
PETRI NET TRANDUCERS IN SEMANTIC DIALOGUE MODELLING

Markus Huber and Robert Lorenz

Augsburg University, Germany
robert.lorenz@informatik.uni-augsburg.de

Abstract: In this paper we introduce Petri net transducers for the translation of
non-sequential languages and present an application in the field of semantic dia
logue modelling. Petri net transducers are a natural generilization of finite state
transducers which in general provide more compact and intuitive models, are more
flexible in use and have a higher expressive power.

1 Introduction

In this paper we introduce Petri net transducers (PNTs), a natural generalization of finite state
transducers (FSTs), for the translation of so called non-sequential languages and present an
application in the field of semantic dialogue modelling.

A non-sequential language contains words not consisting of a total order on their symbols but
consisting of a partial order. Such words are called partial words. Figure 1 shows two partial
words, an input and an output word of a Petri net transducer (PNT), in the form of directed
acyclic graphs: The nodes represent the symbols of the partial word and the arrows a partial
order on these symbols. For example, the input word consists of the symbols a.b.c, where a
precedes c and all other occurrences of symbols are unordered. The output word consists of one
occurrence of the symbol x and two occurrences of the symbol y.

Non-sequential languages can be used as compact representations of sequential languages since
a partial word is uniquely determined by the set of its so called linearizations. A linearization
of a partial order is a total order including the partial order. For example, the input word from
Figure 1 has the linearizations abc, bac and acb.

PNT Input word Output word

Figure 1 - Example o f a PNT, translating a partial word into another partial word.

286

Moreover, non-sequential languages can provide additional information concerning concrete
application areas. For example, symbols may represent action names of a concurrent system.
In this case the partial order is used to model causal dependencies between action occurrences.
Unordered action occurrences are interpreted to be causally independend or concurrent, which
means that they can be observed in any order and also simultaneously. A PNT may be used to
translate between non-sequential runs of the systems on different levels of abstraction.

In the second part of this paper we present an application where symbols represent

• on the one side words from utterances a speech dialogue system can understand (for
example ’’Call Peter Parker”),

• on the other side semantic categories the system can deal with (for example person, first-
name, lastname).

Utterances are modelled as total orders and PNTs are used to assign so called meanings to utter
ances, where a meaning is a partial order representing the relation between semantic categories
and sub-categories.

PNTs are a natural generalization ofFSTs, since FSTs are used to translate sequential languages
(consisting of words with a total order on their symbols) into sequential languages. There are
several proposals to apply FSTs in the area of speech dialogue systems. One is the translation
of speech signals into regocnition results up to the syntax level[2]. There are some publications
using FSTs also on the semantic level [7] and there are some extensions of FSTs introducing
restricted forms of parallelism in order to express additional information [4, 5], An actual pub
lication introduces the concept of so called (nested) multi-sequential languages as a concept
’’between” sequential and non-sequential languages and examines their applicability in speech
processing and processability by FSTs [10], PNTs are able to translate general partial lan
guages, thus they provide more compact and intuitive models than FSTs, are more flexible in
use and have a higher expressive power. On the other side, there is a fully developed theory
of FSTs including many useful operations on FSTs with efficient implementations in standard
libraries [6, 12].

There are already several publications introducing PNTs and applying them in different appli
cation areas [9, 8, 1], however these are mainly case studies. Up to now there is no common
basic formal definition and no theory on PNT-operations as for FSTs. Moreover, all existing
definitions only make use of sequential semantics of PNTs.

The paper is organized as follows: In the first part (Section 2) we present a basic formal defini
tion of PNTs for the translation of partial languages which is a proper generalization ofFSTs.
In the second part (Section 3) we discuss a simple example showing the applicability of PNTs
in the area of semantic dialogue modelling.

2 Basic Formalism

In this section we develop a basic formalism of Petri net transducers (PNTs) as a natural gener-
ilization of finite state transducers (FSTs).

287

2.1 Mathematical Preliminaries

We start with necessary standard mathematical notions and definitions including labelled partial
orders.
By No we denote the set of nonnegative integers, by N the set of positive integers.

