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Abstract—Time-continuous emotion prediction has become an
increasingly compelling task in machine learning. Considerable
efforts have been made to advance the performance of these
systems. Nonetheless, the main focus has been the development
of more sophisticated models and the incorporation of different
expressive modalities (e.g., speech, face, and physiology). In
this paper, motivated by the benefit of difficulty awareness
in a human learning procedure, we propose a novel machine
learning framework, namely, dynamic difficulty awareness
training (DDAT), which sheds fresh light on the research—
directly exploiting the difficulties in learning to boost the machine
learning process. The DDAT framework consists of two stages:
information retrieval and information exploitation. In the first
stage, we make use of the reconstruction error of input features
or the annotation uncertainty to estimate the difficulty of learning
specific information. The obtained difficulty level is then used
in tandem with original features to update the model input in
a second learning stage with the expectation that the model can
learn to focus on high difficulty regions of the learning process. We
perform extensive experiments on a benchmark database REmote
COLlaborative and affective to evaluate the effectiveness of the
proposed framework. The experimental results show that our
approach outperforms related baselines as well as other well-
established time-continuous emotion prediction systems, which
suggests that dynamically integrating the difficulty information
for neural networks can help enhance the learning process.

Index Terms—Emotion prediction, difficulty awareness
learning, dynamic learning.
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I. INTRODUCTION

T IME-CONTINUOUS emotion prediction systems have re-
ceived widespread interest in the machine learning (ML)

community over the past decade [1]–[3]. One of the main rea-
sons for this interest is the fact that time-continuous emotion
predictions can analyse subtle and complex affective states of
humans over time and play a central role in smart conversational
agents that aim to achieve a natural and intuitive interaction be-
tween humans and machines [2], [4]–[7]. Great efforts have
been made in this field, and most of them can generally be clas-
sified into two strands. One strand mainly focuses on designing
or implementing increasingly sophisticated and robust predic-
tion models, such as long short-term memory (LSTM)-based
recurrent neural networks (RNNs) [1], [8], convolutional neu-
ral networks (CNNs) [9]–[13], and end-to-end learning frame-
works [14]. Another strand mainly focuses on the integration
of multiple modalities (e.g., audio and video) and modelling
techniques [15], [16].

Apart from those studies, other research has recently found
that emotional training data can be practically learnt in differ-
ent degrees [17], [18]. That is, some data can be easily learnt
given a specific model, whilst some data are relatively tough.
In this light, some promising approaches have been proposed in
machine learning to optimise the learning procedure. For exam-
ple, the most conventional approach is associated with boost-
ing [19], [20], which dynamically updates the weights of those
samples that are hard to recognise or are even falsely recognised.
Additionally, a more recent and promising approach refers to
curriculum learning, which was firstly introduced in [21]. Cur-
riculum learning presents the data from easy to hard during the
training process so that the model can better avoid being caught
in local minima in the presence of non-convex training crite-
ria. Curriculum learning has become even more popular with
the advance of deep learning. For emotion prediction, a hand-
ful of related studies have been reported very recently [18],
[22], [23], which have shown the efficiency of curriculum
learning.

However, one of the major disadvantages of these approaches
is their non-friendliness to sequence-based pattern recognition
tasks, such as the one we are facing. That is, in the learning
process, the samples, whether or not they were presented within
a sequence, are considered individually and independently. The
ignored context information, nevertheless, indeed plays a vital
role in sequence-based pattern recognition [24]. To this end,
we propose a novel learning framework, Dynamic Difficulty
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Awareness Training (DDAT), for time-continuous emotion pre-
diction in this article. In contrast to the previous approaches,
such as the aforementioned boosting and curriculum learn-
ing, the proposed DDAT can be well integrated into conven-
tional context-sensitive models (e.g., LSTM-RNNs), enabling
the models to ultimately exploit the context information. To the
best of our knowledge, this is the first effort at exploring the dif-
ficulty information in sequence-based pattern recognition, such
as the present case of time-continuous emotion prediction.

The underlying assumption of DDAT is that a model is able to
deliver better performance if we explicitly let the model know
the learning difficulty of the samples along with time. This
assumption is in line with the finding that humans normally pay
more attention to the tasks that are inherently difficult so as to
perform better [25], [26].

To implement DDAT, we consider two strategies, i.e., utilising
the Reconstruction Error (RE) of the input data or the perception
uncertainty (PU) level of emotions as dynamic indicators of the
difficulty to drive the learning process. Then, we integrate the
difficulty indicator with original data for further learning, such
that it endows the models with a difficulty learning awareness.
This process is also partially inspired by the awareness tech-
niques proposed for robust speech recognition [27], [28], where
the noise types are considered to be auxiliary information for
acoustic modelling.

In ML, RE normally serves as an objective function of an
auto-encoder (AE) when extracting high-level representations.
A well-designed AE is considered to reconstruct well the in-
put from its learnt high-level representations [29]. Recently, the
RE has also been exploited for tasks, such as anomaly detec-
tion [30], [31] and classification [32]. For anomaly detection,
an AE is trained on normal samples beforehand to serve as
a novel event detector. When feeding a new sample into the
AE, the obtained RE compared with a predefined threshold de-
cides whether it is abnormal [30], [31]. For classification, sev-
eral class-specific AEs are pre-trained separately. When feeding
an unknown sample into these AEs simultaneously, the values
of the corresponding RE are then interpreted as indicators of
class membership [32]. Notably, all these works hypothesise
that data with the same label have similar data distributions.
That is, the mismatched data potentially result in higher REs
than those of the matched data. This motivates us to employ the
RE as a learning difficulty index because it is well known in
ML that mismatched data severely promote the complexity of
modelling [33].

