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0 Introduction

An important notion for a surface in euclidean 3-space is the Gauss map which assigns to each
point its normal vector in the sphere S2 ⊂ R

3. But can one revert this process and recover the
original surface from its Gauss map? In general this is impossible; e.g. for minimal surfaces
the Gauss map remains the same when we pass to the associated surfaces. However, there
are surface classes where such a one-to-one correspondence exists. Among them are surfaces
of prescribed nonzero constant mean curvature (cmc). By a theorem of Ruh and Vilms [18],
an immersed surface f : M → R

3 is cmc if and only if its Gauss map is harmonic. Vice
versa, given a generic harmonic map h : M → S into the 2-sphere S, there exists precisely
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one cmc surface f with Gauss map h and mean curvature H = 1
2 (say). It can be constructed

from h and its associated family using a famous formula of Sym [20] and Bobenko [1].
The aim of our paper is to generalize this construction to higher dimensions and codimen-

sions. We replace the 2-sphere S by an arbitrary Kähler symmetric space P of compact type
and arrive at a new class of Kähler submanifolds of R

n , which could be called “pluri-cmc”.
To be more precise, we must look a little closer to the original Sym–Bobenko construc-
tion: starting with a harmonic map h : M → S, one obtains two weakly conformal maps
f± : M → R

3 with h = 1
2 ( f+ − f−). Outside the branch points, f+ and f− have Gauss

map h and mean curvature H = − 1
2 and H = 1

2 , respectively. Now let P = G/K be an
arbitrary Kähler symmetric space of compact type. It can be viewed as an adjoint orbit in its
transvection Lie algebra g in the same way as S is an adjoint orbit in R

3 = so3. As before,
there is a one-to-one correspondence between pluriharmonic maps h : M → P from a
complex manifold M , and pairs of maps f+, f− : M → g, which are quasi-holomorphic
(a notion generalizing “weakly conformal”) along the common normal vector h = 1

2 ( f+ −
f−) (Theorem 7.2). At regular points the Riemannian metrics on M induced by f± are Kähler.
Moreover, both immersions are ‘pluri-cmc’, i.e. when restricted to complex one-dimensional
submanifolds of M they behave like cmc surfaces in a certain sense (cf. (35)); in particular
they allow a very peculiar isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym–Bobenko construction
was already known to Bonnet [2] (see [12]), and, in fact, the viewpoint of Bonnet is an
important tool for our generalization.

1 Parallel surfaces

Let us recall some elementary facts for surfaces in 3-space. Consider an immersion f :
M → R

3 of a two-dimensional manifold M (‘surface’). Suppose that M is oriented and that
ν : M → S is the Gauss map of f, where S ⊂ R

3 denotes the unit sphere. The surface f
gives rise to a family of parallel surfaces ft = f + tν for all t ∈ R (we always exclude the
points where ft is not regular, i.e. not an immersion). The surfaces f and ft have the same
principal curvature vectors on M , but the principal curvatures κ1, κ2 change from κ j = 1/r j

to κ j,t = 1/(r j − t).
Suppose now that f has constant Gaussian curvature 1, i.e. r1r2 = 1. Then the parallel

surfaces f∓1 have cmc H = ± 1
2 at their regular points:

2H = 1

r1 ± 1
+ 1

r2 ± 1
= r1 + r2 ± 2

r1r2 ± (r1 + r2) + 1
= ±1. (1)

Further, the metrics on M induced by f1 and f−1 are conformal to each other. In fact, if
v j ∈ Tu M (for some u ∈ M) is a principal curvature vector for κ j with |d f.v j | = |r j |, then
|d ft .v j | = |r j − t |. Consequently, the length ratio of the perpendicular vectors d ft .v1 and
d ft .v2 is the same for t = 1 and t = −1 (which proves conformality): using r1r2 = 1, we
have

r1 − 1

r2 − 1
: r1 + 1

r2 + 1
= r1r2 + r1 − r2 − 1

r1r2 − r1 + r2 − 1
= −1. (2)

Vice versa, starting with a surface f̃ : M → R
3 of cmc H = 1

2 , its parallel surfaces f̃1 and
f̃2 have constant Gaussian curvature 1 and cmc − 1

2 , respectively. Moreover, the metrics on
M induced by f̃ and f̃2 are conformal.