Given a function f from X to Y and a subset Z o f X we write f \ z to denote the restriction of f
to the set Z.
Given a finite set X, the symbol |A| denotes the cardinality of X. The set of all subsets of A is
denoted by .^ (X).
The set of all multisets over a set X is the set N'¥ of all functions f : X —> N. Addition + on
multisets is defined by (m + m')(x) = m(x) + n((x). The relation < between multisets is defined
through m < m ' <=> 3m" (m + m" — m'). We write x G m if m(x) > 0. A multiset is finite, if

*s finite. A set A C X is identified with the multiset m satisfying mix) = 1 4 = > x G

A /\m(x) = 0< = > x^A . The support of a multiset m is the set set(m) = {x | x G /n}. A multiset
m satisfying m[a) > 0 for exactly one element a we call singleton multiset and denote it by
m(a)a. The multiset m satisfying Vx G X(m(x) = 0) we call empty multiset and denote it by A.

Let X , T be sets and I : X —» T be a labelling function assigning to each x G X a label I (x) from
T. Such a labelling function can be lifted to subsets Y C X in the following way: l(Y) is the
multiset over T given by l(Y)(t) = |/ - 1 (/) n T|.

Given a binary relation R C X x Y and a binary relation S C Y x Z for sets X , Y,Z, then their
composition is defined by R o S = {(x,z) | 3y((x,y) G R A (y.z) G S)} C X x Z. For a binary
relation R Q X x A over a set A, we denote/?1 =7? and/?" = R oR "~ l fo rn > 2 . Thesymbol/?+
denotes the transitive closure UneN^” ° f a n fi symbol R* denotes the reflexive transitive
closure R+ U {(x,x) | x G X } of R. We also write aRb to denote (a, b) G R.

Let A be a finite set of characters. A (linear) word over A is a finite sequence of characters from
A. For a word w its lengths | w| is defined as the number of its characters. The symbol £ denotes
the empty word satisfying |e| = 0. By A* we denote the set o f all words over A. X (classical)
language over A is a (possibly infinite) subset o f A*.

A (concurrent) step over A is a multiset over A. A step sequence or stepwise linear word over A
is a finite sequence of steps over A . A step language over A is a (possibly infinite) set of finite
step sequences over A.

A directed graph is a pair G = (V ,^) , where V isa fin itex e /o /n o Jesan d ^C V x Kis a binary
relation over V, called the set o f edges (all graphs considered in this paper are finite). The set
of nodes of a directed graph G is also denoted by K(G). The preset of a node v G K is the set

= {u | u - » v}. The postset o f a node v G V is the set v* = {u | v - » u}. The preset o f a subset
IK C K is the set *W = *w. The postset of a subset W C V is the set W* = Uwe»'w * •
A path is a sequence of (not necessarily distinct) nodes vj . . .v „ (n > 1) such that v, v,+1

for i = 1 , . . . ,n — 1. A path v\ ...v„ is a cycle, if vi = v„. A directed graph is called acyclic,
if it has no cycles. The set o f maximal nodes o f an acyclic directed graph G = (K —+) is the
set Max(G) = {v | v* = 0}, the set of its minimal nodes is the set Min(G) = {v | *v = 0}- An
acyclic directed graph (K,—»') is an extension o f an acyclic directed graph (K, —>) if —>G—
An acyclic directed graph (K', -») is a prefix of an acyclic directed graph (K, -») if V' C V and
(V G K') A (v -> /)= > (v G V'). An acyclic directed graph (V', —►) is a sub-graph of an acyclic
directed graph (K,—>) if V' = i / \ W for prefixes (?/,->) and (W ,-*). Then (W ,^) is called
prefix o f the sub-graph (K ',—►).

288

Partial order Extensions

Figure 2 - Example o f a partial order and all of its extensions.

A partial order over a set V is a binary relation < C V x K which is irreflexive (Vv G K : v yt v)
and transitive (< = < +) . We associate a finite partial order < over V with the directed graph
(^ <) -

Two nodes v. d E V o f a partial order (K <) are called independent if v f d and d f v. By
co < C V x V we denote the set of all pairs of independent nodes of V. A co-set is a subset
C C V fulfilling Vx,y G C : xco <y. A cut is a maximal co-set w.r.t. set inclusion. For a co-set C
of a partial order (fy <) and a node v G V \ C we write v < C, if v < s for an element s E C and
vco < C, i f vco < s for all elements s EC. The sets Max(po) and Min^po) are cuts.

The skeleton o f a finite partial order po = (K <) is the minimal relation -<C< satisfying - i '= < .

