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Abstract
We give a different proof of a theorem of O. Loos [5] which characterizes max-

imal tori of extrinsically symmetric spaces. On the way we show some facts on cer-
tain symmetric subspaces, so called meridians, which previously have been known
only using classification.

1. Introduction

Our aim in this paper is to give a geometric proof of the following theorem of
Ottmar Loos [5]:

Theorem 1. Let X � R

n be a compact extrinsically symmetric space. Then a
maximal torus of X is rectangular, i.e. a Riemannian product of circles.

Recall that a submanifold X � R

n is called extrinsically symmetric if it is fixed
by the euclidean reflection sx across the affine normal space x C Nx X (where Nx X D
(Tx X )?) for every x 2 X . Then sx preserves the second fundamental form �W S2(Tx X )!
Nx X and its derivative r� W S3(Tx X )! Nx X which must be zero since sx changes the
sign on S3(Tx X ) but not on Nx X . Clearly, an extrinsically symmetric submanifold with
its induced Riemannian metric is a symmetric space. In particular it is an orbit of a
subgroup G of the isometry group of Rn . If X is compact, its center of mass is fixed
by G. Choosing the origin at the center of mass, X is contained in a sphere around
the origin, and G � On . It has been shown by Ferus ([4], also cf. [3]) that compact
extrinsically symmetric submanifolds are particular orbits of the isotropy representation
of other symmetric spaces. However we will not make use of this classification.

To prove Theorem 1, we will show the following alternative for any compact sym-
metric space X : Either X is a Riemannian product of euclidean spheres and flat tori
or it contains a certain totally geodesic subspace, a so called meridian (Theorem 10).
Further, a meridian M of a compact symmetric space X has the same rank as X (The-
orem 5), and when X is extrinsically symmetric, then so is M (Corollary 6). Thus
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passing to meridians again and again, we will lower the dimension while preserving
a maximal torus until we reach an extrinsic symmetric space which is a Riemannian
product of spheres and flat tori. By Theorem 4, a maximal torus of such a space is
rectangular which finishes the proof of Theorem 1.

2. Extrinsic reflective subspaces

We start with a simple principle how to reduce the dimension of an extrinsic sym-
metric space X � Rn . An extrinsic reflective subspace of X is a connected component
of the fixed point set of r jX where r is an isometry of Rn of order 2 (extrinsic reflec-
tion) with r (X ) D X .

Theorem 2. Let X � R

n be an extrinsic symmetric space. Then any extrinsic
reflective subspace is again extrinsic symmetric.

Proof. Let Y � X be a connected component of the fixed point set of an extrinsic
reflection r 2 On . Let V� be the (�1)-eigenspaces of r . Then Rn

D V
C

�V
�

, and Y is
a connected component of X \ V

C

. Since r jX is an isometry, Y is totally geodesic in
X . For any y 2 Y , the symmetry sy of X at y extends to the ambient space. Moreover,
sy commutes with r since y is fixed by r and hence rsyr D sry D sy . Thus sy preserves
the eigenspace V

C

of r and decomposes V
C

into eigenspaces, V
C

D VC

C

� V �

C

. Since
VC

C

� V
C

\ NyX and V �

C

� V
C

\ TyX , we have equality in both inclusions and in
particular V�

C

D V
C

\ TyX D TyY . Thus Y � V
C

is extrinsic symmetric.

3. Extrinsic symmetric products of tori and spheres

Theorem 3 ([4, Theorem 3]). Let F � R

n be an extrinsic symmetric flat torus.
Then F splits extrinsically as a product of round circles, F D S1

r1�� � ��S
1
rm � R

2m
� R

n .

Proof. We have an isometric immersion f W Rm
! R

n with f (Rm) D F , namely
the universal covering of the torus F . Its partial derivatives fi are parallel vector fields
on F , and since the second fundamental form � W S2T F ! NF is also parallel, the
normal vectors �i j D �( fi , f j ) are parallel, too. Thus the normal bundle is parallel and
by Ricci equation, the corresponding shape operators A

�i j commute with each other.
Therefore they allow for a common parallel eigenspace decomposition T F D E1 �

� � � � Er . By compactness, each maximal integral leaf of the E j is a sphere, but since
F is flat, its dimension must be one. Thus F is a product of perpendicular circles
S

1
r j
� R

2
j � R

n .

