Pluriharmonic maps into Kéihler symmetric spaces
and Sym’s formula

J.-H. Eschenburg - P. Quast

0 Introduction

An important notion for a surface in euclidean 3-space is the Gauss map which assigns to each
point its normal vector in the sphere > C R3. But can one revert this process and recover the
original surface from its Gauss map? In general this is impossible; e.g. for minimal surfaces
the Gauss map remains the same when we pass to the associated surfaces. However, there
are surface classes where such a one-to-one correspondence exists. Among them are surfaces
of prescribed nonzero constant mean curvature (cmc). By a theorem of Ruh and Vilms [18],
an immersed surface f : M — R3 is cmc if and only if its Gauss map is harmonic. Vice
versa, given a generic harmonic map 2 : M — S into the 2-sphere S, there exists precisely
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one cmc surface f with Gauss map /# and mean curvature H = % (say). It can be constructed
from £ and its associated family using a famous formula of Sym [20] and Bobenko [1].

The aim of our paper is to generalize this construction to higher dimensions and codimen-
sions. We replace the 2-sphere S by an arbitrary Kihler symmetric space P of compact type
and arrive at a new class of Kéhler submanifolds of R", which could be called “pluri-cmc”.
To be more precise, we must look a little closer to the original Sym-Bobenko construc-
tion: starting with a harmonic map & : M — §, one obtains two weakly conformal maps
fr: M — R withh = %( f+ — f-). Outside the branch points, f} and f_ have Gauss
map h and mean curvature H = —% and H = %, respectively. Now let P = G/K be an
arbitrary Kéhler symmetric space of compact type. It can be viewed as an adjoint orbit in its
transvection Lie algebra g in the same way as S is an adjoint orbit in R = so3. As before,
there is a one-to-one correspondence between pluriharmonic maps h : M — P from a
complex manifold M, and pairs of maps f, f- : M — g, which are quasi-holomorphic
(a notion generalizing “weakly conformal”) along the common normal vector & = %( f+—
f-) (Theorem 7.2). Atregular points the Riemannian metrics on M induced by f. are Kihler.
Moreover, both immersions are ‘pluri-cmc’, i.e. when restricted to complex one-dimensional
submanifolds of M they behave like cmc surfaces in a certain sense (cf. (35)); in particular
they allow a very peculiar isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym—Bobenko construction
was already known to Bonnet [2] (see [12]), and, in fact, the viewpoint of Bonnet is an
important tool for our generalization.

1 Parallel surfaces

Let us recall some elementary facts for surfaces in 3-space. Consider an immersion f :
M — R3 of a two-dimensional manifold M (‘surface’). Suppose that M is oriented and that
v : M — S is the Gauss map of f, where S C R denotes the unit sphere. The surface f
gives rise to a family of parallel surfaces f; = f + tv for all t € R (we always exclude the
points where f; is not regular, i.e. not an immersion). The surfaces f and f; have the same
principal curvature vectors on M, but the principal curvatures k1, k7 change fromk; = 1/7;
tokj: = 1/(rj —1).

Suppose now that f has constant Gaussian curvature 1, i.e. r;r, = 1. Then the parallel
surfaces f+| have cmc H = :I:% at their regular points:

1 1 rn4+rnx2

r£1 rmE1 rirp£(r1+r)+1

+1. (1

Further, the metrics on M induced by f| and f_; are conformal to each other. In fact, if
v; € T, M (for some u € M) is a principal curvature vector for «; with |df.v;| = |r;], then
|dfi.vj| = |r; — t|. Consequently, the length ratio of the perpendicular vectors df;.vy and
df;.vy is the same for ¢+ = 1 and r+ = —1 (which proves conformality): using r1r» = 1, we
have

r1—1_r1+l_r1r2+r1—r2—l__1. @)

rz—l.r2+l_r1r2—r1+r2—l_

Vice versa, starting with a surface f ‘M — R3ofcmec H = %, its parallel surfaces fl and
fz have constant Gaussian curvature 1 and cmc —%, respectively. Moreover, the metrics on
M induced by f and fz are conformal.
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2 The Gauss map of cmc surfaces

By a theorem of Ruh and Vilms [18], surfaces of cmc are characterized by the harmonicity
of their Gauss maps:

Theorem 2.1 (Ruh-Vilms) Let M be a Riemann surface and f : M — R3 a conformal
immersion. Then f has cmc if and only if its Gauss map v : M — S is harmonic.

