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1. Introduction

Harmonic maps of surfaces and pluriharmonic maps of Kähler manifolds with values in a
symmetric space S = G/K come in one-parameter families (associated families), parameterized
by the circle S

1. Therefore these objects can be considered as maps into loop spaces. There are
several ways to do this; one is using the so-called extended solutions, which are certain maps
from the domain M into the space ΩG of (based) loops ω : S

1 → G with ω(1) = e; cf. [9, 13] (see
also [4] for the precise relation between associated families and extended solutions and [3] for
an alternative approach). Of particular importance are extended solutions taking values in the
subspace Ωalg(G) of algebraic loops with finite Fourier expansion; the corresponding harmonic
maps are those of finite uniton number. Burstall and Guest [1] classified (pluri)harmonic maps
of finite uniton number into the Lie group G using Morse theory of the energy function
on Ωalg(G): under the gradient flow of the energy the extended solution is deformed to a
particular one, taking values in a critical manifold which is a conjugacy class of a Lie group
homomorphism γ : S

1 → G. In fact, this homomorphism can be chosen as simple as possible
(so-called canonical): its generator is a simple sum of fundamental dual roots. There are only
2r such conjugacy classes where r = rank G. Thus Burstall and Guest obtained 2r classes of
(pluri)harmonic maps with finite uniton number, refining the obvious classification by the size
of the uniton number. Replacing G by an inner symmetric space S = G/K, they got an even
more restrictive result, but their methods cannot be extended to outer symmetric spaces (those
where the geodesic symmetry does not belong to the transvection group). It is the purpose of
our paper to fill this gap and specialize their result to outer symmetric spaces G/K which are
embedded into G via the (pointed) Cartan embedding.

This requires an investigation of (outer) symmetric spaces which might be useful for its
own sake. Usually, a principal tool to understand a symmetric space of compact type is the
Satake diagram [7]. One starts with a maximal abelian subspace a ⊂ p where g = k + p is the
eigenspace decomposition of the corresponding Cartan involution, and extends it to a maximal
abelian subalgebra t of g. Then the Dynkin diagram of g gets an additional structure (colors,
arrows) according to the behavior of the Cartan involution σ. Our approach is opposite: we
start with a maximal abelian subspace tk of k and extend this to a maximal abelian subspace
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t of g. We find a σ-invariant fundamental root system of g whose restriction to tk is a basis
of t∗k , and we have 2s simple sums of the dual basis where s = rank K = dim tk; these classify
pluriharmonic maps of finite uniton number into G/K (cf. Theorem 14). Geometrically, we have
constructed a subdivision of the Weyl chambers of K by the projections of the Weyl chambers
of G, so-called compartments; see Theorem 10.

2. Pluriharmonic maps into compact Lie groups

A pluriharmonic map f is a smooth map from a Kähler manifold M into a Riemannian manifold
S whose restriction to every complex curve in M is harmonic, that is, critical for the variation of
the energy (see [5] for a tensorial definition of pluriharmonicity). We will restrict our attention
to target spaces which are totally geodesic submanifolds of a compact connected Lie group G
with bi-invariant metric.

Since the work of Uhlenbeck [13], harmonic maps of Riemann surfaces (complex curves) into
a compact Lie group have been described using extended solutions. Ohnita and Valli [9] have
applied the same method to pluriharmonic maps f : M → G where M is a Kähler manifold of
any dimension. An extended solution is by definition a smooth map

Φ : M × S
1 −→ G, (x, λ) �−→ Φ(λ, x) = Φλ(x)

with Φ1 = e so that the pulled back Maurer–Cartan form satisfies

Φ−1
λ d′Φλ = 1

2 (1 − λ−1)A′; Φ−1
λ d′′Φλ = 1

2 (1 − λ)A′′ (1)

for some linear map A : TM → g into the Lie algebra of G, where α′ and α′′, respectively, denote
the complex linear and complex antilinear parts of a one-form α. The map Φ−1 : M → G is
then pluriharmonic. Conversely, if f : M → G is pluriharmonic, then, provided that the domain
M is simply connected, there exists an extended solution Φ with Φ−1 = f, and this is unique
up to left-multiplication with a smooth loop ω : S

1 → G satisfying ω(1) = e and ω(−1) = e
(see [13, 9]). We may allow for ω(−1) = g �= e; then f has to be replaced with its translate gf .
Clearly A = f−1df. It is often convenient to consider Φ as a map into the loop space,

Φ : M −→ ΩG, x �−→ [Φ(x) : λ �−→ Φλ(x)]

where ΩG is the set of all smooth maps ω : S
1 → G with ω(1) = e.