   



                                          471

2 The Gauss map of cmc surfaces

By a theorem of Ruh and Vilms [18], surfaces of cmc are characterized by the harmonicity
of their Gauss maps:

Theorem 2.1 (Ruh–Vilms) Let M be a Riemann surface and f : M → R
3 a conformal

immersion. Then f has cmc if and only if its Gauss map ν : M → S is harmonic.

Proof Let H be the mean curvature of an immersion f : M → R
3. For each u ∈ M and

v ∈ Tu M we have

2∂v H = −∂v trace dν = − trace ∇vdν
∗= − trace 〈∇dν, d f.v〉 = 〈�ν, d f.v〉.

Here, ∇ denotes the Levi–Civita connection and � the Laplacian for the induced metric on M .
For “

∗=”, we use the symmetry of 〈∇dν, d f 〉 in all three arguments (Codazzi). Thus ∂v H = 0
for all v if and only if the tangent part of �ν vanishes (note that d f (Tu M) = Tν(u)S), which
is the definition of ν : M → S being harmonic. 	


Now let us consider the inverse problem: given any harmonic map h : M → S on a
Riemann surface M , can we construct a cmc surface f : M → R

3 with H = ± 1
2 and Gauss

map ν = h? This question has already been solved by Bonnet in 1853 [2,12] as follows:
using the results of the previous section, we know that such surfaces always come in pairs

f± = g ± h, (3)

where g : M → R
3 has constant Gaussian curvature 1. Thus the task is to find g from h. By

harmonicity, the vector �h is normal to S, i.e. it points into the direction of h. This means
h × �h = 0 where × denotes the vector product on R

3. Using conformal coordinates (x, y)

on M we have

0 = h × (hxx + hyy) = (h × hx )x + (h × hy)y,

where subscripts mean partial derivatives. In other words, the R
3 valued 1-form

γ = (h × hy)dx − (h × hx )dy (4)

is closed,1 dγ = 0. Hence it can be integrated, γ = dg for some g : M → R
3, provided that

M is simply connected. In fact, g has the desired properties (cf. [12]) as we will see below
(Sect. 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with the
position vector), we may rewrite (4) as

γ = h × dh j = J dh j. (5)

Hence from (3) we obtain

d f± = dh ± J dh j. (6)

Theorem 2.2 (Bonnet) Let M be a Riemann surface and h : M → S a harmonic map,
then the 1-form γ = J dh j is closed. Further, if M is simply connected, there is (up to
translations) precisely one pair of weakly conformal maps f± : M → R

3 with cmc H = ∓ 1
2

and Gauss map h at the regular points, and f± is obtained by integrating d f± = dh ± γ .

1 Since harmonic maps are critical for a variational principle (the variation of the energy) which is invariant
under the isometry group of S, this formula can also be obtained as a conservation law from the Noether
theorem, see [12,17].
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Remark Equation (6) looks as if f− and f+ were holomorphic and anti-holomorphic, respec-
tively:

J d f± j = J dh j ± dh = ±d f±. (7)

But remember that J is the almost complex structure on S while f± does not take values in
S; only the tangent spaces are the same:

d f±(Tu M) ⊂ Th(u)S (8)

(in fact we have equality). Mappings f± satisfying (7) and (8) will be called quasi-holomor-
phic along h (see Sect. 7). In the present context this simply means weak conformality.

The Bonnet construction involves integrating the 1-form γ = dg. More recently it was
observed by Sym [20] and Bobenko [1]2 that g has a direct geometric meaning in terms of
the associated family and the extended solution of the harmonic map h. We will discuss this
construction in a more general setting, using that (R3,×) is a Lie algebra (corresponding to
the Lie group SO3) and S a particular adjoint orbit which is a Kähler symmetric space of
compact type. In fact, any such space allows this kind of embedding (Sect. 3 below). We will
also generalize the domain M to a complex manifold of arbitrary dimension (Sect. 4).

3 Kähler symmetric spaces

A Riemannian manifold P is Kähler if it carries a parallel isometric almost complex struc-
ture J . From ∇X (J Z) = J∇X Z we have R(X, Y )J Z = J R(X, Y )Z for all tangent vectors
X, Y, Z where R denotes the curvature tensor of P . Consequently 〈R(X, Y )J Z , J W 〉 =
〈R(X, Y )Z , W 〉, and from the block symmetry of R we see

R(X, Y ) = R(J X, JY ). (9)

Thus R(J X, Y ) = R(J J X, JY ) = −R(X, JY ), and therefore J is a derivation of R at any
point p:

R(J X, Y )Z + R(X, JY )Z + R(X, Y )J Z = J R(X, Y )Z .

