms.

Examples for constructing process terms are shown in Figures 2 and 3.
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{p1,p3} {ps} {P1.p3,ps} ——
1 + t3 — t1 + t3
{p1,p2,p3} {pa,ps} {p1.p2, D3, pa,ps}
{p2} {p4} (t1 + t3); (t2 + ta)
{T’17T’277’37p4»p5}
{p2,ps}
{p2} {pa}
t2 n . (t2 + t4)
{plapZ} + {p37p47p5} - {p17p27p3ap4ap5}
{1} {ps,ps} {p1,ps,ps} ~<—"

Fig. 3. Deriving another process term of PG net from Figure 1.

3.1 Equivalence of Process Terms

We now identify process terms by an equivalence relation ~; which preserves
the operations + and ;. Formally we define a congruence on I’> with respect to
+ and ;. Let ~; be the least congruence on T» with respect to 4+ and ; given
the following axioms: Let a,.b € H and a1, as,as,aq4 be process terms with
associated function s.

(1) (1 + a2) ~¢ (g + a1), whenever + is defined for oy and «y .

(2) ((a1;2);a3) ~¢ (a1; (ag; as)), whenever these terms are defined.

(3) ((a1 + a2) + a3) ~; (a1 + (a2 + a3)), whenever these terms are defined.

(1) a= (a1 4+a2);(az+aq)) ~ 6= ((a1;a3)+ (a2; aq)), whenever these terms
are defined and s(a) = s(03).

5) (a1;postp(ar)) ~p ar ~ (prep(ar); o).

6) a+ b~y (a+ b) whenever these terms are defined.

7) a+ a ~; a whenever the left term is defined, prep(a) + a = prep(a) and

postp(a) + a = postp(a).

(
(
(

Axiom (1) represents commutativity of concurrent composition, axioms (2)
and (3) associativity of concurrent composition and concatenation of process
terms, axiom (4) distributivity whenever both terms have the same information
about states, axiom (5) states that elements of H are partial neutral elements
with respect to ;, axiom (6) expresses that composition of these neutral elements
is congruent to the neutral element constructed from their composition, and



Process Semantics of Petri Nets over Partial Algebra 153

finally axiom (7) states that elements of H which are neutral to source and
target of a term are neutral to the term itself.

Remark 1. Observe that for any two equivalent process terms oy ~¢ ag, we have
prep(ay) = prep(az) and postp(ay) = postp(asz). Moreover oy ~, ag implies
s(a1) = s(ag). Thus, by construction of process terms, the congruence ~; is a
closed congruence.

The process term ((t1;t2) + ps); ((t3;t4) + p1) from Figure 2 and the process
term (¢1 + t3); (t2 + t4) from Figure 3 are congruent:
4),(5
(ti5t2) + ps); ((tasta) + 1) %0
1),(2),(4
O S

i (
(
O (4 4 ps); (b + t); (1 + 1)
(
5 (

t1+ps); ((t3;pa) + (p2;t2)); (ta + p1)
(4)

~t

(
(
(

5

S
(

(1),(2),(4),(5)

oy (

t1 +t3); (t2 + t4)-

4 Elementary Nets

In this section we define elementary nets and some useful notations. Elementary
nets can be considered as elementary net systems with arbitrary initial marking.
For a given marking, we use complement places to assure contact-free behavior.

Definition 6. (Power set with distinct union) Given a finite set P, let
(2F, domw, W) be the partial groupoid defined by

domy = {(A,B) € 2" x2"|AnB =)
and ¥ = Ul|gom, . Denoting H = 2¥ we define the mapping supp : 2" — H,
supp(A) = Useaa

To define process terms for algebraic elementary nets we have to find the
greatest closed congruence on (2, {4}, domyy, V).

We show that the mapping supp is (isomorphic to) the natural homomor-
phism w.r.t. the gratest closed congruence on (27, {4}, domyiy,U).

Lemma 1. The relation =C 2 x 2% defined by A =2 B <= supp(A) =
supp(B) is a closed congruence on (27, domiy, {+},U)

Proof. Straightforward observation.

Lemma 2. The closed congruence = C 2H x 21 is the greatest closed congruence
on (29, domiy, {+},U).
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Proof. We will show that any congruence ~ such that = is a proper subset of ~
is not closed. Assume there are A, B € 2/ such that A ~ B but A % B. Then
supp(A) # supp(B).

