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Chapter 1

Introduction

The invention of the Scanning Tunneling Microscope (STM) in 1981 [18] has provided

a breakthrough in our possibilities to investigate matter on the atomic scale: for the

�rst time, the individual surface atoms of at samples could be made visible in real

space. Only one year after its invention, one of the most intriguing problems in surface

science was solved with the help of STM: the structure of the surface reconstruction

of silicon (111)-(7x7) [19]. Gerd Binnig and Heinrich Rohrer, the inventors of the

STM were rewarded with the physics Nobel prize in 1986, jointly with Ernst Ruska,

the inventor of the Scanning Electron Microscope. The spectacular spatial resolution

of the STM along with its elegant simplicity has helped to rapidly spread its use

across the surface science community. A large number of metals and semiconductors

have been investigated on the atomic scale and stunning images of the world of atoms

have been created within the �rst few years after the inception of the STM. Some

results have even fascinated the general public, e.g. the work of Eigler et al. where

the STM was used to arrange individual atoms into letters only a few nanometers

across [33]. In more recent experiments quantum structures have been formed from

single atoms with an STM [27, 70].

The STM can only image electrically conductive samples which limits its application

to imaging metals and semiconductors. But even conductors { except for a few special

materials, like highly oriented pyrolytic graphite (HOPG) { cannot be studied in

ambient conditions by STM but have to be investigated in an ultra-high vacuum in

order to be able to prepare clean surfaces. This limitation was lifted in 1985 when

Binnig, Quate and Gerber introduced the atomic force microscope (AFM) [21]. Like

in the STM, a sharp tip is brought close to a sample, but rather than applying a bias
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voltage and measuring the tunneling current, the force between tip and sample is

measured. Because electrical conductivity of the sample is not required in AFM, the

AFM can image virtually any at solid surface. Consequently, thousands of AFMs

are in use in universities, public and industrial research laboratories all over the

world. However, the most of these instruments are operated in ambient conditions,

where surfaces are covered with contamination layers and the atomic con�guration

changes constantly with adsorbing and desorbing atoms and molecules. For studying

surfaces on the atomic level, an ultra-high vacuum environment is required, where it

is more diÆcult to operate an AFM. While the inventors of AFM have anticipated

true atomic resolution capability, it has taken almost a decade to achieve this feat.

In addition to the requirements for performing STM with atomic resolution, AFM

poses several additional challenges which are summarized in chapter 3. True atomic

resolution with static AFM on inert samples was reported in the early nineties [37],

[74]. However, imaging reactive surfaces like Si (111) in ultra-high vacuum by static

AFM has shown that chemical bonding between the tip and sample and wear on the

atomic scale prevents achieving true atomic resolution on silicon by AFM [53, 54].

The topic of this work is the establishment and improvement of AFM as a tool for

surface science with a focus on true atomic resolution. Surface science requires ex-

periments to be performed in an ultra-high vacuum. In 1994, true atomic resolution

was �rst achieved on the Si(111)-(7�7) surface by this author [A2] with frequency

modulation AFM (FM-AFM) [4]. In this experiment, a cantilever with a spring con-

stant of k = 17N/m was oscillating with an amplitude A = 340�A, and the frequency

shift caused by the tip-sample forces was used as the imaging signal. This result

was con�rmed soon after by several other groups using similar experimental param-

eters [61, 48, 69]. Other semiconductors [96], ionic crystals [77, 13, 83], metal oxides

[35, 82], metals [68, 76], organic monolayers [44] and even a �lm of Xenon physisorbed

on graphite [6] have been imaged with atomic resolution. In 1998, the \First Inter-

national Workshop on Non-contact Atomic Force Microscopy (NC-AFM)"was held

in Osaka, Japan with about 80 attendants. This meeting was followed by the sec-

ond meeting in Pontresina, Switzerland in 1999 with roughly 120 participants and

the third meeting in Hamburg, Germany in 2000 with more than 200 participants.

The forth meeting is scheduled for September 2001 in Kyoto, Japan, and the 2002

conference will take place in Santiago de Compostela, Spain.
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While FM-AFM is a well established experimental technique, even more fascinating

applications and results are expected in the future. Recently, subatomic resolution

was demonstrated by AFM [A9], i.e. the spatial resolution of AFM is now surpassing

that of STM. AFM yields information about the strength and geometry of single

chemical bonds. Despite substantial progress, the experimental techniques are still

improving, and stimulating challenges remain.

This text is structured in the following fashion: Chapter 2 contains a brief review

of STM with a discussion of the driving factors which are the basis for the spatial

resolution of STM and a comparison with the AFM. Chapter 3 summarizes the extra

challenges which are faced by AFM in addition to the conditions for the successful

operation of an STM. Chapter 4 describes the experimental implementation of FM-

AFM in detail. Chapter 5 shows the calculation of the imaging signal, the frequency

shift, as a function of the tip-sample forces and chapter 6 contains a calculation

of the vertical noise as a function of the operating parameters. A new force sensor

with properties which are close to the optimal sensor properties calculated in chapter

6 is described in chapter 7. A summary and outlook is given in chapter 8 and the

bibliography, ordered alphabetically by the last name of the �rst author, is in chapter

9. A selection of 11 articles written by this author pertinent to the topics presented in

chapters 2 - 7 are printed in the appendix. The citations of these articles are marked

with a pre�x `A'.
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Chapter 2

Principles of operation

2.1 Scanning Tunneling Microscope (STM)

Even though the principle of STM is explained very well in many excellent books

and review articles [20, 22, 24, 45, 95, 108, 109], a brief review about STM is in-

cluded here because the STM and AFM share many key features, and the additional

challenges faced by AFM show up clearly in a direct comparison. Figure 2.1 shows

Figure 2.1: Schematic setup of a scanning tunneling microscope.
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the general setup of a scanning tunneling microscope (STM): a sharp tip is mounted

on a scanning device (\xyz scanner") which allows 3-dimensional positioning in x; y

and z with subatomic precision. The tunneling tip is typically a wire that has been

sharpened by chemical etching or mechanical grinding. W, Pt-Ir or pure Ir are often

choosen as a tip material. A bias voltage Vt is applied to the sample and when the

distance between tip and sample is in the range of several �Angstr�ms, a tunneling

current It ows between the tip and sample. This current is used as the feedback

signal in a z�feedback loop. The sample is mounted on a coarse positioning device

used to bring the sample within the scanning range of the xyz scanner. Either the

probe or sample can be mounted on the xyz scanner: the choice is entirely determined

by practical considerations. Usually, the object that is lighter is mounted on the xyz

scanner. In some SPMs, the xyz scanner is attached to the coarse positioning device.

For obtaining atomic resolution, the mechanical loop consisting of probe, sample,

xyz scanner and coarse positioning device needs to be stable enough such that am-

bient noise and other mechanical vibrations do not cause the relative position of the

probe and sample to vary by more than a fraction of the diameter of an atom. This

is usually achieved by a mechanically rigid design and a vibration isolation stage,

which decouples the microscope from sound and other mechanical vibrations.

The approach of the sample and probe is typically monitored by an optical micro-

scope. When the probe and sample are within a distance of a few micrometers, an

automatic approach is engaged which brings the probe and sample into contact. A

feedback loop adjusts z such that the magnitude of the imaging signal matches its

setpoint. In the \topographic mode", images are created by scanning the surface in

the xy plane and recording the z position required to keep the imaging signal at the

probe constant. In the \constant height mode", the probe is scanned rapidly such

that the feedback cannot follow the atomic corrugations. The atoms are then appar-

ent as modulations of the imaging signal which is recorded as a function of x and y.

The scanning is usually performed in a raster fashion with a fast scanning direction

(sawtooth or sinusoidal signal) and a slow scanning direction (sawtooth signal). A

computer controls the scanning of the surface in the xy plane while recording the z

position of the tip (topographic mode) or the imaging signal (constant height mode).

Thus, a three dimensional image z(x; y) is created.

8



Instead of the tunneling tip, a force-sensing cantilever, an optical near-�eld probe, a

microthermometer etc. can be mounted to the scanner, giving rise to a whole family

of scanning probe microscopes [106].