In addition, PU is a term employed in subjective pattern recog-
nition tasks to refer to the inter-annotator disagreement level
when calculating a gold standard in an annotation process [34].
For emotion prediction, it has been frequently determined that
the PU has a high correlation with the learning difficulty of
a recognition model. For example, the reported work in [35]
and [36] found that the emotion prediction systems perform bet-
ter in low-uncertainty regions than in high-uncertainty regions.
Likewise, the findings in [17] showed that the elimination of
the samples labelled with a high uncertainty from the training
set leads to a better emotion prediction model. This finding
provokes us to use the PU as another learning difficulty index.

It is also worth noting that the principle of PU-based strategy
constrains its application to subjective pattern recognition tasks.
Despite the fact that the concept of ‘uncertainty’ was employed
in previous emotion prediction work, it was calculated among
multiple predictions from variable systems [37], which signifi-
cantly differs from the definition of PU in this article, or merely
utilised for multi-task learning [38] (cf. Section II).

Motivated by the above analysis and following our previous
tentative work [39], where only the RE was investigated for
emotion prediction in speech, we demonstrate in this paper that
the proposed DDAT framework can aid the ML models in de-
tection of ‘moments’ in the learning process that are of higher
difficulty in the context of audiovisual time-continuous emotion
prediction. More specifically, the contributions of the present ar-
ticle include the following: (i) proposing a new framework that
exploits knowledge about the learning difficulty of the samples
during the learning process for time-continuous emotion predic-
tion; (ii) introducing and analysing two specific strategies (i.e.,
based on RE or PU) to implement this framework; (iii) present-
ing a dynamic tuning approach to further dynamically tune the
predictions; and (iv) comprehensively evaluating the effective-
ness of the proposed framework on a benchmarked audiovisual
emotion prediction database.

The remainder of this article is organised as follows. In
Section II, we briefly review past and related studies. In
Section III, we present a detailed description of the structure
and algorithm of the proposed DDAT framework. Then, in
Section IV, we offer an extensive set of experiments conducted
to exemplify the effectiveness and robustness of the DDAT
framework along with a discussion. Finally, we present our
conclusions and future research directions in Section V.

II. RELATED WORK

For continuous emotion prediction, plenty of novel ap-
proaches have been proposed and investigated over the past
decade. Some approaches expect to design or implement a
more sophisticated and robust prediction model [1], [8]–[11],
[14]. Given that context information is crucial for estimating
sequential patterns (continuous emotion prediction in our
case), recurrent neural networks (RNNs), especially the ones
implemented with long short-term memory (LSTM) cells, were
introduced [1], and they are still amongst current state-of-the-art
models [40]. One of the main advantages of LSTM-RNNs
is that they can model long-range dependencies between se-
quences [24], [41], and therefore, they are efficient in capturing
the temporal information of emotional expression [1]. More
recently, the so-called end-to-end network architecture has been
emerging as a promising network structure, which can automat-
ically derive representations directly from raw (unprocessed)
data, rather than manually extracting hand-crafted features.
For example, in [14], Tzirakis et al. jointly trained the CNNs
at the front end and the LSTM-RNNs at the back end, where
the CNNs mainly take charge of extracting representations
from raw audio signals and the concatenated LSTM-RNNs are
responsible for capturing the temporal information. A similar
framework has also been shown in [42].
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Meanwhile, some other approaches attempt to overcome the
drawbacks of individual models by means of integrating multi-
ple different modalities or models in an ensemble strategy [15],
[16]. One common approach when considering multiple modal-
ities is early (aka feature-level) fusion of unimodal informa-
tion. This is typically achieved by concatenating all the fea-
tures from multiple modalities into one combined feature vector,
which is then used as the input information for the models [16],
[43]–[45]. A benefit of early fusion is that it can provide better
discriminative ability to the model by exploiting the comple-
mentary information that exists among different modalities. For
example, acoustic features empirically outperform visual fea-
tures for arousal estimation, whereas the opposite occurs for va-
lence estimation [43]. Another frequently employed approach
is late (aka decision-level) fusion, which involves the combi-
nation of predictions obtained from diverse learners (models)
to determine the final prediction. To build the diverse learn-
ers, Wei et al. [46] created an ensemble of LSTM-RNN learn-
ers that were trained on different modalities (e.g., audio and
video), whereas Qiu et al. [47] developed a variety of topol-
ogy structures of deep belief networks (DBN). To combine the
predictions from multiple learners, a straightforward approach
applies (un-)weighted averaging, such as simple linear regres-
sion (SLR) [45], [48]. Another common approach is stacking,
whereby the predictions from different learners are stacked and
used as inputs of a subsequent non-linear model that is trained
to make a final decision [46], [47], [49]. In order to leverage the
individual advantages of different models, Han et al. [16] further
proposed a strength modelling framework that concatenates two
different models in a hierarchical architecture. In this approach,
the prediction yielded by the first model is concatenated with
the original input features, and this expanded feature vector is
then set as the input to the next model.

All of the outlined approaches above merely focus on either
extending the capability or overcoming the drawbacks of the
learning model. Difficulty information in the learning process,
however, has seldom been exploited to date, to the best of our
knowledge.

Moreover, DDAT relates to multi-task learning (MTL) as
well [6], [38], [50], [51]. In [51], Deng et al. reconstructed
the inputs with an AE as an auxiliary task for emotion predic-
tion in a semi-supervised manner, and they demonstrated that
the AE can distill representative high-level features from large-
scale unlabelled data. In [38], Han et al. proposed utilisation
of the PU as an auxiliary task for continuous and dimensional
emotion prediction, and they found that this information helps
improve performance. In [50], Nicolaou et al. introduced an
output-associative framework to learn the correlations and pat-
terns among different emotional dimensions (i.e., arousal and
valence). In this framework, the arousal and valence predictions
from independent models are fused together and fed into a con-
sequential model for a final prediction (i.e., arousal or valence).
The effectiveness of this approach has been replicated in [52]
and [53].