We construct a set C' € 27 such that (A4, C) € domiy but (B,C) ¢ domiy
or vice versa (which implies that ~ is not closed). Denoting supp(A) = a and
supp(B) = b we obtain a # b.

Without loss of generality we can assume b\ a # ). Set C' = {c} with ¢ = b\ a.
Then cNa =0, but cNb#0,ie. (A C) € domgiy, but (B,C) & domyyy.

Now we are prepared to define elementary nets using our formalism.

Definition 7. Given a finite set P (of places), a PG net AEN =
(2F, T, pre,post) over a partial groupoid (2F,domw, W), is called an algebraic
elementary net. Its process term semantics is given by P(AEN).

In order to justify our approach to Petri nets and their processes defined
by terms we show that the process semantics of classical elementary nets, as
defined e.g. in [9], essentially coincides with the above formalism. Let us first
recall basic definitions of elementary nets and their process semantics based on
partial orders.

Definition 8. An elementary net is a triple EN = (P, T, F), where P and T
are disjoint finite sets of places and transitions and ' C (P x T)U (1T x P) is a
(flow) relation such that

(1) ¥t € T3p,q € P: (p,t),(t,q) € F, and
(2) Ve TVp,qe P: (p.1).(L,q) € F = p#q.

A marked elementary net is a tuple MEN = (EN, My), where EN = (P, T, F)
1s an elementary net and Mgy C P is an initial marking.

Given an element x € PUT, the set *x = {y|(y,z) € F'} is called pre-set of
z and the set z® = {y|(z,y) € F'} is called post-set of z. An element = satisfying
*r = x* = () is called isolated (by definition, only places can be isolated).

Definition 9. Given an elementary net EN = (P, T, F), the corresponding al-
gebraic elementary net AEN = (2, T, pre, post) is defined by pre(t) = *t and
post(t) =t® for each t € T.

Figure 1 shows an elementary net with corresponding algebraic elementary
net.

In this paper we omit the definition of firing rule of classical elementary nets.
It may be found e.g. in [9]. A detailed discussion about different possibilities of
enabling and firing rules of elementary nets (also when understood as PG nets)
can be found in [6]. Thus, we approach directly the definition of processes of
classical elementary nets.

Definition 10. A process net is an elementary net N = (Pyn,Tn,Fn) with
unbranched places (i.e. Vp € Py : |*pl,|p®| < 1) which is acyclic (i.e. Vx €
Py UTyN : (CC,JS) §é F]-\i[_)
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Definition 11. Given a process net N = (Py,Tn, Fn), the partial order Fy;
generates relations co,1i C (Py UTxN) x (Py UTy), defined by

(1) co = {(z,y)l(z,y). (y,2) & Fy}.
(2) li = {(z,y)|(z,y) ¢ coVz =y}

A set CON C Py satisfying Vx,y € CON : (z,y) € co is called co-set. A slice
of N is a maximal co-set. The initial and final slice are given by

(3) ON:{pGPN| /HtETN : (t,p) EFN}.
(4) N°={pe Pn| At €Tn:(pt) € Fn}.

The past and future of a slice Sy of N is defined by

(5) >Sy ={z € PyUTN|3Ip € Sy : (x,p) EF]J\;\/:c:p},
(6) Sy ={x € PnUTy|3p € Sy : (p,x) € Fi: Vo =p}.

Processes of elementary nets are only defined for so called contact-free marked
elementary nets (for more details see e.g. [9]). In this paper, processes of a
marked net which is not contact free are studied through processes of a contact-
free marked net, obtained by a so called complement construction. By M EN
(see [9]) we denote the net constructed from a net MEN by adding some so-
called co-places. In [9] the set of co-places depends on the initial marking. Using
a small simplification (which doesn’t change process semantics, but only adds
some unnecessary co-places) we will define a net EN by adding a co-place for
cach place p € P. This net is contact-free for all possible initial markings of EN,
where an initial marking M, of EN is constructed from an initial marking M
of EN by adding all co-places of places to M, which are not in M.

Definition 12. Given an elementary net EN = (P,T,F), let C be a set satis-
fying |C| = |P| and CN(PUT) =0, and let c : P — C be an arbitrary bijection.