Now let P = G/K be Kähler symmetric (hermitian symmetric) of compact type, i.e. P is
Kähler and symmetric of compact type and all the point symmetries (geodesic symmetries)
sp are holomorphic. Then at any point p ∈ P the curvature tensor R is a Lie triple product
on Tp P and Jp a derivation of R. We may assume p = eK . Let

g = k + p (10)

be the corresponding Cartan decomposition (eigenspace decomposition of Ad(sp)). Then we
may identify Tp P = p. We extend Jp : p → p to a derivation Ĵp of the Lie algebra g by
putting Ĵp = 0 on k. Since g is semisimple, each derivation is inner. Hence we may view
Ĵp ∈ g (acting on g by ad( Ĵp)). The map

Ĵ : P → g, p �→ Ĵp (11)

2 Sym studied surfaces g with Gaussian curvature K = −1 which have no parallel cmc surfaces. Bobenko
transferred this idea to the case K = +1 and to cmc surfaces.
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is called the standard embedding of P (see [10]). Its image P̃ = Ĵ (P) ⊂ g is an adjoint
orbit: since J is parallel, Jp and Jq are conjugate for an arbitrary q ∈ P under the trans-
vection g along a geodesic joining p = eK to q. Hence Ĵq = Ad(g) Ĵp . By holomorphicity
each k ∈ K = G p preserves Jp , thus Ĵp centralizes K and the map Ĵ : P → Ad(G) Ĵp

is an equivariant covering (note that the stabilizer Lie algebra of Ĵp is k). But in fact it is
injective. To see this, note that the orbit P̃ = Ad(G) Ĵp ⊂ g is itself an (extrinsic) hermitian
symmetric space with (extrinsic) symmetry sp = Ad(exp π Ĵp) and almost complex struc-
ture ad( Ĵp)|Tp̃ P̃ where p̃ = Ĵp . Since any semisimple hermitian symmetric space is simply

connected [13, p. 376], the map Ĵ is one-to-one. The Riemannian metric on P̃ induced by any
Ad(G)-invariant inner product on g coincides up to a constant with the initial Riemannian
metric on each de Rham factor. The tangent and normal spaces of P̃ at p̃ = Ĵp are

Tp̃ P̃ = ad(g) Ĵp = [p, Ĵp] = −Jp(p) = p, N p̃ P̃ = p⊥ = k, (12)

thus (10) is also the decomposition into the tangent and normal space of P̃ at Ĵp . From now
on, we will no longer distinguish between P and P̃ . Hence we consider P as a submanifold
of g where the point p ∈ P becomes the element p = Ĵp ∈ g.

Example 1 Let P = S ⊂ R
3 be the 2-sphere. For any p ∈ S we have Tp S = p⊥ and

Jpv = p × v for v ∈ Tp S. Let so3 be the space of real anti-symmetric 3 × 3-matrices (the
Lie algebra of SO3). The mapping R

3 → so3 : w �→ Aw with Awx := w × x is a linear
isomorphism which transforms the vector product into the Lie product and the usual SO3-
action on R

3 into the adjoint action on so3. Thus the sphere S ⊂ R
3, which is the SO3-orbit

of e3, is mapped onto the adjoint orbit of Ae3 = Ĵe3 .

Example 2 Let P = Gk(C
n) = Un/(Uk × Un−k) be the complex Grassmannian of

k-dimensional linear subspaces of C
n . Identifying each complex subspace with its orthog-

onal projection, we embed P as a Un-conjugacy class into the space of hermitian or (after
multiplying with i = √−1) anti-hermitian n × n-matrices which form the Lie algebra un of
the unitary group Un ; this is the standard embedding.

