Pluriharmonic maps into Kähler symmetric spaces and Sym's formula

J.-H. Eschenburg • P. Quast

0 Introduction

An important notion for a surface in euclidean 3-space is the Gauss map which assigns to each point its normal vector in the sphere $S^{2} \subset \mathbb{R}^{3}$. But can one revert this process and recover the original surface from its Gauss map? In general this is impossible; e.g. for minimal surfaces the Gauss map remains the same when we pass to the associated surfaces. However, there are surface classes where such a one-to-one correspondence exists. Among them are surfaces of prescribed nonzero constant mean curvature (cmc). By a theorem of Ruh and Vilms [18], an immersed surface $f: M \rightarrow \mathbb{R}^{3}$ is cmc if and only if its Gauss map is harmonic. Vice versa, given a generic harmonic map $h: M \rightarrow S$ into the 2 -sphere S, there exists precisely

The support by the DFG-project ES 59/7-1 is gratefully acknowledged. P. Quast also thanks the Swiss National Science Foundation for the support under Grant PBFR2-106367.

[^0]one cmc surface f with Gauss map h and mean curvature $H=\frac{1}{2}$ (say). It can be constructed from h and its associated family using a famous formula of Sym [20] and Bobenko [1].

The aim of our paper is to generalize this construction to higher dimensions and codimensions. We replace the 2 -sphere S by an arbitrary Kähler symmetric space P of compact type and arrive at a new class of Kähler submanifolds of \mathbb{R}^{n}, which could be called "pluri-cmc". To be more precise, we must look a little closer to the original Sym-Bobenko construction: starting with a harmonic map $h: M \rightarrow S$, one obtains two weakly conformal maps $f_{ \pm}: M \rightarrow \mathbb{R}^{3}$ with $h=\frac{1}{2}\left(f_{+}-f_{-}\right)$. Outside the branch points, f_{+}and f_{-}have Gauss map h and mean curvature $H=-\frac{1}{2}$ and $H=\frac{1}{2}$, respectively. Now let $P=G / K$ be an arbitrary Kähler symmetric space of compact type. It can be viewed as an adjoint orbit in its transvection Lie algebra \mathfrak{g} in the same way as S is an adjoint orbit in $\mathbb{R}^{3}=\mathfrak{s o}_{3}$. As before, there is a one-to-one correspondence between pluriharmonic maps $h: M \rightarrow P$ from a complex manifold M, and pairs of maps $f_{+}, f_{-}: M \rightarrow \mathfrak{g}$, which are quasi-holomorphic (a notion generalizing "weakly conformal") along the common normal vector $h=\frac{1}{2}\left(f_{+}-\right.$ f_{-}) (Theorem 7.2). At regular points the Riemannian metrics on M induced by $f_{ \pm}$are Kähler. Moreover, both immersions are 'pluri-cmc', i.e. when restricted to complex one-dimensional submanifolds of M they behave like cmc surfaces in a certain sense (cf. (35)); in particular they allow a very peculiar isometric deformation (associated family).

As it turned out, a modified and less explicit version of the Sym-Bobenko construction was already known to Bonnet [2] (see [12]), and, in fact, the viewpoint of Bonnet is an important tool for our generalization.

1 Parallel surfaces

Let us recall some elementary facts for surfaces in 3-space. Consider an immersion f : $M \rightarrow \mathbb{R}^{3}$ of a two-dimensional manifold M ('surface'). Suppose that M is oriented and that $v: M \rightarrow S$ is the Gauss map of f, where $S \subset \mathbb{R}^{3}$ denotes the unit sphere. The surface f gives rise to a family of parallel surfaces $f_{t}=f+t v$ for all $t \in \mathbb{R}$ (we always exclude the points where f_{t} is not regular, i.e. not an immersion). The surfaces f and f_{t} have the same principal curvature vectors on M, but the principal curvatures κ_{1}, κ_{2} change from $\kappa_{j}=1 / r_{j}$ to $\kappa_{j, t}=1 /\left(r_{j}-t\right)$.

Suppose now that f has constant Gaussian curvature 1, i.e. $r_{1} r_{2}=1$. Then the parallel surfaces $f_{\mp 1}$ have cmc $H= \pm \frac{1}{2}$ at their regular points:

$$
\begin{equation*}
2 H=\frac{1}{r_{1} \pm 1}+\frac{1}{r_{2} \pm 1}=\frac{r_{1}+r_{2} \pm 2}{r_{1} r_{2} \pm\left(r_{1}+r_{2}\right)+1}= \pm 1 \tag{1}
\end{equation*}
$$

Further, the metrics on M induced by f_{1} and f_{-1} are conformal to each other. In fact, if $v_{j} \in T_{u} M$ (for some $u \in M$) is a principal curvature vector for κ_{j} with $\left|d f . v_{j}\right|=\left|r_{j}\right|$, then $\left|d f_{t} \cdot v_{j}\right|=\left|r_{j}-t\right|$. Consequently, the length ratio of the perpendicular vectors $d f_{t} \cdot v_{1}$ and $d f_{t} \cdot v_{2}$ is the same for $t=1$ and $t=-1$ (which proves conformality): using $r_{1} r_{2}=1$, we have

$$
\begin{equation*}
\frac{r_{1}-1}{r_{2}-1}: \frac{r_{1}+1}{r_{2}+1}=\frac{r_{1} r_{2}+r_{1}-r_{2}-1}{r_{1} r_{2}-r_{1}+r_{2}-1}=-1 \tag{2}
\end{equation*}
$$

Vice versa, starting with a surface $\tilde{f}: M \rightarrow \mathbb{R}^{3}$ of cmc $H=\frac{1}{2}$, its parallel surfaces \tilde{f}_{1} and \tilde{f}_{2} have constant Gaussian curvature 1 and $\mathrm{cmc}-\frac{1}{2}$, respectively. Moreover, the metrics on M induced by \tilde{f} and \tilde{f}_{2} are conformal.