Let EN = (P, T, F) be the elementary net defined by

-~ P=PUC,
— T:T and
— F'=FU{((c(p). 1)|(t,p) € F}U{(L, c(p))|(p.t) € F}.

Given a marked elementary net MEN = (EN, My), define

My = MoU {c(p)lp€ PAp¢ My} and MEN = (EN, M,).

Note that, given an elementary net EN, the construction of EN is unique
up to isomorphism.

A process of a marked elementary net M E'N is now defined via the associated
elementary net M EN:

Definition 13. Let EN = (P, T, F) be an elementary net and My C P be a
marking. A process N of MEN = (EN, My) is a tuple (Pn,Tn, Fn,®N), where
(Pn,Tn, Fy) is a process net and @y : (Py UTyN) — (PUT) is a mapping
satisfying
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®p1 ® )D3 ps@

@pl @pii p5©

Fig. 4. A marked contact-free net where elements of the initial slice are marked
and elements of the final slice are depicted by double-line circles.

(1) No isolated place of N is mapped by ®n to a co-place of EN.
(2) ®n|on is injective.

(3) ®n(°N)NP = My and &N (°N) C Mp.

(4) Yt € T : PN |oy and P |ie are injective, and

(5) Vi e T : @N(.t) = '(@N(t)) and @N(t.) = (@N(t))',

where the ®-notation refers to EN. Let P(EN,My) be the set of all pro-
cesses of the marked elementary net MEN = (EN,M,). By P(EN) =
UMOQP P(EN, My) we denote the set of all processes of an elementary net EN .

Note that the properties of the definition imply that &n(Py) € P and
&n(Ty) C T. Moreover, @y is injective on co-sets (see [9]).

We will not distinguish isomorphic processes of an elementary net.

The above definition of processes differs from the one defined in [9] since we
have no isolated places which are mapped by @y to co-places. Figure 4 shows a
process of the elementary net from Figure 1.

We now define elementary processes according to the elementary process
terms of the corresponding algebraic elementary net and the production rules.

Remark 2. Let EN = (P, T, F) be an elementary net and let EN = (P, T, F).

(a) Let M C P be a marking of EN. Then
N(M):=(M,0,0,idr)

is a process of N called elementary process associated to M.
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(b) Let t € T be a transition of EN. Then
N(t) = (*tUt* {t},{(p,t) : p€ *t}U{(t,p): p €1} ideseugsy),

where °t,t* are defined w.r.t. EN, is a process of EN, called elementary
process of t.

(¢) Let N; := (P, T;, F;,®;), i = 1,2, be two processes of EN with disjoint sets
of places and transitions, such that ®1(P;1) N Po(Pe) = 0. Then

Ny + Ng := (P1 UP,, T UTy, Fh U FQ,@),

where @|n, = @1 and P@|n, = P9, is a process of EN, called the sum of the
processes N1 and No.

(d) Let N; := (P, T;, F;,®;), i = 1,2, be two processes of EN with disjoint sets
of places and transitions, such that @1 (N7) N P = ®@5(°Ny) N P. Define the
interface Int(N1, No) C P of the two processes N; and No by

Int(Nl,Ng) = @1(]\710) ﬂ@Q(ONg).

Define Py := Py \ {p € °Na|Ps(p) € Int(N1,N2)}

and F5:= Fo N (1o UP)) x (15U P5)). Then

Ni; Ny = (Pl U PQI,Tl U1y, Fy U FQI U {(p17t2)|p1 € N7 A (Elpz € °Ny :
D1 (p1) = Pa(p2) A (p2,ta2) € Fo)}, ®), where @|n, = @1 and D|y, = D2, is a
process of KN, called the concatenation of the processes N1 and Ns.

The Figures 5-7 illustrate the construction of the process of Figure 4 from
elementary processes using the above rules (a)-(d).

Lemma 3. Let N; = (P;,T;, F;,®;), i = 1,2, be processes of EN = (P, T, F)
satisfying (P1(P1) NDo(P2)) NP = 0. Then

@1(P1) ﬂ@Q(PQ) — @

Proof. No isolated place p; € P is mapped by ®; to a co-place ¢(p) € ¢(P).
Hence, if @;(p;) = c(p) € ¢(P) then there exists a transition ¢; € T; such that
(pi,ti) € F; V (t;,pi) € F;). Without loss of generality, let (p;,t;) € F;. Then,
from the definition of F' and the definition of processes (5), there exists a place
p; € P; satisfying @;(p}) = p.