4 Pluriharmonic maps

Let P = G/K be a semisimple symmetric space and M a simply connected complex mani-
fold with almost complex structure j . We will also use the corresponding rotations

rθ = (cos θ)I + (sin θ) j : T M → T M (13)

for any θ ∈ [0, 2π]. A smooth map h : M → P is called pluriharmonic if h|C is harmonic
for any complex one-dimensional submanifold (complex curve) C ⊂ M , or, in other terms,
if the (1,1) part of the Hessian ∇dh(1,1), the so called Levi form, vanishes:

∇dh(v,w) + ∇dh( jv, jw) = 0 (14)

for any two tangent vectors v,w on M .3

Pluriharmonic maps always come in one-parameter families, called associated families,
defined as follows (cf. [4,9]): the differential of a smooth map f : M → P is a vector bundle

3 In order to define the Hessian one has to choose locally a Kähler metric on M . However, the definition of
pluriharmonicity is independent of the choice of this metric.
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homomorphismϕ=d f : T M → E = f ∗T P . Vice versa, given any vector bundle E (over M)
endowed with a connection and a bundle homomorphism ϕ : T M → E , we may ask if ϕ is
the differential of a smooth map f ; such a homomorphism (or E valued 1-form) ϕ will be
called integrable. If this holds, E can be identified with f ∗T P and, in particular, E carries
a parallel Lie triple product on its fibres. Assuming that E is already equipped with such a
structure, one obtains the following precise integrability condition for ϕ (see [8]): there exists
a map f : M → P and a parallel vector bundle isometry 	 : f ∗T P → E preserving the
Lie triple structure such that

ϕ = 	 d f. (15)

Both f and 	 are unique up to translation with some g ∈ G.
Now assume that a smooth map h : M → P is given, thus ϕ0 = dh is integrable. We

may ask if the rotated differential ϕθ = dh rθ is integrable for all θ ∈ [0, 2π] as well. This
question was answered in [9]: the integrability condition holds for all ϕθ if and only if h
is pluriharmonic. In this case we have a family of pluriharmonic maps hθ : M → P (the
associated family of h) and parallel bundle isometries 	θ : f ∗T P → f ∗

θ T P preserving the
curvature tensor (Lie triple product) of P such that

dhθ = 	θ dh rθ (16)

holds for all θ ∈ [0, 2π ]. We can always assume 	0 = I , and, if P is an inner symmetric
space (which means that −I lies in the identity component of K acting on p), we may choose
additionally 	π = −I , due to rπ = −I (see [4]). Since 	θ (u) maps T f (u) P onto T fθ (u) P
preserving the metric and the curvature tensor, it is the differential of a unique element of G
mapping f (u) to fθ (u). This will be called 	θ (u) again and it defines a family of mappings
	θ : M → G with 	0 = e and, if P is inner, 	π (u) = sh(u), where sq ∈ G denotes the
point symmetry at q for any q ∈ P .

Remark Pluriharmonic maps have often been described in terms of moving frames. If we
choose (locally) a frame F for h (i.e. a smooth map F : Mo → G with F(u)p = h(u) for
any u ∈ Mo ⊂ M , where p = eK ∈ P = G/K ), we obtain also a frame for each hθ , namely

Fθ = 	θ F. (17)

Then the corresponding Maurer–Cartan form4 ωθ = F−1
θ d Fθ ∈ �1(M, g) satisfies

ωθ = ωk + ωp rθ = ωk + λ−1ω′
p + λω′′

p (18)

due to (16) and the parallelism of 	θ (see [4]). Here we put λ = e−iθ , and ωk, ωp are the
components of ω = ω0 = F−1d F in the Cartan decomposition (10), while ω′

p, ω′′
p are the

restrictions of the (complexified) 1-form ωp : T M ⊗ C → p ⊗ C to

T ′M = {v − i jv; v ∈ T M}, T ′′M = {v + i jv; v ∈ T M}, (19)

the (±i)-eigenbundles of j . As a consequence of (17) and (18) we obtain

	−1
θ d	θ = Ad(F)(ω − ω rθ )

= (1 − λ−1) Ad(F)ω′
p + (1 − λ) Ad(F)ω′′

p. (20)

This shows that 	θ is an extended solution in the sense of Uhlenbeck [22], generalized to
the pluriharmonic case by Ohnita and Valli [15].

4 To keep the notation simple we assume that G is a matrix group.
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One may show that Ad(F)ωp = 1
2 shdsh where s : P → G, p �→ sp is the Cartan

embedding and sh = s ◦ h.

5 The Kähler symmetric case

Let us restrict our attention to a Kähler symmetric space P = G/K of compact type. Using the
standard embedding we consider P as an adjoint orbit in g. Then the almost complex structure
Jp at any p ∈ P ⊂ g is just ad(p), restricted to the tangent space Tp P = ad(g)p ⊂ g.