2 The Gauss map of cmc surfaces

By a theorem of Ruh and Vilms [18], surfaces of cmc are characterized by the harmonicity of their Gauss maps:

Theorem 2.1 (Ruh-Vilms) Let M be a Riemann surface and $f: M \rightarrow \mathbb{R}^{3}$ a conformal immersion. Then f has cmc if and only if its Gauss map $v: M \rightarrow S$ is harmonic.

Proof Let H be the mean curvature of an immersion $f: M \rightarrow \mathbb{R}^{3}$. For each $u \in M$ and $v \in T_{u} M$ we have

$$
2 \partial_{v} H=-\partial_{v} \operatorname{trace} d v=-\operatorname{trace} \nabla_{v} d v \stackrel{*}{=}-\operatorname{trace}\langle\nabla d v, d f . v\rangle=\langle\Delta v, d f . v\rangle .
$$

Here, ∇ denotes the Levi-Civita connection and Δ the Laplacian for the induced metric on M. For " $\stackrel{* *}{=}$ ", we use the symmetry of $\langle\nabla d v, d f\rangle$ in all three arguments (Codazzi). Thus $\partial_{v} H=0$ for all v if and only if the tangent part of Δv vanishes (note that $d f\left(T_{u} M\right)=T_{v(u)} S$), which is the definition of $v: M \rightarrow S$ being harmonic.

Now let us consider the inverse problem: given any harmonic map $h: M \rightarrow S$ on a Riemann surface M, can we construct a cmc surface $f: M \rightarrow \mathbb{R}^{3}$ with $H= \pm \frac{1}{2}$ and Gauss map $v=h$? This question has already been solved by Bonnet in 1853 [2,12] as follows: using the results of the previous section, we know that such surfaces always come in pairs

$$
\begin{equation*}
f_{ \pm}=g \pm h \tag{3}
\end{equation*}
$$

where $g: M \rightarrow \mathbb{R}^{3}$ has constant Gaussian curvature 1 . Thus the task is to find g from h. By harmonicity, the vector Δh is normal to S, i.e. it points into the direction of h. This means $h \times \Delta h=0$ where \times denotes the vector product on \mathbb{R}^{3}. Using conformal coordinates (x, y) on M we have

$$
0=h \times\left(h_{x x}+h_{y y}\right)=\left(h \times h_{x}\right)_{x}+\left(h \times h_{y}\right)_{y},
$$

where subscripts mean partial derivatives. In other words, the \mathbb{R}^{3} valued 1-form

$$
\begin{equation*}
\gamma=\left(h \times h_{y}\right) d x-\left(h \times h_{x}\right) d y \tag{4}
\end{equation*}
$$

is closed, ${ }^{1} d \gamma=0$. Hence it can be integrated, $\gamma=d g$ for some $g: M \rightarrow \mathbb{R}^{3}$, provided that M is simply connected. In fact, g has the desired properties (cf. [12]) as we will see below (Sect. 5, Remark 2).

Using the almost complex structures j on M and J on S (the vector product with the position vector), we may rewrite (4) as

$$
\begin{equation*}
\gamma=h \times d h j=J d h j . \tag{5}
\end{equation*}
$$

Hence from (3) we obtain

$$
\begin{equation*}
d f_{ \pm}=d h \pm J d h j . \tag{6}
\end{equation*}
$$

Theorem 2.2 (Bonnet) Let M be a Riemann surface and $h: M \rightarrow S$ a harmonic map, then the 1 -form $\gamma=J d h j$ is closed. Further, if M is simply connected, there is (up to translations) precisely one pair of weakly conformal maps $f_{ \pm}: M \rightarrow \mathbb{R}^{3}$ with cmc $H=\mp \frac{1}{2}$ and Gauss map h at the regular points, and $f_{ \pm}$is obtained by integrating $d f_{ \pm}=d h \pm \gamma$.

[^1]Remark Equation (6) looks as if f_{-}and f_{+}were holomorphic and anti-holomorphic, respectively:

$$
\begin{equation*}
J d f_{ \pm} j=J d h j \pm d h= \pm d f_{ \pm} . \tag{7}
\end{equation*}
$$

But remember that J is the almost complex structure on S while $f_{ \pm}$does not take values in S; only the tangent spaces are the same:

$$
\begin{equation*}
d f_{ \pm}\left(T_{u} M\right) \subset T_{h(u)} S \tag{8}
\end{equation*}
$$

(in fact we have equality). Mappings $f_{ \pm}$satisfying (7) and (8) will be called quasi-holomorphic along h (see Sect. 7). In the present context this simply means weak conformality.

The Bonnet construction involves integrating the 1 -form $\gamma=d g$. More recently it was observed by Sym [20] and Bobenko [1] ${ }^{2}$ that g has a direct geometric meaning in terms of the associated family and the extended solution of the harmonic map h. We will discuss this construction in a more general setting, using that $\left(\mathbb{R}^{3}, \times\right)$ is a Lie algebra (corresponding to the Lie group SO_{3}) and S a particular adjoint orbit which is a Kähler symmetric space of compact type. In fact, any such space allows this kind of embedding (Sect. 3 below). We will also generalize the domain M to a complex manifold of arbitrary dimension (Sect. 4).

