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NONPARAMETRIC ITEM RESPONSE THEORY AXIOMS AND PROPERTIES

UNDER NONLINEARITY AND THEIR EXEMPLIFICATION WITH KNOWLEDGE

SPACE THEORY

Abstract

This paper investigates the dichotomous Mokken nonparametric item

response theory (IRT) axioms and properties under incomparabilities among

latent trait values and items. Generalized equivalents of the unidimensional

nonparametric IRT axioms and properties are formulated for nonlinear

(quasi-ordered) person and indicator spaces. It is shown that monotone

likelihood ratio (MLR) for the total score variable and nonlinear latent trait

implies stochastic ordering (SO) of the total score variable, but may fail to

imply SO of the nonlinear latent trait. The reason for this and conditions

under which the implication holds are specified, based on a new, simpler proof

of the fact that in the unidimensional case MLR implies SO. The approach is

applied in knowledge space theory (KST), a combinatorial test theory. This

leads to a (tentative) Mokken-type nonparametric axiomatization in the

currently parametric theory of knowledge spaces. The nonparametric

axiomatization is compared with the assumptions of the parametric basic local

independence model which is fundamental in KST. It is concluded that this

paper may provide a first step toward a basis for a possible fusion of the two

split directions of psychological test theories IRT and KST.

Key words: nonparametric item response theory, quasi-ordered person space,

quasi-ordered indicator space, invariant item ordering, monotone likelihood

ratio, stochastic ordering, generalized
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monotone-likelihood-ratio-stochastic-ordering implication, parametric

knowledge space theory, basic local independence model, nonparametric

knowledge space theory.



4

Contents

1 Introduction 5

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Nonparametric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Arguments for Fusion of IRT and KST . . . . . . . . . . . . . . . . . . . 8

1.4 Structure of Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Nonparametric IRT: Axioms and Properties 11

2.1 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Formulation of Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Ghurye-Wallace-Grayson-Huynh Result . . . . . . . . . . . . . . . . . . . 14

2.4 Monotone-Likelihood-Ratio-Stochastic-Ordering Implication . . . . . . . 14

3 KST: Basic Concepts 17

3.1 Example: Elementary Algebra . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Basic Deterministic Concepts . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Basic Probabilistic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Nonparametric IRT Axioms and Properties: Nonlinear Generalizations 24

4.1 Generalized Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Formulation of Generalized Properties . . . . . . . . . . . . . . . . . . . 26

4.3 Generalized Ghurye-Wallace-Grayson-Huynh Result . . . . . . . . . . . . 27

4.4 Generalized Monotone-Likelihood-Ratio-Stochastic-Ordering Implication 27

5 Nonlinear Nonparametrics: Application in KST 33

5.1 KST Variants of Generalized Axioms and Properties . . . . . . . . . . . 33

5.2 Example: Problem of Incomparabilities . . . . . . . . . . . . . . . . . . . 36

5.3 BLIM and KST Variants of Generalized Axioms and Properties . . . . . 36

6 Discussion 40

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



5

6.2 Total Score Variable and Nonlinearity of Latent Trait . . . . . . . . . . . 41

6.3 Order-Theoretic Structural Remarks . . . . . . . . . . . . . . . . . . . . 42

6.4 Concluding Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Acknowledgments 43

References 44

1. Introduction

1.1. Preliminaries

More than 50 years ago, Louis Guttman introduced his scalogram technique

(Guttman, 1944, 1950). This deterministic model allows for ‘linear’ orderings (‘chains’)

of persons (e.g., regarding their abilities) and items (e.g., regarding their difficulties).

Since then, the Guttman model has been generalized into, at least, two directions.1 On

the one hand (in a probabilistic, statistical direction), based on the Rasch (1960) model

and generalized by Mokken’s (1971) monotone homogeneity model, a family of ‘linear’

probabilistic models (item response theory, IRT; e.g., Fischer & Molenaar, 1995; Van

der Linden & Hambleton, 1997) has emerged, taking over ‘linearity’ of person and item

orderings. On the other hand (in a deterministic, order-theoretic direction), starting

with Airasian and Bart (1973), Bart and Airasian (1974), and Bart and Krus (1973), a

family of ‘nonlinear’ deterministic models (knowledge space theory, KST; e.g., Doignon

& Falmagne, 1985, 1999) has been developed, weakening ‘linearity’ of person and item

orderings to allow for incomparabilities among persons and items, respectively.2

1In the following, I mention item response theory and knowledge space theory. By doing so, I do not

claim that the latter theory is as popular as the former one, nor that it is as popular as other theories

such as classical test theory or generalizability theory.

2In KST, persons are represented by collections of items (of a domain) they are capable of mastering.

In this spirit, persons can be incomparable, with respect to set-inclusion. Items, in turn, are assumed to

be ordered, for instance, with respect to a hierarchy of mastery dependencies. In this spirit, items can

be incomparable, with respect to that hierarchy. Examples illustrating what it means when persons and
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Although there exist scattered approaches to creating specific probabilistic versions of

the latter ‘nonlinear’ deterministic models (e.g., Doignon & Falmagne, 1999; Ünlü,

2006), respectively, ‘nonlinear’ generalizations of the former ‘linear’ probabilistic models

(e.g., Junker, 2001; Van der Linden & Hambleton, 1997), such activities have not arisen

from the idea of conflating these two split directions of psychological test theories

(however, see Stefanutti, 2006).

The main motivation for the research reported in this paper is to provide a first

step toward a basis for a possible fusion of these theories. In IRT literature, the Mokken

(1971) unidimensional nonparametric models have been satisfactorily applied. Based on

such applications, as an important first step, this paper investigates the scope of the

unidimensional Mokken axioms in a nonlinear framework allowing for incomparabilities

among latent trait values and items, and introduces a first application of nonparametric

modeling in the theory of knowledge spaces. This should not, however, be misconceived

as claiming ability to achieve that basis already with the present paper. The latter

definitely requires future research, as a necessary prerequisite for the development of a

superior probabilistic test theory (with corresponding statistical inference methodology)

that could include (most of) the existing models as special cases.

1.2. Nonparametric Approach

This paper pursues a nonparametric, as opposed to a parametric, (probabilistic)

approach. A nonparametric perspective may, for instance, offer the following

items are incomparable are given in Subsections 3.1 and 5.2. In IRT, on the other hand, persons and

items are, for instance, represented by single real numbers, ability and difficulty parameters, respectively.

In this spirit, persons and items are linearly ordered, with respect to the natural ordering of the real

numbers. Conceptually speaking, KST may be viewed as a more ‘qualitative, behavioral’ approach,

unlike IRT, as a ‘quantitative, statistical’ approach. In the following, I will talk about IRT and KST

without having introduced the corresponding models technically. This will be done in Sections 2 and 3,

respectively. Reading these sections, it should be clear what the corresponding models, their similarities

and dissimilarities are about. Also, Subsection 1.3 discusses what the KST models can do that the IRT

models cannot do, and vice versa.
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advantages:3

1. So far, a nonparametric approach in KST is lacking. Because KST at present is

merely formulated parametrically—see Subsection 3.3; the parametric (probabilistic)

basic local independence model, reviewed in Definition 4, is fundamental in KST, in

the sense that most of the KST probabilistic models are special cases of it—, a

nonparametric approach in KST would be an important contribution.

2. In realistic contexts, the parametric models in KST generally contain too many

model parameters (e.g., a prohibitively large number of knowledge state probabilities)

to be estimated from the data (cf. Subsection 3.3). For instance, in an experiment by

Kambouri (1991), the number of knowledge states ranges from several hundreds to

several thousands (for 50 items). In such cases, without any restrictions, it may be

infeasible to obtain reliable estimates of the model parameters. On the other hand,

setting constraints to reduce the number of independent model parameters

necessitates the justification of such restrictions. In turn, assumptions not justified by

the data can lead to biases in the estimates. Finally, justified restrictions may require

data from a special, costly experimental design. Given these observations, a

nonparametric approach in KST may help in developing a nonparametric axiomatic

framework, with corresponding feasible new statistical inference methodologies for

parameter estimation and (separately) testing KST model assumptions.

3. Nonparametric IRT includes a broad range of parametric IRT models. Treating the

more general nonparametric cases thus (implicitly) implies the treatment of various

parametric special cases. To some degree, this also applies to the nonparametric KST

axioms introduced in this paper. For instance, for realistic ranges of parameter values,

the basic local independence model satisfies the axiom of isotonicity (see Theorem 6).

Nevertheless, parametric IRT-type approaches in KST, of course, are important

directions for future research (for a recent logistic approach, see Stefanutti, 2006; for a

3Basic deterministic and probabilistic concepts of KST are reviewed in Section 3.



8

sort of generalized normal ogive approach, see Ünlü, 2006).

This paper is also interesting from an IRT point of view. It provides new structural

insights into the long-standing study of monotone likelihood ratio and stochastic

ordering in IRT (e.g., Hemker, Sijtsma, Molenaar, & Junker, 1996, 1997; Hemker, Van

der Ark, Sijtsma, 2001; Sijtsma, 1998; Van der Ark, 2001, 2005). So far, IRT research

has only concentrated on the unidimensional case. In this paper, at an order-theoretic

structural level, monotone likelihood ratio and stochastic ordering are discussed for

more general nonlinear (quasi-ordered) latent trait spaces. I show that the generalized

version of the fundamental Ghurye-Wallace-Grayson-Huynh result (Ghurye & Wallace,

1959; Grayson, 1988; Huynh, 1994) on monotone likelihood ratio of the total score

variable in the nonlinear latent trait does not in general imply stochastic ordering of the

nonlinear latent trait by the total score variable. Even more (see Table 1), if the latent

trait space is not linearly ordered (in particular, if it is not unidimensional), and if the

manifest variable assumes values in a linearly ordered set (e.g., if it is scalar-valued such

as the total score variable), monotone likelihood ratio implies stochastic ordering of the

manifest variable, but may fail to imply stochastic ordering of the latent trait (though

the property of monotone likelihood ratio is still symmetric in its arguments). I

quantify the reason for this fact (order-theoretic completeness assumption)4 and give

conditions under which the implication holds.

1.3. Arguments for Fusion of IRT and KST

5 What could be gained by fusing (nonparametric) IRT and KST? In other words,

why should one be interested in trying to unify IRT and KST? Generally speaking,

what one ideally would like to have is a unified framework keeping the strengths and at

the same time avoiding the drawbacks of both theories. But what can KST do for a test

constructor and a test user that IRT cannot deliver, and vice versa? The following lists

4The assumption of completeness is defined in Footnote 14.

5This subsection was motivated by critical comments made by a reviewer. For selected topics such

as surmise systems and adaptive testing in KST, see the references listed in Section 3.
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some arguments supporting the importance of a possible fusion of IRT and KST.

