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1. Introduction

What is an integrable system? Although this notion seems a bit vague, one of the common
features is that the differential equation allows for a one-parameter deformation, depending on
the so-called spectral parameter λ. This is often introduced in a purely formal way. It is the
purpose of the present article to discuss the geometric meaning of λ in an important case, that
of harmonic maps of surfaces and pluriharmonic maps of complex manifolds with values in
Riemannian symmetric spaces. We shall link the spectral parameter to the associated family of
such maps, which is well known from elementary minimal surface theory; the most prominent
example is the deformation of the catenoid into the helicoid. In fact, our geometric theory joins
two different approaches to (pluri-) harmonic maps: extended solutions and extended frames.

2. Extended solutions and extended frames

The equation of a harmonic map f of a Riemann surface M into a compact (not necessarily
connected) Lie group G with bi-invariant metric or a totally geodesic submanifold S ⊂ G
(a symmetric space) allows for a spectral parameter λ ∈ S

1. There are two different ways to
assign to f a λ-dependent map, a so-called spectral deformation. The first one goes back to
Uhlenbeck [10], motivated by earlier work in physics [9, 11, 12], and the second one was
introduced by Burstall and Pedit [2]; see also [4].

Uhlenbeck introduced the notion of an extended solution. This is a family of maps
Φλ : M → G depending smoothly on λ ∈ S

1 such that Φ1 = e is a constant group element
(often one assumes that Φ−1 = e (unit element in G) but we would like to make the notion
independent under left translations in G) and the Maurer–Cartan form (using matrix notation,
we write gx for the left translation Lgx (for x ∈ G) as well as for its differential dLgx (for x ∈ g))

βλ := Φ−1
λ dΦλ ∈ Ω1(M, g) (1)

satisfies
βλ = (1 − λ−1)β′ + (1 − λ)β′′ (2)

for some β′ ∈ Ω(1,0)(M, gc) and β′′ = β′. (By Ω(1,0), we denote the space of one-forms ω that
are complex linear, ω(JX) = iω(X) for any X ∈ TM , while its complex conjugate ω̄ ∈ Ω(0,1)

is anti-linear, ω̄(JX) = −iω̄(X).) By [10], a map f : M → G is harmonic if and only if there
exists (at least locally) an extended solution Φλ with f = Φ−1. Since the inversion j : G → G,

                                                     
                                                     



230                          

j(g) = g−1 is an isometry of G for any bi-invariant metric, f−1 = j ◦ f is again harmonic, and,
up to left translation, the corresponding extended solution is (cf. [1])

(TΦ)λ := Φ−λΦ−1
−1. (3)

The map f may take values in a totally geodesic submanifold S ⊂ G and can then be
considered as a harmonic map into S rather than into G. In particular, we consider a Cartan
embedded symmetric space S that is a connected component of the set of order 2 elements,

√
e = {s ∈ G; s2 = e} ⊂ G

(standard Cartan embedding), or a left translate of such a set.

Remark 1. A standard Cartan embedding (
√

e)c, that is, a connected component of
√

e,
may or may not be contained in the identity component Go of G. Using a left translation in
G, it can be shifted into Go. If one uses the left translation by so for some so ∈ (

√
e)c, then

so(
√

e)c = {sos; s ∈ (
√

e)c} ⊂ G0 is called a pointed Cartan embedding.

The approach by extended frames in turn uses the projection π : G → S = G/K rather
than a Cartan embedding ι : S → G. Starting with a map f : M → S, one first chooses a lift
(‘frame’) F : M → G with f = π ◦ F ; in fact, F may be defined only locally on some open
subset Mo ⊂ M . If S ⊂ G is standard Cartan embedded, then G acts by conjugation on S, and
the relation between F and f is given by

f = FsoF
−1 (4)

for some so ∈ √
S (which is the point reflection at eK ∈ G/K).

