Pluriharmonic maps into Kähler symmetric spaces and Sym's formula

J.-H. Eschenburg · P. Quast

0 Introduction

An important notion for a surface in euclidean 3-space is the *Gauss map* which assigns to each point its normal vector in the sphere $S^2 \subset \mathbb{R}^3$. But can one revert this process and recover the original surface from its Gauss map? In general this is impossible; e.g. for *minimal surfaces* the Gauss map remains the same when we pass to the *associated surfaces*. However, there are surface classes where such a one-to-one correspondence exists. Among them are surfaces of prescribed nonzero constant mean curvature (cmc). By a theorem of Ruh and Vilms [18], an immersed surface $f : M \to \mathbb{R}^3$ is cmc if and only if its Gauss map is harmonic. Vice versa, given a generic harmonic map $h : M \to S$ into the 2-sphere S, there exists precisely

J.-H. Eschenburg (🖂) · P. Quast

The support by the DFG-project ES 59/7-1 is gratefully acknowledged. P. Quast also thanks the Swiss National Science Foundation for the support under Grant PBFR2-106367.

Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany e-mail: eschenburg@math.uni-augsburg.de

one cmc surface f with Gauss map h and mean curvature $H = \frac{1}{2}$ (say). It can be constructed from h and its associated family using a famous formula of Sym [20] and Bobenko [1].

The aim of our paper is to generalize this construction to higher dimensions and codimensions. We replace the 2-sphere S by an arbitrary Kähler symmetric space P of compact type and arrive at a new class of Kähler submanifolds of \mathbb{R}^n , which could be called "pluri-cmc". To be more precise, we must look a little closer to the original Sym-Bobenko construction: starting with a harmonic map $h: M \to S$, one obtains two weakly conformal maps $f_{\pm}: M \to \mathbb{R}^3$ with $h = \frac{1}{2}(f_+ - f_-)$. Outside the branch points, f_+ and f_- have Gauss map h and mean curvature $H = -\frac{1}{2}$ and $H = \frac{1}{2}$, respectively. Now let P = G/K be an arbitrary Kähler symmetric space of compact type. It can be viewed as an adjoint orbit in its transvection Lie algebra g in the same way as S is an adjoint orbit in $\mathbb{R}^3 = \mathfrak{so}_3$. As before, there is a one-to-one correspondence between *pluriharmonic* maps $h: M \to P$ from a complex manifold M, and pairs of maps $f_+, f_- : M \to \mathfrak{g}$, which are quasi-holomorphic (a notion generalizing "weakly conformal") along the common normal vector $h = \frac{1}{2}(f_+ - f_+)$ f_{-}) (Theorem 7.2). At regular points the Riemannian metrics on M induced by f_{+} are Kähler. Moreover, both immersions are 'pluri-cmc', i.e. when restricted to complex one-dimensional submanifolds of M they behave like cmc surfaces in a certain sense (cf. (35)); in particular they allow a very peculiar isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym–Bobenko construction was already known to Bonnet [2] (see [12]), and, in fact, the viewpoint of Bonnet is an important tool for our generalization.

1 Parallel surfaces

Let us recall some elementary facts for surfaces in 3-space. Consider an immersion $f : M \to \mathbb{R}^3$ of a two-dimensional manifold M ('surface'). Suppose that M is oriented and that $v : M \to S$ is the Gauss map of f, where $S \subset \mathbb{R}^3$ denotes the unit sphere. The surface f gives rise to a family of *parallel surfaces* $f_t = f + tv$ for all $t \in \mathbb{R}$ (we always exclude the points where f_t is not regular, i.e. not an immersion). The surfaces f and f_t have the same principal curvature vectors on M, but the principal curvatures κ_1, κ_2 change from $\kappa_j = 1/r_j$ to $\kappa_{i,t} = 1/(r_j - t)$.

Suppose now that f has constant Gaussian curvature 1, i.e. $r_1r_2 = 1$. Then the parallel surfaces $f_{\pm 1}$ have cmc $H = \pm \frac{1}{2}$ at their regular points:

$$2H = \frac{1}{r_1 \pm 1} + \frac{1}{r_2 \pm 1} = \frac{r_1 + r_2 \pm 2}{r_1 r_2 \pm (r_1 + r_2) + 1} = \pm 1.$$
 (1)

Further, the metrics on M induced by f_1 and f_{-1} are conformal to each other. In fact, if $v_j \in T_u M$ (for some $u \in M$) is a principal curvature vector for κ_j with $|df.v_j| = |r_j|$, then $|df_t.v_j| = |r_j - t|$. Consequently, the length ratio of the perpendicular vectors $df_t.v_1$ and $df_t.v_2$ is the same for t = 1 and t = -1 (which proves conformality): using $r_1r_2 = 1$, we have

$$\frac{r_1 - 1}{r_2 - 1} : \frac{r_1 + 1}{r_2 + 1} = \frac{r_1 r_2 + r_1 - r_2 - 1}{r_1 r_2 - r_1 + r_2 - 1} = -1.$$
 (2)

Vice versa, starting with a surface $\tilde{f}: M \to \mathbb{R}^3$ of cmc $H = \frac{1}{2}$, its parallel surfaces \tilde{f}_1 and \tilde{f}_2 have constant Gaussian curvature 1 and cmc $-\frac{1}{2}$, respectively. Moreover, the metrics on M induced by \tilde{f} and \tilde{f}_2 are conformal.

2 The Gauss map of cmc surfaces

By a theorem of Ruh and Vilms [18], surfaces of cmc are characterized by the harmonicity of their Gauss maps:

Theorem 2.1 (Ruh–Vilms) Let M be a Riemann surface and $f : M \to \mathbb{R}^3$ a conformal immersion. Then f has cmc if and only if its Gauss map $v : M \to S$ is harmonic.