Statistical inference methodologies. An IRT-type modeling in KST could provide

feasible new statistical inference methodologies (cf. Subsection 1.2). For IRT,

unlike KST, has plenty of sophisticated statistical methods that could be suited to

and applied in KST. For instance, the random effects approach discussed in Ünlü

(2006) allows for the estimation of the response error probabilities of the basic

local independence model, without having to estimate them simultaneously along

with the knowledge state probabilities (cf. Subsection 3.3). The latter, however, is

crucial, because the number of knowledge states generally tends to be quite large

in real data applications. This random effects approach represents a

straightforward, nonetheless important, application of (parametric) IRT-type

modeling with corresponding statistical inference methodology in KST.

Restrictivity. It seems that IRT models that simultaneously imply a person ordering

and an item ordering (e.g., double monotonicity model, Subsection 2.1) are

restrictive models with respect to real data. In general, they will not fit many

empirical data sets. A unified test theory combining IRT and KST could

positively contribute to and improve on this observation. For, a strength of KST

is that it implies very general combinatorial structures, both at the levels of

persons and items, contrary to IRT, implying more restrictive linear orderings.

KST further provides mathematical theorems on the linkage between these levels,

offering flexibility in the choice of a representation. Hence a unified approach

could deliver as general as possible probabilistic models that could (a) imply both

a person ordering and an item ordering, (b) extend linear orderings to more

general and flexible surmise relations or even surmise systems, (c) allow for

flexibility in representation by supplying possible theorems on the linkage between

the person and item levels, (d) encompass (most of) the existing IRT and KST

models as special cases, and thus (e) fit far more data sets in practice.

Adaptive testing. A unified test theory combining IRT and KST could also positively
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contribute to the problem of adaptive testing in nonparametric IRT using only

ordinal measurement information. Developments in this direction have been

rather moderate (e.g., Huisman & Molenaar, 2001; Laros & Tellegen, 1991).

Adaptive testing, however, is a major strength of (parametric) KST.

Qualitative derivation of hierarchies among items. KST provides a number of ‘a

priori’ qualitative, psychological theory driven methods for the derivation of

hierarchies among items (e.g., based on mastery dependencies, Subsection 3.1).

Such methods are presented, for example, in the book edited by Albert and Lukas

(1999); for instance, Albert and Held (1999), Held (1999), and Korossy (1999).

These methods utilize psychological theories and principles based on content– and

process–analysis for the qualitative derivation of hierarchies among items. In IRT,

however, orderings of items are obtained ‘a posteriori’ by utilizing quantitative,

statistical methods (e.g., by estimating the difficulty parameter of each item). A

unified framework could offer (a) qualitative, theory driven (KST), (b)

quantitative, statistical (IRT), and (c) hybrid derivation methods.

Software. For a unified test theory combining IRT and KST a unified software

environment could be developed. Such a comprehensive environment could

encompass many existing IRT and KST models and software, under a single

graphical user interface (GUI) with common look and feel. This would imply easy

access to and use of software for the practical application of the unified test

theory, IRT, and KST models to empirical data, user-friendly unified ‘under one

umbrella’.

1.4. Structure of Paper

This paper is structured as follows. The unidimensional nonparametric IRT axioms

and properties are reviewed (Section 2). In particular, a new, simpler proof of the fact

that in the unidimensional case monotone likelihood ratio implies stochastic ordering is

presented. Basic deterministic and probabilistic KST concepts are reviewed (Section 3).



11

Generalized equivalents of the unidimensional nonparametric IRT axioms and properties

for nonlinear person and indicator spaces are discussed (Section 4). In particular, based

on the new proof, (a) it is seen that the generalized Ghurye-Wallace-Grayson-Huynh

result may not imply stochastic ordering of the nonlinear latent trait, and (b) the

reason for this fact and conditions under which the implication holds are specified. An

application of the nonlinear nonparametrics in KST is presented (Section 5). KST

equivalents of the generalized nonparametric IRT concepts are formulated for the

knowledge structure, surmise relation, and quasi-ordinal knowledge space models. The

nonparametric formulation is compared with the assumptions of the parametric basic

local independence model. This paper ends with a discussion containing a summary,

concluding remarks, and some suggestions for further research (Section 6).

2. Nonparametric IRT: Axioms and Properties

This section briefly reviews the axioms of unidimensionality, local independence,

monotonicity, and invariant item ordering underlying Mokken’s (1971) nonparametric

IRT models of monotone homogeneity and double monotonicity for dichotomous items

(see also Mokken, 1997; Mokken & Lewis, 1982; Sijtsma, 1998; Sijtsma & Molenaar,

2002).6 The properties of monotone likelihood ratio and stochastic ordering justifying

the use of Mokken’s models as measurement models for persons are also reviewed.

2.1. Axioms

Let Xl with realization xl ∈ {0, 1} denote the item score variable for item Il

(1 ≤ l ≤ m, m ∈ N≥2),
7 and let X+ :=

∑m

l=1 Xl with realization x+ ∈ {0, 1, . . . , m} be

the total score variable. A function f : {0, 1, . . . , m} → R is nondecreasing if and only if

(iff)

∀x, y ∈ {0, 1, . . . , m}, x ≤ y : f(x) ≤ f(y).

6Throughout this paper, only dichotomous items are considered.

7Let N := {1, 2, 3, . . .}, and let N≥2 := {n ∈ N : n ≥ 2}.
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Let the latent trait be denoted by θ, θ ∈ Θ ⊆ R; this is referred to as the axiom of

unidimensionality. The latent trait θ is assumed to have a sampling distribution in the

examinee population under reference. A function f : Θ → R is nondecreasing iff

∀θ1, θ2 ∈ Θ, θ1 ≤ θ2 : f(θ1) ≤ f(θ2).

Let the conditional positive response probability P (Xl = 1|θ) as a function of θ ∈ Θ be

the item response function (IRF) of an item Il (1 ≤ l ≤ m). The axiom of local

independence states that

P (X1 = x1, X2 = x2, . . . , Xm = xm|θ) =

m∏

l=1

P (Xl = xl|θ)

for any xl ∈ {0, 1} (1 ≤ l ≤ m) and θ ∈ Θ. The axiom of monotonicity holds iff any IRF

P (Xl = 1|.) (1 ≤ l ≤ m) is nondecreasing. The axiom of invariant item ordering states

that the IRFs P (Xl = 1|.) (1 ≤ l ≤ m) can be ordered such that

∀θ ∈ Θ : P (Xl1 = 1|θ) ≤ P (Xl2 = 1|θ) ≤ · · · ≤ P (Xlm = 1|θ)

where 1 ≤ li ≤ m (1 ≤ i ≤ m). (For applications and methods of investigation of the

axiom of invariant item ordering, see, for the dichotomous case, Sijtsma and Junker

(1996), and for the polytomous case, Sijtsma and Hemker (1998).)

Mokken’s monotone homogeneity model (MHM) is based on the axioms of

unidimensionality, local independence, and monotonicity. His double monotonicity

model (DMM) further adds the axiom of invariant item ordering.

2.2. Formulation of Properties

Monotone likelihood ratio for the total score variable and latent trait plays an

important role in IRT. It implies stochastic ordering (SO) properties that can be

conveniently interpreted in an IRT context (see Subsection 2.4): Stochastic ordering of

the total score variable by the latent trait, and stochastic ordering of the latent trait by

the total score variable.
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The total score variable X+ has monotone likelihood ratio (MLR) in θ iff, for any

0 ≤ x+,1 ≤ x+,2 ≤ m,8

P (X+ = x+,2|θ)

P (X+ = x+,1|θ)

is a nondecreasing function of (unidimensional) θ ∈ Θ. Similarly, the latent trait θ has

MLR in X+ iff, for any θ1, θ2 ∈ Θ, θ1 ≤ θ2,

P (θ2|X+ = x+)

P (θ1|X+ = x+)

is a nondecreasing function of 0 ≤ x+ ≤ m. The fundamental

Ghurye-Wallace-Grayson-Huynh result states that under mild conditions the total score

variable has MLR in the unidimensional latent trait (see Theorem 1).

The property of MLR is rather technical and implies the following two important

stochastic ordering properties that are easier to interpret in IRT. The property of MLR

implies that X+ is stochastically ordered by θ (see Part 1 of Theorem 2). The stochastic

ordering of the manifest variable X+ by θ (SOM) means that, for any 0 ≤ x+ ≤ m,

P (X+ ≥ x+|θ)

is a nondecreasing function of (unidimensional) θ ∈ Θ. Note that this property takes

the latent trait as a starting point. In practice, however, the total score variable is

observed and inferences about the latent trait are required. This is accommodated by

the next property. The MLR property also implies that θ is stochastically ordered by

X+ (see Part 2 of Theorem 2). The stochastic ordering of the latent trait θ by X+

(SOL) means that, for any θ0 ∈ Θ,

P (θ ≥ θ0|X+ = x+)

is a nondecreasing function of 0 ≤ x+ ≤ m. Note that the property of SOL is very

important for practical measurement, because it justifies the use of the total score

variable to estimate the ordering of subjects on the latent trait. This is the key result

that justifies the use of the MHM and DMM as measurement models for persons.

8Throughout this paper, mathematical expressions are assumed to be defined whenever they are

written in the text.
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2.3. Ghurye-Wallace-Grayson-Huynh Result

The fundamental Ghurye-Wallace-Grayson-Huynh (GWGH) result on monotone

likelihood ratio of the total score variable in unidimensional IRT (for dichotomous

items) is as follows (Ghurye & Wallace, 1959; Grayson, 1988; Huynh, 1994).

Theorem 1. (GWGH result) Under the axioms of unidimensionality, local

independence, and monotonicity, and the requirement that each item response function

assumes values strictly between zero and one, the total score variable has monotone

likelihood ratio in the (unidimensional) latent trait.

Proof. For a recent proof of this result correcting flaws in Huynh’s (1994)

argument, see Ünlü (2007a).

Note that the requirement of having IRFs assuming values strictly between zero

and one is not that restrictive in practice, because ‘boundary value’ IRFs (assuming the

values 0 and/or 1) may be closely approximated by IRFs that do meet this requirement.

Also note that the MHM and hence parametric special cases such as the Rasch (1960)

and Birnbaum (1968) models possess the MLR property. Mokken’s models, by

definition, satisfy the axioms of unidimensionality, local independence, and

monotonicity.

2.4. Monotone-Likelihood-Ratio-Stochastic-Ordering Implication

The MLR property is symmetric in its arguments, that is, MLR of X+ in θ is

equivalent to MLR of θ in X+ (Bayes’ theorem). Another well-known fact is that the

property of MLR implies the SOM and SOL properties (e.g., Hemker, Sijtsma,

Molenaar, & Junker, 1996, 1997; Hemker, Van der Ark, Sijtsma, 2001; Sijtsma, 1998;

Van der Ark, 2001, 2005).