Let α = F−1dF ∈ Ω1(Mo, g) be the corresponding Maurer–Cartan form. We decompose
α = αk + αp according to the Cartan decomposition g = k + p corresponding to Ad(so), that
is, Ad(so) = I on k and Ad(so) = −I on p. Then f is harmonic if and only if the modified
one-form

αλ = αk + λ−1α′
p + λα′′

p (5)

is integrable, that is,

αλ = F−1
λ dFλ (6)

for some smooth map Fλ : Mo → G depending smoothly on λ ∈ S
1 with F1 = F ; this is called

an extended frame. Moreover, all maps fλ := π ◦ Fλ : Mo → S are harmonic.
Both approaches have been extended from harmonic maps of surfaces to pluriharmonic maps

of Kähler manifolds; cf. [8] for Uhlenbeck’s theory and [3, 5] for the extended frame method.
A map f on a Kähler manifold M (in fact, it suffices that M is a complex manifold; locally,
we may always choose a Kähler metric, and the notion of pluriharmonicity is independent of
the choice of that metric) is called pluriharmonic if its restriction to any complex curve in M
is harmonic, or, in more technical terms, if its Levi form Ddf (1,1) (the (1,1) part of its hessian)
vanishes. Everything we have said remains unchanged after replacing the word ‘harmonic’
everywhere by ‘pluriharmonic’.

The two approaches are related to each other by the following theorem.

Theorem 1. Let f : M → S ⊂ G be a pluriharmonic map, where S = G/K is (standard)
Cartan embedded into G. Let F : Mo → G be a local frame for f , that is, f = π ◦ F = FsoF

−1.
Then extended solutions and extended frames for f are related by

Fλ = ΦλF. (7)
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More precisely, suppose that two families of maps Fλ, Φλ : Mo → G, with λ ∈ S
1, satisfying

(7), are given. Then Fλ is an extended frame for f if and only if Φλ is an extended solution
for f .

Proof. Differentiation of (7) yields

αλ = F−1βλF + α, (8)

where αλ = F−1
λ dFλ, α = α1 = F−1dF and βλ = Φ−1

λ dΦλ. Using (4), we relate f to α as
follows:

f−1df = F (soαso − α)F−1 = −2α̃, (9)

where
α̃ := FαpF

−1; (10)

we remember that so(αk + αp)so = αk − αp.
Now suppose that Fλ is an extended frame for f . Then from (5) and (8) we obtain

βλ = F (αλ − α)F−1 = (λ−1 − 1)α̃′ + (λ − 1)α̃′′. (11)

Thus βλ = Φ−1
λ dΦλ satisfies (2) with β = −α̃. In particular, β1 = 0, and hence Φ1 = constant,

and we have

Φ−1
−1dΦ−1 = β−1 = −2α̃

(9)
= f−1df, (12)

whence Φ−1 = f up to a left translation. Thus Φλ is an extended solution for f .
Conversely, suppose that Φλ is an extended solution for f = Φ−1. Let Fλ = ΦλF and αλ =

F−1
λ dFλ. From (2) and (8) we obtain

αλ − α = F−1βλF = (1 − λ−1)β̃′ + (1 − λ)β̃′′, (13)

where
β̃λ = F−1βλF. (14)

We show first that the right-hand side of (13) takes values in (the complexification of) p. In
fact, from (9) we have, on the one hand, that

F−1(f−1df)F = −2αp, (15)

and, on the other hand, by (2), for λ = −1 and (14), we have

F−1(f−1df)F = F−1(Φ−1
−1dΦ−1)F = F−1β−1F = 2β̃. (16)

Thus
β̃ = −αp ∈ p, (17)

and hence αλ − α takes values in p; cf. (13). This implies that the k-components of αλ and α
are equal. Further, (13) shows that

(αλ)p = −β̃ + (1 − λ−1)β̃′ + (1 − λ)β̃′′

= −λ−1β̃′ − λβ̃′′

= λ−1α′
p + λα′′

p ,

and hence we have proved (5).

3. Associated families

We want to outline a third approach [7] that gives a geometric interpretation of both extended
solutions and extended frames in a single theory. The starting point is the observation that
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a pluriharmonic map f allows a one-parameter deformation of pluriharmonic maps fλ, the
so-called associated family.

It has already been observed by Weierstraß that minimal surfaces in euclidean space
come in one-parameter families, so-called associated families. The best-known example is
the deformation of the catenoid into the helicoid by cutting the catenoid along a vertical
meridian and then move the two ends of the cut upwards and downwards apart from each
other (http://page.mi.fu-berlin.de/polthier/Calendar/Kalender86/Kalender86.htm). Starting
with a surface f = fo, the associated family is an isometric deformation fθ with the following
three properties.