Proof Let H be the mean curvature of an immersion f : M — R3. For each u € M and
v € T,M we have

20,H = —0, trace dv = — trace V,dv Z _trace (Vdv, df.v) = (Av, df.v).

Here, V denotes the Levi—Civita connection and A the Laplacian for the induced metric on M.
For “=”, we use the symmetry of (Vdv, df) in all three arguments (Codazzi). Thus 0, H = 0
for all v if and only if the tangent part of Av vanishes (note that df (T, M) = T, )S), which
is the definition of v : M — § being harmonic. O

Now let us consider the inverse problem: given any harmonic map 4 : M — S on a
Riemann surface M, can we construct a cmc surface f : M — R3 with H = :i:% and Gauss
map v = h? This question has already been solved by Bonnet in 1853 [2,12] as follows:
using the results of the previous section, we know that such surfaces always come in pairs

J=g=*h, 3

where g : M — R? has constant Gaussian curvature 1. Thus the task is to find g from 4. By
harmonicity, the vector Ah is normal to S, i.e. it points into the direction of /. This means
h x Ah = 0 where x denotes the vector product on R?. Using conformal coordinates (x, y)
on M we have

0=hx (hex + hyy) = (h x hy)x + (h x hy)y»
where subscripts mean partial derivatives. In other words, the R3 valued 1-form
y = (h x hy)dx — (h x hy)dy 4)

is closed,! dy = 0. Hence it can be integrated, y = dg for some g : M — R3, provided that
M is simply connected. In fact, g has the desired properties (cf. [12]) as we will see below
(Sect. 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with the
position vector), we may rewrite (4) as

y=hxdhj=Jdhj. (®)]
Hence from (3) we obtain
dfy =dh+Jdhj. 6)

Theorem 2.2 (Bonnet) Let M be a Riemann surface and h : M — S a harmonic map,
then the I-form y = Jdh j is closed. Further, if M is simply connected, there is (up to
translations) precisely one pair of weakly conformal maps f+ : M — R3 with cme H = :F%
and Gauss map h at the regular points, and f+ is obtained by integrating df+ = dh £ y.

! Since harmonic maps are critical for a variational principle (the variation of the energy) which is invariant
under the isometry group of S, this formula can also be obtained as a conservation law from the Noether
theorem, see [12,17].
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Remark Equation (6) looks as if f— and f. were holomorphic and anti-holomorphic, respec-
tively:

Jdfsj=Jdhj+dh=+dfs. )

But remember that J is the almost complex structure on S while f3 does not take values in
S; only the tangent spaces are the same:

dfs(TuM) C ThaS ®)

(in fact we have equality). Mappings f+ satisfying (7) and (8) will be called quasi-holomor-
phic along h (see Sect. 7). In the present context this simply means weak conformality.

The Bonnet construction involves integrating the 1-form y = dg. More recently it was
observed by Sym [20] and Bobenko [1]? that g has a direct geometric meaning in terms of
the associated family and the extended solution of the harmonic map /. We will discuss this
construction in a more general setting, using that (R3, x) is a Lie algebra (corresponding to
the Lie group SO3) and S a particular adjoint orbit which is a Kdhler symmetric space of
compact type. In fact, any such space allows this kind of embedding (Sect. 3 below). We will
also generalize the domain M to a complex manifold of arbitrary dimension (Sect. 4).