Proof Let *H* be the mean curvature of an immersion $f : M \to \mathbb{R}^3$. For each $u \in M$ and $v \in T_u M$ we have

 $2\partial_{\nu}H = -\partial_{\nu}$ trace $d\nu = -$ trace $\nabla_{\nu}d\nu \stackrel{*}{=} -$ trace $\langle \nabla d\nu, df.\nu \rangle = \langle \Delta\nu, df.\nu \rangle$.

Here, ∇ denotes the Levi–Civita connection and Δ the Laplacian for the induced metric on M. For "=", we use the symmetry of $\langle \nabla d\nu, df \rangle$ in all three arguments (Codazzi). Thus $\partial_{\nu} H = 0$ for all ν if and only if the tangent part of $\Delta \nu$ vanishes (note that $df(T_u M) = T_{\nu(u)}S$), which is the definition of $\nu : M \to S$ being harmonic.

Now let us consider the inverse problem: given any harmonic map $h: M \to S$ on a Riemann surface M, can we construct a cmc surface $f: M \to \mathbb{R}^3$ with $H = \pm \frac{1}{2}$ and Gauss map $\nu = h$? This question has already been solved by Bonnet in 1853 [2,12] as follows: using the results of the previous section, we know that such surfaces always come in pairs

$$f_{\pm} = g \pm h, \tag{3}$$

where $g: M \to \mathbb{R}^3$ has constant Gaussian curvature 1. Thus the task is to find g from h. By harmonicity, the vector Δh is normal to S, i.e. it points into the direction of h. This means $h \times \Delta h = 0$ where \times denotes the vector product on \mathbb{R}^3 . Using conformal coordinates (x, y) on M we have

$$0 = h \times (h_{xx} + h_{yy}) = (h \times h_x)_x + (h \times h_y)_y,$$

where subscripts mean partial derivatives. In other words, the \mathbb{R}^3 valued 1-form

$$\gamma = (h \times h_{\gamma})dx - (h \times h_{x})dy \tag{4}$$

is closed, ${}^{1} d\gamma = 0$. Hence it can be integrated, $\gamma = dg$ for some $g : M \to \mathbb{R}^{3}$, provided that *M* is simply connected. In fact, *g* has the desired properties (cf. [12]) as we will see below (Sect. 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with the position vector), we may rewrite (4) as

$$\gamma = h \times dh \ j = J \ dh \ j. \tag{5}$$

Hence from (3) we obtain

$$df_{\pm} = dh \pm J \, dh \, j. \tag{6}$$

Theorem 2.2 (Bonnet) Let M be a Riemann surface and $h : M \to S$ a harmonic map, then the 1-form $\gamma = J dh j$ is closed. Further, if M is simply connected, there is (up to translations) precisely one pair of weakly conformal maps $f_{\pm} : M \to \mathbb{R}^3$ with cmc $H = \pm \frac{1}{2}$ and Gauss map h at the regular points, and f_{\pm} is obtained by integrating $df_{\pm} = dh \pm \gamma$.

¹ Since harmonic maps are critical for a variational principle (the variation of the energy) which is invariant under the isometry group of S, this formula can also be obtained as a conservation law from the Noether theorem, see [12,17].

Remark Equation (6) looks as if f_{-} and f_{+} were holomorphic and anti-holomorphic, respectively:

$$J df_{\pm} j = J dh j \pm dh = \pm df_{\pm}.$$
(7)

But remember that J is the almost complex structure on S while f_{\pm} does not take values in S; only the tangent spaces are the same:

$$df_{\pm}(T_u M) \subset T_{h(u)}S\tag{8}$$

(in fact we have equality). Mappings f_{\pm} satisfying (7) and (8) will be called *quasi-holomorphic* along *h* (see Sect. 7). In the present context this simply means weak conformality.

The Bonnet construction involves integrating the 1-form $\gamma = dg$. More recently it was observed by Sym [20] and Bobenko [1]² that g has a direct geometric meaning in terms of the *associated family* and the *extended solution* of the harmonic map h. We will discuss this construction in a more general setting, using that (\mathbb{R}^3 , ×) is a Lie algebra (corresponding to the Lie group SO_3) and S a particular adjoint orbit which is a *Kähler symmetric space* of compact type. In fact, *any* such space allows this kind of embedding (Sect. 3 below). We will also generalize the domain M to a complex manifold of arbitrary dimension (Sect. 4).

3 Kähler symmetric spaces

A Riemannian manifold *P* is *Kähler* if it carries a parallel isometric almost complex structure *J*. From $\nabla_X(JZ) = J\nabla_X Z$ we have R(X, Y)JZ = JR(X, Y)Z for all tangent vectors *X*, *Y*, *Z* where *R* denotes the curvature tensor of *P*. Consequently $\langle R(X, Y)JZ, JW \rangle = \langle R(X, Y)Z, W \rangle$, and from the block symmetry of *R* we see

$$R(X, Y) = R(JX, JY).$$
(9)

Thus R(JX, Y) = R(JJX, JY) = -R(X, JY), and therefore J is a *derivation* of R at any point p:

$$R(JX, Y)Z + R(X, JY)Z + R(X, Y)JZ = JR(X, Y)Z.$$

Now let P = G/K be Kähler symmetric (hermitian symmetric) of compact type, i.e. P is Kähler and symmetric of compact type and all the *point symmetries* (geodesic symmetries) s_p are holomorphic. Then at any point $p \in P$ the curvature tensor R is a Lie triple product on $T_p P$ and J_p a derivation of R. We may assume p = eK. Let

$$\mathfrak{g} = \mathfrak{k} + \mathfrak{p} \tag{10}$$

be the corresponding Cartan decomposition (eigenspace decomposition of $\operatorname{Ad}(s_p)$). Then we may identify $T_p P = \mathfrak{p}$. We extend $J_p : \mathfrak{p} \to \mathfrak{p}$ to a derivation \hat{J}_p of the Lie algebra \mathfrak{g} by putting $\hat{J}_p = 0$ on \mathfrak{k} . Since \mathfrak{g} is semisimple, each derivation is inner. Hence we may view $\hat{J}_p \in \mathfrak{g}$ (acting on \mathfrak{g} by $\operatorname{ad}(\hat{J}_p)$). The map

$$\hat{J}: P \to \mathfrak{g}, \quad p \mapsto \hat{J}_p$$

$$\tag{11}$$

² Sym studied surfaces g with Gaussian curvature K = -1 which have no parallel cmc surfaces. Bobenko transferred this idea to the case K = +1 and to cmc surfaces.