2.1.1 Imaging signal in STM

In an STM, a sharp tip is brought close to an electrically conductive surface that is

biased at a voltage Vt. When the separation is close enough, a current It ows between

them. The typical distance between tip and sample under these conditions is a few

atomic diameters, and the transport of electrons occurs by tunneling. When jVtj is

Figure 2.2: Energy diagram of an idealized tunneling gap.

small compared to the workfunction �, the tunneling barrier is roughly rectangular

(see Fig.2.2) with a width z and a height given by the workfunction �. According to

elementary quantum mechanics, the tunneling current is given by:

It(z) = I0e
�2�tz: (2.1)

I0 is a function of the applied voltage and the density of states in both tip and sample

and

�t =
p
2m�=�h (2.2)

where m is the mass of the electron and �h is Planck's constant. For metals, � � 4 eV,

thus �t � 1 �A�1. When z is increased by one �Angstr�m, the current drops by an

order of magnitude. This strong distance dependence is the key reason for atomic

resolution with an STM. Most of the tunneling current is carried by the atom that

is closest to the sample (\front atom"). If the sample is very at, this front atom

remains the atom that is closest to the sample during scanning in x and y and even

relatively blunt tips yield atomic resolution easily.
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2.1.2 Experimental measurement and noise

The tunneling current is measured with a current-to-voltage converter (see Fig. 2.3),

which is usually built with a single operational ampli�er (OPA) with low noise and

low input bias current, and a feedback resistor with a typical impedance of R =

100M
: The tunneling current It is used to measure the distance between tip and

Figure 2.3: Current-to-voltage converter for an STM. The output voltage is given by

Vout = �R� It.

sample. The noise in the imaging signal (tunneling current in the case of STM, force

or some derived quantity in the case of AFM) needs to be small enough such that the

corresponding vertical noise Æz is considerably smaller than the atomic corrugation

of the sample. In the following, the noise levels for imaging signals and vertical

positions are described by the root-mean-square (rms) deviation of the mean value

and indicated by the pre�x Æ, i.e.

Æ� �
q
< (�� < � >)2 >: (2.3)

For achieving atomic resolution with an STM or AFM, a �rst necessary condition is

that the mechanical vibrations between tip and sample are smaller than the atomic

corrugations. This condition is met by a microscope design emphasizing utmost sta-

bility and establishing proper vibration isolation, as described in Refs. [24, 95]. In

the following, proper mechanical design and vibration isolation will be presumed

and not discussed further. The inherent vertical noise in an STM is connected to the

noise in the current measurement. Figure 2.4 shows the qualitative dependence of the

tunneling current It as a function of vertical distance z. Because the measurement

of It is subject to noise, the vertical distance measurement is also subject to a noise

10



Figure 2.4: Tunneling current as a function of distance and relation between current

noise ÆIt and vertical noise Æz (arbitrary units).

level Æz:

ÆzIt =
ÆIt

j@It
@z
j : (2.4)

It is shown below, that the noise in the current measurement ÆIt is small and that
@It
@z

is quite large, consequently the vertical noise in STM is very small.

The dominating noise source in the tunneling current is the Johnson noise of both

the feedback resistor R in the current ampli�er, the Johnson noise in the tunneling

junction, and the input noise of the operational ampli�er. The Johnson noise density

of a resistor R at temperature T is given by [52]:

nR =
q
4kBTR (2.5)

where kB is the Boltzmann constant. In typical STMs, the tunneling current is of

the order of It � 100 pA and measured with an acquisition bandwidth of B � 1

kHz. With a gain of V=I = R = 100 M
 and T = 300K, the rms voltage noise is

ni
p
B=

p
4kBTRB = 40�V at room temperature, corresponding to a current noise

of ÆIt = 0:4 pA. With Eqs. 2.1 and 2.4, the vertical noise is

ÆzIt �
q
4kBTB=R

2�tjItj (2.6)

which amounts to a z�noise of 0:2 pm in the present example. Thus, in STM the

noise in the tunneling current is not a problem, because it is much smaller than the

required resolution.
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The spectacular spatial resolution and relative ease of obtaining atomic resolution

by STM rests on three properties of the tunneling current:

� As a consequence of the strong distance dependence of the tunneling current,

even with a relatively blunt tip the chance is high that a single atom protrudes

far enough out of the tip such that it carries the main part of the tunneling

current;

� Typical tunneling currents are in the nano-ampere range - measuring currents

of this magnitude can be done with a very good signal to noise ratio even with

a simple experimental setup;

� Because the tunneling current is a monotonic function of the tip-sample dis-

tance, it is easy to establish a feedback loop which controls the distance such

that the current is constant.

It is shown in the next section, that neither of these conditions is met in the case

of the AFM and therefore, substantial hurdles had to be overcome before atomic

resolution by AFM became possible.
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2.2 Atomic Force Microscope (AFM)

Early on in the development of STM it became evident, that the forces which act

between the tip and sample lead to elastic deformations of tip and sample which

can cause artifacts like \giant corrugations"[81, 110] or a modi�ed dependence of

It(z): It was found that these forces could be put to good use in the Atomic Force

Microscope (AFM), introduced in 1985 by Binnig, Quate and Gerber [21].

2.2.1 Imaging signal in AFM

Figure 2.5: Schematic view of an AFM tip close to a sample.

Figure 2.5 shows a sharp tip close to a sample. The potential energy between the tip

and sample Vts causes a z component of the tip-sample force Fts=-
@Vts
@z

and a \tip-

sample spring constant"kts=-
@Fts

@z
. Depending on the mode of operation, the AFM

uses Fts or some entity derived from Fts as the imaging signal.

Unlike the tunneling current, which has a very strong distance dependence, Fts has

long- and short-range contributions. We can classify the contributions by their range

and strength. In vacuum, there are van-der-Waals, electrostatic and magnetic forces

with a long range (up to 100 nm) and short range chemical forces (fractions of nm).

In ambient conditions, also meniscus forces formed by adhesion layers on tip and

sample (water or hydrocarbons) can be present.

The van-der-Waals interaction is caused by uctuations in the electric dipole mo-

ment of atoms and their mutual polarization. For two atoms at distance z, the energy

varies as 1=z6 [15]. Assuming additivity and disregarding the discrete nature of mat-

ter by replacing the sum over individual atoms by an integration over a volume with
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a continuous number density of atoms, the van-der-Waals interaction between macro-

scopic bodies can be calculated (\Hamaker approach") [49]. This approach does not

account for retardation e�ects due to the �nite speed of light and is therefore only

appropriate for distances up to several hundred �Angstr�ms. For a spherical tip with

radius R next to a at surface (z is the distance between the plane connecting the

centers of the surface atoms and the center of the closest tip atom) the van-der-Waals

potential is given by [55]:

VLJ = �AHR

6z
: (2.7)

The \Hamaker constant"AH depends on the type of materials (atomic polarizability

and density) of the tip and sample. For most solids and interactions across vacuum,

AH is of the order of 1 eV. For a list of AH for various materials, see [63]. The van-

der-Waals interaction can be quite large { the typical radius of an etched metal tip

is 100 nm and with z = 0:5 nm, the van-der-Waals energy is � �30 eV, and the

corresponding force is � �10 nN.
A more modern approach to the calculation of van-der-Waals forces is described in

[50], and other tip shapes are treated in [A4].

When the tip and sample are both conductive and have an electrostatic potential

di�erence U 6= 0, electrostatic forces are important. For a spherical tip with radius

R, the potential energy is given by [88]

Velectrostatic(z) = 2��0R
1X
n=2

sinh(�)

sinh(n�)
U2 (2.8)

with

� = ln(1 +
z

R
(1 +

s
1 + 2

R

z
)): (2.9)

Like the van-der-Waals interaction, the electrostatic interaction can also cause large

forces { for a tip radius of 100 nm, U = 1V and z = 0:5 nm, the electrostatic energy

is � �89 eV, and the corresponding force is � �5:5 nN.
Electrostatic forces also arise in the imaging of ionic crystals, where the envelope of

the electrostatic �eld has an exponential distance dependence [38].

Chemical forces are more diÆcult to describe. Empirical model potentials for chem-

ical bonds are the Morse Potential (see e.g. [55]).

VMorse = �Ebond(2e
��(z��) � e�2�(z��)) (2.10)
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and the Lennard-Jones potential [12, 55]:

VLennard�Jones = �Ebond(2
z6

�6
� z12

�12
): (2.11)

These potentials describe a chemical bond with bonding energy Ebond and equilibrium

distance �. The Morse potential has an additional parameter { a decay length �.

While the Morse potential can be used for a qualitative description of chemical

forces, it lacks an important property of chemical bonds: chemical bonds, especially

covalent bonds show an inherent angular dependence of the bonding strength [26, 78].

Therefore, more sophisticated models like the Stillinger-Weber potential [94] are used

in a more detailed description of the chemical interaction [A9].

More information about tip-sample forces can be found in Refs. [25, 55, 79, 80, 88,

A4, A7] and references therein.