3 Kihler symmetric spaces

A Riemannian manifold P is Kdhler if it carries a parallel isometric almost complex struc-
ture J. From Vx(JZ) = JVxZ we have R(X, Y)JZ = JR(X, Y)Z for all tangent vectors
X, Y, Z where R denotes the curvature tensor of P. Consequently (R(X,Y)JZ, JW) =
(R(X,Y)Z, W), and from the block symmetry of R we see

R(X,Y)=R(JX,JY). (©))

Thus R(JX,Y)=R(JJX,JY)=—R(X, JY), and therefore J is a derivation of R at any
point p:

RUX,Y)Z+R(X,JY)Z+R(X,Y)JZ=JR(X,Y)Z.

Now let P = G/K be Kdhler symmetric (hermitian symmetric) of compact type, i.e. P is
Kihler and symmetric of compact type and all the point symmetries (geodesic symmetries)
sp are holomorphic. Then at any point p € P the curvature tensor R is a Lie triple product
on T, P and J,, a derivation of R. We may assume p = eK. Let

g=rt+p (10)

be the corresponding Cartan decomposition (eigenspace decomposition of Ad(s)). Then we
may identify 7, P = p. We extend J,, : p — p to a derivation J p of the Lie algebra g by
putting J » = 0 on £ Since g is semisimple, each derivation is inner. Hence we may view
fp € g (acting on g by ad(fp)). The map

J:P g, pJ, (1)

2 Sym studied surfaces g with Gaussian curvature K = —1 which have no parallel cmc surfaces. Bobenko
transferred this idea to the case K = +1 and to cmc surfaces.
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is called the standard embedding of P (see [10]). Its image P = f(P) C g is an adjoint
orbit: since J is parallel, J, and J, are conjugate for an arbitrary ¢ € P under the trans-
vection g along a geodesic joining p = eK to g. Hence fq = Ad(g)J »- By holomorphicity
each k € K = G, preserves J,, thus fp centralizes K and the map J:P - Ad(G)jp
is an equivariant covering (note that the stabilizer Lie algebra of J p is £). But in fact it is
injective. To see this, note that the orbit P = Ad(G)f p C g isitself an (extrinsic) hermitian
symmetric space with (extrinsic) symmetry s, = Ad(exp 7] ) and almost complex struc-
ture ad(f P)|T1~, p Where p = J p- Since any semisimple hermitian symmetric space is simply
connected [13, p. 376], the map J is one-to-one. The Riemannian metric on P induced by any

Ad(G)-invariant inner product on g coincides up to a constant with the initial Riemannian
metric on each de Rham factor. The tangent and normal spaces of P at p = J,, are

T;P =ad(g)Jy = [p, Jpl = —Jp(p) =p, N;P=p-=t¢, (12)

thus (10) is also the decomposition into the tangent and normal space of P at J »- From now
on, we will no longer distinguish between P and P. Hence we consider P as a submanifold
of g where the point p € P becomes the element p = J), € g.

Example 1 Let P = S C R3 be the 2-sphere. For any p € S we have T),S = p* and
Jpv = p xvforv € T),S. Let s03 be the space of real anti-symmetric 3 x 3-matrices (the
Lie algebra of SO3). The mapping R® — so03 : w > A, with A,x 1= w x x is a linear
isomorphism which transforms the vector product into the Lie product and the usual SO3-
action on R? into the adjoint action on so3. Thus the sphere S C R3, which is the S O3-orbit
of e3, is mapped onto the adjoint orbit of A,; = fe3.

Example 2 Let P = G(C") = U,/(Ux x U,_;) be the complex Grassmannian of
k-dimensional linear subspaces of C". Identifying each complex subspace with its orthog-
onal projection, we embed P as a U,-conjugacy class into the space of hermitian or (after
multiplying with i = /—1) anti-hermitian n x n-matrices which form the Lie algebra u,, of
the unitary group U,; this is the standard embedding.