Now we deal with two almost complex structures: j on M and J on P . Recall that the
definition of a pluriharmonic map h : M → P involves only j , not J (which is not present in
the general case). However, for Kähler symmetric spaces we have another characterization
of pluriharmonic maps in terms of both j and J which generalizes the first part of Bonnet’s
Theorem 2.2:

Theorem 5.1 Let P ⊂ g be a Kähler symmetric space of compact type, M a complex man-
ifold and h : M → P a smooth map. Then h is pluriharmonic if and only if the g valued
1-form γ = J dh j = [h, dh j] is closed.

Proof We have dγ (v,w) = ∂vγ (w) − ∂wγ (v) − γ (∇vw − ∇wv) and

∂vγ (w) = ∂v[h, ∂ jwh]
= [∂vh, ∂ jwh] + [h, ∂v∂ jwh]. (21)

Thus we obtain

dγ (v,w) = [dh.v, dh. jw] − [dh.w, dh. jv]
+ [h,∇dh(v, jw) − ∇dh(w, jv)], (22)

where h is considered as a map into the ambient space g rather than into P . The normal and
tangent spaces of P at the point h = h(u) ∈ P (which we may consider as the base point
p = eK ) form the Cartan decomposition (10). Since the kernel of ad(h) is k, the term in the
second line of (22) is in p while the two terms in the first line belong to k, due to [p, p] ⊂ k.
Thus we have dγ = 0 if and only if

[dh.v, dh. jw] − [dh.w, dh. jv] = 0, (23)

(∇dh(v, jw) − ∇dh(w, jv))T = 0, (24)

where ( )T denotes the component in Th P . The second Eq. (24) says precisely that h : M → P
is pluriharmonic. The first one, (23), is a consequence of the pluriharmonicity whenever P
is a compact symmetric space: if h : M → P is pluriharmonic, we have R(dh.a, dh.b) = 0
for all a, b ∈ T ′M (see [9,15]). For a = v − i jv and b = w − i jw this gives (23); recall that
the Lie bracket on p is the curvature operator of P (up to sign). 	


Remark 1 All arguments can be generalized to metrics of arbitrary signature (see [14,19]).
However, in the indefinite case we can no more conclude R(dh(T ′M), dh(T ′M)) = 0 from
the pluriharmonicity of h : M → P . However, this extra condition is extremely useful;
e.g. it is necessary for an associated family to exist. It was an additional assumption in [19]
(called S1-pluriharmonicity). Maybe the closedness of the form J dh j would be the better
definition.
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Remark 2 If M is simply connected, we can integrate γ and find a smooth mapping g :
M → g with dg = γ = J dh j . Using (21) we compute its Hessian

∇dg(v,w) = [dh.v, dh. jw] + [h,∇dh(v, jw)]. (25)

In the Bonnet case (dim M = 2, P = S), the map g at regular points is the surface with
Gaussian curvature K = 1, see Sect. 1 and [12]. This is not completely obvious since g is
not isometric, not even conformal. The second fundamental form αg of g (assuming that g is
an immersion) is the normal part of its Hessian (25). In the surface case, there is no normal
part inside T S, thus we get (omitting the symbol ‘dh’)

αg(v,w) = [v, jw] = v × jw. (26)

Hence αg(v, jv) = 0 and αg(v, v) = [v, jv] = αg( jv, jv) and further

〈αg(v, v), αg( jv, jv)〉 − |αg(v, jw)|2 = 〈[v, jv], [v, jv]〉
= 〈[[v, jv]v], jv〉
= −〈R(v, jv)v, jv〉
= |v|2| jv|2 − 〈v, jv〉2. (27)

Comparing with the Gauss equations for the surface g in R
3 we see that g has Gaussian

curvature K = 1.

Remark 3 The case where M is a surface and P = CPn = G1(C
n+1) ⊂ sun+1 was recently

considered in [11].