3 Kähler symmetric spaces

A Riemannian manifold P is Kähler if it carries a parallel isometric almost complex structure J. From $\nabla_{X}(J Z)=J \nabla_{X} Z$ we have $R(X, Y) J Z=J R(X, Y) Z$ for all tangent vectors X, Y, Z where R denotes the curvature tensor of P. Consequently $\langle R(X, Y) J Z, J W\rangle=$ $\langle R(X, Y) Z, W\rangle$, and from the block symmetry of R we see

$$
\begin{equation*}
R(X, Y)=R(J X, J Y) \tag{9}
\end{equation*}
$$

Thus $R(J X, Y)=R(J J X, J Y)=-R(X, J Y)$, and therefore J is a derivation of R at any point p :

$$
R(J X, Y) Z+R(X, J Y) Z+R(X, Y) J Z=J R(X, Y) Z
$$

Now let $P=G / K$ be Kähler symmetric (hermitian symmetric) of compact type, i.e. P is Kähler and symmetric of compact type and all the point symmetries (geodesic symmetries) s_{p} are holomorphic. Then at any point $p \in P$ the curvature tensor R is a Lie triple product on $T_{p} P$ and J_{p} a derivation of R. We may assume $p=e K$. Let

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{k}+\mathfrak{p} \tag{10}
\end{equation*}
$$

be the corresponding Cartan decomposition (eigenspace decomposition of $\operatorname{Ad}\left(s_{p}\right)$). Then we may identify $T_{p} P=\mathfrak{p}$. We extend $J_{p}: \mathfrak{p} \rightarrow \mathfrak{p}$ to a derivation \hat{J}_{p} of the Lie algebra \mathfrak{g} by putting $\hat{J}_{p}=0$ on \mathfrak{k}. Since \mathfrak{g} is semisimple, each derivation is inner. Hence we may view $\hat{J}_{p} \in \mathfrak{g}$ (acting on \mathfrak{g} by $\operatorname{ad}\left(\hat{J}_{p}\right)$). The map

$$
\begin{equation*}
\hat{J}: P \rightarrow \mathfrak{g}, \quad p \mapsto \hat{J}_{p} \tag{11}
\end{equation*}
$$

[^2]is called the standard embedding of P (see [10]). Its image $\tilde{P}=\hat{J}(P) \subset \mathfrak{g}$ is an adjoint orbit: since J is parallel, J_{p} and J_{q} are conjugate for an arbitrary $q \in P$ under the transvection g along a geodesic joining $p=e K$ to q. Hence $\hat{J}_{q}=\operatorname{Ad}(g) \hat{J}_{p}$. By holomorphicity each $k \in K=G_{p}$ preserves J_{p}, thus \hat{J}_{p} centralizes K and the map $\hat{J}: P \rightarrow \operatorname{Ad}(G) \hat{J}_{p}$ is an equivariant covering (note that the stabilizer Lie algebra of \hat{J}_{p} is \mathfrak{k}). But in fact it is injective. To see this, note that the orbit $\tilde{P}=\operatorname{Ad}(G) \hat{J}_{p} \subset \mathfrak{g}$ is itself an (extrinsic) hermitian symmetric space with (extrinsic) symmetry $s_{p}=\operatorname{Ad}\left(\exp \pi \hat{J}_{p}\right)$ and almost complex structure $\left.\operatorname{ad}\left(\hat{J}_{p}\right)\right|_{T_{\tilde{p}} \tilde{P}}$ where $\tilde{p}=\hat{J}_{p}$. Since any semisimple hermitian symmetric space is simply connected [13, p. 376], the map \hat{J} is one-to-one. The Riemannian metric on \tilde{P} induced by any $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g} coincides up to a constant with the initial Riemannian metric on each de Rham factor. The tangent and normal spaces of \tilde{P} at $\tilde{p}=\hat{J}_{p}$ are
\[

$$
\begin{equation*}
T_{\tilde{p}} \tilde{P}=\operatorname{ad}(\mathfrak{g}) \hat{J}_{p}=\left[\mathfrak{p}, \hat{J}_{p}\right]=-J_{p}(\mathfrak{p})=\mathfrak{p}, \quad N_{\tilde{p}} \tilde{P}=\mathfrak{p}^{\perp}=\mathfrak{k}, \tag{12}
\end{equation*}
$$

\]

thus (10) is also the decomposition into the tangent and normal space of \tilde{P} at \hat{J}_{p}. From now on, we will no longer distinguish between P and \tilde{P}. Hence we consider P as a submanifold of \mathfrak{g} where the point $p \in P$ becomes the element $p=\hat{J}_{p} \in \mathfrak{g}$.

Example 1 Let $P=S \subset \mathbb{R}^{3}$ be the 2 -sphere. For any $p \in S$ we have $T_{p} S=p^{\perp}$ and $J_{p} v=p \times v$ for $v \in T_{p} S$. Let $\mathfrak{s o}_{3}$ be the space of real anti-symmetric 3×3-matrices (the Lie algebra of SO_{3}). The mapping $\mathbb{R}^{3} \rightarrow \mathfrak{s o}_{3}: w \mapsto A_{w}$ with $A_{w} x:=w \times x$ is a linear isomorphism which transforms the vector product into the Lie product and the usual SO_{3} action on \mathbb{R}^{3} into the adjoint action on $\mathfrak{s o}_{3}$. Thus the sphere $S \subset \mathbb{R}^{3}$, which is the SO_{3}-orbit of e_{3}, is mapped onto the adjoint orbit of $A_{e_{3}}=\hat{J}_{e_{3}}$.

Example 2 Let $P=G_{k}\left(\mathbb{C}^{n}\right)=U_{n} /\left(U_{k} \times U_{n-k}\right)$ be the complex Grassmannian of k-dimensional linear subspaces of \mathbb{C}^{n}. Identifying each complex subspace with its orthogonal projection, we embed P as a U_{n}-conjugacy class into the space of hermitian or (after multiplying with $i=\sqrt{-1}$) anti-hermitian $n \times n$-matrices which form the Lie algebra \mathfrak{u}_{n} of the unitary group U_{n}; this is the standard embedding.