4 Pluriharmonic maps
Let P = G/K be a semisimple symmetric space and M a simply connected complex mani-
fold with almost complex structure j. We will also use the corresponding rotations

ro = (cosO)l + (sin@)j: TM — TM (13)

forany 6 € [0, 27]. A smooth map h : M — P is called pluriharmonic if h|c is harmonic
for any complex one-dimensional submanifold (complex curve) C C M, or, in other terms,
if the (1,1) part of the Hessian Vdh'D | the so called Levi form, vanishes:

Vdh(v, w) + Vdh(jv, jw) =0 (14)

for any two tangent vectors v, w on M.?
Pluriharmonic maps always come in one-parameter families, called associated families,
defined as follows (cf. [4,9]): the differential of a smooth map f : M — P is a vector bundle

3 In order to define the Hessian one has to choose locally a Kihler metric on M. However, the definition of
pluriharmonicity is independent of the choice of this metric.
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homomorphisme=df : TM — E = f*T P.Vice versa, given any vector bundle E (over M)
endowed with a connection and a bundle homomorphism ¢ : TM — E, we may ask if ¢ is
the differential of a smooth map f; such a homomorphism (or E valued 1-form) ¢ will be
called integrable. If this holds, E can be identified with f*T P and, in particular, E carries
a parallel Lie triple product on its fibres. Assuming that E is already equipped with such a
structure, one obtains the following precise integrability condition for ¢ (see [8]): there exists
amap f : M — P and a parallel vector bundle isometry ® : f*T P — E preserving the
Lie triple structure such that

¢ =odf. (15)

Both f and ® are unique up to translation with some g € G.

Now assume that a smooth map 7 : M — P is given, thus ¢y = dh is integrable. We
may ask if the rotated differential gy = dh ry is integrable for all 6 € [0, 2] as well. This
question was answered in [9]: the integrability condition holds for all ¢y if and only if &
is pluriharmonic. In this case we have a family of pluriharmonic maps hy : M — P (the
associated family of h) and parallel bundle isometries g : f*T P — f; T P preserving the
curvature tensor (Lie triple product) of P such that

dhg = ®gdhry (16)

holds for all 6 € [0, 27r]. We can always assume ®¢ = I, and, if P is an inner symmetric
space (which means that —/ lies in the identity component of K acting on p), we may choose
additionally ®, = —1, due to r; = —1I (see [4]). Since @y (u) maps Ty, P onto T, ) P
preserving the metric and the curvature tensor, it is the differential of a unique element of G
mapping f(«) to fp(u). This will be called ®¢ () again and it defines a family of mappings
by : M — G with &g = e and, if P is inner, @5 (u) = sp), Where s, € G denotes the
point symmetry at g for any g € P.

Remark Pluriharmonic maps have often been described in terms of moving frames. If we
choose (locally) a frame F for i (i.e. a smooth map F : M, — G with F(u)p = h(u) for
anyu € M, C M,where p =¢eK € P = G/K), we obtain also a frame for each /4, namely

Fyg = Oy F. (17)
Then the corresponding Maurer—Cartan form* wy = Fy a Fy e QY(M, g) satisfies
Wy = wg + wp Ty =a)g+)\_la);+)\a)g (18)

due to (16) and the parallelism of @y (see [4]). Here we put A = e % and we, wy are the
components of w = wg = F 14 F in the Cartan decomposition (10), while a);, a)g are the
restrictions of the (complexified) 1-form w, : TM ® C - p® Cto

T'M ={v—iju;veTM}, T'M={v+ijv; veTM}, (19)
the (£i)-eigenbundles of j. As a consequence of (17) and (18) we obtain
@, 'd®y = Ad(F)(@ — wry)
=1 -A2"HAdF)w, + (1 — 1) Ad(F)ay. (20)

This shows that @y is an extended solution in the sense of Uhlenbeck [22], generalized to
the pluriharmonic case by Ohnita and Valli [15].

4 To keep the notation simple we assume that G is a matrix group.
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One may show that Ad(F)w, = %shdsh where s : P — G, p > s is the Cartan
embedding and s, = s o h.

5 The Kéhler symmetric case

Letusrestrict our attention to a Kaghler symmetric space P = G /K of compact type. Using the
standard embedding we consider P as an adjoint orbit in g. Then the almost complex structure
Jpatany p € P C gis just ad(p), restricted to the tangent space T, P = ad(g)p C g.