This fact has been established in the statistical literature by means of various

mathematical proofs. However, all these proofs have one thing in common. They are
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indirect, in the sense that this (in fact, elementary) result is obtained as a corollary of

unnecessarily complicated, general statements.

The proof by Lehmann (1986, pp. 85–86, Lemma 2) establishes stochastic ordering

(Part (ii) of Lemma 2) as a special result of a more general implication of MLR (Part

(i) of Lemma 2): invariance of the property of nondecreasing monotonicity for (indexed)

expectations of nondecreasing monotone transformations. Lehmann’s lemma is a special

case of an even more general theorem by Karlin (1957, 1968). Karlin’s theorem relates

the number of sign changes of the (indexed) expectation of a nondecreasing

transformation to those of the transformation when the involved (indexed) densities are

totally positive. The proof by Junker (1993, pp. 1371–1372, Lemma 4.1) unnecessarily

introduces a ‘conditional’ random variable to rely on Esary, Proschan, and Walkup

(1967, Property (P3)). In Shaked and Shanthikumar (1994, pp. 28–29, Subsection

1.C.3; see also Ross, 1996), the likelihood ratio order ≤lr implying the usual stochastic

order ≤st is established via the hazard (respectively, reversed hazard) rate order ≤hr

(respectively, ≤rh): Theorem 1.C.1 states that ≤lr ⊆ ≤hr
⋂

≤rh, and Theorem 1.B.1

(respectively, Theorem 1.B.21) states that ≤hr ⊆ ≤st (respectively, ≤rh ⊆ ≤st). The

MLR property implying the stochastic ordering properties can also be obtained from a

general theorem by Douglas, Fienberg, Lee, Sampson, and Whitaker (1990, Theorem

3.1), and from the characterizations of stochastic ordering in terms of a maximal

invariant with respect to the group of monotone transformations by Lehmann and Rojo

(1992).

In the following, a new, simpler proof of this basic (in IRT, important) fact is

presented. The proof is direct and elementary based on few purely algebraic,

straightforward manipulations. It is self-contained requiring only basic knowledge of

probability theory. It seems that this proof is the first of such a kind (direct,

elementary, and self-contained) in the statistical literature on this matter. More

precisely, the proof follows the line of reasoning by Junker (1993). First, simple sum

(respectively, integral) representations are given for the left- and right-hand sides of the

required stochastic ordering inequality. Then, however, instead of adequately expressing
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the representations further based on a ‘conditional’ random variable (e.g., to rely on

Esary et al., 1967), appropriate terms are simply summarized by means of

straightforward algebraic manipulations.

Theorem 2. (MLR-SO implication) It holds:

1. MLR of (unidimensional) θ in X+ implies the SOM property.

2. MLR of X+ in (unidimensional) θ implies the SOL property.

Proof. 1. Let 0 < x+ ≤ m, and θ1, θ2 ∈ Θ, θ1 ≤ θ2. It holds (cf. Junker, 1993, pp.

1371–1372, Lemma 4.1),

P (X+ ≥ x+|θ1) =

∑m

y=x+
P (θ1|X+ = y)P (X+ = y)

∑m

y′=0 P (θ1|X+ = y′)P (X+ = y′)
,

P (X+ ≥ x+|θ2) =

∑m

y′′=x+
P (θ1|X+ = y′′)P (θ2|X+=y′′)

P (θ1|X+=y′′)
P (X+ = y′′)

∑m

y′′′=0 P (θ1|X+ = y′′′)P (θ2|X+=y′′′)
P (θ1|X+=y′′′)

P (X+ = y′′′)
.

Separating sums ‘
∑m

y′=0 · · · ’ and ‘
∑m

y′′′=0 · · · ’ into two parts ‘
∑x+−1

y′=0 · · ·+
∑m

y′=x+
· · · ’

and ‘
∑x+−1

y′′′=0 · · ·+
∑m

y′′′=x+
· · · ’, respectively, and summarizing appropriate terms, the

required inequality P (X+ ≥ x+|θ1) ≤ P (X+ ≥ x+|θ2) is seen to be equivalent to

m∑

y=x+

P (θ1|X+ = y)P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)
P (θ2|X+ = y′′′)

P (θ1|X+ = y′′′)
P (X+ = y′′′)

≤
m∑

y′′=x+

P (θ1|X+ = y′′)
P (θ2|X+ = y′′)

P (θ1|X+ = y′′)
P (X+ = y′′) ·

x+−1∑

y′=0

P (θ1|X+ = y′)P (X+ = y′).

The latter inequality holds because ((1) and (2) indicate the use of MLR)

m∑

y=x+

P (θ1|X+ = y)P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)
P (θ2|X+ = y′′′)

P (θ1|X+ = y′′′)
P (X+ = y′′′)

(1)

≤
m∑

y=x+

P (θ1|X+ = y)P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)
P (θ2|X+ = x+)

P (θ1|X+ = x+)
P (X+ = y′′′)

=
m∑

y=x+

P (θ1|X+ = y)
P (θ2|X+ = x+)

P (θ1|X+ = x+)
P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)P (X+ = y′′′)

(2)

≤
m∑

y=x+

P (θ1|X+ = y)
P (θ2|X+ = y)

P (θ1|X+ = y)
P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)P (X+ = y′′′).
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2. The arguments are the same once sum is replaced by integral.

Why should one be interested in this new elementary proof? The stochastic

ordering of the latent trait by the total score variable (SOL) is very important for

practical measurement in IRT. It justifies the use of the (observable) total score variable

to estimate the ordering of subjects on the (unobservable) latent trait. The SOL

property is the key result that justifies the use of Mokken’s (1971) models of monotone

homogeneity and double monotonicity as measurement models for persons. In other

words, even though elementary from a theoretical-statistical point of view, this result is

very important from an application point of view. The elementary proof may thus be of

interest for reasons of simplicity and clarity. The main reason, however, is that this

proof helps in investigating the MLR, SOM, and SOL properties for more general

nonlinear latent trait spaces. Because it is based on ‘just necessary’ mathematical

terms, this is possible in a straightforward and easy manner (see Subsection 4.4).

Two remarks are in order at this point.

1. Reading the implications described in Theorem 2 from the pictures in the paper by

Douglas et al. (1990) does not constitute a technical-mathematical proof thereof. The

pictures only serve as visualizations of mathematically proved (general) statements.

2. The intention here is not to give a short indirect and general, but rather direct,

elementary, and self-contained proof. A shorter proof, for instance, may be based on

the well-known fact that the likelihood ratio order implying the usual stochastic order

can be, indirectly, established via the hazard (respectively, reversed hazard) rate

order (e.g., Shaked & Shanthikumar, 1994; as already mentioned at the beginning of

this subsection). In fact, the proof of Theorem 2 even is a new proof of this statistical

fact: ≤lr implying ≤st. It establishes the latter in a direct and very basic manner.

3. KST: Basic Concepts

In 1985, Jean-Paul Doignon and Jean-Claude Falmagne introduced knowledge space

theory (KST; Doignon & Falmagne, 1985). Most of the theory of knowledge spaces is
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presented in a monograph entitled ‘Knowledge Spaces’ by Doignon and Falmagne

(1999); see also Doignon and Falmagne (1987), Falmagne (1989), and Falmagne,

Koppen, Villano, Doignon, and Johannesen (1990). A comprehensive bibliography on

KST (including a lot of references on applications of KST) by C. Hockemeyer

(University of Graz, Austria) can be retrieved from

http://wundt.kfunigraz.ac.at/kst.php. For concrete application examples, see in

particular Albert and Lukas (1999). The theory of knowledge spaces has been

successfully applied for the computerized, adaptive assessment and training of

knowledge; for instance, see the ALEKS (Assessment and LEarning in Knowledge

Spaces) system, a fully automated math tutor on the Internet: http://www.aleks.com.

This section starts with a motivating small example which is taken from Falmagne,

Doignon, Cosyn, and Thiéry (2003), and then briefly reviews some of the basic

deterministic and probabilistic concepts of KST. For details, the reader is referred to

the afore mentioned references.

3.1. Example: Elementary Algebra

A natural starting point for a theory of knowledge assessment and training stems

from the observation that some pieces of knowledge may imply other pieces of

knowledge. In the context of this subsection, the mastery of some algebra problem may

imply the mastery of other problems. Such implications between pieces of knowledge

may be used to design efficient computer-based, adaptive knowledge assessment and

training procedures.

Consider the following six (dichotomous) problems in Elementary Algebra:

a. A car travels on the freeway at an average speed of 52 miles per hour. How many

miles does it travel in 5 hours and 30 minutes?

b. Using the pencil, mark the point at the coordinates (1, 3).

c. Perform the following multiplication:

4x4y4 · 2x · 5y2
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and simplify your answer as much as possible.

d. Find the greatest common factor of the expressions 14t6y and 4tu5y8. Simplify your

answer as much as possible.

e. Graph the line with slope −7 passing through the point (−3,−2).

f. Write an equation for the line that passes through the point (−5, 3) and is

perpendicular to the line 8x + 5y = 11.

A plausible prerequisite diagram of mastery dependencies for the six Elementary

Algebra problems may look like in Figure 1 (Falmagne et al., 2003). The mastery of

Problem b is, for instance, a prerequisite for the mastery of Problem e. In other words,

the mastery of Problem e implies that of Problem b.

[Figure 1]

The prerequisite diagram in Figure 1 completely specifies the feasible knowledge

states. A respondent can certainly master just Problem a. This does not imply mastery

of any other problem. In that case, the knowledge state is {a}. However, if the

respondent masters e, for instance, then a, b, and c must also be mastered. This gives

the knowledge state {a, b, c, e}. In this way, one obtains exactly 10 knowledge states

consistent with the prerequisite diagram:

K =
{
∅, {a}, {b}, {a, b}, {a, c}, {a, b, c},

{a, b, c, d}, {a, b, c, e}, {a, b, c, d, e}, {a, b, c, d, e, f}
}
.

This set K of all possible knowledge states is called knowledge structure. These notions

are next formalized mathematically in the following subsection.

3.2. Basic Deterministic Concepts

A general concept is that of a knowledge structure.

Definition 1. (Knowledge structure) A knowledge structure is a pair (Q,K), with Q

a non-empty, finite set, and K a family of subsets of Q containing at least (the empty
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set) ∅ and Q. The set Q is called the domain of the knowledge structure. The elements

q ∈ Q and K ∈ K are referred to as (test) items and (knowledge) states, respectively.

One also says that K is a knowledge structure on Q.

The general definition of a knowledge structure allows for infinite item sets as well.

Throughout this paper, however, Q is assumed to be finite.