(i) Up to parallel translation, each tangent plane remains unchanged during the
deformation.

(ii) Principal curvatures are preserved, while principal curvature lines rotate.
(iii) The deformation is periodic, that is, fθ+2π = fθ, and after a half period π we see the

same object in opposite orientation.
In fact, denoting by Rθ the rotation by the angle θ in the tangent plane of the surface, the
above properties are expressed by

df ◦ Rθ = dfθ. (18)

One may ask which (other) surfaces f : M → R
n allow an associated family (18). It is enough

to consider the 90◦ rotation J = Rπ/2 since

Rθ = (cos θ)I + (sin θ)J. (19)

We need to find a map g : M → R
n with

df ◦ J = dg.

If M is simply connected (which we will always assume), then this is equivalent to

d(df ◦ J) = 0.

From df = fxdx + fydy we see that df ◦ J = fydx − fxdy and hence

d(df ◦ J) = fyydx ∧ dy − fxxdy ∧ dx = Δf dx ∧ dy,

where Δf = trace Ddf = fxx + fyy is the Laplacian. Hence an associated family exists if and
only if f is harmonic, that is, Δf = 0. In particular, this applies to minimal surfaces that are
just conformal harmonic maps.

Now we replace the euclidean space R
n by an arbitrary symmetric space S = G/K.

Furthermore, we replace the surface by a Kähler manifold M , that is, a Riemannian manifold
with a parallel, almost complex structure J . We can still define the parallel tensors Rθ by (19)
and ask the following question: Given a smooth map f : M → S, under what condition is the
one-form df ◦ Rθ integrable, that is, the differential of a map fθ? To make this question more
precise, recall that dfx is a linear map from TxM to Tf(x)S and hence it defines a bundle map
df : TM → f∗TS. Thus (18) has to be modified since f∗

θ TS and f∗TS are different vector
bundles. What we need is an isomorphism Φθ between these bundles such that

dfθ = Φθ ◦ df ◦ Rθ, (20)

where the isomorphism Φθ : f∗TS → f∗
θ TS, like parallel translation in euclidean space R

n,
preserves the metric and the Lie triple structure (curvature tensor) on TS and is parallel with
respect to the induced connections on f∗TS and f∗

θ TS. A family of pairs (fθ, Φθ) with f0 = f
and Φ0 = I satisfying (20) will be called an associated family for f : M → S.

In [6], the question has been discussed in a more general setting. Let there be a vector bundle
E → M and an E-valued one-form (bundle homomorphism) ϕ : TM → E. Suppose that the
fibres of E carry a connection ∇ and a parallel Lie triple structure RS on the fibres that is
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isomorphic to the Lie triple structure of a Riemannian symmetric space S. When does there
exist a smooth map f : M → S with df = Φ ◦ dϕ, using a suitable isomorphism Φ : E → f∗TS?
The answer was given in [6]: f exists and is unique up to isometries of S if and only if d∇ϕ = 0
and R∇ = ϕ∗RS . The proof is an application of the Frobenius integrability theorem. Applying
this theory to ϕθ = df ◦ Rθ, one obtains the following.

Theorem 2 [7]. Let M be a Kähler manifold, let S be a compact symmetric space and let
f : M → S be a smooth map. There exists an associated family (fθ, Φθ) for f (unique up to
isometries gθ of S) if and only if f is pluriharmonic.

In this case, Φθ is an isometric bundle isomorphism between f∗TS and f∗
θ TS (that is, it maps

Tf(x)S isometrically onto Tfθ(x)S for any x ∈ M) that is parallel and preserves the curvature
tensor RS of S. Thus Φθ(x) is the differential of an isometry of S. (If S is not simply connected,
then this is not true in general, but it is true for the identity component of the isometry group;
note that Φθ(x) can be connected to Φ0(x) = I.) of S. Since an isometry is uniquely determined
by its differential at a single point, Φθ may be viewed as an element of the isometry group G
of S.

In [3], the connection to the extended frames was given as the following.