Analogous to MTL, the present DDAT framework considers
the tasks of reconstructing inputs or predicting perception un-
certainty to be auxiliary tasks. Nevertheless, the RE and the PU

are further assumed to be the learning difficulty indicators, and
the model inputs are dynamically updated in order to endow the
model with a difficulty-aware learning capability.

III. DYNAMIC DIFFICULTY AWARENESS TRAINING

In this section, we describe the DDAT framework. Let x ∈ X
denote the feature vector in the input feature space, and y ∈ Y ,
the label in the emotion label space. For a sequential pattern
recognition task in our case, xt thus indicates a feature vector
at the t-th frame extracted from an utterance.

A. System Overview

The pseudo-code describing the proposed algorithm is pre-
sented in Algorithm 1. It consists of two main stages: (i) re-
trieving difficulty information and (ii) exploiting difficulty in-
formation. In the first stage, in order to extract and indicate the
information related to the difficulty of the learning process, we
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propose two different strategies: ontology- and content-driven
strategies.

The ontology-driven strategy focuses on the model itself.
Specifically, we determine the difficulty of the task through the
reconstruction of the input information, assuming that the RE is
a proxy for its learning capability in a given moment.

On the contrary, the content-driven strategy focuses on the
data and assumes that different data can be learnt to different
degrees. That is, some data can be easily learnt with a specific
model, whereas other data can be difficult. This approach par-
tially stems from curriculum learning [21], which has demon-
strated that each datum cannot be equally learnt so as to be
well-organised for model training. In the field of emotion pre-
diction, a few studies have shown that the difficulty-level of
the data to be learnt is closely related to its PU [35], [36], as
discussed in Section I. Inspired by these studies, we employ the
PU to represent the difficulty and complexity of the samples.

In the second stage, we concatenate the original features xt

with the difficulty vector dt retrieved by one of the aforemen-
tioned two strategies, update the inputs via [xt ,dt ] and re-train
the regression model for continuous emotion prediction. Due
to the fact that dt varies along with time, the extended diffi-
culty vector provides dynamic awareness when modelling x in
a continuum.

B. Multi-Task Learning

MTL is a process of learning multiple tasks concurrently.
Typically, there is one main task and one or more auxiliary
tasks. By attempting to model the auxiliary tasks together with
the main task, the model learns shared information among tasks,
which may be beneficial to learning the main task. Mathemati-
cally, the objective function in MTL can be formatted as:

J (θ0) =
M∑

m=1

wm Lm (x, ym ; θm ) + λR(θ0), (1)

where M denotes the number of tasks and Lm (·) represents the
loss function of the task m, which is weighted by wm . θ0 and
θm represent, respectively, the general model parameters and the
specific ones with respect to task m, and λ is a hyperparameter
that controls the importance of the regularisation term R(θ0).

In this article, in order to infer the difficulty of the information
being modelled in the first stage of the DDAT framework, we use
an MTL structure to jointly learn continuous emotion prediction
together with the reconstruction of the input features or the PU
prediction. The rationale is twofold: On the one hand, the model
makes better use of MTL for continuous emotion prediction. The
benefit of MTL has been shown by several studies for emotion
prediction, as described in Section II. On the other hand, the
model takes one network, rather than two [39], to explore the
difficulty of the learning process.

C. Ontology-Based Difficulty Information Retrieval

Figure 1 illustrates the framework of RE-based DDAT, where
the difficulty indicator d is generated from the reconstruc-
tion process of the inputs. As described in Section III-B, the

employed network is trained in an MTL context, and so the out-
put includes two paths–the emotion prediction path and the AE
path. The former is trained in a supervised fashion, whereas the
latter is trained in an unsupervised manner. Thus, there are two
tasks to be conducted when training the network, i.e., predicting
emotions and reconstructing inputs. Specifically, given a time
sequence as input x, the network is optimised by minimising
the loss function as

J (θ0) = w1 ∗ Lemt(·) + w2 ∗ Lre(·) + λR(θ0), (2)

where Lemt(·) and Lre(·) denote the loss functions for emotion
prediction and input reconstruction, respectively. To calculate
them, we take the mean square error (MSE) for both learning
paths, i.e., for emotion prediction,

Lemt(·) =
T∑

t=1

||ŷt − yt ||2 ; (3)

and for the input reconstruction,

Lre(·) =
T∑

t=1

||x̂t − xt ||2 , (4)

where xt and yt are a sample and its annotation at time t from
an input sequence with a period of time T , respectively. x̂t and
ŷt denote the network predictions to reconstruct its inputs xt

and estimate the emotions yt , respectively.
It is expected that Lre(·) → 0 if the model is sufficiently pow-

erful and robust. However, empirical experiments have shown
that the results are far from this expectation. Previous findings
frequently indicate that a higher distribution mismatch between
the given data and the entire training dataset is inclined to pro-
duce a higher RE [30], [31], [54], [55]. Therefore, the RE some-
what implies the difficulty degree of the model to learn such
data or, in other words, reflects the difficulty of the data to be
learnt by the model.

Once the model is trained, the difficulty of the learning pro-
cess (d) can be obtained by computing the distance between the
input x and its corresponding reconstruction x̂. The distance
can be either a vector e calculated by,

d = e = x − x̂, (5)

or a scalar E summed over all attributes, i.e.,

d = [E] =

[
r∑

i=1

(xi − x̂i)

]
, (6)

where x = [x1 , x2 , . . . , xr ] and r is the dimension of the feature
vector.