Now we will assume that G has trivial center. Then it is a matrix group; more precisely,
the adjoint representation Ad : G ↪→ GL(g) ⊂ End(g) is faithful. Each loop ω : S

1 → G is
represented by a Fourier series, ω(λ) =

∑
j∈Z

ajλ
j , with coefficients aj ∈ End(g). A loop ω

is called algebraic if its Fourier series is finite. More precisely, let Ωk(G) be the set of loops in
G with Fourier series

∑
|j|�k ajλ

j and

Ωalg(G) =
⋃
k

Ωk(G)

be the set of all algebraic loops. An extended solution Φ is said to have finite uniton number if
Φ(M) ⊂ Ωk(G) for some (minimal) k. Replacing Φ by ωΦ may change k; the smallest such k is
called the uniton number of the corresponding pluriharmonic map f = Φ−1. It has been shown
by Uhlenbeck and Segal for Riemann surfaces and by Ohnita and Valli for Kähler manifolds
that any pluriharmonic map on a compact simply connected Kähler manifold M has finite
uniton number.

Theorem 1 [9, 12, 13]. Let M be a compact Kähler manifold and Φ : M → ΩG be an
extended solution. Then there exist some ω ∈ ΩG and some k � 0 such that ωΦ(M) ⊂ Ωk(G) ⊂
Ωalg(G).
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A special case are those extended solutions Φ where all Φ(x) are homomorphic loops, that
is, group homomorphisms from S

1 to G. These are the fixed points of the S
1-action on ΩG

given by (μ, ω) �→ μω with

(μω)(λ) := ω(μλ)ω(μ)−1.

The pluriharmonic maps arising from such Φ are called isotropic. They were investigated in [5]
(see also [4]). Burstall and Guest [1] have shown that in a certain sense the general situation
can be reduced to this particular case: every extended solution of finite uniton number can
be deformed to an S

1-invariant one. This is done by applying the gradient flow of the energy
functional

E : ΩG −→ R, E(ω) =
∫2π

0

∣∣∣∣ d

dt
ω(eit)

∣∣∣∣
2

dt, (2)

where | | is the norm of the canonical inner product on End(g),

〈A, B〉 = trace ATB. (3)

The critical points of E are the closed geodesics γ in G passing through e; these are the
homomorphic loops. They come in conjugacy classes Ωγ = {gγg−1; g ∈ G} which form the
critical manifolds of the Morse–Bott function E. Clearly, under the flow of −∇E, each ω ∈ ΩG
is moved eventually into some critical manifold. But if we restrict our attention to Ωalg(G),
then, also the inverse flow, the flow of +∇E has this property. In other words, Ωalg(G) is
the disjoint union of the so-called unstable manifolds Uγ where Uγ is the (finite-dimensional)
domain of attraction of the critical manifolds Ωγ under the flow of ∇E.

Note that the unstable manifolds Uγ ⊂ Ωalg(G) have also a group-theoretical description (cf.
[10]). Let Gc be the complexification of G, that is, the connected subgroup of GL(g ⊗ C) with
Lie algebra gc = g ⊗ C. Let Λc := Λalg(Gc) be the group of all Gc-valued algebraic loops and
Λ+ ⊂ Λc be the subgroup of all loops whose Fourier series are just polynomials in λ. Then
we have a unique decomposition Λc = Ωalg(G) Λ+, the so-called Iwasawa decomposition, which
yields an action of Λc on Ωalg(G) with stabilizer Λ+. Since Λc, Λ+ are complex groups, we thus
obtain a homogeneous complex structure on Ωalg(G) = Λc/Λ+. Moreover we represent Uγ ⊂
Ωalg(G) as the orbit of γ under the subgroup Λ+ ⊂ Λc. Thus the Morse theoretic decomposition
of Ωalg(G) into unstable manifolds is nothing else than the orbit decomposition of Λ+, the
Bruhat decomposition of Ωalg(G).

It turns out that any extended solution Φ : M → Ωalg(G) takes values essentially (that is,
up to a subset D ⊂ M which is the common zero set of finitely many holomorphic functions
on M) in a single unstable manifold (Bruhat cell) Uγ . Indeed, Ωk(G) is a complex projective
variety and the closures of the Bruhat cells are algebraic subvarieties (cf. [11]); moreover, Φ is a
holomorphic map and therefore the preimages of the closed Bruhat cells are common zero sets of
holomorphic functions (see also [1, Proposition 4.1]). Hence Φ is flowed to a map Φ∞ : M → Ωγ

which happens to be still an extended solution with the same uniton number. More precisely,
let uγ : Uγ → Ωγ ⊂ Ωalg(G) be the map assigning to each ω ∈ Ωalg(G) the endpoint of the flow
line of ∇E. Then we have the following.