Graphically, nodes o f partial orders are drawn as small circles and the order relation by (drawn-
through) arrows between nodes. Figure 2 shows an example partial order together with all of
its extensions. The nodes u and v as well as w and v are independent.

A net is a 3-tuple N = (P. T ,F), where P is a finite set o f places, T is a finite set of transitions
disjoint from P and F C (P x T) U (T x P) is the flow relation. A marking of a net assigns to
each place p E P a number m(p') E No, i.e. a marking is a multiset over P. A marked net is a
net N = (P, T .F) together with an initial marking mo- Graphically, places are drawn as circles,
transitions as squares and the flow relation as arrows between places and transitions. A marking
m is illustrated by drawing m(p) tokens inside place p.

A place/transition Petri net (PT-net) is a 4-tuple N = (P. T.F, W), where (P T,F) is a net and
W : (P x P) U (7 x P) , ffy is a weight function satisfying W (x,y) > 0 <4- (x,_v) G F.

Graphically, the number W (x,y) is assigned to an arrow from x toy, if W (x.y) > 1 (that means,
IP(x,y) = 1 for arrows (x, y) without assigned weight). Figure 3 shows a marked PT-net having
only arc weights 1.

We introduce the following multisets o f places:

• *t(p) = W (p ,t) and f (p) = W (t,p) for transitions t.

• ’ ^ P) = X ,e r T(t) 't(p) and r* (p) = %i e T (P) f o r multisets of transitions T.

The definition o f executions of PT-nets depends on the occurrence rule of transitions, stating in
which markings a transition (or a multiset o f transitions) can occur and how these markings are
changed by its occurrence. A transition t E T can occur in a marking m, if m > t. A multiset
of transitions r can occur in m, ifm > *T.

If a transition t occurs in a marking m, the resulting marking nt is defined by m — m — t —t .
If a multiset o f transitions r occurs in m, then the resulting marking m is defined by nt —
w - ’ T + T*. We write m m ' (m m ') to denote that t (T) can occur in m and that its
occurrence leads to m'.

289

PT-net

(r+s)t r(s+t)

Executions

Figure 3 - A PT-net together with all o f its executions represented by labelled partial orders (without
prefixes).

The number W \p,t) represents the number of tokens consumed from p by an occurrence of t
and the number W (t,p) represents the number of tokens produced in p by an occurrence of t.

The occurrence of a multiset of transitions r in a marking m means, that all transitions in r
occur in parallel.
For example, in the intial marking of the PT-net shown in Figure 3 the transitions r,s and the
multiset of transitions (r + s) can occur.

The notion of execution depends on the chosen net semantics.

A sequential execution in m o f a PT-net is a finite sequence of transitions G = t \ . . . t„ such that
there are markings m i,... ,m n satisfying m mi m„. The PT-net shown in Figure
3 has the sequential executions r, s, rs, sr, rt, rst, srt and rts.

A step execution in m of a PT-net is a finite sequence of multisets of transitions a = T \...X n
such that there are markings m i,...,m „ satisfying m m\ mn . The PT-net shown
in Figure 3 has as step executions all sequential executions and additionally (r+ s) , (r+ s) t and
r(s + t).

We write m m„ to denote the occurrence of such executions ct.

Each sequential execution is also a step execution. The markings which can be reached from
the initial marking via sequential executions (resp. step executions) are called reachable.

If t is a multiset of transitions which can occur in a marking m and T = + . ..+ /„ for transitions
t\,...,t„ , then i j .. ,t„ is a sequential execution in m, i.e. the transitions in r can occur in m in
arbitrary sequential order.

We use partial orders labelled by transition names to represent single non-sequential runs of
PT-nets. The nodes of a partial order represent transition occurrences and its arrows an ’’earlier
than”-relation between transition ocurrences in the sense that one transition occurrence can be
observed earlier than another transition occurrence. If there are no arrows between two transi
tion occurrences, then these transition occurrences are independend and are called concurrent.
Concurrent transition occurrences can be observed in arbitrary sequential order and in parallel.
This interpretation of arrows is called occurrence interpretation.

A labelled partial order (LPO) over T is a 3-tuple (K < ,/), where (K, <) is a partial order and

290

l - V is a labelling function on K. LPOs are also called partial words.

We only consider LPOs up to isomorphism, i.e. only the labelling of events is of interest, but
not the event names. Formally, two LPOs (F,<,Z) and (V1, <’,l') are isomorphic, if there is a
renaming function I : V -> V' satisfying/(v) = and v < w & I(v) <’ I(w).