In the difficulty exploitation stage, we update the model input
with the new vector, i.e., x′ = [x, e] or x′ = [x, E]. In doing
this, the input feature vectors are of 2r or r + 1 dimensions
when feeding back an error vector or scalar.

D. Content-Based Difficulty Information Retrieval

As mentioned earlier, PU is an indicator of the uncertainty
level of the perception of an emotional state for a given ob-
served sample. In the context of affective computing, we deem
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Fig. 1. Dynamic Difficulty Awareness Training (DDAT) includes difficulty information (a) retrieving stage and (b) exploiting stage. Difficulty information is
indicated by either the input reconstruction error (i.e., an error vector or the sum of all errors), or the emotion perception uncertainties.

that emotion prediction is a subjective task that differs from
many other objective pattern recognition tasks, such as face
recognition, that hold a ground truth [56]. In order to obtain a
gold standard for a subjective task, it is required that a sufficient
number of raters observe the same sample and that their ratings
are collapsed in order to eliminate as much as possible individual
variations in perception and rating. In this case, a possible way
to infer uncertainty is by calculating the inter-rater disagree-
ment level, which assumes that for each sample, the personal
PU is highly correlated with the inter-rater disagreement level
[38], [57].

In this study, the PU u(i) , i ∈ {arousal, valence}, is repre-
sented by the standard deviation of the K annotations as

u(i)
n =

√
1

K − 1

∑K

k=1
(y(i)

n,k − ȳ
(i)
n )2 , (7)

where ȳ
(i)
n denotes the mean value given K annotations:

ȳ(i)
n =

1
K

K∑

k=1

y
(i)
n,k . (8)

The framework of PU-based DDAT is also illustrated in Fig. 1,
where the difficulty indicator d is determined by the perception
uncertainty. The designed network includes an emotion predic-
tion path and a PU prediction path, both of which are jointly
trained in a supervised manner. Therefore, the objective function
of Eq. (1) can be re-formulated as

J (θ0) = w1 · Lemt(∗) + w2 · Lpu (∗) + λ · R(θ0). (9)

Lpu (∗) stands for the loss functions for PU prediction, and it is
expressed by

Lpu (∗) =
T∑

t=1

||ût − ut ||, (10)

where ut is a PU value for the sample at time t from input
sequences with time T .

Once the network is optimised in the first learning stage, its
input will then evolve to x′ = [x, u] with r + 1 dimensions in
the second learning stage.

E. Late Fusion and Dynamic Tuning

As discussed in Section II, late fusion approaches have been
frequently shown to be effective for continuous emotion predic-
tion [15], [16], [48] due to the fact that complementary informa-
tion can be provided by the various modalities or models [15],
[16], [48]. In this light, we conduct a late fusion to combine the
emotion predictions from different modalities, learning models,
or a combination thereof. The late fusion is performed with an
SLR approach:

y = ε +
∑

γi · yi , (11)

where yi denotes the original prediction with the modality (i.e.,
audio or video) or model i (i.e., RE- or PU-based DDAT), ε and
γi are the parameters estimated on the development set, and y
is the fused prediction.

Despite the effectiveness of SLR, this conventional fusion
approach simply assumes that the predictions yi,t in a contin-
uum are considered to be equally important for each prediction
stream yi . This means that the parameter of γi remains a constant
in time, given a set of yi , and therefore, this approach ignores the
changes of the reliability of the predictions along time. To ad-
dress this problem, we further propose a dynamic tuning strategy
according to the reliability of predictions in time.

Mathematically, we applied an additional SLR on the original
prediction yi,t and the corresponding difficulty indicator di,t at
time t:

y′
i,t = ε + γi · yi,t + γd · di,t , (12)

where di,t is represented by Et for the RE-based DDAT systems
or ut for the PU-based DDAT systems. Intuitively, the prediction
is dynamically tuned by the difficulty information.
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IV. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed methods, we
conducted extensive experiments with the benchmark database
of the AudioVisual Emotion Challenges (AVEC) from 2015 [58]
and 2016 [48].

A. Databases and Features

The multimodal corpus REmote COLlaborative and Affec-
tive interactions (RECOLA) [59] (a standard database of the
AVEC challenges for audiovisual time-continuous emotion pre-
diction [48], [58]) was selected for our experiments due to its
widespread use in this area. This database was created to study
socio-affective behaviours from multimodal data in the context
of remote collaborative tasks. It includes audiovisual (and phys-
iological) recordings of spontaneous and natural interactions
from 27 French-speaking participants whilst solving a collab-
orative task conducted in dyads via video conferencing. The
corpus is comprised of audio, video, and peripheral physiology
recordings that were obtained synchronously and continuously
over time.

In order to ensure speaker-independence for ML experiments,
the corpus was divided into three partitions–training, develop-
ment (validation), and testing–with each partition containing
nine collaborative sessions. This division is balanced in terms
of gender, age, and mother tongue of the participants. The corpus
contains value- and time-continuous annotations of two affec-
tive dimensions–arousal and valence–that were obtained from
six French-speaking raters (three female) for the first five min-
utes of each audiovisual recording. The obtained labels were
then resampled at a constant frame rate of 40 ms and averaged
over all raters to create a ‘gold standard’ for each instance. Inter-
rater disagreements were also computed for all instances [59].
For our experiments, we only made use of audio and video
signals.

The acoustic and visual features employed in our experi-
ments are the same sets used to compute the AVEC 2015 and
2016 baselines for fair comparison with other methods. The
acoustic features consist of the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS [60]). Since the RECOLA
database contains long time-continuous signals and annotations,
two functionals (arithmetic mean and standard derivation) were
applied over the sequential low-level descriptors (LLDs, e.g.,
pitch, loudness, energy, Mel Frequency Cepstral Coefficients,
jitter, and shimmer) over a fixed window of 8 s with a 40 ms
step. This resulted in a set of 88 acoustic features per segment.