Theorem 2 [1, Propositions 4.1 and 4.2]. Let M be a Kähler manifold. If Φ : M → Ωalg(G)
is an extended solution such that Φ(M) ⊂ Ωk(G) for some k, then Φ takes values essentially
in an unstable manifold Uγ , and uγ ◦ Φ : M \ D → Ωγ is another extended solution with the
same uniton number.

Thus the possible uniton numbers can be read off from the S
1-invariant extended solutions

taking values in some Ωγ .
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3. Canonical elements

Before applying the flow, we may use our freedom of choice for Φ and look for a suitable
ω ∈ Ωalg(G) such that Φ̃ = ωΦ has the least possible uniton number. This will reduce the
possible homomorphic loops γ to a finite set, which consists of the so-called canonical loops
(see [1]).

Let γ : S
1 = R/(2πZ) → G be a homomorphic loop. We fix a maximal torus T of G containing

γ. Then the initial vector ξ = γ′(0) ∈ t belongs to the integer lattice I of t, that is, exp 2πξ = e.
We may fix a fundamental root system α1, . . . , αr of G such that ξ lies in the corresponding
closed Weyl chamber, that is, αj(ξ) � 0 for j = 1, . . . , r. Let ξ1, . . . , ξr be the dual basis, that
is, αj(ξk) = δjk. Then we have

ξ =
∑

j

njξj (4)

with nj ∈ No = N ∪ {0} for j = 1, . . . , r. Suppose that nj �= 0 precisely for the indices j =
j1, . . . , jp and put

ξo := ξj1 + . . . + ξjp
∈ I. (5)

This is a canonical element, that is, a sum of dual fundamental roots that are distinct. It is
obtained from ξ by changing all nonzero coefficients nji

to 1. Let γo be the homomorphic loop
with γ′

o(0) = ξo. Now Burstall and Guest have shown the following.

Theorem 3 [1, Theorem 4.5]. If an extended solution Φ : M → Ωalg(G) takes values
essentially in an unstable manifold Uγ , then there exists ω ∈ Ωalg(G) such that ωΦ takes values
essentially in Uγo

where γ′
o(0) = ξo is given by (5).

Consequently, there is an estimate of all possible uniton numbers by those of the 2r

canonical homomorphic loops corresponding to the canonical elements. Moreover, one obtains
a classification of pluriharmonic maps (up to congruence) which is finer than the one by uniton
number: the (suitably chosen) extended solution of such a pluriharmonic map belongs to some
Uγo

for a canonical γo, and it can be deformed into an S
1-invariant pluriharmonic map whose

extended solution takes values in Ωγo
.

4. Pluriharmonic maps into compact symmetric spaces

Let M be a Kähler manifold which is compact and simply connected. We also consider a
symmetric space S of compact type which is a bottom space, that is, any symmetric space
covered by S is isomorphic to S. Let G be the identity component of the isometry group
of S. It has trivial center and can be realized as a matrix group via its (faithful) adjoint
representation. For any p ∈ S we denote by sp the geodesic symmetry at p. The choice of a
basepoint o ∈ S provides an involution σo on G, namely the conjugation with so:

σo : G −→ G; g �−→ sogso. (6)

Then we have S = G/K where K =Fix(σo), and we obtain an embedding (Cartan embedding)

ιo : S −→ G; p = go �−→ spso = gsog
−1so = gσo(g−1). (7)

The image ιo(S) = Pe is the connected component (passing through e) of the fixed-point set
of the isometric involution τo obtained by composing σo with the inversion, that is,

τo : G −→ G; g �−→ σo(g−1) = σo(g)−1. (8)

Hence ιo(S) ⊂ G is totally geodesic.
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Consequently, a smooth map f : M → S is pluriharmonic if and only if so is the composition
f̃ = ιo ◦ f : M → G. Hence Theorem 3 gives a classification also for the pluriharmonic maps of
compact simply connected Kähler manifolds into S, but as we will see, the number of canonical
homomorphic loops can now be lessened from 2r to 2s where s = rank(K). Lemma 5 below is
the first step to this goal.

The involution τo given in equation (8) extends to an involution T o of Ωalg(G),

T o : Ωalg(G) −→ Ωalg(G); (T oω)(λ) = soω(−λ)ω(−1)−1so (9)

in the sense that (T oω)(−1) = τo(ω(−1)). Let Ωalg(G)T o ⊂ Ωalg(G) be the fixed-point set of
T o.