5 Relationship between Process Terms and Processes of
Elementary Nets

This section contains the main result of the paper: The set of processes defined
via process terms is identical with the set of classical processes of elementary
nets.

In the sequel, let AEN be the algebraic elementary net corresponding to an
elementary net EN = (P, T, F'). We are going to construct inductively processes
Ny = (Pa, Tw, Fa,®y) of EN, associated to process terms a: a — b € P(AEN)
with information s(a) (according to the 4 steps of the construction of process
terms). These processes enjoy the following properties:
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Q p2 @ B

[#2] @m
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Fig. 5. Concatenation of the processes N (¢1) and N(t2) for the net from Figure 1

(1) Ba(°No) NP =a and & (N°) N P = b.
(2) Do (Py) NP = s(a).

(a) Let = M : M — M, s(a) = M be the reflexive process term of a marking
M C P of EN. Define
No := N(M),

which is, according to Remark 2 (a), a process of EN.
Clearly properties (1) and (2) hold for N(«).

(b) Let a« = t : pre(t) — post(t) with s(a) = supp({pre(t), post(t)}) be the
process term generated by a transition ¢t € T'. Define

N, := N(t),

which is a process of EN according to Remark 2 (b).
Properties (1) and (2) follow from *t N P = pre(t) and t* N P = post(t).

(c) Let a1, a9 be process terms with information s(ay), s(as), such that o =
a1 + asg, s(a) = s(a1) Ws(as) is a defined process term. We define a process

Ny = Na, + Na,.
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c(ps)

Fig. 6. Concatenation of the processes N (t3) and N (t4) for the net from Figure 1.

This is possible according to Remark 2 (c¢), because

(i) N, and N,, have disjoint sets of places and transitions, and

(ii) Doy (Pay) NPy, (Pay,) = 0, where Ny, = (Pa,, Toys Foy, Poy) (i =1,2).
Condition (i) can always be achieved by appropriate renaming.

Condition (ii) follows from the fact that a; +a is defined, i.e. s(aq)Ns(ag) =
(. Property (2), which fulfilled for processes N; and Ns according to the
second condition of induction, implies (®1(P1) N P2(Pz)) N P = ). Now (ii)
follows from Lemma 3.

Obviously properties (1) and (2) are fulfilled.

Let a1, a9, be process terms with information s(ay), s(as) such that « :=
aq;ag, s(a) := s(aq) U s(az) is a defined process term. We define a process

N(a) = N(aq); N(aw).

This is possible according to Remark 2 (d), because @, (NS )N P =
@y, (°Na,) N P, by property (1) and postp(ai) = prep(as).

For the new process N,, property (1) is obvious. We have @,(P,) N P =
Do (Poy U (Pa, \ {p2 €° Noy|Pa(p2) € Int(Ngy,, Nay)})) N P. Property (2)
follows from Int(Ny,, Na,) C Po(Pa, ).
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Fig.7. The process from Figure 4 constructed from elementary processes
(N(t1): N(t2)) + N(ps)); (N(t3); N(ta)) + N(p1))-

Since the order of construction steps of N, from elementary parts of a process
term « is given by the parenthesis in «a, there is a unique process net associated
to a process term.

Definition 14. Let 7 : Tp — P(EN) be the mapping defined by () := Ng.

Observe that the process given in Figure 4 equals the process 7(«), where «
is the process term from Figure 2. The constructions of o (Figure 2) and 7(«)
(Figures 5-7) are analogous.

Lemma 4. Let N = (Pny, TN, Fn,®PnN) be a process of EN and t1,ty € Ty with
(t1,t2) € cONly # to. Then @n(t1) + Pn(l2) is a defined process term.

Proof. (t1,t2) € co implies that *t; U ®te and ¢} U t3 are co-sets. Since Py
is injective on slices, @n(*t1) N PN (°tz) = Pn(t}) N PN (L) = (. Assume a
place p in @n(*t1) N PN (t3) or Pn(®t2) N Py (t}). Without loss of generality
let p € @n(°t1) N DPN(tS). Then there are places p; € *t; and py € t§ such
that @n(p1) = @n(p2). Then either (p1,p2) € co A p1 # pa (which contradicts
the injectivity of @y on co-sets) or (p2,p1) € FT V p1 = pa (which contradicts
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(t1,t2) € co) or (p1,p2) € FT, which implies (t1,t2) € FT because places are
unbranched, what is again a contradiction..