In Figures, we do not show the names of the nodes of an LPO, but only their labels.

A linear order is an LPO where < is a total order, i.e. there is no independence between
transition occurrences: \/u, v G F : u < v V v < u. Linear orders represent sequential executions
of Petri nets in the obvious way and can be identified with linear words. For example, Figure 3
shows LPOs representing the sequential executions rst, srt and rts.

The set o j linearizations of an LPO is the set o f linear LPOs which are extensions of this LPO.
For example, the LPOs representing rst, srt and rts in Figure 3 are are linearizations of the LPO
in the upper left comer. An LPO is uniquely determined by its set of linearizations.

A stepwise linear LPO is an LPO (K, < ,/) where the relation co < is transitive. The maximal
sets o f independent transition occurrences are called steps. The steps o f a stepwise linear LPOs
are linearly ordered. Thus, stepwise linear LPOs represent step executions of Petri nets and can
be identified with stepwise linear words. For example, Figure 3 shows LPOs representing the
step executions (r + s)t and r(t + s). The LPO in the upper left comer is not stepwise linear.

The set o f step-linearizations o f an LPO is the set of stepwise linear LPOs which are extensions
of this LPO. For example, the LPOs representing {r + s^t and r(/ + s) in Figure 3 are are step
linearizations o f the LPO in the upper left comer.

Let N = (P, T, F, W, m f) be a marked PT-net. An LPO Ipo = (V, <, I) is a LPO-nm of N if each
step-linearization of Ipo is a step execution of N. Figure 3 shows a marked PT-net togther with
all o f its LPO-runs (without prefixes).

An LPO-run Ipo o f N is said to be minimal, if there exists no other LPO-run Ipo' of N such that
Ipo is an extension o f Ipo'.

From the definition follows that extensions of LPO-runs also are LPO-runs. This means, the set
of all LPO-runs can be deduced from the set of minimal LPO-runs.

In figures we often omit transitive arrows o f LPOs for a clearer presentation.

2.2 PNT Syntax

A PNT is a Petri net which, for every transition occurrence, may read a symbol i from an input
alphabet E and may print a symbol o from an output alphabet £2. Graphically, these symbols are
annotated to transitions in the form i : o. If no input symbol should be read or no output symbol
should be printed, we use the empty word symbol £ as annotation. We use the basic Petri net
class o f place/transition nets to define PNTs.

Definition 1 (PNT) A PNT is a tuple N = (P.r,F,IKmo.E.cr,£2.w). where

• (P, T, F, IT, mo) is a marked PT-net called the underlying PT-net.

• L is a set o /input symbols and cr :T —<■ EU {f} w the input mapping.

• £1 is a set oj output symbols and co: T —> £2 U {s } is the output mapping.

291

PNT Input word Output word

Figure 4 - A PNT translating an input word into an output word.

Figure 5 - Translating an FST into an equivalent PNT.

Figure 4 shows a PNT. In the next subsection we formally define PNT semantics determining
the translation of partial language. Briefly, input words are translated into output words, where
input and output words are derived from LPO-runs by renaming nodes with input and output
symbols according to the input and output mappings.

PNTs are a proper generilization of FSTs, i.e. each FST can be written as a PNT. Figure 5 illus
trates the translation of FSTs into equivalent PNTs, where we call FSTs and PNTs equivalent if
they define the same relation on languages. The main idea is to define a PNT whose reachable
markings are all of the form, that exactly one place is marked by one token. Since each reach
able marking represents a global state o f the PNT, then each place represents a global state of
the FST. Technically, this can be derived by using only unbranching transitions, i.e. | */| < 1
and |/‘ | < 1 for all transitions t.

292

PNT with e-input/output Input word Output word

Figure 6 - Construction of input and output words.

2.3 PNT Semantics

Considering non-sequential semantics of Petri nets, a PNT can be used to translate a partial
language into another partial language, where so called input words are related to so called
output words.

Input and output words are defined as LPOs (K, with a labelling function I : K —> 4 1J { f}
for some input or output alphabet A. Such LPOs we call £-LPOs.

For each s-LPO there exists an LPO with the same set of linearizations. This LPO can be
constructed by successively collapsing £-labelled nodes in the following way:

• If/(v) = s and ’v = 0 V v* = 0, then just delete v together with its adjacent edges.