Lemma 4 [6, p. 285]. Let f : M → S be a pluriharmonic map and let xo be a basepoint in
M. We set o = f(xo). Then there exists a T o-invariant extended solution Φ̃ : M → Ωalg(G)T o

with Φ̃−1 = f̃ = ιo ◦ f.

Proof. Let Φ : M → ΩG be an extended solution with the property that Φ−1 = f̃ . left-
multiplication of Φ with the smooth loop ω(λ) = Φλ(xo)−1 satisfying ω(1) = e and ω(−1) =
ιo(o) = e we get the unique extended solution Φ̃ satisfying Φ̃−1 = f̃ and Φ̃λ(xo) = e for all
λ ∈ S

1. By Theorem 1, Φ̃ takes values in Ωalg(G) after left multiplication by a suitable loop.
We note that this loop is itself algebraic, thus Φ̃ takes values in Ωalg(G). Since f̃ is τo-invariant,
it is easy to check that T oΦ̃ satisfies the extended solution equation (1) with (T oΦ̃)−1 = f̃ and
(T oΦ̃)λ(xo) = e. Thus T oΦ̃ = Φ̃ by uniqueness.

Lemma 5. If Φ : M → Ωalg(G) is a T o-invariant extended solution, then Φ takes values
essentially in an unstable manifold Uγ , where γ is a homomorphic loop in the subgroup K ⊂ G.

Proof. Note that the energy is a T o-invariant function on Ωalg(G). Thus the flow of ∇E
preserves Ωalg(G)T o

. By Theorem 2, Φ takes values essentially in Uγ for some homomorphic
loop γ ∈ Ωalg(G), and Φ is flowed onto uγ ◦ Φ with values in Ωγ . Since Φ and uγ ◦ Φ are
T o-invariant, we may assume γ ∈ Ωalg(G)T o

. But T oγ = σoγ:

(T oγ)(λ) = soγ(−λ)γ(−1)−1so

= soγ(λ)γ(−1)γ(−1)−1so

= soγ(λ)so

= σoγ(λ).

Thus γ is a homomorphic loop in the subgroup K ⊂ G.

5. Compartments

As before, let S = G/K denote a symmetric space of compact type. Let g = k ⊕ p be the (±1)-
eigenspace decomposition for the involution σ = Ad(so), where so is the geodesic reflection at
the basepoint o = eK. Fix a maximal abelian subspace tk in k and enlarge it to a maximal
abelian subspace t of g, that is, tk ⊂ t (in fact, such an enlargement is unique, cf. Lemma 7
below). The next two lemmas are due to Loos [8, p. 125]; for the convenience of the reader we
add the (short) proofs.
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Lemma 6. The space t is invariant under σ. Therefore t = tk ⊕ tp, where tp is an abelian
subalgebra of p which need not to be maximal.

Proof. Let X ∈ t; then X + σ(X) ∈ k and for all A ∈ tk we have [A, X + σ(X)] = [A, X] +
[σ(A), σ(X)] = [A, X] + σ([A, X]) = 0. Since tk is maximal abelian in k, we get X + σ(X) ∈ tk.
Thus σ(X) ∈ t.

Now we consider the root system Δ of g corresponding to the maximal abelian subalgebra
t. Using an invariant inner product, we consider Δ ⊂ t∗ = t. For any α ∈ Δ, the corresponding
root space in gc = g ⊗ C is denoted by gα. Recall that an element of t is g-regular if it does
not lie in the kernel of any root.

Lemma 7. No g-root vanishes on tk. Hence tk contains g-regular elements. In particular t
is the unique maximal abelian extension of tk.

Proof. Assume that there are some α ∈ Δ with α(A) = 0 for all A ∈ tk. Then α ∈ tp and
σα = −α. Since σ is an automorphism of g preserving t, we have σ(gα) = gσα = g−α. Choose
any nonzero Xα ∈ gα. Then Xα + σXα ∈ kc = k ⊗ C. On the other hand, Xα + σXα commutes
with tk since

[Xα + σXα, A] = iα(A)(Xα − σXα) = 0

for all A ∈ tk. The real and imaginary parts of Xα + σXα are contained in k and still commute
with tk. Thus they belong to tk which is maximal abelian in k. On the other hand, Xα + σXα

is a nonzero vector in gα + g−α, but this subspace has zero intersection with tc ⊃ tck, which is
a contradiction.