Remark 3. (a) Given process terms a;, i = 1,...,4 of AEN, whenever terms
a = ((a1 + a2); (s + aq)) and B = ((a1;a3) + (a2;4)) are defined then
s(a) = s(0).

(b) For any two process terms a; and as such that a; + «q is defined we have
a1+ ag ~; (ag;post(ar)) + (pre(asz); as) ~¢ (a1 + pre(as)); (as + post(ay))
and analogously a1 4+ ag ~¢ (ag + pre(aq)); (a1 + post(asz)).

(¢) If (a1;9) + M is defined, M being a marking, then

(ar;a9) + M ~¢ (o + M); (ce + M).

Theorem 1. The mapping T : Tp — P(EN) is surjective.

Proof. Let N = (Pn,Tn, Fn,®n) be a process of EN. We inductively construct
a process term « with N, = N:

(1) Set g = QSN(ON) : @N(ON) NP — @N(ON> N P with 8(@0) = @N(ON).
We have N(ag) = Nlon

(ii) Assume we have constructed process terms ag,...,an—1, such that
ag; .. i1 PNCN)NP — ON(Np—1) N Py s(ag) U... U s(a,—1) is a
process term, N,_; is a slice of N (Ng := °N) and N(ag;...;an—1) =
(PN N ~"Np_1, TN "Np_1,Fn N (_)Nn—l X _)Nn—1)7¢N|—’Nn_1)- Take
all transitions ¢1,...,tp € Ty with ®*t; C N,_1, i =1,...,k, and define
N = N,_1\ ("t U...U *ty),
N, :=N'Utju...Utg,
Qp = (@N(N/) N P) —I—@N(tl) + ...+ @N(tk).
Clearly, «, is well-defined, N,, is a slice of N,

ag;...;0p : PN(°N) — On(Ny,)
is a process term with information s(ag) U . ..U s(ay,) and
N(aw;...;a0)=(PvN "Ny, TN TNy, FN N (TN, X 7N,), Pn|—n,)-
(iii) Let m € N, such that N,,, = N°.

Then o := ap;...;0 : PN(°N)NP — &5 (N°)N P is a process term with
N(a) = N.

Corollary 1. Every process N € P(EN) can be inductively constructed from
elementary processes using partial operations + and ; as defined in Remark 2.

The method of maximal steps used in the proof of Theorem 1 is illustrated
in Figure 8.
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Fig. 8. Constructing the process from Figure 4 by concatenating N (¢1) + N (¢2)
and N (t3) + N(t4) using the maximal step method.

Theorem 2. For two process terms o, 3 € P(N), a ~; B implies that 7(a) and
7(3) are isomorphic.

Proof. 1t is sufficient to show the proposition for every (of the seven) construction
rule of ~y:

(1) N(aq + a2) = N(a + a1) is obvious.

(2) N(ag;ae); N(ag) = N(a1); N(ag;ag) is obvious.

(3) N(ap + ag) + N(az) = N(aq) + N(ae + ag) is obvious.

(4) We have to show, that (N(ay) + N(a2));(N(as) + N(ag)) =
(N(e1); N(as)) + (N(a2); N(aw)). Let Ny = (P, 14, Fy,®1) be the process
on the left side and Ny = (P, Ty, Fy,®2) be the process on the right side.
Clearly Ty = T(a1) U...UT(ag) = Ts.

Further we have P; = [P(a1) U P(as)]U

[(P(er3) U P(a)) \ {p" € °(N(az) + N(au))|[®3(p') € PV P4(p') € P})] =
[P(Ozl) U P(Oég)]U

[(P(as) \ {p" € °N(as)|®3(p') € P}) U P(as)) \ {p" € N(aa)|®4(p) € P})].
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Because N» is defined, this equals
[P(a1) U (P(as) \ {p' € N(as)|®s(p') € PH]U
[Plaz) U (Plax)\ {p/ € N(a)|a(p)) € P})] = P.
Since the flow relation and labeling of composed processes are constructed
by restriction from the original flow relations and labelings, F} = F5 and
@, = P, follow immediately.

(5) N(a); N(postp(a)) = N(a) = N(prep(a)); N(«) is obvious.