is called the *standard embedding* of P (see [10]). Its image $\tilde{P} = \hat{J}(P) \subset \mathfrak{g}$ is an adjoint orbit: since J is parallel, J_p and J_q are conjugate for an arbitrary $q \in P$ under the transvection g along a geodesic joining p = eK to q. Hence $\hat{J}_q = \operatorname{Ad}(g)\hat{J}_p$. By holomorphicity each $k \in K = G_p$ preserves J_p , thus \hat{J}_p centralizes K and the map $\hat{J} : P \to \operatorname{Ad}(G)\hat{J}_p$ is an equivariant covering (note that the stabilizer Lie algebra of \hat{J}_p is \mathfrak{k}). But in fact it is injective. To see this, note that the orbit $\tilde{P} = \operatorname{Ad}(G)\hat{J}_p \subset \mathfrak{g}$ is itself an (extrinsic) hermitian symmetric space with (extrinsic) symmetry $s_p = \operatorname{Ad}(\exp \pi \hat{J}_p)$ and almost complex structure $\operatorname{ad}(\hat{J}_p)|_{T_p\tilde{P}}$ where $\tilde{p} = \hat{J}_p$. Since any semisimple hermitian symmetric space is simply connected [13, p. 376], the map \hat{J} is one-to-one. The Riemannian metric on \tilde{P} induced by any Ad(G)-invariant inner product on \mathfrak{g} coincides up to a constant with the initial Riemannian metric on each de Rham factor. The tangent and normal spaces of \tilde{P} at $\tilde{p} = \hat{J}_p$ are

$$T_{\tilde{p}}\tilde{P} = \mathrm{ad}(\mathfrak{g})\hat{J}_p = [\mathfrak{p}, \hat{J}_p] = -J_p(\mathfrak{p}) = \mathfrak{p}, \quad N_{\tilde{p}}\tilde{P} = \mathfrak{p}^{\perp} = \mathfrak{k},$$
(12)

thus (10) is also the decomposition into the tangent and normal space of \tilde{P} at \hat{J}_p . From now on, we will no longer distinguish between P and \tilde{P} . Hence we consider P as a submanifold of \mathfrak{g} where the point $p \in P$ becomes the element $p = \hat{J}_p \in \mathfrak{g}$.

Example 1 Let $P = S \subset \mathbb{R}^3$ be the 2-sphere. For any $p \in S$ we have $T_pS = p^{\perp}$ and $J_pv = p \times v$ for $v \in T_pS$. Let \mathfrak{so}_3 be the space of real anti-symmetric 3×3 -matrices (the Lie algebra of SO_3). The mapping $\mathbb{R}^3 \to \mathfrak{so}_3 : w \mapsto A_w$ with $A_wx := w \times x$ is a linear isomorphism which transforms the vector product into the Lie product and the usual SO_3 -action on \mathbb{R}^3 into the adjoint action on \mathfrak{so}_3 . Thus the sphere $S \subset \mathbb{R}^3$, which is the SO_3 -orbit of e_3 , is mapped onto the adjoint orbit of $A_{e_3} = \hat{J}_{e_3}$.

Example 2 Let $P = G_k(\mathbb{C}^n) = U_n/(U_k \times U_{n-k})$ be the complex Grassmannian of *k*-dimensional linear subspaces of \mathbb{C}^n . Identifying each complex subspace with its orthogonal projection, we embed *P* as a U_n -conjugacy class into the space of hermitian or (after multiplying with $i = \sqrt{-1}$) anti-hermitian $n \times n$ -matrices which form the Lie algebra u_n of the unitary group U_n ; this is the standard embedding.

4 Pluriharmonic maps

Let P = G/K be a semisimple symmetric space and M a simply connected complex manifold with almost complex structure j. We will also use the corresponding rotations

$$r_{\theta} = (\cos \theta)I + (\sin \theta)j : TM \to TM$$
(13)

for any $\theta \in [0, 2\pi]$. A smooth map $h : M \to P$ is called *pluriharmonic* if $h|_C$ is harmonic for any complex one-dimensional submanifold (complex curve) $C \subset M$, or, in other terms, if the (1,1) part of the Hessian $\nabla dh^{(1,1)}$, the so called *Levi form*, vanishes:

$$\nabla dh(v, w) + \nabla dh(jv, jw) = 0 \tag{14}$$

for any two tangent vectors v, w on $M.^3$

Pluriharmonic maps always come in one-parameter families, called *associated families*, defined as follows (cf. [4,9]): the differential of a smooth map $f : M \to P$ is a vector bundle

 $^{^{3}}$ In order to define the Hessian one has to choose locally a Kähler metric on *M*. However, the definition of pluriharmonicity is independent of the choice of this metric.

homomorphism $\varphi = df : TM \to E = f^*TP$. Vice versa, given any vector bundle E (over M) endowed with a connection and a bundle homomorphism $\varphi : TM \to E$, we may ask if φ is the differential of a smooth map f; such a homomorphism (or E valued 1-form) φ will be called *integrable*. If this holds, E can be identified with f^*TP and, in particular, E carries a parallel Lie triple product on its fibres. Assuming that E is already equipped with such a structure, one obtains the following precise integrability condition for φ (see [8]): there exists a map $f : M \to P$ and a parallel vector bundle isometry $\Phi : f^*TP \to E$ preserving the Lie triple structure such that

$$\varphi = \Phi \, df. \tag{15}$$

Both f and Φ are unique up to translation with some $g \in G$.