6 Extending Sym’s construction

For any pluriharmonic map h : M → P = G/K and its associated family (hθ ,	θ ) with
framing Fθ = 	θ F we define the Sym map (putting δ = ∂

∂θ
|θ=0 and using 	0 = I )

k := (δF)F−1 = (δ	)	−1
0 = δ	 : M → g. (28)

This was introduced by Sym [20] in the case P = S. It is of particular importance in the
Kähler symmetric case where P is an adjoint orbit in the Lie algebra g. Thus the group G acts
on P ⊂ g by the adjoint representation, and the defining Eq. (16) for the associated family
now becomes

dhθ = Ad(	θ ) dh rθ . (29)

On the other hand, the isometry 	θ (u) also maps h(u) onto hθ (u):

hθ = Ad(	θ )h. (30)

Differentiating this last equation,

dhθ = ad(d	θ )h + Ad(	θ )dh,

and comparing with (29) we obtain

Ad(	θ ) dh(rθ − I ) = [d	θ , h]. (31)
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Now we differentiate once more, this time with respect to θ at θ = 0, using 	0 = e, δ	θ = k
and r0 = I , δrθ = j :

dh j = [δd	θ , h] = −Jh dk,

where Jh = ad(h) is the complex structure on Th P . Summing up we get:

Theorem 6.1 The Sym map k = δ	 integrates the Bonnet form γ :

dk = J dh j = γ. (32)

Thus we have seen that the Sym map k is (up to a translation) nothing else than the Bonnet
map g (we will call it Bonnet–Sym–Bobenko map).

7 Generalizing cmc surfaces

As we saw in the first section, cmc surfaces in 3-space always come in pairs f± where
ν = 1

2 ( f+ − f−) is the Gauss map. More precisely, cmc surfaces with |H | = 1
2 can be

characterized as pairs of immersions f± : M → R
3, defined on a Riemann surface M, being

conformal (‘quasi-holomorphic’) and having common harmonic Gauss map h = 1
2 ( f+− f−).

If M is simply connected, there is an explicit one-to-one correspondence between harmonic
maps h : M → S and cmc surfaces ( f+, f−); the reverse correspondence h � ( f+, f−)

is given by the Bonnet–Sym–Bobenko construction (see Theorem 2.2). In this form, cmc
surfaces can be generalized to higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let P ⊂ R
n be a

submanifold whose induced metric is Kähler. Further, let M be any complex manifold and
h : M → P a smooth map. Let j and J denote the almost complex structures on M and P .
Then J induces a complex structure Jh on the fibres of h∗T P , i.e. Jh(u) acts on Th(u) P for
any u ∈ M . A smooth map f : M → R

n is called (∓)quasi-holomorphic along h if

(1) d f (Tu M) ⊂ dh(Tu M) for any u ∈ M ,
(2) Jh d f j = ±d f .

Lemma 7.1 If f : M → P is quasi-holomorphic along h, then f is a Kähler immersion on
its regular set Mreg = {u ∈ M; d fu injective}, i.e. j is an isometric parallel almost complex
structure for the induced metric on Mreg.

Proof Jh is isometric and parallel in the bundle h∗T P which contains d f (T M), and d f
intertwines j and ∓Jh . 	

Theorem 7.2 Let P = G/K be a Kähler symmetric space of compact type with its stan-
dard embedding P ⊂ g and let M be a simply connected complex manifold. Then there is a
one-to-one correspondence (up to translations) between pluriharmonic maps h : M → P
with its associated family (hθ ,	θ ) on the one side and on the other side pairs of maps
f± : M → g with common pluriharmonic normal h = 1

2 ( f+ − f−) : M → P such that f±
is ∓-quasi-holomorphic along h. The reverse correspondence h � ( f+, f−) is given by

f± = g ± h, (33)

using the Bonnet–Sym–Bobenko map g = δ	 : M → g.
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Proof Starting with a pluriharmonic map h : M → P , we only have to show that the
mappings f± defined by (33) are quasi-holomorphic and d f±(T M) ⊥ h. But note that

d f± = dg ± dh = J dh j ± dh,

and hence J d f± j = −dh ± J dh j = ±d f±. Further, ∂vh ⊥ h (any adjoint orbit lies in a
sphere and is therefore perpendicular to the position vector) and Jh∂ jvh = [h, ∂ jvh] ⊥ h,
thus ∂v f± ⊥ h.

Vice versa, starting with a quasi-holomorphic pair of maps ( f+, f−) such that h = 1
2 ( f+−

f−) is pluriharmonic and normal to both f+, f−, we have to show that g = 1
2 ( f+ + f−) is

the Bonnet–Sym–Bobenko map. This follows from the quasi-holomorphicity:

J dg j = 1

2
(J d f+ j + J d f− j) = 1

2
(d f+ − d f−) = dh,

and therefore dg = J dh j = γ . 	

Our last theorem summarizes the properties of these mappings.