4 Pluriharmonic maps

Let $P=G / K$ be a semisimple symmetric space and M a simply connected complex manifold with almost complex structure j. We will also use the corresponding rotations

$$
\begin{equation*}
r_{\theta}=(\cos \theta) I+(\sin \theta) j: T M \rightarrow T M \tag{13}
\end{equation*}
$$

for any $\theta \in[0,2 \pi]$. A smooth map $h: M \rightarrow P$ is called pluriharmonic if $\left.h\right|_{C}$ is harmonic for any complex one-dimensional submanifold (complex curve) $C \subset M$, or, in other terms, if the $(1,1)$ part of the Hessian $\nabla d h^{(1,1)}$, the so called Levi form, vanishes:

$$
\begin{equation*}
\nabla d h(v, w)+\nabla d h(j v, j w)=0 \tag{14}
\end{equation*}
$$

for any two tangent vectors v, w on $M .^{3}$
Pluriharmonic maps always come in one-parameter families, called associated families, defined as follows (cf. [4,9]): the differential of a smooth map $f: M \rightarrow P$ is a vector bundle

[^3]homomorphism $\varphi=d f: T M \rightarrow E=f^{*} T P$. Vice versa, given any vector bundle E (over M) endowed with a connection and a bundle homomorphism $\varphi: T M \rightarrow E$, we may ask if φ is the differential of a smooth map f; such a homomorphism (or E valued 1-form) φ will be called integrable. If this holds, E can be identified with $f^{*} T P$ and, in particular, E carries a parallel Lie triple product on its fibres. Assuming that E is already equipped with such a structure, one obtains the following precise integrability condition for φ (see [8]): there exists a map $f: M \rightarrow P$ and a parallel vector bundle isometry $\Phi: f^{*} T P \rightarrow E$ preserving the Lie triple structure such that
\[

$$
\begin{equation*}
\varphi=\Phi d f \tag{15}
\end{equation*}
$$

\]

Both f and Φ are unique up to translation with some $g \in G$.
Now assume that a smooth map $h: M \rightarrow P$ is given, thus $\varphi_{0}=d h$ is integrable. We may ask if the rotated differential $\varphi_{\theta}=d h r_{\theta}$ is integrable for all $\theta \in[0,2 \pi]$ as well. This question was answered in [9]: the integrability condition holds for all φ_{θ} if and only if h is pluriharmonic. In this case we have a family of pluriharmonic maps $h_{\theta}: M \rightarrow P$ (the associated family of h) and parallel bundle isometries $\Phi_{\theta}: f^{*} T P \rightarrow f_{\theta}^{*} T P$ preserving the curvature tensor (Lie triple product) of P such that

$$
\begin{equation*}
d h_{\theta}=\Phi_{\theta} d h r_{\theta} \tag{16}
\end{equation*}
$$

holds for all $\theta \in[0,2 \pi]$. We can always assume $\Phi_{0}=I$, and, if P is an inner symmetric space (which means that $-I$ lies in the identity component of K acting on \mathfrak{p}), we may choose additionally $\Phi_{\pi}=-I$, due to $r_{\pi}=-I$ (see [4]). Since $\Phi_{\theta}(u)$ maps $T_{f(u)} P$ onto $T_{f_{\theta}(u)} P$ preserving the metric and the curvature tensor, it is the differential of a unique element of G mapping $f(u)$ to $f_{\theta}(u)$. This will be called $\Phi_{\theta}(u)$ again and it defines a family of mappings $\Phi_{\theta}: M \rightarrow G$ with $\Phi_{0}=e$ and, if P is inner, $\Phi_{\pi}(u)=s_{h(u)}$, where $s_{q} \in G$ denotes the point symmetry at q for any $q \in P$.

Remark Pluriharmonic maps have often been described in terms of moving frames. If we choose (locally) a frame F for h (i.e. a smooth map $F: M_{o} \rightarrow G$ with $F(u) p=h(u)$ for any $u \in M_{o} \subset M$, where $p=e K \in P=G / K$), we obtain also a frame for each h_{θ}, namely

$$
\begin{equation*}
F_{\theta}=\Phi_{\theta} F \tag{17}
\end{equation*}
$$

Then the corresponding Maurer-Cartan form ${ }^{4} \omega_{\theta}=F_{\theta}^{-1} d F_{\theta} \in \Omega^{1}(M, \mathfrak{g})$ satisfies

$$
\begin{equation*}
\omega_{\theta}=\omega_{\mathfrak{k}}+\omega_{\mathfrak{p}} r_{\theta}=\omega_{\mathfrak{k}}+\lambda^{-1} \omega_{\mathfrak{p}}^{\prime}+\lambda \omega_{p}^{\prime \prime} \tag{18}
\end{equation*}
$$

due to (16) and the parallelism of Φ_{θ} (see [4]). Here we put $\lambda=e^{-i \theta}$, and $\omega_{\mathfrak{k}}, \omega_{\mathfrak{p}}$ are the components of $\omega=\omega_{0}=F^{-1} d F$ in the Cartan decomposition (10), while $\omega_{\mathfrak{p}}^{\prime}, \omega_{\mathfrak{p}}^{\prime \prime}$ are the restrictions of the (complexified) 1-form $\omega_{\mathfrak{p}}: T M \otimes \mathbb{C} \rightarrow \mathfrak{p} \otimes \mathbb{C}$ to

$$
\begin{equation*}
T^{\prime} M=\{v-i j v ; v \in T M\}, \quad T^{\prime \prime} M=\{v+i j v ; v \in T M\} \tag{19}
\end{equation*}
$$

the $(\pm i)$-eigenbundles of j. As a consequence of (17) and (18) we obtain

$$
\begin{align*}
\Phi_{\theta}^{-1} d \Phi_{\theta} & =\operatorname{Ad}(F)\left(\omega-\omega r_{\theta}\right) \\
& =\left(1-\lambda^{-1}\right) \operatorname{Ad}(F) \omega_{\mathfrak{p}}^{\prime}+(1-\lambda) \operatorname{Ad}(F) \omega_{\mathfrak{p}}^{\prime \prime} \tag{20}
\end{align*}
$$

This shows that Φ_{θ} is an extended solution in the sense of Uhlenbeck [22], generalized to the pluriharmonic case by Ohnita and Valli [15].