2.2.2 Experimental measurement and noise

Forces between the tip and sample are typically measured by recording the deection

of a cantilever beam that has a tip mounted to its end (see Fig. 2.6). While simple

cantilevers can be cut from household tin foil [86], high-quality cantilevers are mainly

built by micromachining silicon, where pioneering work was done in the group of

Calvin F. Quate [2, 3, 100] and at IBM [111].

The cantilever bends in response to the forces between tip and sample. The cantilever

is characterized by its spring constant k, eigenfrequency f0 and quality factor Q. For

Figure 2.6: Top view and side view of a microfabricated silicon cantilever (schematic).
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a rectangular cantilever with dimensions w; t and L (see Fig. 2.6), the spring constant

k is given by [24]:

k =
EYwt

3

4L3
: (2.12)

where EY is Young's modulus. The eigenfrequency f0 is given by [24]:

f0 = 0:162
t

L2

s
EY

�
(2.13)

where � is the mass density of the cantilever material. The Q-factor depends on

the damping mechanisms present in the cantilever. For micromachined cantilevers

operated in air, Q is typically a few hundred while in vacuum, Q can reach hundreds

of thousands.

In the �rst AFM, the deection of the cantilever was measured with an STM - the

backside of the cantilever was metalized, and a tunneling tip was brought close to it

to measure the deection [21]. While the tunneling e�ect is very sensitive to distance

variations, this method has a number of drawbacks. The tunneling tip also exerts

forces on the cantilever, and it is quite diÆcult to position a tunneling tip close to a

cantilever. Subsequent designs used optical (interferometer, beam-bounce) or electri-

cal methods (piezoresistive, piezoelectric) for measuring the cantilever deection. A

discussion of the various techniques can be found in [88], and the appendix contains

descriptions of piezoresistive [A1, A3] and piezoelectric [A5, A8] methods.

The deection of the cantilever is subject to thermal drift and other noise factors.

This can be expressed in a plot of the deection noise density versus frequency. A

typical noise density is plotted in Fig. 2.7. The noise density has a 1=f dependence

for low frequency and merges into a constant noise density (\white noise") above

the \1=f corner frequency". This 1=f noise is also apparent in other force sensing

devices, such as scales. Typically, scales have a reset or zero button, which allows

the user to reset the e�ects of long-term drift. Machining AFMs from materials with

low thermal expansion coeÆcients like Invar or operation at low temperatures helps

to minimize 1=f noise.

In the dynamic operating modes (see next section), drifts in f0 also add to the vertical

noise. This is discussed in detail on page 45.
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Figure 2.7: Schematic view of 1=f noise apparent in force detectors.

2.3 Operating Modes of AFMs

2.3.1 Static AFM

In the case of the AFM, the force Fts which acts between the tip and sample is

used as the imaging signal. In the static mode of operation, the force translates

into a deection q0 = Fts=k of the cantilever. Because the deection of the cantilever

should be signi�cantly larger than the deformation of the tip and sample, restrictions

on the useful range of k apply. In the static mode, the cantilever should be much

softer than the bonds between the bulk atoms in tip and sample. Interatomic force

constants in solids are in a range from 10 N/m to about 100 N/m - in biological

samples, they can be as small as 0.1 N/m. Thus, typical values for k in the static

mode are 0:01� 5N/m.

The eigenfrequency f0 should be signi�cantly higher than the desired detection band-

width, i.e. if 10 lines per second are recorded during imaging a width of say 100 atoms,

f0 should be at least 10�2�100 s�1 = 2 kHz in order to prevent resonant excitation

of the cantilever.

Even though it has been demonstrated that atomic resolution is possible with static

AFM, the method can only be applied in certain cases. The detrimental e�ects of

1=f -noise can be limited by working at low temperatures [38], where the coeÆcients

of thermal expansion are very small or by building the AFM of a material with a
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low thermal expansion coeÆcient [74]. The long-range attractive forces have to be

cancelled by immersing tip and sample in a liquid [74] or by partly compensating

the attractive force by pulling at the cantilever after jump-to-contact has occurred

[37, 38, 39]. Jarvis et al. have cancelled the long-range attractive force with an elec-

tromagnetic force applied to the cantilever [57, 58]. Even with these restrictions,

static AFM does not produce atomic resolution on reactive surfaces like silicon, as

the chemical bonding of AFM tip and sample pose an unsurmountable problem [53].

While the experimental implication of static AFM is diÆcult, the physical interpre-

tation of static AFM images is simple: The image is a map z(x; y; Fts = const:).

2.3.2 Dynamic AFM

In the dynamic operation modes, the cantilever is deliberately vibrated. The can-

tilever is mounted onto an actuator to allow an external excitation of an oscillation.

There are two basic methods of dynamic operation: amplitude modulation (AM) -

and frequency modulation (FM) operation. In AM-AFM [71], the actuator is driven

by a �xed amplitude Adrive at a �xed frequency fdrive where fexc is close to but di�er-

ent from f0. When the tip approaches the sample, elastic and inelastic interactions

cause a change in both the amplitude and the phase (relative to the driving signal)

of the cantilever. These changes are used as the feedback signal. The change in am-

plitude in AM mode does not occur instantaneously with a change in the tip-sample

interaction, but on a timescale of �AM � 2Q=f0. With Q-factors reaching 100000 in

vacuum, this means that the AM mode is very slow. Albrecht and coworkers found a

way around this problem by introducing the frequency modulation (FM) mode [4],

where the change in the eigenfrequency settles on a timescale of �FM � 1=f0.

Both AM and FM modes were initially meant to be \non-contact" modes, i.e. the

cantilever was far away from the surface and the net force between the front atom

of the tip and the sample was clearly attractive. The AM mode was later used very

successfully at a closer distance range in ambient conditions involving repulsive tip-

sample interactions (\Tapping Mode"[112]) and Erlandsson et al. obtained atomic

resolution on Si in vacuum with an etched tungsten cantilever operated in AM mode

in 1996 [34]. Using the FM mode, the resolution was improved dramatically [A1, 40]
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and �nally atomic resolution [A2] was obtained by reducing the tip sample distance

and working in vacuum. While it was believed initially that the net force between

the front atom of the tip and the sample has to be attractive when atomic resolu-

tion is desired, this view has been challenged recently [93]. Nevertheless, the dynamic

modes are commonly still called \non-contact"modes and the conference series which

covers AFM with atomic resolution in vacuum is named \International Conference

on Non-contact Atomic Force Microscopy". It is noted, that the de�nition of \con-

tact"between two objects (tip and sample) is diÆcult when looking on atomic length

scales { even though on a macroscopic scale the de�nition of \contact"between two

objects is perfectly clear. What is commonly understood by \Non-contact AFM"is

that neither tip nor sample su�er permanent deformations or wear during the imaging

process { no matter whether the force between tip and sample or the force between

the front atom of the tip and the sample is attractive or repulsive. For atomic studies

in vacuum, the FM-mode is now the preferred AFM technique. A detailed description

of the FM-mode is given in chapter 4.
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Chapter 3

The four additional challenges

faced by AFM

In a scanning tunneling microscope, a tip has to be scanned across a surface with

a precision of fractions of an �Angstr�m while a feedback mechanism adjusts the z�
position such that the tunneling current is constant. This task seems daunting and

the successful realization of STM is an amazing accomplishment. Yet, implementing

an AFM capable of atomic resolution poses even more obstacles than the operation of

an STM. Some of the additional challenges faced by AFM are apparent by comparing

the tunneling current and tip sample force as a function of distance (Fig. 3.1). The
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Figure 3.1: Plot of tunneling current It and force Fts (typical values) as a function

of distance z between front atom and surface atom layer.
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tunneling current is a monotonic function of the tip-sample distance and has a very

sharp distance dependence. In contrast, the tip-sample force has long- and short-

range components and is not monotonic.

3.1 Jump-to-contact problem

Van-der-Waals forces in vacuum are always attractive, and if chemical bonding be-

tween tip and sample can occur the chemical forces are also attractive for distances

larger than the equilibrium distance. Because the tip is mounted on a spring, ap-

proaching the tip can cause a sudden \jump to contact"when the sti�ness of the

cantilever is smaller than a certain value.

This instability occurs in the quasistatic mode if [98, 23]

k > max(�@2Vts
@z2

) = kmax
ts : (3.1)

The jump to contact can be avoided even for soft cantilevers by oscillating it at a

large enough amplitude A [A3]:

kA > max(�Fts) = Fmax
ts : (3.2)

It has been found empirically (see column 5 in table 4.1), that kA � 200 nN for

avoiding this instability. With typical spring constants of k � 20N/m, amplitudes

in the range of A � 10 nm are required. However, using large amplitudes has critical

disadvantages, which are discussed in chapter 6.