Now assume that a smooth map $h : M \to P$ is given, thus $\varphi_0 = dh$ is integrable. We may ask if the rotated differential $\varphi_{\theta} = dh r_{\theta}$ is integrable for all $\theta \in [0, 2\pi]$ as well. This question was answered in [9]: the integrability condition holds for all φ_{θ} if and only if his pluriharmonic. In this case we have a family of pluriharmonic maps $h_{\theta} : M \to P$ (the *associated family* of h) and parallel bundle isometries $\Phi_{\theta} : f^*TP \to f_{\theta}^*TP$ preserving the curvature tensor (Lie triple product) of P such that

$$dh_{\theta} = \Phi_{\theta} \, dh \, r_{\theta} \tag{16}$$

holds for all $\theta \in [0, 2\pi]$. We can always assume $\Phi_0 = I$, and, if *P* is an *inner* symmetric space (which means that -I lies in the identity component of *K* acting on p), we may choose additionally $\Phi_{\pi} = -I$, due to $r_{\pi} = -I$ (see [4]). Since $\Phi_{\theta}(u)$ maps $T_{f(u)}P$ onto $T_{f_{\theta}(u)}P$ preserving the metric and the curvature tensor, it is the differential of a unique element of *G* mapping f(u) to $f_{\theta}(u)$. This will be called $\Phi_{\theta}(u)$ again and it defines a family of mappings $\Phi_{\theta} : M \to G$ with $\Phi_0 = e$ and, if *P* is inner, $\Phi_{\pi}(u) = s_{h(u)}$, where $s_q \in G$ denotes the point symmetry at *q* for any $q \in P$.

Remark Pluriharmonic maps have often been described in terms of moving frames. If we choose (locally) a frame F for h (i.e. a smooth map $F : M_o \to G$ with F(u)p = h(u) for any $u \in M_o \subset M$, where $p = eK \in P = G/K$), we obtain also a frame for each h_θ , namely

$$F_{\theta} = \Phi_{\theta} F. \tag{17}$$

Then the corresponding Maurer–Cartan form⁴ $\omega_{\theta} = F_{\theta}^{-1} dF_{\theta} \in \Omega^{1}(M, \mathfrak{g})$ satisfies

$$\omega_{\theta} = \omega_{\mathfrak{k}} + \omega_{\mathfrak{p}} r_{\theta} = \omega_{\mathfrak{k}} + \lambda^{-1} \omega_{\mathfrak{p}}' + \lambda \omega_{p}''$$
(18)

due to (16) and the parallelism of Φ_{θ} (see [4]). Here we put $\lambda = e^{-i\theta}$, and $\omega_{\mathfrak{k}}, \omega_{\mathfrak{p}}$ are the components of $\omega = \omega_0 = F^{-1}dF$ in the Cartan decomposition (10), while $\omega'_{\mathfrak{p}}, \omega''_{\mathfrak{p}}$ are the restrictions of the (complexified) 1-form $\omega_{\mathfrak{p}}: TM \otimes \mathbb{C} \to \mathfrak{p} \otimes \mathbb{C}$ to

$$T'M = \{v - ijv; v \in TM\}, \quad T''M = \{v + ijv; v \in TM\},$$
(19)

the $(\pm i)$ -eigenbundles of j. As a consequence of (17) and (18) we obtain

$$\Phi_{\theta}^{-1} d\Phi_{\theta} = \operatorname{Ad}(F)(\omega - \omega r_{\theta})$$

= $(1 - \lambda^{-1}) \operatorname{Ad}(F)\omega'_{\mathfrak{p}} + (1 - \lambda) \operatorname{Ad}(F)\omega''_{\mathfrak{p}}.$ (20)

This shows that Φ_{θ} is an *extended solution* in the sense of Uhlenbeck [22], generalized to the pluriharmonic case by Ohnita and Valli [15].

⁴ To keep the notation simple we assume that G is a matrix group.

One may show that $\operatorname{Ad}(F)\omega_{\mathfrak{p}} = \frac{1}{2}s_h ds_h$ where $s : P \to G$, $p \mapsto s_p$ is the Cartan embedding and $s_h = s \circ h$.

5 The Kähler symmetric case

Let us restrict our attention to a *Kähler* symmetric space P = G/K of compact type. Using the standard embedding we consider P as an adjoint orbit in g. Then the almost complex structure J_p at any $p \in P \subset \mathfrak{g}$ is just ad(p), restricted to the tangent space $T_p P = ad(\mathfrak{g})p \subset \mathfrak{g}$.

Now we deal with two almost complex structures: j on M and J on P. Recall that the definition of a pluriharmonic map $h : M \to P$ involves only j, not J (which is not present in the general case). However, for Kähler symmetric spaces we have another characterization of pluriharmonic maps in terms of both j and J which generalizes the first part of Bonnet's Theorem 2.2:

Theorem 5.1 Let $P \subset \mathfrak{g}$ be a Kähler symmetric space of compact type, M a complex manifold and $h : M \to P$ a smooth map. Then h is pluriharmonic if and only if the \mathfrak{g} valued 1-form $\gamma = J dh j = [h, dh j]$ is closed.

Proof We have $d\gamma(v, w) = \partial_v \gamma(w) - \partial_w \gamma(v) - \gamma(\nabla_v w - \nabla_w v)$ and

$$\partial_{v}\gamma(w) = \partial_{v}[h, \partial_{jw}h]$$

= $[\partial_{v}h, \partial_{jw}h] + [h, \partial_{v}\partial_{jw}h].$ (21)

Thus we obtain

$$d\gamma(v, w) = [dh.v, dh.jw] - [dh.w, dh.jv] + [h, \nabla dh(v, jw) - \nabla dh(w, jv)],$$
(22)

where *h* is considered as a map into the ambient space g rather than into *P*. The normal and tangent spaces of *P* at the point $h = h(u) \in P$ (which we may consider as the base point p = eK) form the Cartan decomposition (10). Since the kernel of ad(h) is \mathfrak{k} , the term in the second line of (22) is in \mathfrak{p} while the two terms in the first line belong to \mathfrak{k} , due to $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$. Thus we have $d\gamma = 0$ if and only if

$$[dh.v, dh.jw] - [dh.w, dh.jv] = 0,$$
(23)

$$\left(\nabla dh(v, jw) - \nabla dh(w, jv)\right)^T = 0, \tag{24}$$

where ()^{*T*} denotes the component in $T_h P$. The second Eq. (24) says precisely that $h : M \to P$ is pluriharmonic. The first one, (23), is a consequence of the pluriharmonicity whenever *P* is a compact symmetric space: if $h : M \to P$ is pluriharmonic, we have R(dh.a, dh.b) = 0 for all $a, b \in T'M$ (see [9,15]). For a = v - ijv and b = w - ijw this gives (23); recall that the Lie bracket on p is the curvature operator of *P* (up to sign).