Theorem 4. Let X � Rn be an extrinsic symmetric space which is intrinsically a
Riemannian product

X D S1 � � � � � Sk � F(�)
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where the Si are round spheres and F is a flat torus. Then a maximal torus of X
is rectangular.

Proof. We proceed by induction over k. For k D 0 the statement follows from
Theorem 3. Now let k � 1. First we can split off every even-dimensional sphere factor.
In fact, suppose that S1 is even dimensional. Put X 0

D S2 � � � � � Sk � F . Choose
p1 2 S1 and let s1 be the symmetry of S1 at p1. Then {p1} � X 0 is a fixed component
of the involution s1 � id. Since S1 is an even dimensional sphere, s1 belongs to the
transvection group of S1 and s1 � id lies in the transvection group of X . Hence it
extends to a reflection of the ambient space. Thus its fixed component {p1} � X 0 is a
reflective submanifold of X , and hence it is extrinsically symmetric in the fixed space
of s1 � id (see Theorem 2). By induction hypothesis, X 0 has a rectangular maximal
torus, and thus the same property follows for X D S1 � X 0.

Now we may assume that every sphere factor is odd-dimensional. We choose great
circles Ci in every Si ; then a maximal torus of X is OF D C1 � � � � �Ck � F . Let ri be
the reflection across Ci in Si . Since Si is odd dimensional, ri lies in the transvection
group of Si . Thus r D r1 � � � � � rk � id lies in the transvection group of X and has
OF as fixed set; since r extends to the ambient space, OF is extrinsic symmetric (see
Theorem 2) and we are done by Theorem 3 on extrinsic symmetric tori.

REMARK. Though all factors of the product (�) are extrinsic symmetric, we were
not able to conclude that the splitting is extrinsic. In fact, for local products this is false as
shown by the extrinsic symmetric space (Sp

�S

q )=�idD Sp

S

q
� R

pC1

R

qC1. How-
ever, for global products it follows from the classification of extrinsic symmetric spaces.

4. Polars and meridians

Recall from [1] that a polar of a point o in a symmetric space X is a positive
dimensional connected component of the fixed set of the symmetry so of X while an
isolated fixed point of so is called a pole of o. Polars and poles can also be char-
acterized as certain orbits of K (the connected component of the isotropy group of o)
through a fixed point of so. Elements of polars as well as poles are midpoints of closed
geodesics starting and ending at o (see [1]). By definition a polar P is reflective, being
a component of the fixed set of so. Through any p 2 P there is an orthogonal com-
plementary reflective submanifold M which is the connected component through p of
the fixed set of the involution sosp (note that so and sp commute). This M is called a
meridian of X (see [1]).

Theorem 5 ([1, Lemma 2.3], [7, Theorem 1.8]). If X is a compact symmetric
space of rank k, any meridian M � X has the same rank k.

Proof. Let P � X be a polar corresponding to the base point o 2 X . Consider a
geodesic segment  from o to p 2 P . By the first variation formula,  meets P D Kp
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perpendicularly at p, since all k , k 2 K , start at o and end in P and have the same
length as  . Therefore  lies in M . It extends beyond p to a geodesic circle starting
and ending at o with midpoint p. Let F be a maximal torus of X with  � F . Then
p is a pole or an element of a polar not only in X but also in F . Since a torus does
not have polars, p is a pole for o in F . In other words, sp D so along F . Thus F
belongs to the fixed component of sosp through p; this is the meridian M .

If X � Rn happens to be extrinsic symmetric and P, M � X denote a polar and a
meridian of o 2 X through a common point p 2 X , then so, sp extend to commuting
reflections on the ambient space Rn . Thus we conclude immediately from Theorem 2:

Corollary 6. A polar P and a meridian M in an extrinsically symmetric space
X are extrinsically symmetric.1

Any compact symmetric space X is finitely covered by a Riemannian product QX D
Y � F where Y is a simply connected symmetric space of compact type and F a torus.
When there are no polars, the covering is trivial:

Lemma 7. If X has no polars, then X itself is a Riemannian product of a simply
connected symmetric space of compact type and possibly a torus.

