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Decay of a metastable state: A variational approach
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%e evaluate the exponential suppression of the quantum tunneling rate due to the coupling
with a thermal reservoir. The exponential dependence is calculated by a variational method, in
which an approximate saddle point of the effective action is found. The effect of finite tempera-
tures is accounted for. %'e calculate the exponential part of the rate for several potentials, some
of which have not been considered previously. The method gives excellent agreement with numer-
ically calculated values, where they exist. %e also consider the effect of Ohmic damping mecha-
nisms of Drude form (memory damping). This latter case may be of importance for experiments
on rf superconducting quantum interference devices and Josephson junctions where frequency-
dependent damping mechanisms have been observed. The trends exhibited by the variational ap-
proximation can be understood qualitatively on the basis of physical arguments.
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evaluated along the extremal trajectory (I' denotes princi-
pal value). The last term in the action represents the cou-
pling to the heat bath. ' The path q(z) satisfies the boun-
dary conditions
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has been shown to correspond to Ohmic damping. ' The
usual procedure for calculating the decay rate entails the
solving of the Euler-Lagrange equation for the trajectory,
which is a saddle point of the action. However, in the pres-
ence of damping the Euler-Lagrange equation is not only
nonlinear, but also nonlocal in time. Therefore, analytic
solutions have only been found in a few special cases. ' '

Numerical solutions have been found at T 0 by Chang
and Chakravarty, and at finite temperatures by Grabert,
Olschowski, and %eiss for the case of a cubic potential.

In this note, ~e shall sho~ that the extremal action S
can be found quite accurately and directly by a variational
method. The saddle point of the action shall be found ap-
proximately by truncating the full space of functions onto

The decay of a metastable state by quantum tunneling is
strongly affected by the coupling to a heat bath' and by
temperature. 2 4 The decay rate has been shown to be of
the form'

1 A exp[—S/ft),
where S is the effective action

a subset, i.e., a family of trial trajectories. The approxi-
mate action is given by the saddle-point value. We shall
use the two-parameter variational ansatz

q(z)-
1 —b cos(2trTz) (3)

This particular functional form is motivated by the follow-
ing points: (i) q(z) has period 1/T. (ii) q(z) reduces to
the exact extremal trajectory in the vicinity of the tem-
perature, at which the rate crosses over from quantum tun-
neling to thermal activation. 4 (iii) q(z) reduces to the
asymptotically exact trajectory in the overdamped limit
for the cubic potential. We shall consider the decay out
of the q 0, metastable minima of the family of potentials
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in which n is an odd integer. Only the case corresponding
to n 1 has been studied previously. We evaluate the ac-
tion S„[Eq. (1)j with this form of V(q) and k(z) given
by Eq. (2). On substitution of the trial trajectory [Eq.
(3)],we obtain
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and the P (x ) are the Legendre polynomials.
The extremal conditions BS/Ba 0 and 8S/Bb 0 have

a nontrivial solution. These conditions can be reformu-
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lated as
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from which y can be obtained immediately. The remaining condition can be rewritten as
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This is equivalent to an algebraic equation of order n+3.
This equation always has a nontrivial solution for tempera-
tures in the range

Tp~ T~0,
where

Tp (Ja'+n —a)Np

is the crossover temperature to thermal activation. 2

For the case where n 1, the results of this variational
procedure can be compared directly with the numerical
values of Grabert, Olschowski, and Weiss. 6 The results
are shown in Table I. The action is expressed in units of
M rppd, q, and the temperature in terms of Tp. It should be
noted that in the original units used in Ref. 6 the values
only have three significant digits. We see that for
intermediate-to-large damping values (a) the variational
approximation agrees excellently with the numerical
values. Note that the variational approximation gives re-
sults which are equal to, or higher than the numerical
values9 (within the numerical accuracy). Furthermore, as
the temperature T/Tp approaches unity, the results be-
come exact. The worst error occurs at low temperature for
the undamped case. This limit is exactly soluble, and we
find that the total error is less than 6%

In Tables II and III we present the results for n 3 and
n 5, respectively. In these cases the only results that are
available for comparison are those at the crossover tem-
perature Tp, and the value of the a 0, T 0 action S„
which is calculated as

S„24'" I'(2/n )
n+4 r(4/n)

I

We see that the low-damping low-temperature limit of the
variational approximation is just 1.3' above the exact re-
sult for n 3, and the corresponding result for n 5 is just
0.6' above the exact value.

Qn examining the trends exhibited by the tables, one
finds that the effect of increasing n is not only to increase
the a 0 value of S„, but also to decrease the large-a
values. The increase in the undamped value of S„ is easily
understood, since it merely corresponds to an increase in
the barrier height. The large-a variation can be estab-
lished by examining the exactly soluble n oo limit. The
T 0 action is given by

S„(a-O)
lim 2 1, (1Oa)n- (Mrpphq )

while for a ) 1, one has
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Thus one sees that the large a behavior of S„ is, in fact,
logarithmically suppressed when compared to the n 1

case.
After having established the degree of reliability of the

variational ansatz, we shall next consider the case of
frequency-dependent Ohmic damping.

We shall consider the case in which k (z) is given by

k(z)™g(z/zp),
2K p

where g(x) is the auxiliary exponential integral func-
tion. 'p This corresponds to Ohmic damping with a Drude

TABLE I. The dimensionless action Sl(Mrophq~) for the potential with n 1.The action is given for various values of the damp-
ing strengths a and temperatures T/To. The results of the variational approximation (VA) are presented alongside the numerical re-
sults obtained by Grabert, Olschowski, and Weiss (Ref. 6).