The connected components of the set of g-regular elements are the Weyl chambers in t.
Each nonempty intersection of tk with a Weyl chamber will be called a compartment. An
automorphism of g preserving t permutes Δ as well as the set of Weyl chambers (being the
connected components of t \ ⋃

α∈Δ ker α). But each Weyl chamber C intersecting tk contains a
nonzero element which is fixed under σ, thus σ(C) = C. To C corresponds a unique root basis
(fundamental root system)

Δo = {α1, . . . , αr} (10)

such that C ⊂ t is precisely the subset where α1, . . . , αr take positive values. This is also
σ-invariant, that is, σ acts on Δo as a permutation: σαj = ασj .

Lemma 8. Let πk : t → tk, H �→ 1
2 (H + σH) be the orthogonal projection of t onto tk. Then

πk(Δo) is a basis of tk, and the compartment C ∩ tk is a simplicial cone: It is precisely the subset
of tk where all elements of the basis πk(Δo) are positive.

Proof. The set πk(Δo) clearly generates tk = πk(t) since Δo generates t. Moreover, any linear
relation among the elements πk(αj) = 1

2 (αj + ασj) is also a linear relation between the αj with
essentially the same coefficients, and this is trivial since Δo is linearly independent. Further,
for any H ∈ tk we have 〈πk(αj), H〉 = 〈αj , πk(H)〉 = 〈αj , H〉, hence 〈πk(αj), H〉 is positive for
all j if and only if H ∈ C ∩ tk. Thus C ∩ tk is a simplicial cone in tk, namely the convex set
bounded by the s hyperplanes ker πk(αj) (where s = dim tk).
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The basis πk(Δo) of tk will be called semi-fundamental; it will replace the fundamental root
basis used in Theorem 3. In the next section we will see that all compartments are conjugate
and subdivide the Weyl chambers of k.

6. A subdivision of Weyl chambers of K

In order to study the compartments more closely, we split the g-root system Δ into two
complementary subsets, Δ = Δ′ � Δ′′, with

Δ′ = {α ∈ Δ; gα �⊂ pc}, Δ′′ = {α ∈ Δ; gα ⊂ pc}. (11)

The following result is related to [2, Lemma 3.11].

Lemma 9. The restriction of every g-root in Δ′ to tk is a k-root. Moreover, every k-root
arises in this way, that is, Δk = {α|tk

; α ∈ Δ′}.

Proof. Let α ∈ Δ′ and 0 �= Xα ∈ gα. We decompose Xα into its kc- and pc-components:

Xα = Xk
α + Xp

α. (12)

Since α ∈ Δ′, we have Xk
α �= 0. Let A ∈ tk. On the one hand, from [k, k] ⊂ k and [k, p] ⊂ p we

get [A, Xk
α] ∈ kc and [A, Xp

α] ∈ pc, and on the other hand we have [A, Xα] = iα(A)Xα which
yields

[A, Xk
α] = iα(A)Xk

α, [A, Xp
α] = iα(A)Xp

α.

The first of these equations shows that α|tk
is a root of k, and the corresponding root space is

πk(gα) where πk : gc → kc is the (complexified) orthogonal projection. From gc = tc +
∑

α∈Δ gα

we get kc = πk(gc) = tck +
∑

α∈Δ πk(gα). Hence kc is spanned by tck and the vectors Xk
α, α ∈ Δ,

and there is no room for another k-root.

Theorem 10. Let S = G/K be an outer symmetric space. Then:
(i) each compartment lies in a k-Weyl chamber;
(ii) every k-Weyl chamber is decomposed into the same number of compartments;
(iii) any two compartments are conjugate under G.

Proof. By Lemma 9, g-regular elements in tk are also k-regular. Thus a compartment is
contained in a connected component of k-regular elements, that is, in a k-Weyl chamber.

Now let Ck
1 and Ck

2 be any two k-Weyl chambers. Then there exists an element k ∈ K such
that Ck

2 = AdK(k)Ck
1. But AdK(k) is the restriction of AdG(k) to k, and since AdG(k) preserves

maximal abelian subalgebras of g, it maps the unique maximal abelian subalgebra containing
Ck

1 (see Lemma 7) onto the (unique) one containing Ck
2. Moreover AdG(k) preserves g-regular

vectors and therefore g-Weyl chambers. Thus it maps the g-Weyl chambers intersecting Ck
1

onto the g-Weyl chambers intersecting Ck
2 and AdG(k−1) does the converse.