Now we deal with two almost complex structures: j on M and J on P. Recall that the
definition of a pluriharmonic map 4 : M — P involves only j, not J (which is not present in
the general case). However, for Kidhler symmetric spaces we have another characterization
of pluriharmonic maps in terms of both j and J which generalizes the first part of Bonnet’s
Theorem 2.2:

Theorem 5.1 Let P C g be a Kiihler symmetric space of compact type, M a complex man-
ifold and h - M — P a smooth map. Then h is pluriharmonic if and only if the g valued
I-formy = Jdh j = [h,dh jlis closed.

Proof We have dy (v, w) = 3,y (w) — dpy (v) — ¥ (Vyw — Vyv) and

oy (w) = dylh, ajwh]
= [0yh, ajwh] + [h, 3vajwh]. 21

Thus we obtain

dy(v,w) = [dh.v,dh.jw] — [dh.w, dh.jv]
+ [k, Vdh(v, jw) — Vdh(w, jv)], (22)

where & is considered as a map into the ambient space g rather than into P. The normal and
tangent spaces of P at the point & = h(u) € P (which we may consider as the base point
p = eK) form the Cartan decomposition (10). Since the kernel of ad(#) is &, the term in the
second line of (22) is in p while the two terms in the first line belong to ¢, due to [p, p] C &.
Thus we have dy = 0 if and only if

[dh.v,dh.jw] — [dh.w, dh.jv] = 0, (23)
(Vdh(v, jw) — Vdh(w, ju))T =0, (24)

where ()7 denotes the component in 7}, P. The second Eq. (24) says precisely thath : M — P
is pluriharmonic. The first one, (23), is a consequence of the pluriharmonicity whenever P
is a compact symmetric space: if 4 : M — P is pluriharmonic, we have R(dh.a, dh.b) =0
foralla,b € T'M (see [9,15]). Fora = v —ijv and b = w — i jw this gives (23); recall that
the Lie bracket on p is the curvature operator of P (up to sign). O

Remark 1 All arguments can be generalized to metrics of arbitrary signature (see [14,19]).
However, in the indefinite case we can no more conclude R(dh(T'M), dh(T'M)) = 0 from
the pluriharmonicity of h : M — P. However, this extra condition is extremely useful;
e.g. it is necessary for an associated family to exist. It was an additional assumption in [19]
(called S'-pluriharmonicity). Maybe the closedness of the form J dh j would be the better
definition.
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Remark 2 If M is simply connected, we can integrate y and find a smooth mapping g :
M — gwithdg =y = Jdh j. Using (21) we compute its Hessian

Vdg(v, w) = [dh.v, dh.jw] + [h, Vdh(v, jw)]. (25)

In the Bonnet case (dim M = 2, P = §), the map g at regular points is the surface with
Gaussian curvature K = 1, see Sect. 1 and [12]. This is not completely obvious since g is
not isometric, not even conformal. The second fundamental form o8 of g (assuming that g is
an immersion) is the normal part of its Hessian (25). In the surface case, there is no normal
part inside T'S, thus we get (omitting the symbol ‘dh’)

af(v,w) = [v, jw] =v x jw. (26)
Hence a8 (v, jv) = 0 and a8 (v, v) = [v, jv] = a8 (jv, jv) and further

(@f (v, v), @ (ju, ju)) — lef (v, jw)* = ([v, jv]. [v. jvl)
= ([[v. jv]v], jv)
—(R(v, jv)v, jv)
= v jv* — (v, ju)*. 27)

Comparing with the Gauss equations for the surface g in R? we see that g has Gaussian
curvature K = 1.

Remark 3 The case where M is a surface and P = CP" = G(C"t) ¢ SUp41 Was recently
considered in [11].