Remark 1 All arguments can be generalized to metrics of arbitrary signature (see [14,19]). However, in the indefinite case we can no more conclude R(dh(T'M), dh(T'M)) = 0 from the pluriharmonicity of $h : M \to P$. However, this extra condition is extremely useful; e.g. it is necessary for an associated family to exist. It was an additional assumption in [19] (called S^1 -pluriharmonicity). Maybe the closedness of the form J dh j would be the better definition. *Remark 2* If *M* is simply connected, we can integrate γ and find a smooth mapping g: $M \rightarrow \mathfrak{g}$ with $dg = \gamma = J dh j$. Using (21) we compute its Hessian

$$\nabla dg(v, w) = [dh.v, dh.jw] + [h, \nabla dh(v, jw)].$$
⁽²⁵⁾

In the Bonnet case (dim M = 2, P = S), the map g at regular points is the surface with Gaussian curvature K = 1, see Sect. 1 and [12]. This is not completely obvious since g is not isometric, not even conformal. The second fundamental form α^g of g (assuming that g is an immersion) is the normal part of its Hessian (25). In the surface case, there is no normal part inside TS, thus we get (omitting the symbol 'dh')

$$\alpha^g(v,w) = [v,jw] = v \times jw. \tag{26}$$

Hence $\alpha^{g}(v, jv) = 0$ and $\alpha^{g}(v, v) = [v, jv] = \alpha^{g}(jv, jv)$ and further

$$\langle \alpha^{g}(v, v), \alpha^{g}(jv, jv) \rangle - |\alpha^{g}(v, jw)|^{2} = \langle [v, jv], [v, jv] \rangle$$

$$= \langle [[v, jv]v], jv \rangle$$

$$= -\langle R(v, jv)v, jv \rangle$$

$$= |v|^{2}|jv|^{2} - \langle v, jv \rangle^{2}.$$

$$(27)$$

Comparing with the Gauss equations for the surface g in \mathbb{R}^3 we see that g has Gaussian curvature K = 1.

Remark 3 The case where *M* is a surface and $P = \mathbb{C}P^n = G_1(\mathbb{C}^{n+1}) \subset \mathfrak{su}_{n+1}$ was recently considered in [11].

6 Extending Sym's construction

For any pluriharmonic map $h: M \to P = G/K$ and its associated family $(h_{\theta}, \Phi_{\theta})$ with framing $F_{\theta} = \Phi_{\theta}F$ we define the Sym map (putting $\delta = \frac{\partial}{\partial \theta}|_{\theta=0}$ and using $\Phi_0 = I$)

$$k := (\delta F)F^{-1} = (\delta \Phi)\Phi_0^{-1} = \delta \Phi : M \to \mathfrak{g}.$$
(28)

This was introduced by Sym [20] in the case P = S. It is of particular importance in the Kähler symmetric case where P is an adjoint orbit in the Lie algebra \mathfrak{g} . Thus the group G acts on $P \subset \mathfrak{g}$ by the adjoint representation, and the defining Eq. (16) for the associated family now becomes

$$dh_{\theta} = \operatorname{Ad}(\Phi_{\theta}) \, dh \, r_{\theta}. \tag{29}$$

On the other hand, the isometry $\Phi_{\theta}(u)$ also maps h(u) onto $h_{\theta}(u)$:

$$h_{\theta} = \mathrm{Ad}(\Phi_{\theta})h. \tag{30}$$

Differentiating this last equation,

$$dh_{\theta} = \mathrm{ad}(d\Phi_{\theta})h + \mathrm{Ad}(\Phi_{\theta})dh,$$

and comparing with (29) we obtain

$$\operatorname{Ad}(\Phi_{\theta}) dh(r_{\theta} - I) = [d\Phi_{\theta}, h].$$
(31)

Now we differentiate once more, this time with respect to θ at $\theta = 0$, using $\Phi_0 = e$, $\delta \Phi_{\theta} = k$ and $r_0 = I$, $\delta r_{\theta} = j$:

$$dh \ j = [\delta d \Phi_{\theta}, h] = -J_h \ dk,$$

where $J_h = ad(h)$ is the complex structure on $T_h P$. Summing up we get:

Theorem 6.1 The Sym map $k = \delta \Phi$ integrates the Bonnet form γ :

$$dk = J \, dh \, j = \gamma. \tag{32}$$

Thus we have seen that the Sym map *k* is (up to a translation) nothing else than the Bonnet map *g* (we will call it *Bonnet–Sym–Bobenko map*).