[^4]One may show that $\operatorname{Ad}(F) \omega_{\mathfrak{p}}=\frac{1}{2} s_{h} d s_{h}$ where $s: P \rightarrow G, p \mapsto s_{p}$ is the Cartan embedding and $s_{h}=s \circ h$.

5 The Kähler symmetric case

Let us restrict our attention to a Kähler symmetric space $P=G / K$ of compact type. Using the standard embedding we consider P as an adjoint orbit in \mathfrak{g}. Then the almost complex structure J_{p} at any $p \in P \subset \mathfrak{g}$ is just $\operatorname{ad}(p)$, restricted to the tangent space $T_{p} P=\operatorname{ad}(\mathfrak{g}) p \subset \mathfrak{g}$.

Now we deal with two almost complex structures: j on M and J on P. Recall that the definition of a pluriharmonic map $h: M \rightarrow P$ involves only j, not J (which is not present in the general case). However, for Kähler symmetric spaces we have another characterization of pluriharmonic maps in terms of both j and J which generalizes the first part of Bonnet's Theorem 2.2:

Theorem 5.1 Let $P \subset \mathfrak{g}$ be a Kähler symmetric space of compact type, M a complex manifold and $h: M \rightarrow P$ a smooth map. Then h is pluriharmonic if and only if the \mathfrak{g} valued 1-form $\gamma=J d h j=[h, d h j]$ is closed.

Proof We have $d \gamma(v, w)=\partial_{v} \gamma(w)-\partial_{w} \gamma(v)-\gamma\left(\nabla_{v} w-\nabla_{w} v\right)$ and

$$
\begin{align*}
\partial_{v} \gamma(w) & =\partial_{v}\left[h, \partial_{j w} h\right] \\
& =\left[\partial_{v} h, \partial_{j w} h\right]+\left[h, \partial_{v} \partial_{j w} h\right] . \tag{21}
\end{align*}
$$

Thus we obtain

$$
\begin{align*}
d \gamma(v, w)= & {[d h . v, d h . j w]-[d h . w, d h . j v] } \\
& +[h, \nabla d h(v, j w)-\nabla d h(w, j v)], \tag{22}
\end{align*}
$$

where h is considered as a map into the ambient space \mathfrak{g} rather than into P. The normal and tangent spaces of P at the point $h=h(u) \in P$ (which we may consider as the base point $p=e K$) form the Cartan decomposition (10). Since the kernel of $\operatorname{ad}(h)$ is \mathfrak{k}, the term in the second line of (22) is in \mathfrak{p} while the two terms in the first line belong to \mathfrak{k}, due to $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$. Thus we have $d \gamma=0$ if and only if

$$
\begin{align*}
{[d h . v, d h . j w]-[d h . w, d h . j v] } & =0, \tag{23}\\
(\nabla d h(v, j w)-\nabla d h(w, j v))^{T} & =0, \tag{24}
\end{align*}
$$

where ($)^{T}$ denotes the component in $T_{h} P$. The second Eq. (24) says precisely that $h: M \rightarrow P$ is pluriharmonic. The first one, (23), is a consequence of the pluriharmonicity whenever P is a compact symmetric space: if $h: M \rightarrow P$ is pluriharmonic, we have $R(d h . a, d h . b)=0$ for all $a, b \in T^{\prime} M$ (see $[9,15]$). For $a=v-i j v$ and $b=w-i j w$ this gives (23); recall that the Lie bracket on \mathfrak{p} is the curvature operator of P (up to sign).

Remark 1 All arguments can be generalized to metrics of arbitrary signature (see [14, 19]). However, in the indefinite case we can no more conclude $R\left(d h\left(T^{\prime} M\right), d h\left(T^{\prime} M\right)\right)=0$ from the pluriharmonicity of $h: M \rightarrow P$. However, this extra condition is extremely useful; e.g. it is necessary for an associated family to exist. It was an additional assumption in [19] (called S^{1}-pluriharmonicity). Maybe the closedness of the form $J d h j$ would be the better definition.

Remark 2 If M is simply connected, we can integrate γ and find a smooth mapping g : $M \rightarrow \mathfrak{g}$ with $d g=\gamma=J d h j$. Using (21) we compute its Hessian

$$
\begin{equation*}
\nabla d g(v, w)=[d h . v, d h . j w]+[h, \nabla d h(v, j w)] . \tag{25}
\end{equation*}
$$

In the Bonnet case $(\operatorname{dim} M=2, P=S)$, the map g at regular points is the surface with Gaussian curvature $K=1$, see Sect. 1 and [12]. This is not completely obvious since g is not isometric, not even conformal. The second fundamental form α^{g} of g (assuming that g is an immersion) is the normal part of its Hessian (25). In the surface case, there is no normal part inside $T S$, thus we get (omitting the symbol ' $d h$ ')

$$
\begin{equation*}
\alpha^{g}(v, w)=[v, j w]=v \times j w . \tag{26}
\end{equation*}
$$

Hence $\alpha^{g}(v, j v)=0$ and $\alpha^{g}(v, v)=[v, j v]=\alpha^{g}(j v, j v)$ and further

$$
\begin{align*}
\left\langle\alpha^{g}(v, v), \alpha^{g}(j v, j v)\right\rangle-\left|\alpha^{g}(v, j w)\right|^{2} & =\langle[v, j v],[v, j v]\rangle \\
& =\langle[[v, j v] v], j v\rangle \\
& =-\langle R(v, j v) v, j v\rangle \\
& =|v|^{2}|j v|^{2}-\langle v, j v\rangle^{2} . \tag{27}
\end{align*}
$$

Comparing with the Gauss equations for the surface g in \mathbb{R}^{3} we see that g has Gaussian curvature $K=1$.