3.2 Non-monotonic imaging signal

The magnitude of the tunneling current increases continuously as the tip-sample dis-

tance decreases, i.e. the tunneling current is a strictly monotic decreasing function

of the distance (see Fig. 2.4 on page 11). This property allows a simple implementa-

tion of a feedback loop: the tunneling current is fed into a logarithmic ampli�er to

produce an error signal that is linear with the tip-sample distance.

In contrast, the tip-sample force is not monotonic. In general, the force is attractive

for large distances and upon decreasing the distance between tip and sample, the
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force turns repulsive (see Fig. 3.1). Stable feedback is only possible on a branch of

the force curve, where it is monotonic.

Because the tunneling current is monotonic for the whole distance range and the tip-

sample force is not monotonic, it is much easier to establish a z� distance feedback

loop for STMs than for AFMs.

3.3 Contribution of long-range forces

The force between tip and sample is composed of many contributions: electrostatic,

magnetic, van-der-Waals and chemical forces in vacuum. In ambient conditions there

are also meniscus forces. While electrostatic-, magnetic- and meniscus forces can be

eliminated by working in vacuum with nonmagnetic tips and equalizing the electro-

static potential between tip and sample, the van-der-Waals forces cannot be switched

o�. For imaging by AFM with atomic resolution, it is desirable to �lter out the long-

range force contributions and only measure the force components which vary at the

atomic scale. In STM, the strong distance dependence of the tunneling current nat-

urally enables high resolution. While there is no way to discriminate between long-

and short-range forces in static AFM, it is shown in section 5.2 that it is possible

to enhance the short-range contributions in dynamic AFM by proper choice of the

oscillation amplitude A of the cantilever.

3.4 Noise in the imaging signal

Forces can be measured by the deection of a spring. However, measuring the deec-

tion is not a trivial task and is subject to noise, especially at low frequencies (1=f

noise). In static AFM, the imaging signal is given by the dc deection of the can-

tilever, which is subject to 1=f noise. In dynamic AFM, the low-frequency noise is

discriminated if the eigenfrequency f0 is larger than the 1=f corner frequency. With

a bandpass �lter with a center frequency around f0 only the white noise density is

integrated across the bandwidth B of the bandpass �lter.

Frequency modulation AFM, described in detail in chapter 4, helps to overcome three
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of these four challenges. The non-monotonic imaging signal in AFM is a remaining

complication for FM-AFM.
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Chapter 4

Frequency-modulation AFM

(FM-AFM)

4.1 Experimental setup

Figure 4.1: Block diagram of a frequency-modulation force sensor.

In FM-AFM, a cantilever with eigenfrequency f0 and spring constant k is subject to

controlled positive feedback such that it oscillates with a constant amplitude A [4] as

shown in Fig. 4.1. The deection signal is phase shifted, routed through an automatic

gain control circuit and fed back to the actuator. The frequency f is determined by

the eigenfrequency f0 of the cantilever and the phase shift ' between the mechanical

excitation generated at the actuator and the deection of the cantilever. If ' = �=2,

the loop oscillates at f = f0.

Forces between tip and sample cause a change in f = f0+�f . If the second derivative

of the tip-sample potential kts =
@2Vts
@z2

is constant for the whole range covered by the
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oscillating cantilever, the shift in eigenfrequency that occurs is given by:

�f =
kts
2k

f0: (4.1)

The case where kts is not constant is treated in the next chapter. By measuring the

frequency shift �f , the tip-sample forces can be determined.

The oscillator circuit is a critical component in FM-AFM and has been home-built

for our experiments. The function of this device is understood best by analyzing the

cantilever motion. The cantilever can be treated as a damped harmonic oscillator

that is externally driven. For sinusoidal excitations Adrivee
i2�fdrivet and a quality

factor Q� 1, the response of the oscillation amplitude of the cantilever is given by

A

Adrive
=

1

1� f 2drive=f
2
0 + ifdrive=(f0Q)

: (4.2)

The absolute value of the amplitude is given by

jAj = jAdrivejq
(1� f 2drive=f

2
0 )2 + f 2drive=(f

2
0Q2)

(4.3)

and the phase angle between the driving and resulting signals is

' = arctan[
fdrive

Qf0(1� f 2drive=f
2
0 )
] (4.4)

In the case of a closed feedback loop as shown in Fig. 4.1, the driving frequency

cannot be choosen freely anymore but is determined by f0 of the cantilever, the

phase shift ' and the tip-sample forces. The purpose of the oscillator circuit is to

provide controlled positive feedback (with a phase angle of ' = �=2) such that the

cantilever oscillates at a constant amplitude. This requirement is ful�lled with the

setup shown in Fig. 4.2.

The cantilever deection signal enters to the left and is �rst routed through a band-

pass �lter which cuts o� the noise from unwanted frequency bands. While this �lter

is not absolutely necessary (a cantilever with a high Q-value is already an excellent

mechanical bandpass), it helps for observing the deection signal on an oscilloscope.

The �ltered deection signal branches into an rms-to-dc converter and a phase shifter

(see [52]). The rms-to-dc chip (e.g. AD 536A [9]) computes a dc signal which cor-

responds to the rms-value of the amplitude. This signal is added to the inverted
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Figure 4.2: Block diagram of the oscillator control electronics for frequency-

modulation detection.

setpoint rms amplitude, yielding the amplitude error signal. The amplitude error

enters a proportional (P) and optional integral (I) controller and the resulting signal

g is multiplied with the phase shifted cantilever deection signal q00 with an analog

multiplier chip (e.g. AD 534 [9]). This signal drives the actuator. The phase shifter

is adjusted so that the driving signal required for establishing the desired oscillation

amplitude is minimal; ' is exactly �=2 in this case.

The �ltered cantilever deection signal is fed into a commercial phase-locked-loop

(PLL) detector [73]. The PLL allows to set a reference frequency fref and outputs a

signal which is proportional to the di�erence between the input frequency f and the

reference frequency fref . This signal �f = f � fref is used as the imaging signal in

FM-AFM.

Conservative tip-sample forces cause a frequency shift. A non-conservative compo-

nent in the tip-sample force, that is a hysteresis in the force versus distance graph

�Ets =

AZ
�A

Fts(z + z0)dz0 +

�AZ
A

Fts(z + z0)dz0; (4.5)

causes extra dissipation in the motion of the cantilever. When the tip of the cantilever

is far from the sample, the damping of the cantilever is due to internal dissipation
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and the energy loss per oscillation cycle is given by:

�ECL = 2�
E

Q
(4.6)

where E = kA2=2 is the energy of the cantilever and Q is its quality factor. When the

phase angle between the excursion of the actuator and the excursion of the cantilever

is exactly ' = �=2, the cantilever oscillates at frequency f0 and the driving signal is

Adrive = Aei�=2=Q. Hence, the driving amplitude and dissipation are connected:

jAdrivej = jAj�ECL

2�E
: (4.7)

When the tip oscillates close to the sample, additional damping occurs and the

driving signal Adrive is increased by the oscillator control electronics to A0drive for

maintaining a constant amplitude A where

jA0drivej = jAj�ECL +�Ets

2�E
= jAj

 
1

Q
+
�Ets

2�E

!
: (4.8)

Equation 4.8 has an important implication on the optimal Q factor of the cantilever.

While a high Q factor results in low frequency noise (see Eq. 6.6 on page 44), Eq. 4.8

shows that the Q value of the cantilever should not be much higher than the ratio

2�E=�Ets. If Q is much higher than this value, it is diÆcult for the oscillator circuit

to maintain a constant amplitude, because small changes in �Ets require a major

correction in the control output g.

Measuring the damping signal yields the dissipation in the approach and retract

phases of the oscillating tip where

�Ets = 2�
E

Q

 jA0drivej
jAdrivej � 1

!
: (4.9)

The ratio jA0drivej=jAdrivej is easily accessible in the dc input (g) of the analog multi-

plier chip in Fig. 4.2 { an increase in the tip-sample dissipation �Ets is reected in

an increased gain signal g0 in the oscillator electronics and g0=g = jA0drivej=jAdrivej.
Several authors have recorded this signal simultaneously with the frequency shift and

thus measured both elastic and non-elastic interaction forces simultaneously, see e.g.

[13, 103].