6 Extending Sym’s construction

For any pluriharmonic map 7 : M — P = G/K and its associated family (hg, ®y) with
framing Fyp = ®y F we define the Sym map (putting § = % lp=0 and using g = 1)

ki=@FF = @00, =60: M — g. (28)

This was introduced by Sym [20] in the case P = S. It is of particular importance in the
Kéhler symmetric case where P is an adjoint orbit in the Lie algebra g. Thus the group G acts
on P C g by the adjoint representation, and the defining Eq. (16) for the associated family
now becomes

dhg = Ad(Dg) dhry. (29)
On the other hand, the isometry ®¢(u) also maps h(u) onto hg(u):
hg = Ad(Dy)h. (30)
Differentiating this last equation,
dhg = ad(dPg)h + Ad(Dy)dh,
and comparing with (29) we obtain

Ad(Dp) dh(rg — I) = [dDg, hl. 31)
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Now we differentiate once more, this time with respect to 8 at@ = 0, using &g = ¢,5dy =k
andro =1,8rg = j:

dh j =[6d®g, h] = —Jp dk,
where J, = ad(h) is the complex structure on 7j, P. Summing up we get:

Theorem 6.1 The Sym map k = 5O integrates the Bonnet form y :
dk=Jdhj=y. (32)

Thus we have seen that the Sym map & is (up to a translation) nothing else than the Bonnet
map g (we will call it Bonnet—Sym—Bobenko map).

7 Generalizing cmc surfaces

As we saw in the first section, cmc surfaces in 3-space always come in pairs fi where
v = %(f+ — f-) is the Gauss map. More precisely, cmc surfaces with |[H| = % can be
characterized as pairs of immersions fi : M — R3, defined on a Riemann surface M, being
conformal (‘quasi-holomorphic’) and having common harmonic Gauss map & = % (fr—f-).
If M is simply connected, there is an explicit one-to-one correspondence between harmonic
maps h : M — § and cmc surfaces (fy, f_); the reverse correspondence i ~~ (f4, f-)
is given by the Bonnet—Sym—Bobenko construction (see Theorem 2.2). In this form, cmc
surfaces can be generalized to higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let P C R" be a
submanifold whose induced metric is Kihler. Further, let M be any complex manifold and
h: M — P asmooth map. Let j and J denote the almost complex structures on M and P.
Then J induces a complex structure J;, on the fibres of 1*T P, i.e. Jy(,) acts on Tj,) P for
any u € M. A smooth map f : M — R" is called (F)quasi-holomorphic along h if

() df(T,M) C dh(T,M) forany u € M,
2) Jpdf j==Ldf.

Lemma 7.1 If f : M — P is quasi-holomorphic along h, then f is a Kdahler immersion on
its regular set Myeg = {u € M; df, injective}, i.e. j is an isometric parallel almost complex
structure for the induced metric on Mieg.

Proof Jy is isometric and parallel in the bundle 2*T P which contains df (T M), and df
intertwines j and FJj,. O

Theorem 7.2 Let P = G/K be a Kdihler symmetric space of compact type with its stan-
dard embedding P C g and let M be a simply connected complex manifold. Then there is a
one-to-one correspondence (up to translations) between pluriharmonic maps h : M — P
with its associated family (hg, ®g) on the one side and on the other side pairs of maps
fx 1 M — g with common pluriharmonic normal h = %(f+ — f-): M — P suchthat fi
is F-quasi-holomorphic along h. The reverse correspondence h ~ (fy, f-) is given by

Jr=g=%h, (33)

using the Bonnet—Sym—Bobenko map g = §® : M — g.
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Proof Starting with a pluriharmonic map 7 : M — P, we only have to show that the
mappings f+ defined by (33) are quasi-holomorphic and df3+ (T M) L h. But note that

dfs =dg+dh = Jdhj+dh,

and hence J dfy j = —dh = J dh j = £df+. Further, 9,k L h (any adjoint orbit lies in a
sphere and is therefore perpendicular to the position vector) and J,d;,h = [h, dj,h] L h,
thus 9, fr L h.

Vice versa, starting with a quasi-holomorphic pair of maps ( f4, f_) suchthath = L (fy—
f—) is pluriharmonic and normal to both f, f_, we have to show that g = %(f+ + fo)is

the Bonnet—-Sym-Bobenko map. This follows from the quasi-holomorphicity:
.1 . L1
Tdgj =5 dfyj+Jdf-j)=5(dfy —df-)=dh,
and thereforedg = Jdh j=1y. O
Our last theorem summarizes the properties of these mappings.