Theorem 7.3 Let P ⊂ g be Kähler symmetric, M a simply connected complex manifold
and h : M → P a pluriharmonic map. Let ( f+, f−) be the quasi-holomorphic pair along h
defined in Theorem (7.2). Suppose that f = f+ is an immersion. Then we have:
(1) f is a Kähler immersion with second fundamental form

α(v,w) = [dh.v, d f. jw] + Jh(∇ P
v dh). jw + (∇ P

v dh).w, (34)

where Jh = ad(h) and ∇ P dh is the Hessian of h : M → P.
(2) For each v ∈ T M we have

α(v, v) + α( jv, jv) = [Jhd f.v, d f.v] = αP
h (d f.v, d f.v), (35)

where αP
h denotes the second fundamental form of P ⊂ g at h ∈ P.

(3) Fixing a point u ∈ M we denote by p = Th(u) P and k = Nh(u) P the tangent and normal
spaces of P ⊂ g at h(u). Then the corresponding components of α at u satisfy

α
(1,1)
p = 0, (36)

α
(2,0)
k = (h∗αP )(2,0) = [Jh dh, dh](2,0), (37)

where α(1,1) and α(2,0) are the restrictions of α (after complexification) to T ′M ⊗ T ′′M
and T ′M ⊗ T ′M, respectively.

(4) The associated family hθ of h leads to a one-parameter family fθ : M → g of isometric
immersions with

d fθ = Ad(	θ )d f rθ , (38)

and the second fundamental form αθ of fθ satisfies

αθ,p(v,w) = Ad(	θ )αp(v, rθw) (39)

αθ,k(v,w) = Ad(	θ )αk(rθv, rθw). (40)

Proof (1) By Lemma 7.1 f is a Kähler immersion. We equip M with the induced (Kähler)
metric. Then f is an isometric immersion and α is just its Hessian, α = ∇d f = ∇dg +∇dh.

Form (25) we obtain

α(v,w) = [dh.v, dh. jw] + [h, (∇vdh). jw] + (∇vdh).w. (41)
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The middle term [h,∇dh(v, jw)] of (41) can be replaced by Jh∇ P dh(v, jw) where
∇ P dh is the p-projection of ∇dh (i.e. the Hessian of h : M → P) since ad(h) = ad( Ĵh)

vanishes on k and acts as J = Jh on p (see Sect. 3). The last term ∇dh(v,w) splits into its
p and k components where the k-component is given by the second fundamental form αP of
P ⊂ g which is αP (X, Y ) = [J X, Y ] for all X, Y ∈ p.5 Thus we obtain

α(v,w) = [dh.v, dh. jw] + [Jdh.v, dh.w] + [h, (∇ P
v dh). jw] + (∇ P

v dh).w.

For the second term on the right hand side we have

[Jdh.v, dh.w] = −[dh.v, Jdh.w] = [dh.v, Jdh. j jw] = [dh.v, dg. jw],
and combining this with the first term we obtain (34).

(2) The right hand side of (34) is already decomposed into its components with respect to
k and p (note that d f (Tu M) ⊂ p and [p, p] ⊂ k), and (36) follows from (23). To prove (37)
note that α = ∇dh + ∇dg, and

∇dg = ∇[h, dh j] = [dh, dh j] + [h,∇dh j].
The k-component of the second term [h,∇dh j] vanishes since ad(h) = ad( Ĵh) takes values
in p. The first term [dh, dh j] is anti-symmetric on T ′M ⊗ T ′M (where j is just a scalar
factor i), but ∇dg(2,0)

k is symmetric, so it must be zero. We are left with the (2, 0) component
of (∇dh)k = αP (dh, dh) (mind that k is the normal space of P ⊂ g at p = h(u)).

(3) In order to prove (35), we only have to consider the k-part of (34) since the expression
α(v, v)+α( jv, jv) belongs to the (1, 1)-part of α whose p-component vanishes by (36). We
have

α(v, v) + α( jv, jv) = [dh.v, d f. jv] + [dh. jv, d f. j jv],
and since d f j = −J d f (due to the quasi-holomorphicity of f ), the second term is

[dh. jv, d f. j jv] = −[dh. jv, J d f. jv] = [J dh. jv, d f. jv] = [dg.v, d f. jv].
Thus the two terms add up to [d f.v, d f. jv] = −[d f.v, J d f.v] = [J d f.v, d f.v] which
proves (35).