7 Generalizing cmc surfaces

As we saw in the first section, cmc surfaces in 3-space always come in pairs f_{\pm} where $v = \frac{1}{2}(f_+ - f_-)$ is the Gauss map. More precisely, cmc surfaces with $|H| = \frac{1}{2}$ can be characterized as pairs of immersions $f_{\pm}: M \to \mathbb{R}^3$, defined on a Riemann surface M, being conformal ('quasi-holomorphic') and having common harmonic Gauss map $h = \frac{1}{2}(f_+ - f_-)$. If M is simply connected, there is an explicit one-to-one correspondence between harmonic maps $h: M \to S$ and cmc surfaces (f_+, f_-) ; the reverse correspondence $h \rightsquigarrow (f_+, f_-)$ is given by the Bonnet–Sym–Bobenko construction (see Theorem 2.2). In this form, cmc surfaces can be generalized to higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let $P \subset \mathbb{R}^n$ be a submanifold whose induced metric is Kähler. Further, let M be any complex manifold and $h: M \to P$ a smooth map. Let j and J denote the almost complex structures on M and P. Then J induces a complex structure J_h on the fibres of h^*TP , i.e. $J_{h(u)}$ acts on $T_{h(u)}P$ for any $u \in M$. A smooth map $f: M \to \mathbb{R}^n$ is called $(\mp)quasi-holomorphic along h$ if

(1) $df(T_u M) \subset dh(T_u M)$ for any $u \in M$,

Lemma 7.1 If $f : M \to P$ is quasi-holomorphic along h, then f is a Kähler immersion on its regular set $M_{\text{reg}} = \{u \in M; df_u \text{ injective}\}$, i.e. j is an isometric parallel almost complex structure for the induced metric on M_{reg} .

Proof J_h is isometric and parallel in the bundle h^*TP which contains df(TM), and df intertwines j and $\mp J_h$.

Theorem 7.2 Let P = G/K be a Kähler symmetric space of compact type with its standard embedding $P \subset \mathfrak{g}$ and let M be a simply connected complex manifold. Then there is a one-to-one correspondence (up to translations) between pluriharmonic maps $h : M \to P$ with its associated family $(h_{\theta}, \Phi_{\theta})$ on the one side and on the other side pairs of maps $f_{\pm} : M \to \mathfrak{g}$ with common pluriharmonic normal $h = \frac{1}{2}(f_{+} - f_{-}) : M \to P$ such that f_{\pm} is \mp -quasi-holomorphic along h. The reverse correspondence $h \rightsquigarrow (f_{+}, f_{-})$ is given by

$$f_{\pm} = g \pm h, \tag{33}$$

using the Bonnet–Sym–Bobenko map $g = \delta \Phi : M \to \mathfrak{g}$.

⁽²⁾ $J_h df j = \pm df$.

Proof Starting with a pluriharmonic map $h : M \to P$, we only have to show that the mappings f_{\pm} defined by (33) are quasi-holomorphic and $df_{\pm}(TM) \perp h$. But note that

$$df_{\pm} = dg \pm dh = J \, dh \, j \pm dh,$$

and hence $J df_{\pm} j = -dh \pm J dh j = \pm df_{\pm}$. Further, $\partial_v h \perp h$ (any adjoint orbit lies in a sphere and is therefore perpendicular to the position vector) and $J_h \partial_{jv} h = [h, \partial_{jv} h] \perp h$, thus $\partial_v f_{\pm} \perp h$.

Vice versa, starting with a quasi-holomorphic pair of maps (f_+, f_-) such that $h = \frac{1}{2}(f_+ - f_-)$ is pluriharmonic and normal to both f_+ , f_- , we have to show that $g = \frac{1}{2}(f_+ + f_-)$ is the Bonnet–Sym–Bobenko map. This follows from the quasi-holomorphicity:

$$J \, dg \, j = \frac{1}{2} (J \, df_+ \, j + J \, df_- \, j) = \frac{1}{2} (df_+ - df_-) = dh,$$

and therefore $dg = J dh j = \gamma$.

Our last theorem summarizes the properties of these mappings.

Theorem 7.3 Let $P \subset \mathfrak{g}$ be Kähler symmetric, M a simply connected complex manifold and $h: M \to P$ a pluriharmonic map. Let (f_+, f_-) be the quasi-holomorphic pair along hdefined in Theorem (7.2). Suppose that $f = f_+$ is an immersion. Then we have:

(1) f is a Kähler immersion with second fundamental form

$$\alpha(v,w) = [dh.v, df.jw] + J_h(\nabla_v^P dh).jw + (\nabla_v^P dh).w,$$
(34)

where $J_h = \operatorname{ad}(h)$ and $\nabla^P dh$ is the Hessian of $h : M \to P$.

(2) For each $v \in TM$ we have

$$\alpha(v,v) + \alpha(jv,jv) = [J_h df.v, df.v] = \alpha_h^P (df.v, df.v),$$
(35)

where α_h^P denotes the second fundamental form of $P \subset \mathfrak{g}$ at $h \in P$.

(3) Fixing a point $u \in M$ we denote by $\mathfrak{p} = T_{h(u)}P$ and $\mathfrak{k} = N_{h(u)}P$ the tangent and normal spaces of $P \subset \mathfrak{g}$ at h(u). Then the corresponding components of α at u satisfy

$$\alpha_{\mathfrak{p}}^{(1,1)} = 0, \tag{36}$$

$$\alpha_{\mathfrak{p}}^{(2,0)} = (h^* \alpha^P)^{(2,0)} = [J_h \, dh, dh]^{(2,0)},\tag{37}$$

where $\alpha^{(1,1)}$ and $\alpha^{(2,0)}$ are the restrictions of α (after complexification) to $T'M \otimes T''M$ and $T'M \otimes T'M$, respectively.