Proof. Let Qo, Qo0 2 QX be two points in a fibre of the projection � W QX ! X . Let
Q W [0, 1]! QX be a shortest geodesic in QX joining Qo to Qo0. Then  D � Æ Q is a closed
geodesic starting and ending at o D �(Qo) D �(Qo0). Its midpoint p D  (1=2) is either a
pole or an element of a polar of X , but the second case is excluded by our assumption.
Let K be the connected isotropy subgroup at Qo on QX (which is the same as that of X
at o). Applying K to Q we obtain a variation of shortest geodesics {k Q W k 2 K } from Qo
to Qo0. All k Q pass through Qp D Q (1=2) which is fixed by K since p D �( Qp) is a pole.
Since Q j[0,1) has no conjugate points, being a shortest geodesics, we conclude that Q is
fixed by K . Hence the initial vector Q 0(0) is a fixed vector of K , thus tangent to the
torus factor F . This shows that the covering map � can be nontrivial only on the torus
factor. Since a symmetric space covered by a torus is a torus again, we have proved
our claim.

Lemma 8. Let 6 � V � be an irreducible root system (not necessarily reduced,
i.e. the BC-type is allowed) with 6 ¤ A1. Let Æ 2 6 be any of the longest roots. Let

1This theorem was mentioned already in [8], Lemma 3.1.
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H 2 V with H ? ker Æ and Æ(H )D 2. Then {�1,�2} � {�(H )W � 2 6} � {0,�1,�2}.

Proof. Since only two roots Æ, � are involved, it suffices to look at the simple
root systems of dimension � 2 where the statement is obvious from the figures.

Theorem 9. Let X be an irreducible simply connected compact symmetric space
without a polar. Then X is a round sphere.

Proof. Let gD kCp be the Cartan decomposition of X at some point o; we view
p as the tangent space ToX . Choose a maximal flat subspace a � p and let 6 � a� be
the corresponding root system. Let Æ 2 6 be any of the longest roots and H 2 a with
H ? ker Æ and Æ(H ) D 2. Then the geodesic  (t) D exp(t H )o in X lies in the totally
geodesic rank-one subspace P

Æ

� X with root system 6\RÆ, hence it is closed. Since
X is simply connected, its cut locus and its first conjugate locus are the same, by a
well known theorem of Crittenden [2]. The first conjugate point along  can be easily
computed from the curvature tensor of X : We have the orthogonal decomposition

p D
X

�26[{0}

p
�

,

and for any X
�

2 p
�

,

R(X
�

, H )H D � ad(H )2X
�

D �(H )2X
�

.

Thus each X
�

is an eigenvector of the Jacobi operator R( � , H )H with eigenvalue 4
(corresponding to X

Æ

) or 1 or 0, according to Lemma 8; for the root system A1 we
have � D Æ and the only eigenvalue is 4. Thus the first conjugate point along  both
in P

Æ

and in X occurs at �=2, the first zero of f (t) D sin(2t) solving f 00 C 4 f D 0.
The midpoint p D  (to) of the simply closed geodesic  in the rank-one symmetric
space P

Æ

occurs not later than the first conjugate point, hence to � �=2 in our case (in
fact to D �=4 when P

Æ

� RP

k with curvature 4 while to D �=2 in all other cases).
Therefore  has period 2to � � . Since the midpoint of a closed geodesic starting and
ending at o is fixed by so, it is a pole or an element of a polar. In our case polars
are excluded, so it must be a pole. Hence all Killing fields along  vanishing at o D
 (0) also vanish at p D  (to). But when 6 contains a root � with �(H ) D 1, then
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R(X
�

, H )H D X
�

. Thus the Jacobi field J along  with J (0) D 0 and J 0(0) D X
�

does not vanish before t D � . This is the Killing field corresponding to Y
�

2 k where
Z
�

D X
�

C

p

�1Y
�

is the complex root vector, that is [H, Z
�

] D
p

�1�(H )Z
�

for all
H 2 a. Thus we have got a Killing field vanishing at o but not at  (to), a contradiction.
Hence such a root � cannot exist, and by Lemma 8 the whole root system of X must
be of type A1. Consequently, X (being simply connected) is a sphere.

Theorem 10. Let X be a compact symmetric space without a polar. Then X is
the Riemannian product of round spheres and tori.

Proof. By Lemma 7, we have X D Y � F where F is a flat torus and Y a sim-
ply connected symmetric space of compact type. Thus Y splits into irreducible simply
connected factors each of which is a round sphere by Theorem 9.

By the classification of polars (see [1, 6]) this result is known, but here we have given
a conceptional proof.
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