(6) Obvious.

(7) For elementary nets it suffices to consider the case a = (). Its proof is obvious.

Theorem 3. If, for two process terms o, 8 € T'p, 7(a) and 7(3) are isomorphic,
then o ~; (3.

Proof. Without loss of generality let o and § be process terms with N(«) =
N(B) = N = (Pn,Tn,Fn,®N) and v = 71;...;7%m be the process term con-
structed from the process N in the proof of Theorem 1 by considering maximal
steps. Then ~; is of the form

v = PN () ..+ @N(t};i) + &N (MY,

t; €lyand M; C Py,i=1,...,m, 75 =1,...,k;. We show that « is equivalent
to . By symmetry, the same holds for 3, and we are done.

According to Remark 3, we assume without loss of generality that «a is of the
form

a=0N(t1) + (Pn(M1)NP);...;PNn(tk) + (PN (Mg) N P)

with transitions ¢; € Ty and subsets M; C Py, ¢t =1,...,k. We will use short-
hands a = t1;...;tx, and ignore the sets M;, because they are determined by
the definition of the concatenation of process terms. Clearly, o and ~ ’contain’
the same transitions, i.e. {t1,... . tp} = {t], ..., 5 .., 17", ... 10}

Assume t; = t} for an i > 2. It suffices to prove

b1y sty v tag eyttt st

because firstly the same procedure applied to t3,..., ¢, provides t1;...;tgp ~y
71; - .- (3), and secondly this procedure applied to s, ...,V finishes the theo-
rem. In fact, it even is enough to show that we can exchange ¢; and t;_1 in a. A
sufficient condition is that ®x(t;) + @y (t;—1) is a defined process term.

We have to distinguish two cases: If ¢;_; = ¢; for some k € {2,...,k},
&N (t;) + Pn(ti—1) is defined according to the process term . The other possi-
bility is ¢;—1 = ¢} foranl € {2,...,m} and k € {1,...,k}. By construction of
the process N, from « follows (t;_1,t;) € Fy; or t;_1 cot;. On the other hand, by
construction of v follows either (¢;,¢,_1) € Fy or t;cot;_;. It follows t;_; cot;.
By Lemma 4, &n(t;) + Pn(ti—1) is defined.

Figures 7 and 8 illustrate that the equivalent terms from Figures 5 and 6 are
mapped by 7 onto the same process.

Finally, looking at the definition of 7, we can state our main result for ele-
mentary nets, which now follows easily from the previous theorems.
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Theorem 4. Given any elementary net EN, there exists a one-to-one corre-
spondence between the (isomorphism classes of ) processes P(EN) of the elemen-
tary net EN and the ~y-congruence classes of process terms Tp of the corre-
sponding algebraic elementary net AEN. This correspondence preserves source,
target and information about states of processes and process terms, as well as
concurrent composition and concatenation of processes (congruence classes of
process terms).

Remark 4. Let us rephrase Theorem 4 using terminology from partial algebra [2]:
Given a process term « € Tp, the congruence class [a]~, € [Tp]|~, corresponds to
the process 7(ar) = N € P(EN) such that source and target are preserved, i.e.
GO(°N)N P = prep(a), ®(N°) N P = postp(a), and information about states is
preserved, i.e. @(Pyn) N P = s(a). Moreover, denoting by T’p the partial algebra
of process terms with concurrent composition and concatenation as defined in
Definition 5, and by P(EN) the partial algebra of (isomorphism classes of) net
processes with concurrent composition and concatenation as defined in Remark
2, the factor algebra T/, is isomorphic to the partial algebra P(EN), (i.e. T
is a surjective closed homomorphism between T and P(EN).

6 Conclusion

This paper has shown that concepts of partial algebra are capable to define
a syntactic process semantics of elementary nets which precisely distinguishes
those runs that are also obtained by partially ordered process nets. Elementary
nets can be viewed as place/transition nets with a restricted occurrence rule: In
case of a contact situation, a transition is not enabled. In a more general set-
ting, we claim that partial algebra is the suitable tool to define true-concurrency
semantics for arbitrary restrictions of the occurrence rule, such as capacity re-
strictions, inhibitor arcs, read arcs, as suggested in [5]. We are currently working
on a generalization of the results of this paper to Petri nets with arbitrarily
restricted occurrence rule.
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