Each compartment has s walls, being the kernels of the s elements of πk(Δo). By Lemma 9
we see that the kernels of the elements of πk(Δ′) are root hyperplanes of k, that is, walls of the
k-Weyl chamber. The only ‘new’ walls are the kernels of elements in πk(Δ′′) = Δ′′ (note that
σα = α for α ∈ Δ′′). The reflection at such a wall ker α with α ∈ Δ′′ acts on t as a Weyl group
element of G which preserves tk. Thus it sends the compartment to an adjacent one. Hence
any two adjacent compartments within a g-Weyl chamber are conjugate, and by iteration, any
two compartments are conjugate.
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Since this decomposition of Weyl chambers may be of independent interest, we are giving here
a more detailed description which is not needed in our main result. There are three different
cases.

Case A: inner symmetric spaces. A symmetric space S of compact type is called inner if its
geodesic symmetries are contained in its transvection group, or equivalently, if the involution
σ is inner. It is well known that a symmetric space S of compact type is inner if and only if
the rank of g and k coincide, that is, if every maximal torus of k is also a maximal torus of g
(see [7, p. 424]). Thus we have tk = t. Hence the k-roots are precisely those g-roots whose root
spaces are contained in kc, so that Δk ⊂ Δ. Therefore every g-Weyl chamber in t is contained
in a k-Weyl chamber as a compartment. Since p is not abelian (as S is of compact type) there
must be a g-root whose root space is not contained in kc, so that Δ �= Δk. Thus the g-Weyl
chambers in t are smaller than the k-Weyl chambers and every k-Weyl chamber splits into
several compartments.

Proposition 11. If S is an inner symmetric space of compact type, then every compart-
ment in a k-Weyl chamber is a full g-Weyl chamber. Every k-Weyl chamber contains at least
two compartments.

Case B: symmetric spaces of rank-split type. A symmetric space S of compact type is called of
rank-split type, if the rank of S, that is the maximal dimension of a totally geodesic submanifold
in S, or equivalently the dimension of a maximal abelian subset in p, is just the difference
between the ranks of g and of k. Using our splitting t = tk ⊕ tp this implies that tp is a maximal
abelian subspace of p. A symmetric space S is of rank-split type if all irreducible factors of its
universal cover are also of rank-split type. Note that in this case k is semisimple. If not, the
universal cover of S would have at least one hermitian symmetric de Rham factor, which is
not outer and therefore not of rank-split type.

Lemma 12. If S is of rank-split type, then Δ′ := {α ∈ Δ; gα �⊂ pc} = Δ.

Proof. Since S is of rank-split type, t = tk ⊕ tp, where tp is a maximal abelian subspace of
p. Let α ∈ Δ and assume that gα ⊂ pc. Let 0 �= Xα ⊂ gα; then Xα �∈ tc. The Cartan relation
[p, p] ⊂ k implies that for all A ∈ tp we have [A, Xα] ⊂ kc. But on the other hand [A, Xα] =
iα(A)Xα ∈ pc. Similarly [A, Xα] = −iα(A)Xα ∈ pc for all A ∈ tp. Since [pc, pc] ⊂ kc and pc ∩
kc = {0} we get [tp, Xα] = [tp, Xα] = 0. Thus the real part Re (Xα) of Xα, given by Re (Xα) =
1
2 (Xα + Xα) ∈ p, which is not contained in tp satisfies [tp, Re (Xα)] = 0, a contradiction, since
tp is maximal abelian in p.

Let Ck be a k-Weyl chamber in tk. Since by Lemmas 9 and 12 the restriction of every g-root
in t to tk is a k-root and vice versa, the kernels of the k-roots in tk are precisely the intersections
of the kernels of g-roots in t with tk. Thus every k-Weyl chamber in tk is an intersection of a
g-Weyl chamber in t with tk.

Lemma 13. If S is of rank-split type, then a k-Weyl chamber is itself a compartment and
all compartments are conjugate by inner automorphisms of k.

Case C : non rank-split type outer symmetric spaces. Finally consider an irreducible outer
symmetric space S of compact type, which is not of rank-split type. In most cases, every
k-Weyl chamber contains two or more compartments, but an exception occurs for the outer
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symmetric space S = SU2n+1/SO2n+1 which is not of rank-split type. In this case the Dynkin
diagram of su2n+1 (type A2n) shows that no simple root of a g-Weyl chamber C intersecting
tk is σ-invariant.

� � � � � �. . . . . .
α1 αn αn+1 α2n

Thus all simple roots of C restrict to k-roots, that is, C ∩ tk is a k-Weyl chamber.
We would like to end this section with a list of all (local isometry classes of) irreducible outer

symmetric spaces of compact type. We start our list with the compact connected simple Lie
groups equipped with a bi-invariant metric (they are all symmetric spaces of rank-split type).
Any of the remaining spaces is locally isometric to one of the G/K in Table 1 (cf., for example,
[2, p. 38], and [7, Chapter X, Section 6]).