In relation to the visual features, we utilised both the appear-
ance and geometric standard features of the AVEC challenges.
The appearance features were computed by using local Gabor bi-
nary patterns from three orthogonal planes through splitting the
video into spatio-temporal video volumes. A feature reduction
was then performed by applying a principal component anal-
ysis from a low-rank (up to rank 500) approximation, leading
to 84 features representing 98% of the variance. To extract the
geometric features, 49 facial landmarks were firstly extracted
from each frame and then aligned with a mean shape from sta-
ble points (located on the eye corners and on the nose region).

This resulted in 316 features per frame: i.e., 196 features were
obtained by computing the difference between the coordinates
of the aligned landmarks and those from the mean shape and
between the aligned landmark locations in the previous and
the current frame, and 71 were obtained by calculating the Eu-
clidean distances (L2-norm) and the angles (in radians) between
the points in three different groups. An additional 49 features
correspond to the Euclidean distance between the median of the
stable landmarks and each aligned landmark in a video frame.

Similar to the acoustic features, the arithmetic mean and the
standard derivation were computed over the sequential visual
features of each frame using a sliding window of 8 s with a
step size of 40 ms. This process led to 168 appearance and 632
geometric visual features.

For full details on the database and feature sets, please refer
to [48], [58]. Note that we obtained 67.5 k extracted segments
in total for each partition (training, development, or test).

B. Experimental Setup and Evaluation Metrics

The implemented DDAT framework in our experiments con-
sists of a deep RNN (DRNN) equipped with gated recurrent units
(GRUs) [61]. GRUs are an alternative to long short-term mem-
ory units, which can also capture the long-term dependencies in
sequence-based tasks and mitigate the effects of the vanishing
gradient problem [61]. Compared to LSTM units, GRUs have
fewer parameters due to the fact that they do not have sepa-
rate memory cells and output gates, which results in a faster
training process and a less-training-data demand for achieving
a good generalisation. Most importantly, many empirical evalu-
ations [62] have indicated that GRUs perform as competitively
as LSTM units.

The DRNN structure was optimised in terms of the number
of hidden layers and the number of GRUs per layer in the de-
velopment phase. We applied a search grid that is comprised
of {1, 3, 5, 7, 9} hidden layers and {40, 80, 120} hidden units
per layer. For each learning strategy, we always choose the best
performing network structure in order to alleviate the impact of
the variation of network structures on the system performance.
The training of the DRNNs was conducted using the Adam op-
timisation algorithm [63] with an initial learning rate of 0.001.
To facilitate the training process, we set the size of mini-batch
to four. Additionally, an online standardisation was applied to
the input data by using the means and variations of the training
set.

Additionally, as suggested in [48], annotation delay com-
pensation was employed to compensate for the temporal delay
between the observable cues and the corresponding annotations
reported by the annotators [64]. We identified this delay to be
2.4 s, according to a series of experimental evaluations in [65],
and shifted the gold standard back in time with respect to the
features for all modalities and tasks in our experiments.

In order to evaluate the performance of the models, we took
the official metric of the AVEC 2015 and 2016 challenges–the
Concordance Correlation Coefficient (CCC) [58]:

rc =
2rσxσy

σ2
x + σ2

y + (μx − μy )2 , (13)
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where r represents Pearson’s correlation coefficient between
two time series (e.g., prediction and gold-standard), μx and μy

denote the mean of each time series, and σ2
x and σ2

y stand for
the corresponding variances. Compared with PCC, the CCC
considers not only the shape similarity between two series but
also the value precision. This is especially relevant for estimating
the performance of time-continuous emotion prediction models,
as both the trends as well as absolute prediction values are
relevant for describing the performance of a model. The CCC
metric falls in the range of [−1, 1], where +1 represents perfect
concordance, −1 total discordance, and 0 no concordance at all.

To refine the obtained prediction, we further performed a
chain of post-processing, including median filtering, centering,
scaling, and time-shifting, as suggested in [48], [58]. The filter-
ing window size W (ranging from 0.12 s to 0.44 s at a rate of
0.08 s) and the time-shifting delay D (ranging from 0.04 s to
0.60 s at a step of 0.04 s) were optimised using a grid search
method. All the post-processing parameters were optimised on
the development set and then applied to the test set. There-
fore, those post-processing parameters had various settings for
different tasks.

To compare the proposed DDAT approach with other related
and state-of-the-art approaches, we further conducted curricu-
lum learning, as introduced in Section I. We particularly selected
the criterion of ‘disagreement between annotators’ (i.e., PU in
this article) as an example because it is appropriate for the task
at hand and also superior to other criteria [23]. To retain the
optimised setups, we continued using the deep neural networks
(DNNs) equipped with two hidden layers (1 024 nodes per
layer) and split the whole training set into five parts based on
the PU levels. Moreover, we implemented it with GRU-RNNs as
well for a fair performance comparison between the curriculum
learning and the proposed DDAT.

Finally, to statistically compare the various experiments con-
ducted with the AVEC challenges baselines, we carried out the
Fisher r-to-z transformation [66]. In detail, given two distribu-
tions X and Y [the pairs (Xi , Yi) ∼ i.i.d.] that have a bivariate
normal distribution with correlation, the Fisher transformation
z is approximately normally distributed with mean

m =
1
2

ln
(

1 + r

1 − r

)
= arctanh(r), (14)

and standard error

σ =
1√

N − 3
, (15)

where N is the sample size and r is the true correlation coeffi-
cient. Theoretically, the Fisher transformation is exceptionally
efficient for small sample sizes because the sampling distribu-
tion of the Pearson correlation is normally highly skewed.