Remark 3 The case where M is a surface and $P=\mathbb{C} P^{n}=G_{1}\left(\mathbb{C}^{n+1}\right) \subset \mathfrak{s} u_{n+1}$ was recently considered in [11].

6 Extending Sym's construction

For any pluriharmonic map $h: M \rightarrow P=G / K$ and its associated family $\left(h_{\theta}, \Phi_{\theta}\right)$ with framing $F_{\theta}=\Phi_{\theta} F$ we define the Sym map (putting $\delta=\left.\frac{\partial}{\partial \theta}\right|_{\theta=0}$ and using $\Phi_{0}=I$)

$$
\begin{equation*}
k:=(\delta F) F^{-1}=(\delta \Phi) \Phi_{0}^{-1}=\delta \Phi: M \rightarrow \mathfrak{g} . \tag{28}
\end{equation*}
$$

This was introduced by Sym [20] in the case $P=S$. It is of particular importance in the Kähler symmetric case where P is an adjoint orbit in the Lie algebra \mathfrak{g}. Thus the group G acts on $P \subset \mathfrak{g}$ by the adjoint representation, and the defining Eq. (16) for the associated family now becomes

$$
\begin{equation*}
d h_{\theta}=\operatorname{Ad}\left(\Phi_{\theta}\right) d h r_{\theta} \tag{29}
\end{equation*}
$$

On the other hand, the isometry $\Phi_{\theta}(u)$ also maps $h(u)$ onto $h_{\theta}(u)$:

$$
\begin{equation*}
h_{\theta}=\operatorname{Ad}\left(\Phi_{\theta}\right) h . \tag{30}
\end{equation*}
$$

Differentiating this last equation,

$$
d h_{\theta}=\operatorname{ad}\left(d \Phi_{\theta}\right) h+\operatorname{Ad}\left(\Phi_{\theta}\right) d h
$$

and comparing with (29) we obtain

$$
\begin{equation*}
\operatorname{Ad}\left(\Phi_{\theta}\right) d h\left(r_{\theta}-I\right)=\left[d \Phi_{\theta}, h\right] . \tag{31}
\end{equation*}
$$

Now we differentiate once more, this time with respect to θ at $\theta=0$, using $\Phi_{0}=e, \delta \Phi_{\theta}=k$ and $r_{0}=I, \delta r_{\theta}=j$:

$$
d h j=\left[\delta d \Phi_{\theta}, h\right]=-J_{h} d k
$$

where $J_{h}=\operatorname{ad}(h)$ is the complex structure on $T_{h} P$. Summing up we get:
Theorem 6.1 The Sym map $k=\delta \Phi$ integrates the Bonnet form γ :

$$
\begin{equation*}
d k=J d h j=\gamma \tag{32}
\end{equation*}
$$

Thus we have seen that the Sym map k is (up to a translation) nothing else than the Bonnet map g (we will call it Bonnet-Sym-Bobenko map).

7 Generalizing cmc surfaces

As we saw in the first section, cmc surfaces in 3 -space always come in pairs $f_{ \pm}$where $v=\frac{1}{2}\left(f_{+}-f_{-}\right)$is the Gauss map. More precisely, cmc surfaces with $|H|=\frac{1}{2}$ can be characterized as pairs of immersions $f_{ \pm}: M \rightarrow \mathbb{R}^{3}$, defined on a Riemann surface M, being conformal ('quasi-holomorphic') and having common harmonic Gauss map $h=\frac{1}{2}\left(f_{+}-f_{-}\right)$. If M is simply connected, there is an explicit one-to-one correspondence between harmonic maps $h: M \rightarrow S$ and cmc surfaces $\left(f_{+}, f_{-}\right)$; the reverse correspondence $h \rightsquigarrow\left(f_{+}, f_{-}\right)$ is given by the Bonnet-Sym-Bobenko construction (see Theorem 2.2). In this form, cmc surfaces can be generalized to higher dimension and codimension.

First we have to give a precise definition of quasi-holomorphicity. Let $P \subset \mathbb{R}^{n}$ be a submanifold whose induced metric is Kähler. Further, let M be any complex manifold and $h: M \rightarrow P$ a smooth map. Let j and J denote the almost complex structures on M and P. Then J induces a complex structure J_{h} on the fibres of $h^{*} T P$, i.e. $J_{h(u)}$ acts on $T_{h(u)} P$ for any $u \in M$. A smooth map $f: M \rightarrow \mathbb{R}^{n}$ is called (干)quasi-holomorphic along h if
(1) $d f\left(T_{u} M\right) \subset d h\left(T_{u} M\right)$ for any $u \in M$,
(2) $J_{h} d f j= \pm d f$.

Lemma 7.1 If $f: M \rightarrow P$ is quasi-holomorphic along h, then f is a Kähler immersion on its regular set $M_{\mathrm{reg}}=\left\{u \in M ; d f_{u}\right.$ injective $\}$, i.e. j is an isometric parallel almost complex structure for the induced metric on $M_{\text {reg }}$.

Proof J_{h} is isometric and parallel in the bundle $h^{*} T P$ which contains $d f(T M)$, and $d f$ intertwines j and $\mp J_{h}$.