It is noted, that dispersions in the oscillator circuit and in the actuator assembly

can lead to artifacts in the interpretation of damping data, because jAdrivej = jAj=Q
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only holds for f = f0. Anczykowski et al. [10] have introduced a method that yields

the correct dissipation energy even for cases where the phase angle between actuator

and cantilever is not ' = �=2. Mechanical resonances in the actuator assembly are

likely to occur at the high resonance frequencies of conventional cantilevers. These

resonances can cause sharp variations of the phase with frequency and thus create

artifacts in the measurement of �Ets. A self-oscillation technique for cantilevers [A3]

helps to avoid these resonances.

4.2 Applications

FM-AFM was introduced by Albrecht and coworkers in magnetic force microscopy

[4]. In these experiments, Albrecht et al. imaged a thin �lm CoPtCr magnetic record-

ing disk (Fig. 7a in [4]) with a cantilever with a spring constant k � 10N/m, eigen-

frequency f0 = 68:485 kHz, amplitude A = 5nm, a Q value of 40000 [5] and a tip

with a thin magnetic �lm coverage. The noise level and imaging speed was enhanced

signi�cantly compared to amplitude modulation techniques. In 1993, the frequency

modulation method was implemented in the prototype of a commercial STM/AFM

for ultra-high vacuum [A1]. Initial experiments on KCl yielded excellent resolution

and soon after, the Si (111)-(7�7) surface was imaged with true atomic resolution

for the �rst time [A2].

FM-AFM has four operating parameters:

1. The spring constant of the cantilever k.

2. The eigenfrequency of the cantilever f0.

3. The oscillation amplitude A.

4. The frequency shift of the cantilever �f .

The �rst two parameters are determined by the type of cantilever that is used, while

the latter two parameters can be freely adjusted. The initial parameters which pro-

vided true atomic resolution (k = 17N/m, f0 = 114 kHz, A = 34nm, �f = �70Hz)
were found empirically. Surprisingly, the amplitude necessary for obtaining good re-

sults was very large compared to atomic dimensions. The necessity of using large
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amplitudes for obtaining good results seems counterintuitive, because the tip of the

cantilever spends only a small fraction during an oscillation cycle in close vicinity to

the sample. In hindsight, it is clear that the large amplitudes were required to prevent

jump-to-contact (see section 3.1). Obviously, the product between spring constant

and amplitude (column \kA[nN]" in Table 4.1) has to be larger than � 100 nN to

provide a suÆciently strong withdrawing force. In the experiments conducted in 1994

(see rows 1 and 2 in Table 4.1), this condition was not met, and correspondingly, the

resolution was not quite atomic yet. It is also speculated, that E = 1
2
kA2 (column

\E[keV]" in Table 4.1) should be large compared to �Ets de�ned in Eq. 4.1. As shown

in Table 4.1, atomic resolution on silicon and other samples was reproduced by other

groups with similar operating parameters �f � �100Hz, k � 20N/m, f0 � 200 kHz

and A � 10 nm. Several commercial vendors now o�er FM-AFMs that operate with

these parameters [59, 75, 99]. Because many FM-AFMs operating with this initial

parameter set are in use, we call this operating mode the \classic"FM-AFM mode.

While the operating parameters of the classic FM-AFM mode provide good results

routinely, it was not proven initially that these parameters yield optimal resolution.

The search space for �nding the optimal parameters was not completely open, be-

cause micromachined cantilevers were only available with a limited selection of spring

constants. A theoretical study has shown later [A6], that the optimal spring constants

should be of the order of a few hundred N/m, much sti�er than the spring constant

of commercially available cantilevers. This result has been veri�ed experimentally

recently by achieving unprecedented resolution with a cantilever with k = 1800N/m

[A9].
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year k[N/m] f0[kHz] �f [Hz] A[nm] kA[nN] E[keV] sample Ref.:

1994 2.5 60.0 -16 15.0 37.5 1.8 KCl(001)* [A1]

1994 2.5 60.0 -32 3.3 8.25 0.1 Si(111)* [40]

1995 17.0 114.0 -70 34.0 544 61 Si(111) [A2]

1995 43.0 276.0 -60 40.0 1720 215 Si(111) [61]

1995 34.0 151.0 -6 20.0 680 42 InP(110) [96]

1996 23.5 153.0 -70 19.0 447 27 Si(111) [69]

1996 33.0 264.0 -670 4.0 132 12 Si(001) [62]

1996 10.0 290.0 -95 10.0 100 3.1 Si(111) [48]

1997 30.0 168.0 -80 13.0 390 16 NaCl(001) [13]

1997 28.0 270.0 -80 15.0 420 20 TiO2(110) [35]

1997 41.0 172.0 -10 16.0 654 33 Si(111) [97]

1999 35.0 160.0 -63 8.8 338 10 HOPG(0001) [7]

1999 36.0 160.0 -60.5 12.7 457 18 InAs(110) [92]

1999 36.0 160.0 -92 9.4 338 10 Xe(111) [8]

2000 28.6 155.7 -31 5 143 2.2 Si(111) [66]

2000 1800 16.86 -160 0.8 1440 3.6 Si(111) [A9]

2000 1800 20.53 85 0.3 540 0.5 Si(111) [A10]

Table 4.1: Cantilever properties (k; f0) and operating parameters (�f; A; E) of var-

ious FM-AFM experiments.
�Atomic resolution was not achieved in these initial experiments.
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Chapter 5

Calculation of the frequency shift

in FM-AFM

5.1 Generic calculation

The oscillation frequency is the observable in FM-AFM and it is important to es-

tablish a connection between frequency shift and the forces acting between tip and

sample. While the frequency can be calculated numerically [11], an analytic cal-

culation is important for �nding the functional relationships between operational

parameters and the physical tip-sample forces. The motion of the cantilever (spring

Figure 5.1: Schematic view of an oscillating cantilever and de�nition of geometric

terms.

constant k, e�ective mass m�) can be described by a weakly disturbed harmonic

oscillator. Figure 1 shows the deection q0(t) of the tip of the cantilever: it oscillates

with an amplitude A at a distance q(t) to a sample. The closest point to the sample
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is q = d and q(t) = q0(t) + d+ A. The Hamiltonian of the cantilever is:

H =
p2

2m�
+
kq02

2
+ Vts(q) (5.1)

where p = m�dq0=dt. The unperturbed motion is given by:

q0(t) = A cos(2�f0t) (5.2)

and the frequency is:

f0 =
1

2�

s
k

m�
: (5.3)

If the force gradient kts = �@Fts

@z
is constant during the oscillation cycle, the calcula-

tion of the frequency shift is trivial:

�f = f0
kts
2k

: (5.4)

However, in classic FM-AFM kts varies orders of magnitude during one oscillation

cycle and a perturbation approach as shown below has to be employed for the cal-

culation of the frequency shift.

5.1.1 Hamilton-Jacobi Method

The �rst derivation of the frequency shift in FM-AFM was achieved in 1997 [A3]

using canonical perturbation theory [43]. The result of this calculation is:

�f = � f0
kA2

< Ftsq
0 > : (5.5)

where the pointed brackets indicate averaging across one oscillation cycle.

The applicability of �rst-order perturbation theory depends on the magnitude of the

perturbation, i.e. on the ratio between Vts and the energy of the oscillating cantilever

E = H0. In FM-AFM, E is typically in the range of several keVs (see table 4.1),

while Vts is only a few electron volts and �rst order perturbation theory yields results

for �f with excellent precision.
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5.1.2 Fourier Method

An alternate approach to the calculation of �f has been shown by Barato� [14],

D�urig [29] and Livshits et al. [67]. This approach also derives the magnitude of the

higher harmonics and the constant deection of the cantilever.

This method involves solving Newton's equation of motion for the cantilever (e�ective

mass ��, spring constant k):

��
d2q0

dt2
= �kq0 + Fts(q

0): (5.6)

Using a Fourier series with fundamental frequency f :

q0(t) =
1X

m=0

am cos(m2�ft): (5.7)

Insertion into Eq. 5.6 yields:

1X
m=0

am
h
�(m2�f)2�� + k

i
cos(m2�ft) = Fts(q

0): (5.8)

Multiplication by cos(l2�ft) and integration from t = 0 to t = 1=f yields:

am
h
�(m2�f)2�� + k

i
�(1 + Æm0) = 2�f

Z 1=f

0
Fts(q

0) cos(m2�ft)dt (5.9)

by making use of the orthogonality of the angular functions

Z 2�

0
cos(mx) cos(lx)dx = �Æml(1 + Æm0): (5.10)

If the perturbation is weak, q0(t) � A cos(2�ft) with f = f0 +�f , f0 =
1
2�

q
k
��

and

j�f j � f0: To �rst order, the frequency shift is given by:

�f = � f 20
kA

Z 1=f0

0
Fts(q

0) cos(2�f0t)dt = � f0
kA2

< Ftsq
0 > : (5.11)

Thus, the Fourier approach yields the same result for �f as the Hamilton-Jacobi

method.