Theorem 7.3 Let P C g be Kdihler symmetric, M a simply connected complex manifold
and h : M — P a pluriharmonic map. Let ( f, f_) be the quasi-holomorphic pair along h
defined in Theorem (7.2). Suppose that f = fy is an immersion. Then we have:

(1) f is a Kdhler immersion with second fundamental form
a(v, w) = [dh.,df.jw] + J(VLdh).jw + (VEdh).w, (34)

where J, = ad(h) and V' dh is the Hessian ofh: M — P.
(2) Foreachv € TM we have

a(v,v) +a(jv, jv) = [Jpdfv,dfv] = af(df.v, df.v), (35)

where o : denotes the second fundamental form of P C gath € P.
(3) Fixing apointu € M we denote by p = Ty, ) P and € = Np(,) P the tangent and normal
spaces of P C g at h(u). Then the corresponding components of o at u satisfy

0('(31’1) —o, (36)
aéZ’O) = (n*a" @O = [y dh, dn)*?, 37)

where bV and a2 are the restrictions of a (after complexification) to T'"M @ T" M
and T'M ® T'M, respectively.

(4) The associated family hg of h leads to a one-parameter family fg : M — g of isometric
immersions with

dfo = Ad(Dg)df ro, (38)

and the second fundamental form oy of fg satisfies
agp(v, w) = Ad(Pg)ay (v, row) (39)
ag,e (v, w) = Ad(Pg)ae (rgv, row). (40)

Proof (1) By Lemma 7.1 f is a Kihler immersion. We equip M with the induced (Kéhler)
metric. Then f is an isometric immersion and « is just its Hessian, « = Vdf = Vdg+ Vdh.
Form (25) we obtain

a(v, w) = [dh.v,dh.jw] + [h, (Vydh).jw] + (Vydh).w. 41)
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The middle term [h, Vdh(v, jw)] of (41) can be replaced by JWVEdh(v, jw) where
VvPdh is the p-projection of Vdh (i.e. the Hessian of 7 : M — P) since ad(h) = ad(jh)
vanishes on ¢ and acts as J = Jj, on p (see Sect. 3). The last term Vdh (v, w) splits into its
p and & components where the £-component is given by the second fundamental form «” of
P C gwhichis o« (X, Y) = [JX, Y]forall X,Y € p.> Thus we obtain

a(,w) = [dh.v,dh.jw] + [Jdh.v, dh.w] + [h, (VEdh).jw] + (VEdh).w.
For the second term on the right hand side we have
[Jdh.v,dh.w] = —[dh.v, Jdh.w] = [dh.v, Jdh.jjw] = [dh.v, dg.jw],

and combining this with the first term we obtain (34).

(2) The right hand side of (34) is already decomposed into its components with respect to
€ and p (note that df (T, M) C p and [p, p] C £), and (36) follows from (23). To prove (37)
note that « = Vdh + Vdg, and

Vdg = VIh,dh jl = [dh,dh j1+ [h, Vdh j].
The ¢-component of the second term [h, Vdh j] vanishes since ad(h) = ad(f;,) takes values

in p. The first term [dh, dh j] is anti-symmetric on 7'M ® T'M (where j is just a scalar
factor i), but Vd g(2 TS symmetric, so it must be zero. We are left with the (2, 0) component
of (Vdh)s = aP(dh, dh) (mind that ¢ is the normal space of P C g at p = h(u)).

(3) In order to prove (35), we only have to consider the ¢-part of (34) since the expression
a(v, v)+a(jv, jv) belongs to the (1, 1)-part of « whose p-component vanishes by (36). We
have

a(v,v) +a(jv, jv) = [dh.v,df. jv]l + [dh.jv,df.jjv],
and since df j = —J df (due to the quasi-holomorphicity of f), the second term is
[dh.jv,df.jjv] = —[dh.jv, Jdf.jv]l = [J dh.jv,df.jv] = [dg.v,df.jv].