The set Q is assumed to be a set of dichotomous items. In this paper, Q is

interpreted as a set of questions/problems that can either be solved or not be solved.

This stands for the observed responses of a subject (manifest level), and has to be

distinguished from a subject’s true, unobservable knowledge of the solution to an item

(latent level). In the latter case, the subject is said to be capable of mastering or not

capable of mastering the item. Let 2Q denote the power-set of Q. The observed

responses of a subject are represented by the subset R ⊆ Q containing exactly the items

solved by the subject. This subset R is called the response pattern of the subject.

Similarly, the true latent state of knowledge of a subject is represented by the subset

K ⊆ Q containing exactly the items the subject is capable of mastering. This subset K

is called the knowledge state of the subject, representing her/his ‘ability’. Given a

knowledge structure K, the only states of knowledge possible are assumed to be the

ones in K. In this spirit, K captures the organization of knowledge in the domain and

population of reference. Idealized, if no response errors would be committed, the only

response patterns possible would be the knowledge states in K.

As an example knowledge structure consider the one described in Subsection 3.1,

on the domain Q := {a, b, c, d, e, f} of the six Elementary Algebra problems.

Note that this example knowledge structure is closed under union and intersection.

Definition 2. ((Quasi-ordinal) Knowledge space) A knowledge structure (Q,K) is

called a knowledge space iff K is closed under union—that is, for all F ⊆ K,
⋃

F ∈ K.

If a knowledge space (Q,K) is closed under intersection—that is, for all F ⊆ K,
⋂

F ∈ K—, it is called a quasi-ordinal knowledge space.
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The notions of a knowledge structure and (quasi-ordinal) knowledge space are at

the level of persons (representing collections of knowledge states of individuals). There

is another important notion, that of a surmise relation, which is at the level of items

(representing collections of mastery dependencies between items).

Definition 3. (Surmise relation) Let Q be a non-empty, finite item set. Any

quasi-order—that is, reflexive and transitive binary relation—on Q is called a surmise

relation (on Q).

A surmise relation S on Q may model a latent hierarchy among the items based on

mastery dependencies of the following type: a subject capable of mastering item J ∈ Q

is also capable of mastering item I ∈ Q (i.e., I S J).

As an example surmise relation consider the surmise relation S corresponding to

the prerequisite diagram of mastery dependencies in Figure 1:

S = △
⋃{

(a, c), (a, d), (a, e), (a, f), (b, d), (b, e), (b, f),

(c, d), (c, e), (c, f), (d, f), (e, f)
}
,

where △ denotes the diagonal in {a, b, c, d, e, f} × {a, b, c, d, e, f}.

Birkhoff’s (1937) theorem (applied in KST) provides a linkage between

quasi-ordinal knowledge spaces and surmise relations on an item set.

Theorem 3. (Birkhoff’s theorem) There exists a one-to-one correspondence between

the family of all quasi-ordinal knowledge spaces K on a domain Q, and the family of all

surmise relations S on Q. Such a correspondence is defined through the two

equivalences (p, q ∈ Q, K ⊆ Q):

pS q :⇐⇒

[
∀K ∈ K :

{
q ∈ K =⇒ p ∈ K

}]
,

K ∈ K :⇐⇒

[
∀(pS q) :

{
q ∈ K =⇒ p ∈ K

}]
.

Proof. See (e.g.) Doignon and Falmagne (1999, pp. 39–40, Theorem 1.49).
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This theorem is important from a practical point of view. Though the quasi-ordinal

knowledge space and surmise relation models are empirically interpreted at two

different levels, at the levels of persons and items respectively, they are connected with

each other, through Birkhoff’s theorem, on a solid mathematical basis. Roughly

speaking, it mathematically links two different levels of empirical interpretations.

In the example in Subsection 3.1, the 10 knowledge states consistent with the

prerequisite diagram are obtained by applying the second equivalence of Birkhoff’s

theorem.

3.3. Basic Probabilistic Concepts

Examinees are randomly drawn from a population of reference. Let N ∈ N be the

sample size. The data are the observed absolute counts N(R) ∈ N0 := N ∪ {0} of

response patterns R ∈ 2Q, that is, x := (N(R))R∈2Q . The data are assumed to be the

realization of a random vector, X := (XR)R∈2Q , which is multinomially distributed over

the power-set 2Q. That is,

P (X = x) = P (X∅ = N(∅), . . . , XQ = N(Q))

=
N !∏

R∈2Q N(R)!

∏

R∈2Q

ρ(R)N(R),

where ρ(R) > 0 is the (unknown) true probability of occurrence of a response pattern

R ∈ 2Q, with
∑

R∈2Q ρ(R) = 1, and 0 ≤ N(R) ≤ N for any R ∈ 2Q, with
∑

R∈2Q N(R) = N .

The basic local independence model is fundamental in KST, in the sense that most

of the KST probabilistic models are special cases of it.9

Definition 4. (Basic local independence model) A quadruple (Q,K, p, r) is called a

basic local independence model (BLIM) iff

9The idea expressed in the definition of the basic local independence model is not a new one and goes

back to traditional latent class ‘measurement’ models such as the Proctor (1970) model, the Dayton and

Macready (1976) intrusion–omission model, and more generally, the Lazarsfeld and Henry (1968) latent

distance model (see Ünlü, 2006).



23

1. (Q,K) is a knowledge structure;

2. p is a probability distribution on K—that is, p : K → ]0, 1[, K 7→ p(K), with p(K) > 0

for any K ∈ K, and
∑

K∈K p(K) = 1;

3. r is a response function for (Q,K, p)—that is, r : 2Q ×K → [0, 1],

(R, K) 7→ r(R, K), with r(R, K) ≥ 0 for any R ∈ 2Q and K ∈ K, and
∑

R∈2Q r(R, K) = 1 for any K ∈ K;

4. r satisfies local independence—that is, for any R ∈ 2Q and K ∈ K,10

r(R, K) =









∏

q∈K\R

βq



 ·

[
∏

q∈K∩R

(1 − βq)

]

·




∏

q∈R\K

ηq



 ·




∏

q∈Q\(R∪K)

(1 − ηq)








 ,

with constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called careless error

probability and lucky guess probability at q.

To each knowledge state K ∈ K is attached a probability p(K) measuring the

likelihood that a randomly sampled subject is in state K (Part 2). For R ∈ 2Q and

K ∈ K, r(R, K) specifies the conditional probability of response pattern R for an

examinee in state K (Part 3). The item responses of an examinee are assumed to be

independent given the knowledge state of the examinee, and the response error

probabilities βq, ηq (q ∈ Q) are attached to the items (item-specific) and do not vary

from state to state (state-independent) (Part 4).

The BLIM assumes that the manifest multinomial probability distribution on the

set of response patterns is governed by the latent knowledge state proportions and

10Note that for any R ∈ 2Q and K ∈ K, K \ R := {q ∈ Q : q ∈ K and q 6∈ R}, K ∩ R := {q ∈ Q : q ∈

K and q ∈ R}, R \ K := {q ∈ Q : q ∈ R and q 6∈ K}, and Q \ (R ∪ K) := {q ∈ Q : q 6∈ R and q 6∈ K}

form a partition of Q—that is, Q = (K \ R) + (K ∩ R) + (R \ K) + (Q \ (R ∪ K)). Roughly speaking,

items in K \ R, K ∩ R, R \ K, and Q \ (R ∪ K) are mastered but not solved (careless error), mastered

and solved (no careless error), solved but not mastered (lucky guess), and not solved and not mastered

(no lucky guess), respectively.
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response error rates.

Corollary 1. (Multinomial model) Under the BLIM, the occurrence probabilities

ρ(R) of response patterns R ∈ 2Q are parameterized as

ρ(R) =
∑

K∈K









∏

q∈K\R

βq



 ·

[
∏

q∈K∩R

(1 − βq)

]

·




∏

q∈R\K

ηq



 ·




∏

q∈Q\(R∪K)

(1 − ηq)








 p(K).

The model parameters of the BLIM are p(K) (K ∈ K) and βq, ηq (q ∈ Q). The

number of independent model parameters is 2|Q| + (|K| − 1).11 Parameter estimation

and model testing, if possible at all, may be based on classical maximum likelihood

methodology. As mentioned in Subsection 1.2, however, the size of K generally tends to

be prohibitively large in practice, emphasizing the importance of a nonparametric

approach in KST.

In Section 5, nonparametric IRT-type axioms and properties are discussed for the

knowledge structure, surmise relation, and quasi-ordinal knowledge space models. Two

sets of general nonparametric KST axioms result, which correspond to Mokken’s MHM

and DMM. The new axioms are compared with the assumptions underlying the BLIM.

Ordinal restrictions on the parameters of the BLIM are identified under which this

parametric model satisfies the nonparametric axioms. The restrictions even turn out to

provide complete characterizations, in the sense that the BLIM satisfies the

nonparametric axioms if, and only if, the restrictions are satisfied. The properties of

MLR, SOM, and SOL are discussed for the BLIM as well.

4. Nonparametric IRT Axioms and Properties: Nonlinear Generalizations

The basic idea of the extensions discussed next is as follows. In the formulation of

Mokken nonparametric IRT, the unidimensional latent trait space and ‘linear’ ordering

11For a set X , let |X | denote the size (cardinality) of X .
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of items are replaced by abstract quasi-ordered person and indicator spaces,

respectively. These general spaces allow for incomparabilities among latent trait values

and items. Based on such spaces, generalized equivalents of the nonparametric axioms

and properties are formulated in the most intuitive and obvious way: for pairs of latent

trait values and items in ‘quasi-order relation’.

This section generalizes the discussion of the unidimensional nonparametric IRT

axioms and properties to abstract quasi-ordered person and indicator spaces. In

particular, the generalized counterpart of the

monotone-likelihood-ratio-stochastic-ordering implication is studied.

4.1. Generalized Axioms

Let (Θ,�) be a quasi-ordered latent trait space, that is, � is a reflexive and

transitive binary relation on the set Θ. In this paper, a quasi-ordered latent trait

(person) space is also called nonlinear ; this is referred to as the axiom of nonlinear

dimensionality. Examples are: (a) in KST, set-theoretic discrete dimensionality

represented by a knowledge structure Θ := K which is partially ordered with respect to

set-inclusion; and (b) in multidimensional IRT, Euclidean multidimensionality

represented by a Euclidean subset Θ ⊆ R
n (n ∈ N≥2) which is partially ordered with

respect to, for instance, coordinate-wise vector-ordering.