(4) Each pluriharmonic map hθ associated with h gives a Bonnet–Sym–Bobenko map gθ

with

dgθ = Jhθ dhθ j

= Jhθ Ad(	θ )dh rθ j

= Ad(	θ )Jhdh j rθ

= Ad(	θ )dg rθ . (42)

But we also have

dhθ = Ad(	θ )dh rθ , (43)

(see (29)), and therefore we obtain (38) from d fθ = dgθ +dhθ . Since Ad(	θ ) is an isometry
of g and rθ is an isometry for the Kähler metric on M induced by f , the immersions fθ are

5 We have 〈αP (X, Y ), ξ〉 = 〈∂X Y, ξ〉 = −〈Y, ∂X ξ〉 for any ξ ∈ k. The vector X ∈ Tp P can be expressed by

the action of a one-parameter group gt = exp t X̂ for some X̂ ∈ p, more precisely, X = d
dt |t=0 Ad(gt )p =

[X̂ , p] = −J X̂ . Hence X̂ = J X . Now ∂X ξ = d
dt |t=0 Ad(gt )ξ = [X̂ , ξ ] = [J X, ξ ], and 〈αP (X, Y ), ξ〉 =

−〈Y, [J X, ξ ]〉 = −〈[Y, J X ], ξ〉.
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isometric. From the k-part of (34) we get (replacing dh with dhθ and using (43),

αθ,k(v,w) = [Ad(	θ )dh.rθv, Ad(	θ )d f.rθ jw]
= Ad(	θ )[dh.rθv, d f. jrθw]
= Ad(	θ )α(rθv, rθw)

which proves (40). Finally, (39) can be concluded from the p-part of (34) observing

∇ P
v dhθ = ∇ P

v (	θ dh rθ ) = 	θ (∇ P
v dh)rθ ,

which holds because rθ and 	θ (viewed as a homomorphism h∗T P → h∗
θ T P) are parallel.

	

Concluding remarks

(1) Equation (35) is the generalization of the cmc property H = − 1
2 : it says that for any

complex one-dimensional submanifold (complex curve) C ⊂ M , the mean curvature
vector of the surface f |C in g is given by the second fundamental form of P along
h|C . If M is itself a surface and P = S2 with the position vector as unit normal, then
〈α(v, v) + α( jv, jv), h〉 = −〈d f.v, d f.v〉 and hence f has cmc H = − 1

2 . Due to
(35), we would like to call the immersion f ‘pluri-cmc’ although in general the mean
curvature vector is not constant (not even of constant length) along f |C .

(2) If h is isotropic pluriharmonic (see [9]), i.e. h admits a trivial associated family hθ = h,

the maps f± are twistor lifts of other isotropic pluriharmonic maps, see [16]. If h is
even holomorphic (which is stronger), then f+ = 0 and f− = 2h.

(3) All three maps e = f, g, h have associated families eθ formed in the same way:

deθ = Ad(	θ )de rθ (44)

Geometrically this means that the tangent space deu(Tu M) which is a subspace of
the J -closure of dhu(Tu M) (i.e. the smallest complex subspace of Th(u) P containing
dhu(Tu M)) is moved in a parallel way for all three cases, using the same automorphism
Ad(	θ (u)).

(4) There is an important difference between the case of cmc surfaces in 3-space and the
higher dimensional analogues: if f : M → P is pluriharmonic but not (anti)-holomor-
phic, the dimension of M is strictly smaller than the one of P , with the only exception
P = S2. In fact, the flatness of dh(T ′M) ⊂ h∗T P ⊗ C determines a dimension bound,
see [7,21]. This difference is reflected in the appearance of αp which does not occur in
the cmc case.

(5) There is yet another notion generalizing cmc surfaces, the so called ppmc submani-
folds, see [3]. These are Kähler submanifolds M ⊂ R

n with parallel α(1,1), and they are
characterized by the pluriharmonicity of their Gauss map. Our present generalization is
different: note that the pluriharmonic map h : M → P is not the (Grassmann-valued)
Gauss map of f± but just one distinguished unit normal vector of f±. This is the usual
Gauss map only for surfaces in 3-space (P = S2). A flaw of the ppmc notion is the
difficulty of finding interesting examples, see also [5,6]. In contrast, the Bonnet–Sym–
Bobenko construction gives many nontrivial examples of ‘pluri-cmc’ submanifolds.
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