(4) The associated family h_{θ} of h leads to a one-parameter family $f_{\theta} : M \to \mathfrak{g}$ of isometric immersions with

$$df_{\theta} = \mathrm{Ad}(\Phi_{\theta})df \, r_{\theta},\tag{38}$$

and the second fundamental form α_{θ} of f_{θ} satisfies

$$\alpha_{\theta,\mathfrak{p}}(v,w) = \mathrm{Ad}(\Phi_{\theta})\alpha_{\mathfrak{p}}(v,r_{\theta}w) \tag{39}$$

$$\alpha_{\theta,\mathfrak{k}}(v,w) = \mathrm{Ad}(\Phi_{\theta})\alpha_{\mathfrak{k}}(r_{\theta}v,r_{\theta}w). \tag{40}$$

Proof (1) By Lemma 7.1 *f* is a Kähler immersion. We equip *M* with the induced (Kähler) metric. Then *f* is an isometric immersion and α is just its Hessian, $\alpha = \nabla df = \nabla dg + \nabla dh$. Form (25) we obtain

$$\alpha(v,w) = [dh.v,dh.jw] + [h,(\nabla_v dh).jw] + (\nabla_v dh).w.$$

$$\tag{41}$$

The middle term $[h, \nabla dh(v, jw)]$ of (41) can be replaced by $J_h \nabla^P dh(v, jw)$ where $\nabla^P dh$ is the p-projection of ∇dh (i.e. the Hessian of $h : M \to P$) since $ad(h) = ad(\hat{J}_h)$ vanishes on \mathfrak{k} and acts as $J = J_h$ on \mathfrak{p} (see Sect. 3). The last term $\nabla dh(v, w)$ splits into its \mathfrak{p} and \mathfrak{k} components where the \mathfrak{k} -component is given by the second fundamental form α^P of $P \subset \mathfrak{g}$ which is $\alpha^P(X, Y) = [JX, Y]$ for all $X, Y \in \mathfrak{p}$.⁵ Thus we obtain

$$\alpha(v,w) = [dh.v, dh.jw] + [Jdh.v, dh.w] + [h, (\nabla_v^P dh).jw] + (\nabla_v^P dh).w.$$

For the second term on the right hand side we have

$$[Jdh.v, dh.w] = -[dh.v, Jdh.w] = [dh.v, Jdh.jjw] = [dh.v, dg.jw],$$

and combining this with the first term we obtain (34).

(2) The right hand side of (34) is already decomposed into its components with respect to \mathfrak{k} and \mathfrak{p} (note that $df(T_uM) \subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$), and (36) follows from (23). To prove (37) note that $\alpha = \nabla dh + \nabla dg$, and

$$\nabla dg = \nabla [h, dh j] = [dh, dh j] + [h, \nabla dh j].$$

The \mathfrak{k} -component of the second term $[h, \nabla dh j]$ vanishes since $\operatorname{ad}(h) = \operatorname{ad}(\hat{J}_h)$ takes values in \mathfrak{p} . The first term [dh, dh j] is anti-symmetric on $T'M \otimes T'M$ (where j is just a scalar factor i), but $\nabla dg_{\mathfrak{k}}^{(2,0)}$ is symmetric, so it must be zero. We are left with the (2, 0) component of $(\nabla dh)_{\mathfrak{k}} = \alpha^P (dh, dh)$ (mind that \mathfrak{k} is the normal space of $P \subset \mathfrak{g}$ at p = h(u)).

(3) In order to prove (35), we only have to consider the \mathfrak{k} -part of (34) since the expression $\alpha(v, v) + \alpha(jv, jv)$ belongs to the (1, 1)-part of α whose \mathfrak{p} -component vanishes by (36). We have

$$\alpha(v, v) + \alpha(jv, jv) = [dh.v, df.jv] + [dh.jv, df.jjv]$$

and since $df \ j = -J \ df$ (due to the quasi-holomorphicity of f), the second term is

$$[dh.jv, df.jjv] = -[dh.jv, Jdf.jv] = [Jdh.jv, df.jv] = [dg.v, df.jv].$$

Thus the two terms add up to [df.v, df.jv] = -[df.v, J df.v] = [J df.v, df.v] which proves (35).

(4) Each pluriharmonic map h_{θ} associated with h gives a Bonnet–Sym–Bobenko map g_{θ} with

$$dg_{\theta} = J_{h_{\theta}} dh_{\theta} j$$

= $J_{h_{\theta}} \operatorname{Ad}(\Phi_{\theta}) dh r_{\theta} j$
= $\operatorname{Ad}(\Phi_{\theta}) J_{h} dh j r_{\theta}$
= $\operatorname{Ad}(\Phi_{\theta}) dg r_{\theta}.$ (42)

But we also have

$$dh_{\theta} = \operatorname{Ad}(\Phi_{\theta})dh\,r_{\theta},\tag{43}$$

(see (29)), and therefore we obtain (38) from $df_{\theta} = dg_{\theta} + dh_{\theta}$. Since Ad(Φ_{θ}) is an isometry of g and r_{θ} is an isometry for the Kähler metric on *M* induced by *f*, the immersions f_{θ} are

⁵ We have $\langle \alpha^P(X, Y), \xi \rangle = \langle \partial_X Y, \xi \rangle = -\langle Y, \partial_X \xi \rangle$ for any $\xi \in \mathfrak{k}$. The vector $X \in T_p P$ can be expressed by the action of a one-parameter group $g_t = \exp t \hat{X}$ for some $\hat{X} \in \mathfrak{p}$, more precisely, $X = \frac{d}{dt}|_{t=0} \operatorname{Ad}(g_t) p = [\hat{X}, p] = -J\hat{X}$. Hence $\hat{X} = JX$. Now $\partial_X \xi = \frac{d}{dt}|_{t=0} \operatorname{Ad}(g_t) \xi = [\hat{X}, \xi] = [JX, \xi]$, and $\langle \alpha^P(X, Y), \xi \rangle = -\langle Y, [JX, \xi] \rangle = -\langle [Y, JX], \xi \rangle$.

$$\begin{aligned} \alpha_{\theta,\mathfrak{k}}(v,w) &= [\mathrm{Ad}(\Phi_{\theta})dh.r_{\theta}v, Ad(\Phi_{\theta})df.r_{\theta}jw] \\ &= \mathrm{Ad}(\Phi_{\theta})[dh.r_{\theta}v, df.jr_{\theta}w] \\ &= \mathrm{Ad}(\Phi_{\theta})\alpha(r_{\theta}v, r_{\theta}w) \end{aligned}$$

which proves (40). Finally, (39) can be concluded from the p-part of (34) observing

$$\nabla_v^P dh_\theta = \nabla_v^P (\Phi_\theta \, dh \, r_\theta) = \Phi_\theta (\nabla_v^P dh) r_\theta,$$

which holds because r_{θ} and Φ_{θ} (viewed as a homomorphism $h^*TP \to h_{\theta}^*TP$) are parallel.