0.00
0.05
0.10
0.50
1.00
2.00
4.00
10.00

0.567
0.612
0.659
1.070
1.656
2.942
5.651
13.951

0.1
Ref. 6

0.533
0.580
0.629
1.052
1.644
2.941
5.652
13.926

0.583
0.623
0.664
1.036
1.581
2.796
5.368
13.251

Rcf. 6

0.533
0.577
0.621
1.015
1.570
2.793
5.370
13.259

0.577
0.611
0.647
0.978
1.477
2.601
4.990
12.318

Rcf. 6

0.533
0.570
0.610
0.963
1.467
2.600
4.993
12.296

0.540
0.568
0.599
0.88S
1.324
2.326
4.461
11.011

0.8
Ref. 6

0.521
0.551
0.S83
0.874
1.319
2.326
4.459
11.037



BRIEF REPORTS 34

TABLE II. The action S, in units of (Mephq2) for various
damping strengths a and temperatures T/Tp. The action 1s cal-
culated variationally with the potential where n 3.

TABLE IV. The action 5, in units of (cVcuohq') calculated
for the potential with n 1, and the non-Ohmic dissipation given
in Eq. (11). We show the results for T/To fixed at 0.1, while the
dissipation strength a and the correlation time mo tp are varied.

0.1 0.4 0.6 0.8

0.00
0.05
0.10
0.50
1.00
2.00
4.00
10.00

0.750
0.791
0.831
1.177
1.648
2.673
4.876
11.779

0.758
0.791
0.825
1.118
1.532
2.466
4.509
10.926

0.739
0.766
0.794
1.038
1.392
2.206
4.015
9.718

0.686
0.708
0.730
0.927
1.219
1.901
3.433
8.286

0.00
0.05
0.10
0.50
1.00
2.00
4.00
10.00

0.567
0.612
0.659
1.070
1.656
2.942
5.651
13.951

0.567
0.596
0.627
0.899
1.320
2.389
4.978
13.252

0.567
0.581
0.595
0.714
0.886
1.313
2.555
9.972

0.567
0.576
0.584
0.656
0.755
0.984
1.584
4.775

cutoff, "or to the classical equation of motion

d'q+ "mq (r—r') . (,), dV(q)

4any (»)1+m 2xT~0 x+1
The extremal conditions for the action, tlS/Qx 0 and
t)S/8y 0 are reduced to one transcendental equation,
which is solved numerically. The results are tabulated in
Table IV. We note that, as the correlation time rn in-
creases, the effective action decreases toward its un-
damped value. Likewise, the temperature Tn at which the
rate crosses over from being dominated by quantum tun-
neling to that of thermal activation, increases as rn in-
creases. At the crossover temperature the variational ap-
proximation becomes exact, and the effective action

TABLE III. The variational approximation for the effective
action 5, calculated with the n 5 potential. The action, in units
of (Mcoohq2), is shown for various values of the dimensionless
damping strengths a and reduced temperatures T/To.

0.1 0.4 0.6 0.8

0.00
0.05
0.10
0.50
1.00
2.00
4.00
10.00

0.824
0.863
0.902
1.226
1.659
2.588
4.580
10.876

0.823
0.853
0.883
1 ~ 143
1.503
2.310
4.102
9.811

0.788
0.811
0.834
1.038
1 ~324
1.978
3.546
8.211

0.715
0.732
0.750
0.906
1.129
1,650
2.845
6.725

As rn tends to zero, one recovers the I/r behavior corre-
sponding to the usual Ohmic damping form of k (r). Qn
the other hand, as rn tends to infinity, k (r) is suppressed
to zero for finite times r. The effective action is to be
evaluated with the same trial function [Eq. (3)], but with
k(r) given by Eq. (11). Only the dissipative part of S is
modified; the term proportional to a in Eq. (5) is replaced
by

smoothly matches onto the exponent of the Arrhenius law.
All of this is in qualitative agreement with the expectations
that, as rn increases, the high-frequency components of the
action should increasingly decouple from the heat bath;
i.e., the action should tend toward its undamped value.

The calculation of the exponential suppression of the de-
cay rate with frequency-dependent damping may be of
some importance in the discussion of experiments on rf su-
perconducting quantum interference devices and Joseph-
son junctions, ' ' since there is experimental evi-
dence' ' ' that these systems exhibit these effects.

We have examined the decay from a metastable state
using a variational approach. The method has been ap-
plied in calculating the dominant exponential part of the
rate at low temperatures, where the decay is dominated by
quantum tunneling processes. Using a two-parameter trial
function we have evaluated the exponent for various poten-
tials and different types of coupling to the thermal reser-
voir. These results are in excellent agreement with the nu-
merical results for the action calculated by Grabert, Ol-
schowski, and Weiss, 6 as well as those by Chang and
Chakravarty5 for the cubic potential (n 1). The accura-
cy of the variational approximation improves as the poten-
tial is varied from n 1 to n 5. This is verified by com-
parison to the undamped action. %e have also examined
the effects of introducing a Drude cutoff in the Ohmic
damping process. " We see that as the correlation time zn
increases, the variational approximation gives results
which interpolate between the undamped and Ohmic
damping limits.
To summarize, we find that the direct variational ap-

proach to the decay rate is an extremely simple one. The
method not only reproduces the correct qualitative depen-
dences on the various factors which influence the quantum
decay rate, but also gives remarkably good accuracy. Due
to the extreme simplicity of the method, it may be of con-
siderable use in the fitting of experimental data, ' ' as
well as estimating the influences of novel damping mecha-
nisms.
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