In addition, the amplitudes of the higher harmonics:

am =
2f0

k(1 + Æm0)(1�m2)

Z 1=f0

0
Fts(q

0) cos(m2�f0t)dt (5.12)
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and the mean displacement of the cantilever:

a0 =
f0
k

Z 1=f0

0
Fts(q

0)dt =
1

k
< Fts > (5.13)

are found by this approach. D�urig [30] has estimated the magnitude of the higher

harmonics by using:

�����
Z 1=f0

0
Fts(q

0) cos(m2�f0t)dt

����� <
�����
Z 1=f0

0
Fts(q

0) cos(2�f0t)dt

����� : (5.14)

Thus for m > 1 :

jamj � A
2

m2 � 1

������ff0
����� : (5.15)

For typical experiments �f=f0 < 10�3; i.e. the higher harmonics are small compared

to the fundamental amplitude A.

The results of these calculations are also applicable for amplitude modulation AFM

[17].

H�olscher et al. [51] have used canonical perturbation theory to derive the �rst analytic

results for the frequency shift caused by inverse power forces. Sasaki and Tsukada

have obtained a similar result to Eq. 5.5 with a di�erent type of perturbation theory

[89, 90].

D�urig has shown, that in principal the tip sample potential can be reconstructed

when the amplitudes and phases of the higher harmonics are known [31].

5.1.3 A very simple expression for frequency shifts as a func-

tion of the tip-sample forces

For small amplitudes, the frequency shift is a very simple function of the tip-sample

forces { it is proportional to the tip-sample force gradient kts. For large amplitudes,

the frequency shift is given by the rather complicated expressions Eq. 5.5 and Eq.

5.11. With integration by parts, these complicated formulas transform into a very

simple expression that resembles Eq. 5.4 [A11].

�f(z) = f0
hkts(z)i
2k

(5.16)
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with

hkts(z)i = 1
�
2
A2

Z A

�A
kts(z � q0)

q
A2 � q02dq0: (5.17)

This expression is closely related to Eq. 5.4: the constant kts of Eq. 5.4 is replaced

by a weighted average hktsi, where the weight function w(q0; A) is a semi circle with

radius A divided by the area of the semicircle � = �A2=2 (see Fig. 2 (b) in Ref.

[A11]).

5.2 Frequency shift for a typical tip-sample force

The interaction of a macroscopic tip of an AFM with a sample is a complicated

many-body problem and Fts cannot be described by a simple function. However,

quite realistic model forces can be constructed from linear combinations of the fol-

lowing basic types: a) inverse-power forces, b) power forces and c) exponential forces.

Analytic expressions for the frequency shift as a function of z and A are listed in Ref.

[A7]. A typical tip-sample force is composed of long range contributions and short

range contributions [A4]. This force can be approximated by a long-range van-der-

Waals component and a short-range Morse type interaction:

Fts(z) =
C

z + �
+ 2�Ebond(�e��(z��) + e�2�(z��)): (5.18)

C depends on the tip angle and the Hamaker constant of tip and sample [A4], and

Ebond; � and � are the bonding energy, equilibrium distance and decay length of the

Morse potential respectively. With the results derived in [A7], the resulting frequency

shift is:

�f(z; A) =
f0
kA

C

z + �

�
F
1;1=2
1 (

�2A
z + �

)� F
1;3=2
2 (

�2A
z + �

)
�

�f0 2�Ebond

kA

n
e��z

h
M1=2

1 (�2�A)�M3=2
2 (�2�A)

i
+ e�2�z

h
M

1=2
1 (�4�A)�M

3=2
2 (�4�A)

io
: (5.19)

where F a;b
c (z) is the Hypergeometric Function and Ma

b (z) is Kummer's Function [1].

Equation 5.19 describes the frequency shift as a function of amplitude. For small

amplitudes, the frequency shift is independent of the amplitude and proportional to
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the tip-sample force gradient kts (Eq. 5.4). For amplitudes that are large compared

to the range of the tip-sample force, the frequency shift is described by a \normalized

frequency shift" given by:

(z; A) :=
kA3=2

f0
�f(z; A) (5.20)

where (z; A) asymptotically approaches a constant value for suÆciently large am-

plitudes (see Fig. 2 in Ref. [A7] ), i.e. limA!1 (z; A) � lA(z). This normalized

frequency shift is calculated from the tip-sample force according to [A7]:

lA(z) =
1p
2�

Z
1

0

Fts(z + z0)p
z0

dz0: (5.21)

Thus, for small amplitudes the frequency shift is very sensitive to short-range forces,

because short-range forces have a very strong force gradient, while for large ampli-

tudes, long-range forces contribute heavily to the frequency shift. Figure 5.2 shows

the tip-sample force de�ned in Eq. 5.18 and the corresponding force gradient and

normalized frequency shift lA. The parameters for the short-range interaction are

adopted from Perez et al. [80]: � = 12:76 nm�1, Ebond = 2:273 eV and � = 2:357�A.

The force gradient is vanishing for z > 6�A, while the normalized frequency shift for

-4

-3

-2

-1

0

1

2

3

4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

z  [nm]

F
ts

 [
nN

] 
k

ts
 [

10
 N

/m
]

γ 
[1

0 
fN

m
0.

5 ]

normalized frequency shift

force

force gradient

Figure 5.2: Force Fts(z), force gradient kts(z) and normalized frequency shift (z)

for the tip-sample force de�ned in Eq. 5.18.
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large amplitudes reaches almost half its maximum at this distance. The dependence

of the frequency shift with amplitude leads to an important conclusion: small am-

plitudes increase the sensitivity to short-range forces! The possibility of adjusting

the amplitude in FM-AFM compares to tuning an optical spectrometer to a passing

wavelength. When short-range interactions are to be probed, the amplitude should

be in the range of the short-range forces. While using amplitudes in the �A-range has

been elusive with conventional cantilevers because of the jump-to-contact problem

described in section 3.1, the home-made force sensor described in chapter 7 is suited

well for small-amplitude operation.

5.3 Calculation of the tunneling current for oscil-

lating tips

When the tip of the cantilever and the sample are both conductive, simultaneous

STM and FM-AFM operation is possible, i.e. the tunneling current It as well as

the frequency shift can be recorded while scanning the surface. In most cases, the

bandwidth of the tunneling current-preampli�er is much smaller than the oscillation

frequency f0 of typical cantilevers. The measured tunneling current is given by the

time-average over one oscillation cycle. With the exponential distance dependence

It(z) = I0e
�2�tz (see Eq. 2.1) we �nd:

hIt(z; A)i = I0e
�2�tzM

1=2
1 (�2�tA) (5.22)

where Ma
b (�) is the Kummer Function [1]. When �tA� 1,

hIt(z; A)i � It(z; 0)=
q
2��tA: (5.23)

Figure 5.3 shows the dependence of the tunneling current as a function of the product

between �t and A. For A = 10nm and �t = 1�A�1, the mean tunneling current is

� 1=25 of the value when the cantilever does not oscillate. Because the noise of the

current measurement decreases with an increasing mean tunneling current, the use

of small amplitudes improves simultaneous STM and FM-AFM measurements.
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Figure 5.3: Plot of the mean tunneling current as a function of amplitude.
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Chapter 6

Noise in frequency modulation

AFM

6.1 Generic calculation

The vertical noise in FM-AFM can be calculated in the same fashion as in the STM

case (see Fig. 2.4); it is given by the ratio between the noise in the imaging signal

and the slope of the imaging signal with respect to z:

Æz =
Æ�f

j@�f
@z
j : (6.1)

Figure 6.1 shows a typical frequency shift versus distance curve. Because the distance

between the tip and sample is measured indirectly through the frequency shift, it

is clearly evident from Fig. 6.1 that the noise in the frequency measurement Æ�f

translates into vertical noise Æz and is given by the ratio between Æ�f and the slope

of the frequency shift curve �f(z) (Eq. 6.1). Low vertical noise is obtained for a

low-noise frequency measurement and a steep slope of the frequency shift curve.