7. Classification of pluriharmonic maps

Let G/K be a bottom symmetric space with involution σ such that K = Fix(σ). Let also
TK ⊂ K be a maximal torus in the connected component of the identity of K, and T ⊂ G the
maximal torus of G such that TK ⊂ T (cf. Lemma 7). The Lie algebras of T and TK are,
respectively, t and tk. Let Δo ⊂ t∗ be a σ-invariant fundamental root system of g with dual
basis {ξ1, . . . , ξr}. A canonical element

ξo = ξj1 + . . . + ξjp
(13)

and its corresponding homomorphic loops γo will be called S-canonical if σξo = ξo.

Theorem 14. Let M be a compact simply connected Kähler manifold and f : M → S
be a pluriharmonic map where S = G/K is a bottom symmetric space. Choose a basepoint
o ∈ S which lies in the image of f . Let ιo : S → G be the Cartan embedding. Then there
is an S-canonical homomorphic loop γo in K and an extended solution Φ of the harmonic
map f̃ = ιo ◦ f : M → G (up to left translation in G) which takes values essentially in the
S-canonical Bruhat cell Uγo

. Thus there are at most 2s classes of pluriharmonic maps, where
s = rank(K).

Proof. By Lemmas 4 and 5, the pluriharmonic map f̃ = ιo ◦ f : M → G admits a T o-
invariant extended solution Φ which takes values essentially in Uγ for some homomorphic
loop γ : R/(2πZ) → K. Then γ takes values in a maximal torus in K. We may assume that
this is actually TK, since conjugating γ with any group element does not change the Bruhat
cell Uγ . The vector ξ = γ′(0) ∈ tk lies in the closure of some compartment. By Theorem 10, all
compartments are conjugate. Thus, for the same reason as above, we may further assume that

Table 1. Irreducible compact outer symmetric spaces of type I.

G/K rank G rank K rank G/K

SU2n/SO2n 2n − 1 n 2n − 1
SU2n+1/SO2n+1 2n n 2n
SU2n/Spn 2n − 1 n n − 1
G2k−1(R

2n), 1 � k � n n n − 1 min{2k − 1, 2n − 2k + 1}
E6/Sp4 6 4 6
E6/F4 6 4 2
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ξ is in the closure of the compartment determined by Δo. This means that we can write

ξ = n1ξj1 + . . . + npξjp

with n1, . . . , np ∈ N = {1, 2, . . .}. By Theorem 3, we can change ξ to the canonical element

ξo = ξj1 + . . . + ξjp
. (14)

More precisely, (a translate of) f̃ has another extended solution Φ̃ taking values essentially in
Uγo

where γo is the homomorphic loop with γ′
o(0) = ξo.

We claim that σξo = ξo, in other words, ξo is S-canonical. Indeed, since ξ ∈ tk, we have
σξ = ξ. Thus, if j ∈ {j1, . . . , jp} then σj ∈ {j1, . . . , jp} as well. This implies our claim.

Let s = rank K = dim tk and put k = r − s. The fundamental basis Δo = {α1, . . . , αr} can
be labeled such that σαj = αs+j for j � k and σαj = αj for k + 1 � j � s. The corresponding
semi-fundamental basis is πk(Δo) = {ρ1, . . . , ρs} with

ρj =

{
1
2 (αj + αs+j) for j � k,

αj for k + 1 � j � s.

The dual basis for πk(Δo) is {η1, . . . , ηs} with

ηj =

{
ξj + ξs+j for j � k,

ξj for k + 1 � j � s.
(15)

Combining pairs of dual roots joined by σ in the sum (14) we obtain

ξo = ηj1 + . . . + ηjq
(16)

where q � p and the ηj are defined in (15). Since {j1, . . . , jq} may be an arbitrary subset of
{1, . . . , s}, there are 2s such elements. The empty set corresponds to ξo = 0 with γo = e and
Uγo

= {e}; the corresponding pluriharmonic maps are constant.

Remarks. (1) For inner symmetric spaces S, Theorem 14 is not an improvement of
Theorem 3: in this case we have TK = T, thus all ξj are σ-invariant and the notions ‘S-
canonical’ and ‘canonical’ are the same. However, for this case Burstall and Guest [1, 5.4] have
improved Theorem 3 in a different way.