After the Fisher transformation, a one-tailed test was per-
formed to compare two distributions. A p-value lower than .05
indicates a significant difference. It is noted that r is replaced
with rc (CCC) due to the efficiency of rc in this article.

C. Emotion Prediction With Dynamic Difficulty
Awareness Training

The performance of the evaluated systems before and after
post-processing the predictions for both arousal and valence
targets is presented in Tables I and II, respectively. To inves-
tigate the proposed DDAT framework, we not only conducted
the traditional single-task learning but also the MTL for com-
parison, with three different feature sets–one acoustic feature
set (eGeMAPS) and two visual feature sets (appearance and
geometric features), as described in Section IV-A. It is worthy
to note that the network structure employed for each modality
and learning approach was respectively optimised in the con-
strained parameter space, as mentioned in Section IV-B. Then,
the best performing network structures were employed for per-
formance comparison. Doing this largely alleviates the incon-
sistent impact on the system performance due to the variation
of network structures. From the comparison of both Tables I
and II, it can be seen that the post-processing of the model pre-
dictions generally leads to better performance. For instance, the
best baselines for arousal and valence are respectively boosted
from 0.617 to 0.652 CCC with acoustic features (eGeMAPS)
and from 0.403 to 0.417 CCC with visual features (geometric).
Similar observations can also be obtained in the MTL systems
and the proposed DDAT systems; e.g., for the MTL systems, the
CCCs are increased from 0.613 to 0.654 with the eGeMAPS fea-
ture set for arousal and from 0.487 to 0.488 with the geometric
feature set for valence. Given these results, we henceforth fo-
cus on analysing the experiments with the post-processing step
(cf. Table II).

For the baseline system, the obtained results are competitive
to, or even better than, the benchmark of the emotion predic-
tion subchallenge in the AVEC 2016 [48] over three informa-
tion streams and two prediction tasks. These results support
previous findings showing that GRUs can deliver competitive
performance when compared to LSTM units [61], [62].

When training the networks jointly with input reconstruc-
tion (RE-based MTL) or perception uncertainty prediction (PU-
based MTL), one can observe that the systems slightly outper-
form the baseline systems in nine out of twelve cases on the
test set. This indicates that there is a substantial relationship
between the two jointly learnt tasks. To be more specific, the
representations from the last neural network hidden layer, which
are learnt synchronously from the emotion prediction and other
auxiliary tasks (i.e., reconstructing the input or predicting the
perception uncertainty), potentially further benefit the emotion
prediction.

We further implemented the curriculum learning approach as
well as its baseline by means of DNNs [23] and GRU-RNNs.
From Table I, it can be seen that the DNNs perform unsur-
prisingly worse than GRU-RNNs, mainly due to their limited
capability of capturing the context information [24]. When feed-
ing the data to the training model from a low-difficulty level to
a high-difficulty level, the performance of the models is re-
markably boosted in all scenarios. Nevertheless, it is still not
competitive with the DDAT models in most cases. Moreover,
it is observed that the GRU-RNN-based curriculum learning
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TABLE I
SYSTEM PERFORMANCE (CONCORDANCE CORRELATION COEFFICIENT; CCC) BEFORE POST-PROCESSING THE MODEL PREDICTIONS FOR THE CONVENTIONAL

SINGLE-TASK LEARNING (BASELINE) FRAMEWORK, THE MULTI-TASK LEARNING (MTL) FRAMEWORK, AND THE PROPOSED DYNAMIC DIFFICULTY AWARENESS

TRAINING (DDAT) FRAMEWORK USING RECONSTRUCTION ERROR (RE, A VECTOR OR A SCALAR OF SUM) AND PERCEPTION UNCERTAINTY (PU) VARIANTS.
THESE RESULTS PERTAIN TO THE EXPERIMENTS CONDUCTED ON THE devELOPMENT AND test PARTITIONS FOR BOTH aroUSAL AND valENCE TARGETS. THREE

FEATURE SETS (AUDIO-EGEMAPS, VIDEO-APPEARANCE, AND VIDEO-GEOMETRIC) WERE EMPLOYED TO EVALUATE ALL APPROACHES. THE CASES WQHERE

DDAT HAS A STATISTICAL SIGNIFICANCE OF PERFORMANCE IMPROVEMENT OVER MTL ARE MARKED BY THE “�” SYMBOL

TABLE II
SYSTEM PERFORMANCE (CONCORDANCE CORRELATION COEFFICIENT; CCC) AFTER POST-PROCESSING THE MODEL PREDICTIONS FOR THE CONVENTIONAL

SINGLE-TASK LEARNING (BASELINE) FRAMEWORK, THE MULTI-TASK LEARNING (MTL) FRAMEWORK, AND THE PROPOSED DYNAMIC DIFFICULTY AWARENESS

TRAINING (DDAT) FRAMEWORK USING RECONSTRUCTION ERROR (RE, A VECTOR OR A SCALAR OF SUM) AND PERCEPTION UNCERTAINTY (PU) VARIANTS.
THESE RESULTS PERTAIN TO THE EXPERIMENTS CONDUCTED ON THE devELOPMENT AND test PARTITIONS FOR BOTH aroUSAL AND valENCE TARGETS. THREE

FEATURE SETS (AUDIO-EGEMAPS, VIDEO-APPEARANCE, AND VIDEO-GEOMETRIC) WERE EMPLOYED TO EVALUATE ALL APPROACHES. THE BEST RESULTS

ACHIEVED ON THE TEST SET ARE IN BOLD. THE CASES WHERE DDAT HAS A STATISTICAL SIGNIFICANCE OF PERFORMANCE IMPROVEMENT OVER MTL ARE

MARKED BY THE “�” SYMBOL

Note: “–” indicates that the corresponding CCC is not provided.
a acoustic and visual features automatically extracted by deep neural network models
b AVEC ’15 challenge winner method
c AVEC ’16 baseline method
d AVEC ’16 challenge winner method

outperforms the DNN-based system mainly due to the learning
capability of GRUs.