The latent trait θ ∈ Θ is assumed to have a sampling distribution in the examinee

population under reference. A function f : Θ → R is isotonic iff

∀θ1, θ2 ∈ Θ, θ1 � θ2 : f(θ1) ≤ f(θ2).
12

Let the conditional positive response probability P (Xl = 1|θ) as a function of θ ∈ Θ be

the item response function (IRF) of an item Il (1 ≤ l ≤ m). The axiom of local

12Note that for �-incomparable latent trait values θ1, θ2 ∈ Θ, that is, θ1 6� θ2 and θ2 6� θ1, no

restrictions are imposed on the relationship of the function values f(θ1) and f(θ2) to each other.
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independence states that

P (X1 = x1, X2 = x2, . . . , Xm = xm|θ) =
m∏

l=1

P (Xl = xl|θ)

for any xl ∈ {0, 1} (1 ≤ l ≤ m) and θ ∈ Θ. The axiom of isotonicity holds iff any IRF

P (Xl = 1|.) (1 ≤ l ≤ m) is isotonic.

The axiom of invariant item ordering states that there exists a quasi-order S on

the item set Q := {Il : 1 ≤ l ≤ m} (cf. Subsection 3.2) such that the IRFs P (Xl = 1|.)

(1 ≤ l ≤ m) can be ordered to yield

∀θ ∈ Θ : P (Xl2 = 1|θ) ≤ P (Xl1 = 1|θ)

for any (Il1 , Il2) ∈ S (1 ≤ l1, l2 ≤ m).13 In this paper, a quasi-ordered item (indicator)

space (Q,S) is also called nonlinear. (Note that the quasi-order S on the item set Q has

to be distinguished from the quasi-order � on the latent trait space Θ. The former

refers to the ordering of items, the latter to the ordering of persons.)

4.2. Formulation of Generalized Properties

The total score variable X+ has monotone likelihood ratio (MLR) in θ iff, for any

0 ≤ x+,1 ≤ x+,2 ≤ m,
P (X+ = x+,2|θ)

P (X+ = x+,1|θ)

is an isotonic function of (nonlinear) θ ∈ Θ. Similarly, the latent trait θ has MLR in X+

iff, for any θ1, θ2 ∈ Θ, θ1 � θ2,
P (θ2|X+ = x+)

P (θ1|X+ = x+)

is a nondecreasing function of 0 ≤ x+ ≤ m. The generalized variant of the fundamental

GWGH result states that under the mild conditions the total score variable still has

MLR in the nonlinear latent trait (see Theorem 4).

13Again, note that for S-incomparable items Il1 , Il2 ∈ Q, that is, (Il1 , Il2) 6∈ S and (Il2 , Il1) 6∈ S, no

restrictions are imposed on the relationship of the IRFs P (Xl1 = 1|.) and P (Xl2 = 1|.) to each other.
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The property of MLR still implies that X+ is stochastically ordered by θ (see Part

1 of Theorem 5). The stochastic ordering of the manifest variable X+ by θ (SOM)

means that, for any 0 ≤ x+ ≤ m,

P (X+ ≥ x+|θ)

is an isotonic function of (nonlinear) θ ∈ Θ. The MLR property, however, may not

imply that θ is stochastically ordered by X+ (see Part 2 of Theorem 5). The stochastic

ordering of the latent trait θ by X+ (SOL) means that, for any θ0 ∈ Θ,

P (θ � θ0|X+ = x+)

is a nondecreasing function of 0 ≤ x+ ≤ m. Unlike unidimensional IRT, where the MLR

property implies both the SOM and SOL properties (for dichotomous as well as

polytomous items), under the axiom of nonlinear dimensionality, the MLR property

implies the SOM property, but may fail to imply the SOL property.

4.3. Generalized Ghurye-Wallace-Grayson-Huynh Result

As presented in Ünlü (2007a), there is a natural generalization of the fundamental

GWGH result (Theorem 1) to abstract nonlinear latent trait spaces (for dichotomous

items).

Theorem 4. (Generalized GWGH result) Under the axioms of nonlinear

dimensionality, local independence, and isotonicity, and the requirement that each item

response function assumes values strictly between zero and one, the total score variable

has monotone likelihood ratio in the (nonlinear) latent trait.

Proof. See Ünlü (2007a).

4.4. Generalized Monotone-Likelihood-Ratio-Stochastic-Ordering Implication

The MLR property is still symmetric in its arguments. This is because only Bayes’

theorem is applied. The crucial question is whether the implications ‘MLR ⇒ SOM’

and ‘MLR ⇒ SOL’ still hold in the nonlinear case.
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Theorem 5. (Generalized MLR-SO implication) It holds:

1. MLR of (nonlinear) θ in X+ implies the SOM property.

2. MLR of X+ in (nonlinear) θ does not imply the SOL property, in general.

Proof. 1. The proof of Theorem 2 carries over. For 0 < x+ ≤ m, and θ1, θ2 ∈ Θ,

θ1 � θ2, the required inequality P (X+ ≥ x+|θ1) ≤ P (X+ ≥ x+|θ2) is seen to be

equivalent to

m∑

y=x+

P (θ1|X+ = y)P (X+ = y) ·

x+−1∑

y′′′=0

P (θ1|X+ = y′′′)
P (θ2|X+ = y′′′)

P (θ1|X+ = y′′′)
P (X+ = y′′′)

≤
m∑

y′′=x+

P (θ1|X+ = y′′)
P (θ2|X+ = y′′)

P (θ1|X+ = y′′)
P (X+ = y′′) ·

x+−1∑

y′=0

P (θ1|X+ = y′)P (X+ = y′).

The latter inequality holds because of MLR of (nonlinear) θ in X+.

2. A counterexample based on the BLIM in KST is presented in Subsection 5.3

(however, see below).

It is instructive to see where the proof of Theorem 2 breaks down when transferring

the argument to Part 2 of Theorem 5. For the sake of simplicity, let Θ be finite,

equipped with a probability distribution P (θ) > 0 (θ ∈ Θ),
∑

θ∈Θ P (θ) = 1. For θ0 ∈ Θ

(without restriction, assume there is an θ ∈ Θ, θ 6� θ0), and 0 ≤ x+,1 ≤ x+,2 ≤ m, the

inequality P (θ � θ0|X+ = x+,1) ≤ P (θ � θ0|X+ = x+,2) is equivalent to (cf. proof of

Theorem 2)

∑

θ�θ0

P (X+ = x+,1|θ)P (θ) ·
∑

θ′′′ 6�θ0

P (X+ = x+,1|θ
′′′)

P (X+ = x+,2|θ
′′′)

P (X+ = x+,1|θ′′′)
P (θ′′′)

≤
∑

θ′′�θ0

P (X+ = x+,1|θ
′′)

P (X+ = x+,2|θ
′′)

P (X+ = x+,1|θ′′)
P (θ′′) ·

∑

θ′ 6�θ0

P (X+ = x+,1|θ
′)P (θ′).

At this point the proof breaks down. The reason for this fact is that, unlike the

real-valued latent trait in unidimensional IRT which assumes values in a linearly

ordered subset of the real numbers, the nonlinear latent trait takes values in a
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quasi-ordered space. Because of possible �-incomparabilities among latent trait values,

there in general no longer exists an �-upper-bound θu of A := {θ ∈ Θ : θ 6� θ0} in the

quasi-ordered set (Θ,�)—that is, θu ∈ Θ, with θ � θu for any θ ∈ A—, such that for an

�-lower-bound θl of B := {θ ∈ Θ : θ � θ0} (e.g., θl := θ0) in (Θ,�)—that is, θl ∈ Θ,

with θl � θ for any θ ∈ B—, θu is �-majorized by θl—that is, θu � θl.
14 (An example

illustrating the problem of incomparabilities is given in Subsection 5.2.)

Nevertheless, the proof of Theorem 2 can be used to specify conditions under which

the MLR property implies the property of SOL (for a nonlinear latent trait). (For any

θ0 ∈ Θ, let [θ0) := {θ ∈ Θ : θ � θ0} and [θ0) := Θ \ [θ0) = {θ ∈ Θ : θ 6� θ0}. For θ ∈ Θ

and 0 ≤ x+,1 ≤ x+,2 ≤ m, let g(θ; x+,1, x+,2) := P (X+ = x+,2|θ)/P (X+ = x+,1|θ).)

Proposition 1. (Conditions for MLR implying SOL) The property of MLR implies

the SOL property under any of the following conditions:

1. For any θ0 ∈ Θ, [θ0) 6= ∅, and 0 ≤ x+,1 ≤ x+,2 ≤ m, for an element θ̂ = θ̂(θ0, x+,1, x+,2)

in [θ0) with

g(θ̂; x+,1, x+,2) = max
θ∈[θ0)

g(θ; x+,1, x+,2),

it holds

∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ̂; x+,1, x+,2)P (θ) ≤
∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ; x+,1, x+,2)P (θ).

This, for instance, holds if for an θ̂ = θ̂(θ0, x+,1, x+,2) ∈ [θ0) with

θ̂ ∈ arg maxθ∈[θ0)
g(θ; x+,1, x+,2), one has θ̂ � θ0.

15

2. For any θ0 ∈ Θ, [θ0) 6= ∅, and 0 ≤ x+,1 ≤ x+,2 ≤ m, for an element θ̂ = θ̂(θ0, x+,1, x+,2)

14Note that if (Θ,�) is complete—that is, for all θ1, θ2 ∈ Θ, θ1 � θ2 or θ2 � θ1—, this argument can

be used to establish that the property of MLR implies the SOL property. In case of completeness, for

both finite and infinite Θ, an �-upper-bound of A := {θ ∈ Θ : θ 6� θ0} = {θ ∈ Θ : θ � θ0, θ 6= θ0} is

θu := θ0, which is �-majorized by the �-lower-bound θl := θ0 of B := {θ ∈ Θ : θ � θ0}.

15In case of infinite Θ, the supremum sup
θ∈[θ0)

g(θ; x+,1, x+,2) is assumed to exist (may or may not be
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in [θ0) with

g(θ̂; x+,1, x+,2) = max
θ∈[θ0)

g(θ; x+,1, x+,2),

it holds

g(θ̂; x+,1, x+,2) ≤ g(θ0; x+,1, x+,2).

This, for instance, is the case if for an θ̂ = θ̂(θ0, x+,1, x+,2) ∈ [θ0) with

θ̂ ∈ arg maxθ∈[θ0)
g(θ; x+,1, x+,2), it holds θ̂ � θ0.

16

3. This condition applies only to finite Θ.17 For any θ0 ∈ Θ, [θ0) 6= ∅, and

0 ≤ x+,1 ≤ x+,2 ≤ m, for every �-maximal element θ̂ = θ̂(θ0) ∈ [θ0) of [θ0)—that is,

for any θ ∈ [θ0), θ̂ � θ ⇒ θ � θ̂—, it holds

g(θ̂; x+,1, x+,2) ≤ g(θ0; x+,1, x+,2).