Because the frequency shift is not monotonic with respect to z, stable feedback of

the microscope is only possible either on the branch of �f with positive slope or on

the one with negative slope. In FM-AFM with atomic resolution, the branch with

positive slope is usually choosen. However, when using very small amplitudes, it is

also possible to work on the branch with negative slope (see Ref. [A10]).
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Figure 6.1: Plot of frequency shift �f as a function of tip-sample distance z. The

noise in the tip-sample distance measurement is given by the noise of the frequency

measurement �f divided by the slope of the frequency shift curve.

6.2 Noise in the frequency measurement

6.2.1 Fluctuations of the cantilever deection

Equation 6.1 shows, that the accuracy of the frequency shift measurement determines

directly the vertical resolution in FM-AFM.What is the accuracy of the measurement

of the oscillation frequency of the cantilever? Martin et al. [71] and Albrecht et

al. [4] have calculated the thermal limit of the frequency noise. Here, an empirical

calculation of the frequency noise is introduced, because for most practical cases,

the thermal limit is much lower than the actual instrumental deection noise. The

estimation introduced here obtains both the thermal limit of the frequency noise and

the actual frequency noise when the deection noise is larger than the thermal limit.

The frequency is given by the inverse of the time lag � between two consecutive

zero{crossings of the cantilever with positive velocity. However, the deection of the

cantilever q0 is subject to a noise level Æq0 as shown in Fig. 6.2. The deection noise

Æq0 has two major contributions: a) thermal uctuations of the cantilever and b)

instrumental noise in the measurement of the deection q0. The oscillation period

� can only be measured with an rms accuracy Æ�. The uncertainty of the time of

the zero-crossing is Æ�=2, where Æ�=2 is given by the ratio between the cantilever
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Figure 6.2: Typical cantilever deection signal as it appears on an oscilloscope. The

oscillation frequency is given by the inverse time lag between two consecutive zero-

crossings with positive velocity.

deection noise and the slope of the q0(t) curve:

Æ�

2
=

Æq0

2�f0A
: (6.2)

Because f0 = 1=�, Æf0=f0 = Æ�=� and

Æf0
f0

=
Æq0

�A
: (6.3)

Thus, the frequency noise is proportional to the deection noise and inversely pro-

portional to the amplitude.

The thermal uctuation of the cantilever deection is calculated using the equiparti-

tion theorem, which states that the thermal energy stored in the cantilever per degree

of freedom at temperature T is kBT=2. The e�ect of the thermal contact between the

cantilever and a reservoir at temperature T is that the cantilever is subject to ther-

mal kicks such that its mean thermal energy kA2
rms equals kBT . Because the thermal

kicks are random, their frequency spectrum is white. Âdrive and its magnitude can

be calculated by integrating the square of Eq. 4.3 from fdrive = 0 to fdrive =1 and

setting Adrive = Âdrive [4, 16]. The rms driving amplitude density (unit m/
p
Hz) is

then given by:

Âdrive =

s
2kBT

�kf0Q
: (6.4)

The response of the cantilever for frequencies much smaller than its eigenfrequency

is unity (see Eq. 4.3), therefore an estimate of the thermal deection noise is given by
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the square root of the integral of the squared driving amplitude over the measurement

bandwidth B:

Æq0 =

s
2kBTB

�kf0Q
: (6.5)

The relative frequency noise is then given by

Æf0
f0

=

s
2kBTB

�3kA2f0Q
(6.6)

which is similar to the expressions found by Martin et al. [71] and Albrecht et al. [4].

Equation 6.6 is a lower threshold for the noise in the frequency shift measurement

which is caused by fundamental thermodynamic reasons. In practice, the instrumen-

tal noise in the measurement of q0 can exceed this lower limit by orders of magni-

tude. For example, typical vertical resolutions of commercial AFMs are of the order

of 0:1�A deection over a bandwidth of 100 Hz, yielding an experimental deection

noise density of 1 pm/
p
Hz, while the thermal limit, according to Eq. 6.4 is 9 fm/

p
Hz

for f0 = 100 kHz, k = 1 N/m and Q = 300. For the qPlus sensor introduced in the

next chapter, the experimental deection noise density is 80 fm/
p
Hz, while the ther-

mal limit is 0.14 fm/
p
Hz for the typical qPlus parameters of f0 = 20 kHz, k = 1800

N/m and Q = 4000.

Equation 6.6 shows that the noise in the frequency measurement can be decreased by

decreasing the detection bandwidth B. However, a low detection bandwidth limits

the maximum imaging speed, and very slow imaging speeds at room temperature

increase distortions in the images caused by lateral thermal drift between tip and

sample. If a section with a width of 100 atoms is to be imaged at an imaging speed

of three lines per second, B needs to be at least 2 � 100 � 3=s = 600Hz. When

working at room temperature, a lateral drift of the tip versus the sample is usually

experienced at a rate of a few �A per minute. Therefore, a scanning speed of a few

lines per second is typically required in order to obtain images with little distortions.

At low temperature, where thermal drift is negligible, the scanning speed can be set

to very small values. With a low-temperature AFM, Lantz and coworkers reduced

the scanning speed to as little as 0.063 lines per second [66]. The bandwidth B can

be reduced signi�cantly, which decreases the noise level.

The use of cantilevers with high Q also helps to reduce the frequency noise (Eq.

6.6). However, Eq. 4.8 and the discussion on page 28 imply that Q should not be
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signi�cantly larger than the ratio between the energy stored in the cantilever and the

energy loss per oscillation cycle due to the tip-sample interaction. If Q is much higher

than this value, controlling the amplitude of the cantilever can become diÆcult and

instabilities are likely to occur.

6.2.2 Drifts of the eigenfrequency

The low frequency noise of the cantilever deection can be �ltered by the bandpass

�lter (see Fig. 4.1). However, drifts in f0 on a slower time scale show up as a low

frequency noise in the frequency shift signal. This drift can be caused by changes

in temperature. The eigenfrequency (see Eq. 5.3) is determined by the spring con-

stant and the e�ective mass of the cantilever. The spring constant changes with

temperature, due to thermal expansion and the change of Young's modulus EYwith

temperature. Changes of the e�ective mass due to picking up a few atoms from the

sample or transferring some atoms from the tip to the sample are insigni�cant, be-

cause a typical cantilever contains at least 1014 atoms. The resonance frequency of a

cantilever is given in Eq. 2.13. With the velocity of sound in the cantilever material

vs =
q
EY =�, Eq. 2.13 can be expressed as [24]:

f0 = 0:162vs
t

L2
: (6.7)

The temperature dependence of the eigenfrequency is then given by

1

f0

@f0
@T

=
1

vs

@vs
@T

� � (6.8)

where � is the thermal expansion coeÆcient. For silicon along the [110]-crystal di-

rection (see Fig. 2.6 on page 15), 1
vs

@vs
@T

= �5:5� 10�5K�1 and � = 2:55� 10�6K�1

at T = 290K [64, 65]. The resulting relative frequency shift for (rectangular) silicon

cantilevers is then �5:8 � 10�5K�1. This is is a large noise source in classical FM-

AFM, where relative frequency shifts can be as small as �6Hz=151kHz = �4� 10�5

(see row 5 in Table 4.1) and a temperature variation of �T = +0:69K causes an

equal shift in resonance frequency. The drift of f0 with temperature is much smaller

for cantilevers made of quartz, as shown in the next chapter.

Less signi�cant noise sources, like the thermal uctuation of A, are discussed in Ref.

[A6].
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6.3 Optimal amplitude for minimal vertical noise

The total vertical noise is given by the ratio of the frequency noise and the slope of

the frequency shift versus distance curve. Both the nominator and denominator are

functions of the amplitude { the frequency noise is proportional to 1=A, the slope of

the frequency shift curve is constant at �rst and drops as A�1:5 for large amplitudes

[A4]. Thus, there is a minimal noise for amplitudes in the order of the range � of the

tip sample force Fts [A6]:

Aoptimal � �: (6.9)

For chemical forces, � � 1�A. However, operating a conventional cantilever with

amplitudes in the �A-range close to a sample is in general impossible because of the

jump-to-contact problem (section 3.1). The cantilever spring constant k needs to be

at least a few hundred N/m to enable operation with amplitudes in the �A-range.
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Chapter 7

A novel force sensor based on a

quartz tuning fork

7.1 Quartz versus silicon as a cantilever material

Cantilevers for AFM are small devices and are therefore not machined with tradi-

tional manufacturing techniques like grinding and milling, but by photolithography.