The performance of the MTL systems is further enhanced
by the proposed DDAT framework, as shown in Table II. In
particular, the performance of the DDAT system for arousal and
valence regressions respectively reaches CCC values of 0.694
and 0.422 with the audio-eGeMAPS feature set, 0.438 and 0.457
with the video-appearance feature set, and 0.400 and 0.501 with

the video-geometric feature set. These results demonstrate that
the DDAT systems significantly outperform (p < .05 via Fisher
r-to-z transformation) the baseline method as well as the MTL
approach (except in the case of valence regression with the
audio-eGeMAPS feature set).

Moreover, the systems using the proposed DDAT framework
consistently outperform the curriculum learning approach, and
they are competitive with, and in some cases even superior
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TABLE III
OBTAINED PCCS BETWEEN EACH OTHER AMONG THE PERFORMANCE

IMPROVEMENT (Δc ), THE RECONSTRUCTION ERROR (ε), AND THE PERCEPTION

UNCERTAINTY (μ)

to, most other state-of-the-art methods, such as the strength
modelling [16] and the ‘sparse coding (SC) + CNN + LSTM’
systems (AVEC 2016 winner) [40]. Despite the fact that the pro-
posed systems are slightly worse than the end-to-end system,
which automatically extracts the representations from raw au-
dio and video signals that retain complete pattern information,
the DDAT framework can be incorporated with the end-to-end
system in the future.

When comparing the two approaches used in the RE-based
DDAT experiments, we find that adding the overall sum of the
error [cf. Fig. 1(b)] leads to a better performance than adding
the error vector [cf. Fig. 1(a)]. This is possibly attributable to the
redundant dimensionality of the error vector, which meanwhile
yields much noise in the network training. When comparing
the RE-based DDAT and the PU-based DDAT, it is noticeable
that the two approaches perform similarly. This suggests that
both approaches achieve the same goal but in different ways.
That is, both approaches successfully explore the difficulty in-
formation in the pattern learning process, whereas the RE-based
and PU-based DDAT approaches measure the difficulty infor-
mation by the data reconstruction-capability and by the data
perception-uncertainty, respectively. Moreover, it is worth men-
tioning that the RE-based DDAT approach, in contrast to the
PU-based DDAT, not only fits the subjective pattern recogni-
tion tasks (e.g., emotion prediction in this work) but also holds
the potential to be applied to objective tasks (e.g., phoneme
prediction).

To investigate the contribution of the extracted difficulty in-
formation to the system performance improvement, we fur-
ther calculated the correlation (in terms of PCC) between
the values of the difficulty indicator (i.e., the obtained RE
or the PU) between the performance improvement. Specif-
ically, the performance improvement Δc was computed as
Δc = |ŷbs − y| − |ŷDDAT − y|, given the target (gold stan-
dard) y and the prediction of the DDAT system ŷDDAT (or
the baseline system ŷbs).

The first three rows of Table III show the obtained PCCs
between the RE and the performance improvement [i.e., PCC

(ε, Δc )]. These positive PCCs suggest that the difficulty infor-
mation can help improve the model performance in the learning
process. This conclusion confirms our previous findings in [39].
Note that, in [39], the selected database has subjects that are
different from the one in this article. Similar observations can
be found when calculating the PCCs between the PU and the
performance improvement [i.e., PCC(μ, Δc ), as shown in the
second three rows]. The PCCs are boosted to .384 and .440 in
the development and test sets in the case of valence when using
appearance-based visual features. In more detail, it can be seen
that when using the RE-based DDAT approach, the achieved
PCCs for arousal prediction are relatively higher than the ones
for valence prediction in most cases. Nevertheless, an opposite
observation is made when using the PU-based DDAT approach.
This is probably due to the fact that arousal is more sensitive
than valence to the expression strength or scale that potentially
results in higher RE, whilst the valence is more associated with
the subtle variations that easily mislead the judgement of anno-
tators [15], [56].

Furthermore, we calculated the PCCs between the obtained
RE and PU, as shown in the last three rows in Table III. Gen-
erally speaking, most of these PCCs are around zero, indicating
the obtained RE is largely independent of the PU. This fur-
ther implies that the proposed RE-based and PU-based DDAT
strategies capture the different underlying phenomena. Thus,
the combination of the two approaches is expected to deliver
better performance. The related experiments and corresponding
results are given in Section IV-D.

D. Dynamic Tuning and Late Fusion

Figure 2 illustrates the performances of the DDAT models
with and without dynamic-tuning of the predictions. Compared
with the predictions without dynamic-tuning, the dynamically-
tuned predictions yield gains in most cases. For instance, the
best achieved CCC for arousal prediction increased from 0.684
to 0.699, using the RE-based DDAT system with the audio-
eGeMAPS feature set, whereas for valence prediction it in-
creased from 0.511 to 0.531, using the PU-based DDAT system
with the video-geometric feature set. The exceptions include the
arousal predictions for both RE- and PU-based DDAT systems
using the video-geometric feature set and the valence predictions
for the PU-based DDAT system using the video-appearance fea-
ture set. In both cases, the differences remain minimal and in-
significant via the aforementioned statistical test of Fisher z-to-r
transformation.