Theorem 3 [3]. Let f : M → S = G/K be pluriharmonic with the (local) frame F : Mo →
G and the associated family (fλ, Φλ) with λ = e−iθ. Then

Fλ = ΦλF (21)

is an extended frame in the sense of [2, 4].

Proof. The idea of the proof is as follows. We have to show that αλ = F−1
λ dFλ satisfies (5).

We split αλ = αλ
k + αλ

p . The property αλ
k = αk is obtained as follows. From (8) we have

αλ − α = F−1βλF (22)

and the right-hand side of (22) takes values in p due to the parallelism of Φλ (see Lemma 1
below). Moreover, dπ(Fλαλ

p) = dfλ, where π : G → G/K is the projection and dfλ = Φλ ◦ df ◦
R−θ. Since T ′M and T ′′M are the ±i eigenspaces of J and the e∓iθ eigenspaces of R−θ,
respectively, we have df ◦ R−θ = λ−1d′f + λd′′f , which shows (5).

Lemma 1. Let f, f̃ : M → S = G/K be smooth maps and let Φ : f∗TS → f̃∗TS be an
isometric bundle isomorphism preserving RS . Then Φ is parallel if and only if F−1(Φ−1dΦ)F
takes values in p for any frame F of f .

Proof. Let x(t) be any smooth curve in M with x(to) = xo fixed. Consider the curves
c(t) = f(x(t)) and c̃(t) = f̃(c(t)) in S. Then Φ is parallel if and only if Φ(t) := Φ(x(t)) maps
parallel frames along c onto parallel frames along c̃. Parallel frames along a curve c in S = G/K
are the horizontal lifts C of c, where horizontal subspaces in TG are left translates of p. In
other words, C(t) ∈ G with π ◦ C = c, where π : G → G/K, and C(t)−1C ′(t) ∈ p. Likewise,
C̃(t) = Φ(t)C(t) is horizontal if and only if C̃(t)−1C̃ ′(t) ∈ p. One the other hand we have

C̃ ′ = (ΦC)′ = Φ′C + ΦC ′

and therefore
C̃−1C̃ ′ = (ΦC)−1(ΦC)′ = C−1Φ−1Φ′C + C−1C ′.
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The second term on the right-hand side lies in p due to the horizontality of C. Thus C̃
is horizontal if and only if C−1Φ−1Φ′C ∈ p. Choosing C(to) = F (xo), we have proved our
claim.

Remark 2. Recall that we are considering Φ(t) as an element of G. A similar identification
takes place for frames: Strictly speaking, a frame C(t) at p = f(x(t)) is a basis of TpS which
arises by applying some g ∈ G (more precisely: its differential dgo) to a fixed basis e1, . . . , en of
ToS where o = eK ∈ G/K. Usually we identify C(t) with g. The equality C̃(t) = Φ(t)C(t)
can be understood in two ways, linked by the chain rule: either both C̃(t) and C(t) are
considered as n-tuples of tangent vectors, mapped onto each other by the homomorphism
Φ(t), or C̃(t), Φ(t), C(t) ∈ G and the right hand side is a product of group elements. We are
adopting the second view point.

From Theorems 1 and 3 we obtain the following theorem.

Theorem 4. Let S ⊂ G be a Cartan embedded symmetric space and let f : M → S be
pluriharmonic with the associated family (fλ, Φλ). Then Φλ is an extended solution of f .

Thus the theory of associated families (fλ, Φλ) combines aspects of both theories as follows:
Φλ is the extended solution and Fλ = ΦλF is the extended frame with π ◦ Fλ = fλ. Moreover,
we have achieved a geometric interpretation of Φλ that persists even if no embedding of S into
G is given: Φλ is the isomorphism between the bundles f∗TS and f∗

λTS which is needed to
define the associated family; cf. (20).

Note that a solution (fλ, Φλ) of (20) for any single λ is unique up to left translation with some
gλ ∈ G. In particular, for λ = −1 or θ = π, we have Rπ = −I and thus (f−1 = f, Φ−1 = −I)
is a special solution with Φ−1(x) = sf(x) ∈ G (geodesic reflection at the point f(x)). Thus a
general solution will be a left translate of this map, and hence we see immediately that Φ−1 is
the composition of f with a Cartan embedding (which follows also from Theorem 3).