Concluding remarks

- (1) Equation (35) is the generalization of the cmc property H = -1/2: it says that for any complex one-dimensional submanifold (complex curve) C ⊂ M, the mean curvature vector of the surface f|_C in g is given by the second fundamental form of P along h|_C. If M is itself a surface and P = S² with the position vector as unit normal, then ⟨α(v, v) + α(jv, jv), h⟩ = -⟨df.v, df.v⟩ and hence f has cmc H = -1/2. Due to (35), we would like to call the immersion f 'pluri-cmc' although in general the mean curvature vector is not constant (not even of constant length) along f|_C.
- (2) If *h* is *isotropic pluriharmonic* (see [9]), i.e. *h* admits a trivial associated family $h_{\theta} = h$, the maps f_{\pm} are twistor lifts of other isotropic pluriharmonic maps, see [16]. If *h* is even holomorphic (which is stronger), then $f_{\pm} = 0$ and $f_{\pm} = 2h$.
- (3) All three maps e = f, g, h have associated families e_{θ} formed in the same way:

$$de_{\theta} = \operatorname{Ad}(\Phi_{\theta})de\,r_{\theta} \tag{44}$$

Geometrically this means that the tangent space $de_u(T_uM)$ which is a subspace of the *J*-closure of $dh_u(T_uM)$ (i.e. the smallest complex subspace of $T_{h(u)}P$ containing $dh_u(T_uM)$) is moved in a parallel way for all three cases, using the same automorphism $Ad(\Phi_{\theta}(u))$.

- (4) There is an important difference between the case of cmc surfaces in 3-space and the higher dimensional analogues: if f : M → P is pluriharmonic but not (anti)-holomorphic, the dimension of M is strictly smaller than the one of P, with the only exception P = S². In fact, the flatness of dh(T'M) ⊂ h*TP ⊗ C determines a dimension bound, see [7,21]. This difference is reflected in the appearance of α_p which does not occur in the cmc case.
- (5) There is yet another notion generalizing cmc surfaces, the so called *ppmc* submanifolds, see [3]. These are Kähler submanifolds M ⊂ ℝⁿ with parallel α^(1,1), and they are characterized by the pluriharmonicity of their Gauss map. Our present generalization is different: note that the pluriharmonic map h : M → P is not the (Grassmann-valued) Gauss map of f_± but just one distinguished unit normal vector of f_±. This is the usual Gauss map only for surfaces in 3-space (P = S²). A flaw of the ppmc notion is the difficulty of finding interesting examples, see also [5,6]. In contrast, the Bonnet–Sym–Bobenko construction gives many nontrivial examples of 'pluri-cmc' submanifolds.

References

1. Bobenko, A.: Constant mean curvature surfaces and integrable equations. Russian Math. Surv. 46, 1–45 (1991)

- Bonnet, P.O.: Notes sur une propriété de maximum relative à la sphère. Nouv. Ann. Math. XII, 433–438 (1853)
- Burstall, F.E., Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R.: Kähler submanifolds with parallel pluri-mean curvature. Differ. Geom. Appl. 20, 47–66 (2004)
- Dorfmeister, J., Eschenburg, J.-H.: Pluriharmonic maps, loop groups and twistor theory. Ann. Glob. Anal. Geom. 24, 301–321 (2003)
- Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R: Isotropic ppmc immersions. Differ. Geom. Appl. 25, 351– 355 (2007)
- Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R.: A Characterization of the standard embedding of CP² and Q³. Preprint (2007)
- 7. Eschenburg, J.-H., Kobak, P.: Pluriharmonic maps of maximal rank. Math. Z. 256, 279–286 (2007)
- Eschenburg, J.-H., Tribuzy, R.: Existence and uniqueness of maps into affine homogeneous spaces. Rend. Sem. Mat. Univ. Padova 69, 11–18 (1993)
- Eschenburg, J.-H., Tribuzy, R.: Associated families of pluriharmonic maps and isotropy. Manuscripta Math. 95, 295–310 (1998)
- 10. Ferus, D.: Symmetric submanifolds of euclidean space. Math. Ann. 247, 81-93 (1980)
- 11. Grundland, A.M., Strassburger, A., Zakrzewski, W.J.: Surfaces immersed in $\mathfrak{su}(N + 1)$ Lie algebras obtained from the $\mathbb{C}P^N$ sigma models. J. Phys. A Math. Gen. **39**(29), 9187–9213 (2006)
- 12. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, 2nd edn. Cambridge University Press, Cambridge (2002)
- Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, San Diego (1978)
- 14. Krahe, M.: Para-pluriharmonic maps and twistor spaces. Thesis, University of Augsburg (2007)
- Ohnita, Y., Valli, G.: Pluriharmonic maps into compact Lie groups and factorization into unitons. Proc. Lond. Math. Soc. 61(3), 546–570 (1990)
- Quast, P.: Twistor fibrations over hermitian symmetric spaces and harmonic maps. Differ. Geom. Appl. (in press). doi:10.1016/j.difgeo.2008.06.001
- 17. Rawnsley, J.: Noether's theorem for harmonic maps. Math. Phys. Stud. 6, 197–202 (1984)
- 18. Ruh, E., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc. 149, 569–573 (1970)
- Schäfer, L.: *tt**-Bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24, 60–89 (2006)
- Sym, A.: Soliton surfaces and their applications (Soliton geometry from spectral problems). In: Geometric Aspects of the Einstein Equations and Integrable Systems. Lecture Notes in Physics, vol. 239, pp. 154–231. Springer, Berlin (1986)
- Udagawa, S.: Holomorphicity of certain stable harmonic maps and minimal immersions. Proc. Lond. Math. Soc. 57(3), 577–598 (1988)
- Uhlenbeck, K.: Harmonic maps into Lie groups (classical solutions of the chiral model). J. Differ. Geom. 30, 1–50 (1989)