We then conducted a set of late fusions on the individual
predictions produced by using different modalities and models.
Table IV lists all scenarios (combinations) considered in our
experiments as well the respective performance. As can be seen
in the table, the best performance on the test set for both arousal
and valence was obtained when fusing the predictions from all
modalities and models. In this context, the best results on the
test set have been achieved at 0.766 CCC for arousal and 0.660
CCC for valence. These results beat most of the latest reported
results from the same data, and they are close to the best result
presented in AVEC 2016 [40] (i.e., 0.770 and 0.687 of CCCs for
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Fig. 2. Performance comparison (CCC) between the single-task learning, the proposed dynamic difficulty awareness training approach based on reconstruction
error (RE) or perception uncertainty (PU), and their dynamically-tuned (DT) versions. Results pertain to the test partition for both arousal (a) and valence (b)
targets using three feature sets (audio-eGeMAPS, video-appearance, and video-geometric).

Fig. 3. Automatic prediction of arousal (a) and valence (b) via audiovisual signals obtained with the best late fusion model for a random subject (# 9) from the
test partition.

TABLE IV
LATE FUSION PERFORMANCE (CCC) IN DIFFERENT FUSION STRATEGIES (I.E.,

MODALITY-BASED, MODALITY- AND MODEL-BASED, AND

DYNAMICALLY-TUNED MODALITY- AND MODEL-BASED) FOR THE

devELOPMENT AND test PARTITIONS OF BOTH aroUSAL AND valENCE

REGRESSIONS. THE PREDICTIONS ARE GENERATED FROM THE

RECONSTRUCTION-ERROR-BASED DDAT FRAMEWORK (Pr e ) OR THE

PERCEPTION-UNCERTAINTY-BASED DDAT FRAMEWORK (Ppu ); THEIR

DYNAMICALLY-TUNED VERSIONS (Pr e ,d t OR Ppu ,dt ); OR THE BASELINE

MODEL (Pbs ). THE BEST RESULTS ACHIEVED ON THE TEST SET ARE IN BOLD.
NOTE THAT Pr e , Pr e ,d t , Ppu , Ppu ,dt , AND Pbs ARE THE FUSED PREDICTIONS

FROM DIVERSE INFORMATION STREAMS (I.E., AUDIO-EGEMAPS,
VIDEO-APPEARANCE, AND VIDEO-GEOMETRIC). THE 1ST–3RD, 4TH–5TH, AND

6TH–8TH RESULT ROWS ARE RESPECTIVELY OBTAINED MODALITY-BASED,
MODALITY- AND MODEL-BASED, AND DYNAMICALLY-TUNED MODALITY- AND

MODEL-BASED LATE FUSION STRATEGIES

aAVEC ’15 winner; bAVEC ’16 baseline; cAVEC ’16 winner

Fig. 4. Percentage of the contribution of each information stream (a) or model
(b) for achieving the best arousal or valence predictions.

arousal and valence prediction), despite this system also utilising
an additional modality (physiological features). An illustration
of the performance of the best DDAT system compared to the
baseline system and the gold standard is depicted in Fig. 3 (data
from a random subject from the test partition). Generally, it
can be seen that our predictions are closer to the gold standard,
especially in the region that has relative peak values.

In order to analyse the importance of each modality and
model, we calculated their contributions to the arousal and
valence predictions of the respective best performing models.
Fig. 4 depicts their contributions. For arousal prediction, the
acoustic features play a more important role than the visual fea-
tures, whereas the opposite happens for valence prediction. It is
also expected that the RE-based and PU-based DDAT systems
contribute more than the baseline systems to the final predic-
tions. Furthermore, the PU-based DDAT system is slightly more
important for valence prediction than it is for arousal prediction.
This might be due to the fact that prediction of emotional va-
lence is much more difficult than arousal for audio modality [2],
[67], [68].
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V. CONCLUSION AND FUTURE WORK

In contrast to previous studies that aimed to explore the
‘strength’ or overcome the ‘weakness’ of modelling, we for
the first time investigated exploiting the difficulty (weakness)
information straightforwardly in the learning process for con-
tinuous emotion prediction. To extract the difficulty informa-
tion, we proposed two strategies based on either the ontology
of modelling or the content to be modelled. The two types
of information separately measure the learning difficulty of a
model by reconstructing its input, or the ‘hardness’ of the data
to be learnt by predicting their perception uncertainty. This in-
formation indicated by an index was then concatenated into
the original features to update the inputs. The proposed meth-
ods were systematically evaluated on a benchmark database
RECOLA [48]. Experimental results have demonstrated that the
proposed methods clearly improve the prediction performance
of a model by evolving the difficulty information into its learning
process.

Going beyond the traditional curriculum learning and boost-
ing approaches that are specifically designed for discrete pattern
recognition tasks, the proposed Dynamic Difficulty Awareness
Training (DDAT) approaches can particularly learn well the se-
quential pattern, such as the continuous emotion prediction in
this article. When involving either the input reconstruction error
information or the emotion perception uncertainty information,
we find that the neural networks can better perform. Neverthe-
less, it is worth noting that the perception uncertainty is merely
defined for a subjective pattern recognition task. For an ob-
jective task, it might be reasonable to alternatively employ the
prediction uncertainty.

In future, we will continue investigating the efficiency of the
proposed DDAT in discrete pattern predictions. Additionally, we
will investigate the approaches for which the difficulty informa-
tion could be possibly used as the prediction weights. Moreover,
end-to-end structures that are designed to automatically extract
representations have attracted increasing attention, and they are
starting to show promising performance. Therefore, an advanced
end-to-end framework will be considered in our system as
well. In more detail, with respect to the perception-uncertainty-
based DDAT end-to-end system, we can simply replace the
GRN-RNNs with an end-to-end network while all other inputs
and outputs remain. With respect to the reconstruction-error-
based end-to-end system, we may consider reconstructing the
high-level representations rather than the raw signals when ex-
tracting the reconstruction error information (i.e., the difficulty
indicator).
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