(2) Pluriharmonic maps with values in G can also be classified according to their minimal
uniton number. This was done by Burstall and Guest [1]. For a given G, they have also obtained
an explicit upper bound for the minimal uniton number, which they denoted by r(G). As it
turns out, Theorem 14 does not improve that bound.

Example. Let us consider the case when S is the adjoint space of SU2n/SO2n. Then r =
2n − 1, s = n and k = r − s = n − 1. As in the proof of Theorem 14, we can label the elements
of Δo = {α1, . . . , α2n−1} in such a way that σαj = αn+j , for 1 � j � n − 1 and σαn = αn. In
the Dynkin diagram below, σ should be thought of as the reflection through the knot αn.

� � � � � � �. . . . . .
α1 α2 αn−1 αn α2n−1 αn+2 αn+1

To be more specific, we choose tk to be the subspace of so2n which consists of all matrices of
the form (

0 D
−D 0

)
,
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Figure 1. Compartments for SU4/SO4.

where D is an n × n diagonal matrix with real entries. The maximal abelian extension of
tk in su2n is t := At′A−1 where t′ consists of all diagonal matrices Diag(id1, . . . , id2n) with
d1, . . . , d2n ∈ R,

∑2n
j=1 dj = 0 and

A :=
1√
2

(
In iIn

iIn In

)
.

In fact, t consists of all matrices (
iE D
−D iE

)
,

where D and E are real diagonal matrices and trace E = 0. The map σ is given by complex
conjugation of matrices. It turns out that the restriction of σ to t is given by

ADiag(id1, . . . , id2n)A−1 �−→ −ADiag(idn+1, . . . , id2n, id1, . . . , idn)A−1.

We make the identification

t =

⎧⎨
⎩(d1, . . . , d2n) ∈ R

2n :
2n∑

j=1

dj = 0

⎫⎬
⎭ .

We neglect the conjugation by A and turn tk into a subspace of t. It consists of all vectors
(d1, . . . , d2n) which satisfy dn+1 = −d1, . . . , d2n = −dn. A σ-invariant Weyl chamber C in t is
the one determined by

d1 � d2 � . . . � dn � d2n � d2n−1 � . . . � dn+1.

Figure 1 describes the compartment C ∩ tk in the special case n = 2. One can see there that
any k-Weyl chamber is divided into two compartments. This turns out to be true for any n � 2.
Denote by εj the jth coordinate function on R

2n, which is given by (d1, . . . , d2n) �→ dj , where
1 � j � 2n. The roots whose kernels bound C are the following functions t → R:

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn,

αn = εn − ε2n,

αn+1 = εn+2 − εn+1, αn+2 = εn+3 − εn+2, . . . , α2n−1 = ε2n − ε2n−1.

They form the fundamental root system Δo. They fit into the Dynkin diagram above. The
elements of the basis of t which is dual to Δo are ξ1, . . . , ξ2n−1, where ξj ∈ t is determined
by αk(ξj) = δkj , 1 � k � 2n − 1. Concretely, we have ξj = (s, . . . , s, t, . . . , t), where the entry
t starts at index j + 1 and s, t ∈ R are such that ξj ⊥ (1, . . . , 1) and αj(ξj) = 1. We write a
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vector (x1, . . . , x2n) in R
2n as

(x1, . . . , x2n) = ((x1, . . . , xn), (xn+1, . . . , x2n)).

With this convention, we have

ξ1 =
((

2n − 1
2n

,− 1
2n

, . . . ,− 1
2n

)
,

(
− 1

2n
, . . . ,− 1

2n

))
,

ξn =
((

1
2
, . . . ,

1
2

)
,

(
−1

2
, . . . ,−1

2

))
,

ξn+1 =
((

1
2n

,
1
2n

, . . . ,
1
2n

)
,

(
−2n − 1

2n
,

1
2n

, . . . ,
1
2n

))
.

Similar formulas give the remaining elements ξj . Like in the proof of Theorem 14, we set

η1 := ξ1 + ξn+1 = ((1, 0, . . . , 0), (−1, 0, . . . , 0)),
η2 := ξ2 + ξn+2 = ((1, 1, 0, . . . , 0), (−1,−1, 0, . . . , 0)),

...
ηn−1 := ξn−1 + ξ2n−1 = ((1, . . . , 1, 0), (−1, . . . ,−1, 0)),

ηn := ξn =
((

1
2
, . . . ,

1
2

)
,

(
−1

2
, . . . ,−1

2

))
.

The S-canonical elements are 0 and the vectors of the form ηj1 + . . . + ηjq
, where 1 � j1 <

. . . < jq � n.
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