This, for instance, holds if θ̂ � θ0 for every �-maximal element θ̂ = θ̂(θ0) of [θ0).

4. For any θ0 ∈ Θ, [θ0) 6= ∅, and 0 ≤ x+,1 ≤ x+,2 ≤ m, there exists an �-largest element

θ̂ = θ̂(θ0) ∈ [θ0) of [θ0)—that is, for any θ ∈ [θ0), θ � θ̂—, with

g(θ̂; x+,1, x+,2) ≤ g(θ0; x+,1, x+,2).

This, for instance, holds if there exists an �-largest element θ̂ = θ̂(θ0) of [θ0) with

θ̂ � θ0. If this is the case for any θ0 ∈ Θ, [θ0) 6= ∅, then (Θ,�) is even a weakly

ordered space, that is, a quasi-ordered space which is complete.18

a maximum) and to satisfy the corresponding inequality. This, for instance, holds if

sup
θ∈[θ0)

g(θ; x+,1, x+,2) = g(θ̂; x+,1, x+,2)

for an θ̂ ∈ Θ with θ̂ � θ0.

16A corresponding formulation of this condition based on ‘sup’ applies to infinite Θ (cf. Footnote 15).

17In case of infinite Θ, there may be an infinite chain C in [θ0)—that is, a linearly ordered subset

C ⊆ [θ0)—which is (a) not bounded above in [θ0)—that is, there exists no θb in [θ0) with c � θb for all

c ∈ C—, and for which (b) there is an c ∈ C such that c 6� θ0.

18This condition applies to both finite and infinite person spaces. In the application of this condition in

KST (Subsection 5.1), the latter special instance means that the knowledge structure is linearly ordered

(with respect to set-inclusion). This implies that the items form a Guttman scale (see Footnote 20).
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Proof. 1. Let θ0 ∈ Θ, [θ0) 6= ∅, and 0 ≤ x+,1 ≤ x+,2 ≤ m. The inequality

∑

θ�θ0

P (X+ = x+,1|θ)P (θ) ·
∑

θ′′′ 6�θ0

P (X+ = x+,1|θ
′′′)

P (X+ = x+,2|θ
′′′)

P (X+ = x+,1|θ′′′)
P (θ′′′)

≤
∑

θ′′�θ0

P (X+ = x+,1|θ
′′)

P (X+ = x+,2|θ
′′)

P (X+ = x+,1|θ′′)
P (θ′′) ·

∑

θ′ 6�θ0

P (X+ = x+,1|θ
′)P (θ′),

which is equivalent to P (θ � θ0|X+ = x+,1) ≤ P (θ � θ0|X+ = x+,2), is implied by

∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ̂; x+,1, x+,2)P (θ) ≤
∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ; x+,1, x+,2)P (θ).

This is easily seen based on the line of reasoning in the proof of Theorem 2: A

counterpart of the inequality marked by (1) holds using g(θ̂; x+,1, x+,2); a counterpart of

the inequality marked by (2) holds applying the inequality in Condition 1. This proves

that under Condition 1 the property of MLR implies the SOL property. (Note that here

the property of MLR is not required for the implication between the two

aforementioned inequalities to hold.)

2.–4. Because for finite Θ, it holds ‘4 ⇒ 3 ⇒ 2 ⇒ 1’, and for infinite Θ, one has

‘4 ⇒ 2 ⇒ 1’, the property of MLR implies the SOL property under any of the

Conditions 2, 3, and 4. (Note that here the property of MLR is required for the

implications between Conditions 1–4 to hold.)

For the last part of Condition 4, let θ1, θ2 ∈ Θ. If θ1 and θ2 would be

�-incomparable, one would have θ1 ∈ [θ2) 6= ∅. Then, by assumption, there would be an

�-largest element θ̂ = θ̂(θ2) of [θ2) with θ1 � θ̂ � θ2. By transitivity of �, one would

obtain θ1 � θ2, a contradiction to θ1 6� θ2.

Some remarks are in order with respect to Proposition 1.

1. In Conditions 1 and 2, an ‘optimal’ θ̂ generally depends on both the (fixed) latent

trait value θ0 ∈ Θ and (fixed) total score (variable) values 0 ≤ x+,1 ≤ x+,2 ≤ m; that

is, θ̂ = θ̂(θ0, x+,1, x+,2). Conditions 1 and 2 require determining θ̂ by optimization

(θ̂ ∈ arg max
θ∈[θ0) g(θ; x+,1, x+,2), or θ̂ ∈ arg sup

θ∈[θ0)
g(θ; x+,1, x+,2), respectively),

separately for any two total score values 0 ≤ x+,1 ≤ x+,2 ≤ m, and the mentioned
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special instance θ̂ � θ0 does not uniformly apply to all pairs of total score values

0 ≤ x+,1 ≤ x+,2 ≤ m. In Conditions 3 and 4, however, θ̂ generally depends only on

the (fixed) latent trait value θ0 ∈ Θ; that is, θ̂ = θ̂(θ0). Conditions 3 and 4 require

determining θ̂ solely based on the quasi-order � (no ‘max’ or ‘sup’ performed,

respectively), and the special instance θ̂ � θ0 uniformly applies to all pairs of total

score values 0 ≤ x+,1 ≤ x+,2 ≤ m.

2. For different (regions of) values of the latent trait and total score variable, different

conditions stated in Proposition 1 can be applied to verify whether the SOL property

is ‘locally’ satisfied, that is, for specific (latent trait and total score) value

combinations. For instance, for a collection of values θ′0 ∈ Θ and 0 ≤ x′
+,1 ≤ x′

+,2 ≤ m,

one may apply the special instance in Condition 4 (MLR assumed). If there exists an

�-largest element θ̂ = θ̂(θ′0) of [θ′0) with θ̂ � θ′0, the SOL property is satisfied for

θ′0 ∈ Θ and 0 ≤ x′
+,1 ≤ x′

+,2 ≤ m (even more, for any combination of θ′0 with total

score values 0 ≤ x+,1 ≤ x+,2 ≤ m; cf. previous Remark 1). Stated differently,

depending on which condition (special instance) may be easier to adopt, one could

individually check the SOL property for specific (regions of) values of the latent trait

and total score variable, using combinations of the criteria described in Proposition 1.

This may be useful in practical applications, in case the SOL property does not

‘globally’ hold for all latent trait and total score values. In practice, local violations

of the SOL property may not be empirically severe. In the BLIM counterexample in

Subsection 5.3, for instance, the violation of the SOL property is based on unrealistic

values for some of the BLIM response error parameters. For a discussion of this issue

in polytomous unidimensional IRT, refer to Van der Ark (2005); see also Subsection

6.2.

3. In Condition 1 (MLR assumed),

∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ̂; x+,1, x+,2)P (θ) ≤
∑

θ∈[θ0)

P (X+ = x+,1|θ)g(θ; x+,1, x+,2)P (θ)
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is implied by

∑

θ∈[θ0)
T

[bθ)

P (X+ = x+,1|θ)g(θ̂; x+,1, x+,2)P (θ) ≤
∑

θ∈[θ0)
T

[bθ)

P (X+ = x+,1|θ)g(θ; x+,1, x+,2)P (θ),

both for finite—θ̂ ∈ arg max
θ∈[θ0)

g(θ; x+,1, x+,2)—and

infinite—θ̂ ∈ arg supθ∈[θ0) g(θ; x+,1, x+,2)—Θ. In other words, the sums in Condition 1

can be only taken over the ‘smaller-equal’ set of latent trait values [θ0) ∩ [θ̂) ⊆ [θ0), as

another criterion under which the property of MLR implies the SOL property. In the

finite case, [θ0) ∩ [θ̂) = ∅ if θ̂ � θ0, or [θ0) ∩ [θ̂) = {θ ∈ Θ : θ � θ0, and θ 6� θ̂, θ 6� θ̂} if

θ0 and θ̂ are �-incomparable. The case θ0 � θ̂ is not possible because

θ̂ ∈ arg maxθ∈[θ0)
g(θ; x+,1, x+,2). In the infinite case, one can additionally have θ0 � θ̂

because θ̂ ∈ arg sup
θ∈[θ0) g(θ; x+,1, x+,2), taken in (Θ,�). Since for θ̂ � θ0 (and also for

θ0 6� θ̂, θ̂ 6� θ0) the same as before applies, one is left with θ0 � θ̂, θ̂ 6� θ0, in which

case the set [θ0) ∩ [θ̂) cannot be further reduced.

5. Nonlinear Nonparametrics: Application in KST

This section presents an application of the generalized nonparametric IRT concepts

in the theory of knowledge spaces.

5.1. KST Variants of Generalized Axioms and Properties

Let Q := {Il : 1 ≤ l ≤ m}. Let K be a knowledge structure on Q. Obviously,

(K,⊆) is a partially ordered set (i.e., ⊆ is an antisymmetric quasi-order on K). This is

called the ‘latent trait (person) space’ in KST and referred to as the axiom of

(set-theoretic) discrete dimensionality. Because (K,⊆) is quasi-ordered, all the

discussion in terms of an abstract quasi-ordered person space applies to KST. For

instance, a function f : K → R is isotonic iff

∀K1, K2 ∈ K, K1 ⊆ K2 : f(K1) ≤ f(K2).

The item response function (IRF) of an item Il ∈ Q (1 ≤ l ≤ m) is defined as

P (Xl = 1|.) : K → [0, 1], K 7→ P (Xl = 1|K).
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The axioms of local independence and isotonicity can be obviously defined.

In the formulation of the axiom of invariant item ordering, the person space is

taken to be the knowledge structure corresponding to the surmise relation on the item

set. More precisely, let S be a surmise relation on Q. Let KS be the quasi-ordinal

knowledge space derived from it according to Birkhoff’s theorem (Theorem 3). The

axiom of invariant item ordering states that the IRFs P (Xl = 1|.) (1 ≤ l ≤ m) can be

ordered such that

∀K ∈ KS : P (Xl2 = 1|K) ≤ P (Xl1 = 1|K)

for any (Il1 , Il2) ∈ S (1 ≤ l1, l2 ≤ m). (Note that here the indicator space (Q,S) and

person space (KS ,⊆) are mathematically linked with each other using Theorem 3

(one-to-one correspondence). In the general discussion (Section 4), the spaces may not

be structurally connected to each other. Also note that here the indicator space is

quasi-ordered with respect to an arbitrary quasi-order, whereas the person space is

partially ordered with respect to set-inclusion.)

A tentative (definitely open to future research) Mokken-type nonparametric

axiomatization in KST is obtained as follows. An axiom set corresponding to the MHM

consists of the axioms of discrete dimensionality, local independence, and isotonicity,

and is based on an arbitrary knowledge structure. An axiom set corresponding to the

DMM further adds the axiom of invariant item ordering, and is based on a surmise

relation and its corresponding quasi-ordinal knowledge space. To avoid

misunderstandings at this point, note that this paper does not aim at providing a fully

elaborated nonparametric KST with corresponding statistical inference methodology.