Photolithography works for both quartz and silicon. Cantilevers should also have a

high Q-factor, thus the material should have little internal dissipation. This condi-

tion is ful�lled both for single-crystal silicon and quartz. It was shown in section

6.2 that thermal drifts of the eigenfrequency of the force sensor show up as noise in

FM-AFM. In this respect, quartz is clearly superior to silicon, as quartz can be cut

along certain crystal orientations such that the variation of oscillation frequency of

a tuning fork is zero for a certain temperature Tambient � 296K [72]. This cannot

be accomplished with silicon cantilevers. Figure 7.1 shows a comparison of typical

frequency variations as a function of temperature for silicon and quartz. The data

for silicon is calculated in Eq. 6.8, the quartz data is taken from Ref. [72]. As can be

seen, quartz is remarkably stable at room temperature compared to silicon. A very

appealing property of quartz as a sensor material is its piezoelectricity, which allows

the construction of self-sensing devices. The deection of silicon cantilevers is most

commonly measured by optical detection through an interferometer or by bouncing

a light beam of the cantilever and measuring its deection (\beam bounce method").

For detailed descriptions of these techniques, see Ref. [88]. Self sensing piezoresistive

sensors [100] have also been quite successful { the �rst AFM image of silicon with
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atomic resolution was achieved with a piezoresistive cantilever [A2]. Piezoelectric

sensors based on thin �lms of materials with much higher piezoelectric constants

than quartz [56] are also available. However, these devices lack the very low internal

dissipation and high frequency stability of quartz. The general advantage of piezo-

electric sensors versus piezoresistive sensors is that the latter dissipate power in the

mW range, while electric dissipation is negligible in piezoelectric sensors. Therefore,

piezoelectric sensors are preferred for low temperature applications.
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Figure 7.1: Plot of frequency variation as a function of temperature.

7.2 Previous applications of tuning forks in scan-

ning probe microscopy

The problem of establishing a constant frequency standard has been around for cen-

turies in the pursuit of increasing the accuracy of timepieces. The seventies brought

about a revolution with the introduction of quartz tuning forks as frequency stan-

dards in clocks [72, 104]. Billions of these devices are now manufactured annually,

and the deviations of even low cost watches are no more than a few seconds a week.

Tuning forks made of quartz are cheap and amply available, and experimental stud-

ies of using them as force sensors were done soon after the invention of the AFM.

G�uthner et al. [46, 47] have used tuning forks as force sensors in acoustic near �eld

microscopy and Karrai et al. [60] have used a tuning fork to control the distance

between the optical near �eld probe and the surface in a scanning near-�eld-optical
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microscope. Rychen et al. have demonstrated the use of quartz tuning forks at low

temperature [87] and other applications of quartz tuning forks as force sensors can

be found in Refs. [32, 84, 85, 101, 102, 105].

In spite of all the advantages of tuning forks, a decisive disadvantage of them is that

a force sensing cantilever should only have one beam, and a tuning fork necessarily

has two coupled beams. This problem can be avoided by �xing one of the two beams,

as shown in the next section.

7.3 Bene�t of clamping one of the beams (qPlus

con�guration)

Figure 7.2 shows a mechanical equivalent of a tuning fork. In a quartz tuning fork pro-

Figure 7.2: Mechanical equivalent of a tuning fork.

duced for watch applications, k1 and k2 are equal and m1 and m2 are laser trimmed

individually by evaporating a gold plating at the ends of the beams. By laser trim-

ming, the eigenfrequency of each beam is adjusted to f0. For most tuning forks built

for watch applications f0 = 215Hz = 32768Hz. When both beams are equal in their

masses and spring constants, an oscillation mode with extremely little damping ex-

ists where the beams oscillate opposite to each other. The dynamical forces of the
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two beams are then compensated in the base part, and the mechanical properties of

the mount (k and ) are irrelevant. Because the base part and beams are made out

of single quartz crystal, internal dissipation is low in this oscillation mode and the

Q-value is extremely high (up to 100000 in vacuum and 10000 in air). In all the ap-

plications listed in the previous section, the fork is mounted in the same way as in a

watch, i.e. it is �xed at the base part. However, the symmetry of the beams is broken

when a tip is mounted to one of them. This asymmetry can be cured by mounting a

counterweight on the other beam, as described in a patent by Dransfeld et al. [28].

However, when the tip is subject to a tip sample interaction, the asymmetry cannot

be restored in this manner. Even conservative tip sample forces (i.e. no hysteresis in

the Fts(z)-curve) cause damping in this mode, only slow scanning speeds are possible

and the imaging signal is very diÆcult to interpret.

Fixing one of the beams �rmly to a supporting structure overcomes this problem.

Because Q does not drop for conservative tip-sample forces in this con�guration, this

device has been named \qPlus-sensor"[41].

The �rst prototype of this device used a tuning fork with a spring constant of k =

3140 N/m and a piece of pyrex glass as a substrate for the �xed beam (see Fig.

1 in Ref. [A5]). Initial tests of the device were conducted on compact discs and

test gratings in ambient conditions [A5]. The device was improved by designing a

custom alumina substrate and using di�erent tuning forks with spring constants of

k = 1800N/m (see Fig. 1 in Ref. [A8]). Also, the preampli�er was improved.

The supreme noise performance of the sensor that was predicted theoretically in

the preceding chapters, has been veri�ed experimentally by the achievement of a

breakthrough in AFM resolution [A9] { the observation of subatomic features in real

space for the �rst time.

Recently, a patent for the qPlus sensor has been issued [41].
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Chapter 8

Summary and Outlook

The essence of the work presented here is the introduction, the advance in theoreti-

cal understanding and the practical improvement of frequency-modulation AFM as

a viable technique that enriches the toolset of surface scientists. In the course of this

work, true atomic resolution by AFM on a reactive surface has been demonstrated for

the �rst time, the theoretical understanding of the origin of frequency shifts in FM-

AFM has been advanced, the theoretical comprehension of the instrumental noise

limit has been extended, an easy-to-use force sensor with unprecedented resolution

has been introduced and subatomic features of an atom (see Fig. 8.1) have been

observed for the �rst time in real space [A9]. Figure 8.1 is an image of a single silicon

Figure 8.1: Image of a single atom. Image size: 6.6�A lateral, 1.4�A vertical.
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adatom. Silicon adatoms display a single sp3 dangling bond sticking out perpendic-

ular from the surface. Thus, the image of this atom is expected to be spherically

symmetric with respect to the vertical axis. We interpret the image as being caused

by an overlap of two sp3 dangling bonds from the tip with the single dangling bond

from the surface, for a detailed description see Refs. [A9, 42]. On the subatomic level,

the image is sensitive to the chemical identity and the structural surroundings of the

front atom of the tip. First attempts to engineer tips with a known symmetry are

under way [A10].

Nevertheless, there are more opportunities to come.

Many of the open questions and future applications are listed as topics for the Forth

International Conference on Noncontact Atomic Force Microscopy which will take

place from September 2 - 5 2001 in Kyoto, Japan and can be divided into experi-

mental, theory and instrumentation issues.

� Experimental challenges

1. Utilisation of FM-AFM on more and new sample materials (semiconduc-

tors, metals, insulators, ferromagnetic-, ferroelectric-, biological materi-

als).

2. Atomic manipulation, like demonstrated with an STM by Eigler et al.

[33], could also be undertaken by AFM. Because the STM only works

on conductive surfaces, the assembly of metallic atoms on isolating sub-

strates is not possible by STM. If atoms could be manipulated on isolating

substrates, it is conceivable to build electronic devices from single atoms.

3. Three dimensional mapping of atomic force with atomic resolution is tech-

nically possible by FM-AFM by oscillating the cantilever parallel to the

surface.

4. Quantitative measurements of damping with atomic resolution.

5. Combined STM and AFM measurements where tunneling current, fre-

quency shift and dissipation are measured simultaneously with atomic

resolution.

� Theoretical challenges
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1. Dissipation { the force laws between individual atoms are conservative,

it is not clear how dissipation and friction originate on an atomic level.

Studies of dissipation on the atomic level are possible by FM-AFM and

are also a very interesting application.

2. Angular dependence of tip-sample force.

� Instrumentation issues

1. Force sensors (functionalized tips, optimal sti�ness, high stability in f0,

lateral forces).

2. Control electronics (frequency detector, oscillator electronics, non-linear

feedback).

This summary of challenges shows that AFM with true atomic resolution is presently

opening exciting possibilities in nanoscience. Nanoscience has been identi�ed to be

a key for the next breakthroughs in physics, chemistry and biology that are the

basis for future innovations in technology. AFM with atomic resolution will play an

important role in this venture, because it grants access to the very sca�olding of

matter: the chemical bond.
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