• If /(v) = E and 'v 0 A v' / 0, then delete v together with its adjacent edges and add the
edges *v x v*.

The derived LPO we call equivalent to the E-LPO.

Definition 2 (Input and Output Words) Let N = (P.TF. W.nu).T..<y .il-OFi he a P \T and let
Ipo = (K <,/) be an LPO-ntn o f the underlying PT-net (P.T.F. H./»(J.
The input word a fp o) corresponding to I po is the LPO equivalent to the E-LPO (1. • I'-
The output word 01(1 po) corresponding to Ipo is the LPO equivalent to the E-LPO (I . < .(0 11

Figure 6 shows an example for the translation of partial words in the presence ot E-inputs and
-outputs.

2.4 PNTs and FSTs

The next research steps are:

293

• Definition and implementation of operations on PNTs as for FSTs, as for example ra
tional operations (union, concatenation, closure), basic unary operation (reversal, inver
sion, projection), fundamental binary operations (composition, union, difference) and op
timization operations (e-removal, minimization).

• Extension of PNTs by weights from a semiring.

Then PNTs and FSTs can be combined via such operations, since each FST is a special PNT.
In particular it will be possible to compose FSTS and PNTs and build hierarchical systems
consisting of FSTs on some levels and of PNTs of other levels in such a way. In the next section
we briefly describe such a system in the area of speech dialogue systems. Weights may be used
in such systems to express uncertainty of recognition results and predictions of utterances of the
user.

3 Semantic Dialogue Modelling

In this section we briefly present an application of PNTs within a new approach to develop the
cognitive user interface of a hierarchical cognitive dynamic speech signal processing system.1

The system includes a semantic level used to interpret syntactic regocnition results o f speech
signals. These interpretations will be used to control a natural language dialogue, where user
queries can be freely formulated and a dialogue with the user is initiated in which step by step
missing information is collected in order to identify the action indended by the user together
with the data necessary to perform the action.

In our approach, the system successively integrates recognition results o f user queries into a
state of information and generates a request concerning missing information together with an
expectation for the next user query. This expectation is used as a semantic-driven configuration
of the speech recognizer in the next dialog step.

In the following we use PNTs to translate recognition results of speech signals on the syntax
level into semantic interpretations.

3.1 I MP Transducer

Figure 7 shows an application of PNTs in modelling semantics within a dialogue system. It
translates recognition results of speech signals on the syntax level into semantic interpretations.

For this little example we consider a system which knows about two persons: Peter Parker with
ID 1 and Parker Lewis with ID 2. To keep it very simple we consider also that only the following
four utterances should be understandable:

• Peter

• Peter Parker

• Parker

• Parker Lewis

'This systems is developed in cooperation with institutes from TU Dresden (R. Hofmann) and BTU Cottbus
(M. Wolff).

294

Figure 7 - A Petri net transducer relating utterances to different meanings.

In this context understandable means translatable into semantic categories the system can deal
with. The categories for our example are person, firstname and lastname, all particular parts of
the actual names and the relevant IDs. All these are elements of the output alphabet. The input
alphabet is formed by all single words from the utterances. We call an input word utterance and
an output word meaning.

The shown PNT relates for example the utterance ’’Peter” non-ambiguously to the meaning
person.firstname.Peter.2. The utterance ’’Parker” in contrast has two different meanings because
it is unclear whether ’’Parker” is the firstname of person 1 or the lastname of person 2. In
Figure 8 the corresponding partial orders (which are total orders in these cases) can be seen.

Peter Parker
• person person • • person

• firstname rstname lastname

• Peter Parker Parker

Figure 8 - Meanings for the utterances "Peter" and "Parker ".

Now let us take a look at the utterance ’’Peter Parker”. Its meaning contains two parts: Peter
is the firstname of person 1 and ’’Parker” is the lastname of person 1. This time there is no
ambiguity in the ”Parker”-part because for the utterance as a whole the other interpretation is
not feasible. In Figure 9 the partial orders for this situation are shown. The meaning represents
the situation that a person can be identified by a combination of a firstname and a lastname,
which are modelled as unordered categories.
As of now it is clear that the PNT from Figure 7 translates utterances our system should un
derstand into meanings which are reasonable within the context o f the system. So we do not
try to produce every possible interpretation for every possible utterance but provide the system
with a set of what we call Utterance-Meaning-Pairs (UMPs) [II] determining which utterances
can be unterstood and which meanings of utterances are available (this set is determined by the

295

person
Peter •

lastname

Parker

Figure 9 - Meaning for the utterance ’’Peter Parker”.

application area of the system). PNTs relating utterances and meaning we call UMP tranducers.