Thus the two terms add up to [df.v,df.jv] = —[df.v, Jdf.v] = [Jdf.v,df.v] which
proves (35).
(4) Each pluriharmonic map hg associated with & gives a Bonnet—-Sym—Bobenko map gy
with
dgg = Jnydhe j
= Jhg Ad(q)g)dh rgj

= Ad(®g) Jpdh jrg
= Ad(Py)dg rp. 42)
But we also have
dhg = Ad(Pg)dh r, (43)

(see (29)), and therefore we obtain (38) from dfyg = dgg +dhg. Since Ad(dyp) is an isometry
of g and ry is an isometry for the Kéhler metric on M induced by f, the immersions fj are

5 We have (o P(x,v), gy =(0xY, &) =—(Y, dx’;“) for anys € t. The vector X € T, P can be expressed by
the action of a one-parameter group g; = exth for some X € p, more precisely, X = | =0 Ad(g)p =

[X.pl = —JX.Hence X = JX.Now dx& = 4|, Ad(g)E = [X.&] = [JX.&], and (@ (X, V). &) =
=Y, [JX, £]) = —(I¥, JX], §).
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isometric. From the ¢-part of (34) we get (replacing dh with dhg and using (43),

ag.e(v, w) = [Ad(Py)dh.rov, Ad(Py)df.rgjw]
= Ad(Dg)[dh.rgv, df.jrow]
= Ad(Pg)a(rgv, rpw)

which proves (40). Finally, (39) can be concluded from the p-part of (34) observing

VFPdhg = VI (g dhrg) = ©e(VEdh)rg,

which holds because ry and ®¢y (viewed as a homomorphism 2*T P — h; T P) are parallel.

[m}

Concluding remarks

1

(@)

3)

“)

(&)

Equation (35) is the generalization of the cmc property H = —%: it says that for any
complex one-dimensional submanifold (complex curve) C C M, the mean curvature
vector of the surface f|c in g is given by the second fundamental form of P along
h|c. If M is itself a surface and P = S2 with the position vector as unit normal, then
(a(v,v) + a(jv, jv),h) = —(df.v,df.v) and hence f has cmc H = —%. Due to
(35), we would like to call the immersion f ‘pluri-cmc’ although in general the mean
curvature vector is not constant (not even of constant length) along f|c.

If h is isotropic pluriharmonic (see [9]), i.e. h admits a trivial associated family hy = h,
the maps f1 are twistor lifts of other isotropic pluriharmonic maps, see [16]. If & is
even holomorphic (which is stronger), then f; = 0 and f_ = 2h.

All three maps e = f, g, h have associated families ep formed in the same way:

deg = Ad(Dg)derg (44)

Geometrically this means that the tangent space de, (T, M) which is a subspace of
the J-closure of dh, (T, M) (i.e. the smallest complex subspace of T}, P containing
dh, (T,,M)) is moved in a parallel way for all three cases, using the same automorphism
Ad(Pg (u)).

There is an important difference between the case of cmc surfaces in 3-space and the
higher dimensional analogues: if f : M — P is pluriharmonic but not (anti)-holomor-
phic, the dimension of M is strictly smaller than the one of P, with the only exception
P = S2.In fact, the flatness of dh(T'M) C h*T P ® C determines a dimension bound,
see [7,21]. This difference is reflected in the appearance of ar;, which does not occur in
the cmc case.

There is yet another notion generalizing cmc surfaces, the so called ppmc submani-
folds, see [3]. These are Kahler submanifolds M C R”" with parallel oD and they are
characterized by the pluriharmonicity of their Gauss map. Our present generalization is
different: note that the pluriharmonic map # : M — P is not the (Grassmann-valued)
Gauss map of f but just one distinguished unit normal vector of f.. This is the usual
Gauss map only for surfaces in 3-space (P = $2). A flaw of the ppmc notion is the
difficulty of finding interesting examples, see also [5,6]. In contrast, the Bonnet—-Sym-—
Bobenko construction gives many nontrivial examples of ‘pluri-cmc’ submanifolds.
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