Theorem 7.2 Let $P=G / K$ be a Kähler symmetric space of compact type with its standard embedding $P \subset \mathfrak{g}$ and let M be a simply connected complex manifold. Then there is a one-to-one correspondence (up to translations) between pluriharmonic maps $h: M \rightarrow P$ with its associated family $\left(h_{\theta}, \Phi_{\theta}\right)$ on the one side and on the other side pairs of maps $f_{ \pm}: M \rightarrow \mathfrak{g}$ with common pluriharmonic normal $h=\frac{1}{2}\left(f_{+}-f_{-}\right): M \rightarrow P$ such that $f_{ \pm}$ is 干-quasi-holomorphic along h. The reverse correspondence $h \rightsquigarrow\left(f_{+}, f_{-}\right)$is given by

$$
\begin{equation*}
f_{ \pm}=g \pm h \tag{33}
\end{equation*}
$$

using the Bonnet-Sym-Bobenko map $g=\delta \Phi: M \rightarrow \mathfrak{g}$.

Proof Starting with a pluriharmonic map $h: M \rightarrow P$, we only have to show that the mappings $f_{ \pm}$defined by (33) are quasi-holomorphic and $d f_{ \pm}(T M) \perp h$. But note that

$$
d f_{ \pm}=d g \pm d h=J d h j \pm d h
$$

and hence $J d f_{ \pm} j=-d h \pm J d h j= \pm d f_{ \pm}$. Further, $\partial_{v} h \perp h$ (any adjoint orbit lies in a sphere and is therefore perpendicular to the position vector) and $J_{h} \partial_{j v} h=\left[h, \partial_{j v} h\right] \perp h$, thus $\partial_{v} f_{ \pm} \perp h$.

Vice versa, starting with a quasi-holomorphic pair of maps $\left(f_{+}, f_{-}\right)$such that $h=\frac{1}{2}\left(f_{+}-\right.$ $\left.f_{-}\right)$is pluriharmonic and normal to both f_{+}, f_{-}, we have to show that $g=\frac{1}{2}\left(f_{+}+f_{-}\right)$is the Bonnet-Sym-Bobenko map. This follows from the quasi-holomorphicity:

$$
J d g j=\frac{1}{2}\left(J d f_{+} j+J d f_{-} j\right)=\frac{1}{2}\left(d f_{+}-d f_{-}\right)=d h
$$

and therefore $d g=J d h j=\gamma$.
Our last theorem summarizes the properties of these mappings.
Theorem 7.3 Let $P \subset \mathfrak{g}$ be Kähler symmetric, M a simply connected complex manifold and $h: M \rightarrow P$ a pluriharmonic map. Let $\left(f_{+}, f_{-}\right)$be the quasi-holomorphic pair along h defined in Theorem (7.2). Suppose that $f=f_{+}$is an immersion. Then we have:
(1) f is a Kähler immersion with second fundamental form

$$
\begin{equation*}
\alpha(v, w)=[d h . v, d f . j w]+J_{h}\left(\nabla_{v}^{P} d h\right) . j w+\left(\nabla_{v}^{P} d h\right) \cdot w \tag{34}
\end{equation*}
$$

where $J_{h}=\operatorname{ad}(h)$ and $\nabla^{P} d h$ is the Hessian of $h: M \rightarrow P$.
(2) For each $v \in T M$ we have

$$
\begin{equation*}
\alpha(v, v)+\alpha(j v, j v)=\left[J_{h} d f . v, d f . v\right]=\alpha_{h}^{P}(d f . v, d f . v) \tag{35}
\end{equation*}
$$

where α_{h}^{P} denotes the second fundamental form of $P \subset \mathfrak{g}$ at $h \in P$.
(3) Fixing a point $u \in M$ we denote by $\mathfrak{p}=T_{h(u)} P$ and $\mathfrak{k}=N_{h(u)} P$ the tangent and normal spaces of $P \subset \mathfrak{g}$ at $h(u)$. Then the corresponding components of α at u satisfy

$$
\begin{align*}
\alpha_{\mathfrak{p}}^{(1,1)} & =0 \tag{36}\\
\alpha_{\mathfrak{k}}^{(2,0)} & =\left(h^{*} \alpha^{P}\right)^{(2,0)}=\left[J_{h} d h, d h\right]^{(2,0)} \tag{37}
\end{align*}
$$

where $\alpha^{(1,1)}$ and $\alpha^{(2,0)}$ are the restrictions of α (after complexification) to $T^{\prime} M \otimes T^{\prime \prime} M$ and $T^{\prime} M \otimes T^{\prime} M$, respectively.
(4) The associated family h_{θ} of h leads to a one-parameter family $f_{\theta}: M \rightarrow \mathfrak{g}$ of isometric immersions with

$$
\begin{equation*}
d f_{\theta}=\operatorname{Ad}\left(\Phi_{\theta}\right) d f r_{\theta} \tag{38}
\end{equation*}
$$

and the second fundamental form α_{θ} of f_{θ} satisfies

$$
\begin{align*}
\alpha_{\theta, \mathfrak{p}}(v, w) & =\operatorname{Ad}\left(\Phi_{\theta}\right) \alpha_{\mathfrak{p}}\left(v, r_{\theta} w\right) \tag{39}\\
\alpha_{\theta, \mathfrak{k}}(v, w) & =\operatorname{Ad}\left(\Phi_{\theta}\right) \alpha_{\mathfrak{k}}\left(r_{\theta} v, r_{\theta} w\right) \tag{40}
\end{align*}
$$