4. Totally geodesic submanifolds in Lie groups

Thus far, we have linked extended solutions, extended frames and associated families only
when the symmetric space S is Cartan embedded in a Lie group G. Nevertheless, all three
theories extend beyond this case. Extended solutions Φλ take values in a compact Lie group
G and f = Φ−1 may lie in any closed totally geodesic submanifold S ⊂ G (not only Cartan
embeddings), while extended frames and associated families do not make use of embeddings
of S at all. Thus we assume that S ⊂ G is a general closed totally geodesic submanifold and
f : M → S ⊂ G a pluriharmonic map. Is there still a relation between extended solutions Φλ

and extended frames Fλ of f? This seems unclear because Φλ and Fλ take values in different
groups as follows. While Φλ is G-valued, Fλ maps into the transvection group of S, which will
now be called H (rather than G).

Nevertheless, there is a link between the two groups: H is finitely covered by the group of
the transvections of G keeping S ⊂ G invariant. The group G × G acts on G by left and right
translation, (g1, g2)g = g1gg−1

2 , and this action (after dividing out the ineffective diagonal of
the centre) is the transvection group of G. In fact, by definition, a transvection on G is the
composition of any two point reflections sg, sg̃ for g, g̃ ∈ G. We have sg(p) = gp−1g and hence

sg(sg̃(p)) = g(g̃p−1g̃)−1g = gg̃−1pg̃−1g (23)

for any p ∈ G. Thus sgsg̃ is the action on G of (gg̃−1, g−1g̃) ∈ G × G.
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If S ⊂ G is a closed totally geodesic submanifold, then the transvections along S are just
restrictions to S of the transvections sgsg̃ with g, g̃ ∈ S. Thus the transvection group H of S
is finitely covered by the group H̃ ⊂ G × G generated by the set

Γ = {(gg̃−1, g−1g̃); g, g̃ ∈ S} ⊂ G × G. (24)

The extended frames Fλ of a pluriharmonic map f : M → S take values in H. They will
be lifted to H̃ and then called F̃λ. Thus F̃λ and Φ̃λ = F̃λF̃−1

1 take values in H̃. Since Φ̃−1(x)
acts on S as sosf(x) for a fixed o ∈ S, we may assume that Φ̃−1(x) = (of(x)−1, o−1f(x)) for
all x ∈ M .

On the other hand, we have the Uhlenbeck extended solution Φλ : M → G with Φ−1 = f :
M → S ⊂ G. Embedding S totally geodesically into H̃ ⊂ G × G via

io : S 	 g 
→ (og−1, o−1g) ∈ Γ ⊂ H̃ ⊂ G × G, (25)

(io is a lift to H̃ of the pointed Cartan embedding ιo : S → H, p 
→ sosp) we obtain a
pluriharmonic map io ◦ f = (of−1, o−1f) : M → G × G. This is a left translate in G × G of
the pluriharmonic map (f−1, f) with the extended solution

Φ̂λ = ((TΦ)λ, Φλ); (26)

cf. (3). Thus we have two extended solutions Φ̃λ and Φ̂λ for (left translates of) io ◦ f that, by
unicity, must agree up to left translations in G × G. We have proved the following theorem.

Theorem 5. Let S ⊂ G be a totally geodesic submanifold and let f : M → S be a
pluriharmonic map. Then G-valued extended solutions Φλ and H-valued extended frames Fλ

for f correspond in the sense

((TΦ)λ, Φλ) = F̃λF̃−1
1 (27)

up to left translations in G × G, where F̃λ is a lift of Fλ to H̃ ⊂ G × G.

Remark 3. If S ⊂ G is standard Cartan embedded, that is, S = (
√

e)o, then Γ =
{(ss̃, ss̃); s, s̃ ∈ (

√
e)o} ⊂ ΔG ⊂ G × G; see (24). On the other hand, an extended solution

Φλ with Φ−1 ∈ √
e can be chosen to be invariant under the twist T defined in (3) (cf [1]) and

hence Φ̂λ = (Φλ, Φλ). Thus we are back to Theorem 4 in this case.
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