This paper rather investigates the scope of the unidimensional Mokken axioms in a

nonlinear framework, and introduces a first application of nonparametric modeling in

KST (cf. Subsection 1.1).

The properties of MLR, SOM, and SOL can be immediately formulated for an

arbitrary KST latent trait space. For instance, the stochastic ordering of the latent trait

K ∈ K by X+ (SOL) means that, for any K0 ∈ K,

P (K ⊇ K0|X+ = x+)
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is a nondecreasing function of 0 ≤ x+ ≤ m.

The generalized GWGH result’s (Theorem 4) KST variant (for dichotomous items)

takes the following form.

Corollary 2. (KST variant of generalized GWGH result) Under the axioms of

discrete dimensionality—that is, for a knowledge structure (K,⊆)—, local

independence, and isotonicity, and the requirement that 0 < P (Xl = 1|K) < 1 for any

K ∈ K and 1 ≤ l ≤ m, the total score variable has monotone likelihood ratio in the

(discrete-dimensional) latent trait K ∈ K.

As a corollary of Theorem 5,19 the MLR property implies the SOM property, but

may fail to imply the SOL property.

Corollary 3. (KST variant of generalized MLR-SO implication) It holds:

1. MLR of (discrete-dimensional) K ∈ K in X+ implies the SOM property.

2. MLR of X+ in (discrete-dimensional) K ∈ K does not imply the SOL property, in

general.

Conditions 1–4 stated in Proposition 1, and Remarks 1–3 following Proposition 1,

can also be immediately exemplified in the context of KST (all the discussion applies to

the special choice Θ := K and � :=⊆). In the light of Corollaries 2 and 3, one can thus

specify conditions under which the property of MLR implies the SOL property, in the

framework of the nonlinear, Mokken-type nonparametric KST formulation proposed in

this paper.20

19Note that a counterexample illustrating Part 2 of Theorem 5 is based on the present nonparametric

KST formulation (see Subsection 5.3).

20As mentioned in Footnote 18, the last part of Condition 4 (Proposition 1) means that the KST latent

trait space is linearly ordered (⊆ is antisymmetric). Because the indicator space (Q,S) is linked with the

person space (KS ,⊆) through Birkhoff’s theorem, S is a weak order (according to Theorem 3, for any
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5.2. Example: Problem of Incomparabilities

An example helps to illustrate the crucial problem of incomparabilities. This

example will be continued in Subsection 5.3, in order to provide a counterexample

which shows that the property of MLR does not imply the SOL property in general.

Let Q := {I1, I2, I3} be a set of three dichotomous items. Consider the knowledge

structure (quasi-ordinal knowledge space) K := {∅, {I1}, {I1, I2}, {I1, I3}, Q}. The

surmise relation corresponding to K according to Theorem 3 is

S := {(I1, I1), (I2, I2), (I3, I3), (I1, I2), (I1, I3)}. Note that S is even a partial order

(antisymmetric). The Hasse diagrams of the KST person space (K,⊆) and

corresponding KST indicator space (Q,S) are depicted in Figure 2.

[Figure 2]

To exemplify the discussion in Subsection 4.4, consider K0 ∈ K, K0 := {I1, I2}. In

this case, A := {K ∈ K : K 6⊇ K0} = {∅, {I1}, {I1, I3}}, and

B := {K ∈ K : K ⊇ K0} = {{I1, I2}, Q}. The set of all ⊆-upper-bounds of A in (K,⊆)

is UA = {{I1, I3}, Q}, whereas the set of all ⊆-lower-bounds of B in (K,⊆) is

LB = {∅, {I1}, {I1, I2}}. There is no Ku ∈ UA which is ⊆-majorized by an Kl ∈ LB.

This is shown in Figure 3. Thus, an argument similar to that for the unidimensional

implication ‘MLR ⇒ SOL’ (Theorem 2) does not work.

[Figure 3]

5.3. BLIM and KST Variants of Generalized Axioms and Properties

Next the nonparametric KST axioms and properties are compared with the

assumptions underlying the fundamental parametric BLIM (see Subsection 3.3). The

BLIM satisfies the axioms of discrete dimensionality and local independence by

definition (Parts 1 and 4 of the definition, respectively). Because the BLIM assumes

item-specific, state-independent careless error and lucky guess probabilities, respectively,

I, J ∈ Q, I S J ⇔ I ∈
⋂
{K ∈ KS : J ∈ K}). In other words, except for possible ‘ties’ (i.e., for I, J ∈ Q,

I S J and J S I), the items form a Guttman (1944, 1950) scale.
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βl and ηl, at any item Il ∈ Q (1 ≤ l ≤ m) (Part 4 of the definition), the IRF of an item

Il ∈ Q (1 ≤ l ≤ m) under the BLIM is given by (as a function of K ∈ K)

P (Xl = 1|K) =





1 − βl : if Il ∈ K,

ηl : if Il 6∈ K.

A characterization of the axiom of isotonicity under the BLIM is as follows.

Theorem 6. (BLIM characterization of isotonicity) Let K be a knowledge structure

on Q. In general, a set Q of BLIM IRFs does not satisfy the axiom of isotonicity. A set

Q of BLIM IRFs satisfies the axiom of isotonicity if, and only if, ηl ≤ 1 − βl for any

Il ∈ Q (1 ≤ l ≤ m).

Proof. Counterexample: Let Q := {I1, I2, I3}, and K := {∅, {I1}, {I1, I2}, Q}.

Choose K1 := {I1}, K2 := {I1, I2}, (unrealistic) η2 := 0.35, and (unrealistic) β2 := 0.70.

Then, it holds P (X2 = 1|K1) = η2 > 1 − β2 = P (X2 = 1|K2).

‘⇐’: Let Il ∈ Q (1 ≤ l ≤ m), and K1, K2 ∈ K, K1 ⊆ K2. The only critical case to

consider is Il ∈ K2 and Il 6∈ K1. In this case, one has

P (Xl = 1|K1) = ηl ≤ 1 − βl = P (Xl = 1|K2).

‘⇒’: Because ∅ ∈ K and Q ∈ K, for any item Il ∈ Q (1 ≤ l ≤ m), it holds

ηl = P (Xl = 1|∅) ≤ P (Xl = 1|Q) = 1 − βl.

Note that, from a practical point of view, the order constraints ηl ≤ 1 − βl for any

item Il ∈ Q (1 ≤ l ≤ m) on the BLIM response error parameters are not restrictive in

general: A ‘psychologically plausible’ maximum careless error rate may be around 15 to

20 percent (i.e., 1 − βl ≥ 0.80), whereas lucky guess rates can be nearly eliminated by

appropriate (e.g., open format, no multiple choice) item formulation (i.e., ηl ≈ 0).

The axiom of invariant item ordering can be characterized as follows.

Theorem 7. (BLIM characterization of invariant item ordering) Let S be a surmise

relation on Q, and let K be the corresponding quasi ordinal knowledge space. In

general, a set Q of BLIM IRFs does not satisfy the axiom of invariant item ordering. A
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set Q of BLIM IRFs exhibits an invariant item ordering if, and only if, for any

(Il1 , Il2) ∈ S (1 ≤ l1, l2 ≤ m),

βl1 ≤ βl2 ,

ηl1 ≥ ηl2 ,

and if (Il2 , Il1) 6∈ S, in addition,

1 − βl1 ≥ ηl2 .

Proof. Counterexample: For (I2, I3) ∈ S (S, the surmise relation which K in the

proof of Theorem 6 corresponds to), (realistic) η2 := 0.04, and (realistic) η3 := 0.07, it

holds P (X3 = 1|∅) = η3 > η2 = P (X2 = 1|∅).

‘⇐’: Let (Il1 , Il2) ∈ S (1 ≤ l1, l2 ≤ m), and K ∈ K. Case 1. If Il2 ∈ K, then

Il1 ∈ K (according to Theorem 3, for any I, J ∈ Q, I S J ⇔ I ∈
⋂
{K ∈ KS : J ∈ K}).

In this case, it holds P (Xl2 = 1|K) = 1 − βl2 ≤ 1 − βl1 = P (Xl1 = 1|K). Case 2. If

Il2 6∈ K and Il1 6∈ K, then P (Xl2 = 1|K) = ηl2 ≤ ηl1 = P (Xl1 = 1|K). Case 3. If Il2 6∈ K

and Il1 ∈ K—this is possible only if (Il2, Il1) 6∈ S—, then

P (Xl2 = 1|K) = ηl2 ≤ 1 − βl1 = P (Xl1 = 1|K).

‘⇒’: Let (Il1 , Il2) ∈ S (1 ≤ l1, l2 ≤ m). It holds (∅, Q ∈ K)

1 − βl2 = P (Xl2 = 1|Q) ≤ P (Xl1 = 1|Q) = 1 − βl1 ,

and

ηl2 = P (Xl2 = 1|∅) ≤ P (Xl1 = 1|∅) = ηl1 .

If, additionally, (Il2 , Il1) 6∈ S, there is an K̂ ∈ K with Il1 ∈ K̂ and Il2 6∈ K̂, and

ηl2 = P (Xl2 = 1|K̂) ≤ P (Xl1 = 1|K̂) = 1 − βl1 .

Note that violations of the axiom of invariant item ordering can occur for realistic

values for the BLIM response error parameters (unlike, in general, for the axiom of

isotonicity).
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Finally, the properties of MLR, SOM, and SOL are discussed. According to

Corollary 2, for a set Q of BLIM IRFs (a) satisfying the axiom of isotonicity, that is, for

any item Il ∈ Q (1 ≤ l ≤ m), ηl ≤ 1 − βl (Theorem 6), and (b) having response error

probabilities 0 < βl, ηl < 1 for all items Il ∈ Q (1 ≤ l ≤ m), the total score variable has

MLR in the (discrete-dimensional) latent trait K ∈ K. In particular (Part 1 of

Corollary 3), the property of SOM holds. Note that, from a practical point of view, the

order constraints 0 < βl, ηl < 1 for all items Il ∈ Q (1 ≤ l ≤ m) on the BLIM response

error parameters are not that restrictive. ‘Boundary value’ BLIM IRFs may be closely

approximated by BLIM IRFs that do meet these order constraints.

The following counterexample shows that a set of BLIM IRFs may not possess the

property of SOL. This example also illustrates what was asserted in Theorem 5 and

Corollary 3: Under nonlinearity, the property of MLR does not in general imply the

SOL property; even in case of a restrictive set of parametric BLIM IRFs satisfying the

axioms of discrete dimensionality, local independence, and isotonicity.