3.2 Representation of Semantic Information

In the above example we used partial orders to represent meanings of utterances. This is not an
ad-hoc notation but a simplified form of a general and universal formalism to model different
kinds of information within a speech dialogue systems on the semantic level, as for example
recognition results (as presented in the above example), the world model of the application
(which we described only be words in the above example), the information state, the user model
and semantic configuration of the speech recognizer in each dialogue step.

This formalism is called feature-value-relation (FVR) [3] and allows to structure semantic cat
egories o f information and to relate data to semantic categories. In the above example, we
considered the semantic category person consisting of the sub-categories firstname and last
name and related concrete firstnames and lastnames of different persons from a database to
these categories.

Moreover, in FVRs it is possible to assign weights to semantic categories or data pieces. De
pendent on the kind o f information, these weights have a different interpretation, for example:

• Consider an utterance with two alternative meanings and a situation within a dialogue
where one of the meanings is more likely than the other. Then weights can express such
predictions. In every dialogue step the system generates an expectation concerning the
next utterance of the user in the form of an FVR. These weights get promoted downwards
through the hierarchy and help the speech recogniser to achieve more suitable results.

• The regognition result produced by the speech recognizer in general contains some degree
of uncertainty. This uncertainty also can be expressed by weights within an FVR.

Altogether, in the above example, a PNT is used to relate utterances to meanings given by FVRs
without weights. The extension of PNTs by weights is a topic o f future research.

References

[1] B it JON, W. R. VAN: Extending Petri nets fo r specifying man-machine dialogues. Int. J.
Man-Mach. Stud., 28(4):437 - 455, 1988.

[2] HOFFMANN, R., M. EICHNER . M. WOLFF: Analysis o f verbal and nonverbal acous
tic signals with the Dresden UASR system. . Verbal and Nonverbal Communication Be
haviours, . 4775 . LNAI,. 200-218. Springer, 2007.

296

[3] H ÜBER , M., C. KÖ LBL , R. LORENZ, R. RÖMER . G. W IRSCHING : Semantische Di
alogmodellierung mit gewichteten Merkmal-Werte-Relationen. . Proceedings o f "Elektro
nische Sprachsignalverarbeitung (ESSV) ”, . 53 . Studientexte zur Sprachkommunikation,
. 25-32, 2009.

[4] KU SK E , D. . I. M EIN ECK E : Branching Automata with Costs - A Way o f Reflecting Paral
lelism in Costs. Theoretical Computer Science, 328:53 - 75, 2004.

[5] LODAYA, K. . P. WEIL: Series-parallel Languages and the bounded-width Property. The
oretical Computer Science, 237:347 - 380, 2000.

[6] MOHRI, M.: Weighted Automata Algorithms. Springer, 2009.

[7] RAYM OND , C., F. BECHET , R. D. MORI . G. DAMNATI: On the use o f finite state trans
ducers fo r semantic interpretation. Speech communication, 48(3-4):288 - 304, 2006.

[8] WA N G , F. Y., M. M ITTM ANN . G. N. SARIDIS: Coordination specification fo r CIRSSE
robotic platform system using Petri net transducers. Journal of Intelligent and Robotic
Systems, 9:209 - 233, 1994.

[9] WA N G , F. Y. . G. N. SARIDIS: A model fo r coordination o f intelligent machines using
Petri nets. . Proceedings o f the IEEE International Symposium on Intelligent Control, .
28-33. IEEE Comput. Soc. Press, 1989.

[10] W IR SC H IN G , G.: Nichtsequentialität in der Sprachverarbeitung mit F ST .. Proceedings o f
"Elektronische Sprachsignalverarbeitung (ESSV) ", Studientexte zur Sprachkommunika

tion, 2012.

[11] W IR SC H IN G , G. . C. KÖLBL: Language Modeling with Utterance-Meaning-Pairs. .
2011-12, Institute o f Computer Science. University of Augsburg, 2011.

[12] W OLFF , M.: Akustische Mustererkennung. Habilitation, 2009.

297

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