SOL-counterexample based on BLIM. Let Q := {I1, I2, I3}, and

K := {∅, {I1}, {I1, I2}, {I1, I3}, Q} (the example in Subsection 5.2). One can specify

values for the BLIM parameters such that (a) the BLIM IRFs are isotonic, assuming

values strictly between zero and one, therefore

(b) the property of MLR holds, and (c) for K0 := {I1, I2}, x+,1 := 1, and x+,2 := 2 the

SOL property is violated. Such a choice of values for the BLIM parameters is given by

p(K) := 1/5 for any K ∈ K (uniform distribution), and β1 := 0.75 / η1 := 0.10,

β2 := 0.82 / η2 := 0.16, and β3 := 0.71 / η3 := 0.07. This specification yields

P (K ⊇ K0|X+ = x+,1) ≈ 0.532 > 0.477 ≈ P (K ⊇ K0|X+ = x+,2).

Note that the violation of the SOL property reported above is based on unrealistic

values for some of the BLIM response error parameters (e.g., β1 := 0.75). Extensive

simulation studies systematically conducted in Ünlü (2007b) demonstrate that

violations of the SOL property occur only for extreme values for some of the BLIM

parameters; for non-extreme and thus practical parameter vectors the BLIM seems to

satisfy the property of SOL. Therefore, if at all of interest, it is necessary to check for
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the SOL property in any fitted BLIM. In fact, the issue of (local) violation of the SOL

property parallels the situation in polytomous unidimensional IRT, where violations of

the SOL property are rather based on extreme parameter values as well (e.g., Van der

Ark, 2005). This common ground may provide interesting directions for further research

on this issue in KST applications (cf. Subsection 6.2).

Of course, one can use Proposition 1 (MLR assumed) to derive conditions under

which the BLIM satisfies the SOL property, ‘globally’ (for all value combinations) as

well as ‘locally’ (for specific value combinations); see also Remarks 1–3 following

Proposition 1.

6. Discussion

6.1. Summary

At an order-theoretic structural level, this paper has investigated the dichotomous

Mokken nonparametric IRT axioms and properties under incomparabilities among latent

trait values and items. A new, simpler proof of the fact that in the unidimensional case

monotone likelihood ratio implies stochastic ordering has been presented (Subsection

2.4). Based on this proof, (a) it has been seen that the generalized

Ghurye-Wallace-Grayson-Huynh (GWGH) result implies stochastic ordering of the total

score variable, but may fail to imply stochastic ordering of the nonlinear latent trait,

and (b) the reason for this fact and conditions under which the implication holds have

been specified (Subsection 4.4). This paper then has exemplified the generalized

nonparametric IRT concepts with the combinatorial theory of knowledge spaces. KST

variants of the generalized nonparametric IRT axioms and properties, the generalized

GWGH result, and the generalized monotone-likelihood-ratio-stochastic-ordering

implication have been formulated (Subsection 5.1). Under the parametric BLIM

(fundamental in KST), characterizations (based on order constraints) of the axioms of

isotonicity and invariant item ordering have been provided, and the monotone likelihood

ratio and stochastic ordering properties have been discussed (Subsection 5.3).
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6.2. Total Score Variable and Nonlinearity of Latent Trait

Intuitively, it seems obvious that the total score variable may not be a reasonable

statistic for estimating the ordering of subjects on a nonlinear latent trait: The total

score variable assumes values in a linearly ordered set, whereas the nonlinear latent

trait takes values in a not necessarily complete set. It is precisely this aspect that has

been investigated in this paper, mathematically.21 The structural investigation has

shown that though the total score variable has monotone likelihood ratio in the

nonlinear latent trait (generalized GWGH result), the crucial implication

‘MLR ⇒ SOL’ which guarantees the SOL property breaks down (though the MLR

property still implies the SOM property and is symmetric in its arguments).

Nevertheless, it is interesting to see that even for a nonlinear latent trait, the total

score variable may, at least in a sense, be a reasonable statistic in certain cases. On the

one hand, under the conditions stated in Proposition 1, the MLR property implies the

SOL property. On the other hand, simulations using the BLIM demonstrate that

violations of the SOL property occur only for extreme (unrealistic) parameter vectors

(Ünlü, 2007b). The latter parallels the situation in polytomous unidimensional IRT (see

Sijtsma & Van der Ark, 2001; Van der Ark, 2005). Similarly to research there, one can

also consider investigating here (a) how often the SOL property is violated, (b) whether

violations of the SOL property constitute serious problems for practical purposes, and

(c) what factors are related to violations of the SOL property. As well, a reliance on the

total score variable may be of practical relevance, as this statistic is quick and simple,

and easy to communicate (cf. Hemker et al., 2001, p. 493). Interestingly, that practical

relevance can also be evidenced in the literature on (so-called) ecological rationality

which uses the tallying score, the (unweighted) total score, of cue values as a fast and

frugal heuristic in paired comparisons (e.g., Katsikopoulos & Martignon, 2006;

Martignon & Hoffrage, 2002).

21In particular, the driving force for this paper is not to have the SOL property hold imperatively.

The focus rather is on a thorough mathematical analysis of the dichotomous Mokken nonparametric IRT

axioms and properties under incomparabilities among latent trait values and items.
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6.3. Order-Theoretic Structural Remarks

It is worth mentioning that the whole discussion about the nonparametric IRT

axioms and properties is solely based on order-theoretic assumptions, not algebraic. For

instance, the unidimensional and generalized GWGH results in Theorems 1 and 4,

respectively, can be formulated and proved without resorting to any algebraic operation

(e.g., addition in the real numbers). To what extent, if at all, this may also apply to the

statistical treatment of the discussed concepts is out of the scope of this paper. The

development of appropriate statistical inference methodologies for the generalized

formulations and an order-theoretic structural analysis of the latter could be

investigated in future research.

Further note that the results concerning a nonlinear latent trait could be, at least

mathematically, analogously formulated for an abstract nonlinear manifest variable X

(generalizing the total score variable); that is, the statistic X assumes values in a

quasi-ordered set of possible realizations. Without giving any mathematical proof in

what follows, an argument in the manifest variable can be seen to be dual to an

argument in the latent trait. For instance (cf. Theorem 5), if the manifest variable X is

nonlinear and the latent trait unidimensional, MLR of (nonlinear) X in

(unidimensional) θ implies the SOL property, but MLR of (unidimensional) θ in

(nonlinear) X does not in general imply the SOM property. Again (cf. Proposition 1),

at least mathematically, one could ‘dually’ formulate conditions under which the MLR

property implies the property of SOM.

This paper has demonstrated that the crucial order-theoretic assumption in the

discussion of the generalized monotone-likelihood-ratio-stochastic-ordering implication

is the assumption of completeness (for the binary relations underlying the sets of

possible values of the latent trait and manifest variable), defined in Footnote 14. In

Table 1, a cross-tabulation of the latent trait and manifest variable based on the

criterion of completeness summarizes the possible implications.

[Table 1]
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6.4. Concluding Resume

Though the present approach has its limitation that it does not consider any

statistical inference method and application to simulated or empirical data, I hope to

have shown, however, that an order-theoretic analysis of the nonparametric IRT axioms

and properties provides new structural insights into the long-standing study of those

concepts. In particular, I hope to have emphasized the need for important future

research on a fusion of IRT and KST. An endeavor such as described in this paper may

prove valuable in the search for appropriate sets of nonparametric probabilistic axioms

in the (yet parametric) theory of knowledge spaces; for instance, in order to provide a

Mokken-type scale analysis for the surmise relation model. This, indeed, would be an

important contribution to the scientific literature; in particular, allowing for a

unification of both the currently split directions of psychological test theories IRT and

KST.
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Figure Captions

Figure 1. Prerequisite diagram of mastery dependencies for the six Elementary

Algebra problems a–f . Reflexivity and transitivity are assumed to hold and are not

explicitly depicted. The mastery of Problem b is, for instance, a prerequisite for the

mastery of Problem e. In other words, the mastery of Problem e implies that of

Problem b. Taken from Falmagne et al. (2003).

Figure 2. Hasse diagrams of (a) the KST person space

(K := {∅, {I1}, {I1, I2}, {I1, I3}, Q},⊆) and (b) the KST indicator space

(Q,S := {(I1, I1), (I2, I2), (I3, I3), (I1, I2), (I1, I3)}); for a set Q := {I1, I2, I3} of three

dichotomous items. The spaces correspond to each other according to Birkhoff’s

theorem (Theorem 3).

Figure 3. KST person space (K := {∅, {I1}, {I1, I2}, {I1, I3}, Q},⊆), knowledge

state K0 := {I1, I2}, and relevant sets A := [K0), B := [K0), UA (set of ⊆-upper-bounds

of A), and LB (set of ⊆-lower-bounds of B). The set A consists of all knowledge states

below the line marked by ‘A := [K0)’ (i.e., ∅, {I1}, and {I1, I3}), the set B consists of

all knowledge states above this line (i.e., {I1, I2} and Q). Similarly, the set UA consists

of all knowledge states above the line marked by ‘UA’ (i.e., {I1, I3} and Q), the set LB

consists of all knowledge states below this line (i.e., ∅, {I1}, and {I1, I2}). There is no

Ku ∈ UA which is ⊆-majorized by an Kl ∈ LB.
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Figure 1.
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Tables

Table 1.

Cross-tabulation of implications based on the criterion of completeness (for dichotomous items)

θ \ X complete not complete

complete MLR ⇒ SOL MLR ⇒ SOL

MLR ⇒ SOM MLR
i.g.

6⇒ SOM

not complete MLR
i.g.

6⇒ SOL MLR
i.g.

6⇒ SOL

MLR ⇒ SOM MLR
i.g.

6⇒ SOM

Note: The assumption of completeness for the binary relations underlying the sets of possible values of the

latent trait θ (rows) and manifest variable X (columns) is the crucial order-theoretic assumption in the

discussion of the generalized monotone-likelihood-ratio-stochastic-ordering implication. The dichotomous

unidimensional IRT case using unidimensional θ (θ ∈ Θ ⊆ R) and linear (total score variable) X+ is

represented by the upper-left entry ‘complete θ’ and ‘complete X ’. Theorem 5 using nonlinear (quasi-

ordered) θ and linear X+ is represented by the lower-left entry ‘not complete θ’ and ‘complete X ’.

The case mentioned in Subsection 6.3 using unidimensional θ and nonlinear X is represented by the

upper-right entry ‘complete θ’ and ‘not complete X ’. Finally, a case using, for instance, nonlinear θ and

nonlinear X is represented by the lower-right entry ‘not complete θ’ and ‘not complete X ’. Note that

parts of this table (e.g., upper-right entry) are just asserted without giving mathematical proofs. Note

that ‘i.g.’ stands for ‘in general’.