Proof (1) By Lemma $7.1 f$ is a Kähler immersion. We equip M with the induced (Kähler) metric. Then f is an isometric immersion and α is just its Hessian, $\alpha=\nabla d f=\nabla d g+\nabla d h$. Form (25) we obtain

$$
\begin{equation*}
\alpha(v, w)=[d h . v, d h . j w]+\left[h,\left(\nabla_{v} d h\right) . j w\right]+\left(\nabla_{v} d h\right) . w . \tag{41}
\end{equation*}
$$

The middle term $[h, \nabla d h(v, j w)]$ of (41) can be replaced by $J_{h} \nabla^{P} d h(v, j w)$ where $\nabla^{P} d h$ is the \mathfrak{p}-projection of $\nabla d h$ (i.e. the Hessian of $h: M \rightarrow P$) since $\operatorname{ad}(h)=\operatorname{ad}\left(\hat{J}_{h}\right)$ vanishes on \mathfrak{k} and acts as $J=J_{h}$ on \mathfrak{p} (see Sect. 3). The last term $\nabla d h(v, w)$ splits into its \mathfrak{p} and \mathfrak{k} components where the \mathfrak{k}-component is given by the second fundamental form α^{P} of $P \subset \mathfrak{g}$ which is $\alpha^{P}(X, Y)=[J X, Y]$ for all $X, Y \in \mathfrak{p} .^{5}$ Thus we obtain

$$
\alpha(v, w)=[d h \cdot v, d h \cdot j w]+[J d h \cdot v, d h \cdot w]+\left[h,\left(\nabla_{v}^{P} d h\right) \cdot j w\right]+\left(\nabla_{v}^{P} d h\right) \cdot w .
$$

For the second term on the right hand side we have

$$
[J d h . v, d h . w]=-[d h . v, J d h . w]=[d h . v, J d h . j j w]=[d h . v, d g . j w],
$$

and combining this with the first term we obtain (34).
(2) The right hand side of (34) is already decomposed into its components with respect to \mathfrak{k} and \mathfrak{p} (note that $d f\left(T_{u} M\right) \subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$), and (36) follows from (23). To prove (37) note that $\alpha=\nabla d h+\nabla d g$, and

$$
\nabla d g=\nabla[h, d h j]=[d h, d h j]+[h, \nabla d h j] .
$$

The \mathfrak{k}-component of the second term $[h, \nabla d h j]$ vanishes since $\operatorname{ad}(h)=\operatorname{ad}\left(\hat{J}_{h}\right)$ takes values in \mathfrak{p}. The first term $[d h, d h j]$ is anti-symmetric on $T^{\prime} M \otimes T^{\prime} M$ (where j is just a scalar factor i), but $\nabla d g_{\mathfrak{k}}^{(2,0)}$ is symmetric, so it must be zero. We are left with the $(2,0)$ component of $(\nabla d h)_{\mathfrak{k}}=\alpha^{P}(d h, d h)$ (mind that \mathfrak{k} is the normal space of $P \subset \mathfrak{g}$ at $p=h(u)$).
(3) In order to prove (35), we only have to consider the \mathfrak{k}-part of (34) since the expression $\alpha(v, v)+\alpha(j v, j v)$ belongs to the (1,1)-part of α whose \mathfrak{p}-component vanishes by (36). We have

$$
\alpha(v, v)+\alpha(j v, j v)=[d h . v, d f . j v]+[d h . j v, d f . j j v],
$$

and since $d f j=-J d f$ (due to the quasi-holomorphicity of f), the second term is

$$
[d h . j v, d f . j j v]=-[d h . j v, J d f . j v]=[J d h . j v, d f . j v]=[d g . v, d f . j v] .
$$

Thus the two terms add up to $[d f . v, d f . j v]=-[d f . v, J d f . v]=[J d f . v, d f . v]$ which proves (35).
(4) Each pluriharmonic map h_{θ} associated with h gives a Bonnet-Sym-Bobenko map g_{θ} with

$$
\begin{align*}
d g_{\theta} & =J_{h_{\theta}} d h_{\theta} j \\
& =J_{h_{\theta}} \operatorname{Ad}\left(\Phi_{\theta}\right) d h r_{\theta} j \\
& =\operatorname{Ad}\left(\Phi_{\theta}\right) J_{h} d h j r_{\theta} \\
& =\operatorname{Ad}\left(\Phi_{\theta}\right) d g r_{\theta} . \tag{42}
\end{align*}
$$

But we also have

$$
\begin{equation*}
d h_{\theta}=\operatorname{Ad}\left(\Phi_{\theta}\right) d h r_{\theta}, \tag{43}
\end{equation*}
$$

(see (29)), and therefore we obtain (38) from $d f_{\theta}=d g_{\theta}+d h_{\theta}$. Since $\operatorname{Ad}\left(\Phi_{\theta}\right)$ is an isometry of \mathfrak{g} and r_{θ} is an isometry for the Kähler metric on M induced by f, the immersions f_{θ} are

[^5]isometric. From the \mathfrak{k}-part of (34) we get (replacing $d h$ with $d h_{\theta}$ and using (43),
\[

$$
\begin{aligned}
\alpha_{\theta, \mathfrak{k}}(v, w) & =\left[\operatorname{Ad}\left(\Phi_{\theta}\right) d h . r_{\theta} v, \operatorname{Ad}\left(\Phi_{\theta}\right) d f . r_{\theta} j w\right] \\
& =\operatorname{Ad}\left(\Phi_{\theta}\right)\left[d h . r_{\theta} v, d f . j r_{\theta} w\right] \\
& =\operatorname{Ad}\left(\Phi_{\theta}\right) \alpha\left(r_{\theta} v, r_{\theta} w\right)
\end{aligned}
$$
\]

which proves (40). Finally, (39) can be concluded from the \mathfrak{p}-part of (34) observing

$$
\nabla_{v}^{P} d h_{\theta}=\nabla_{v}^{P}\left(\Phi_{\theta} d h r_{\theta}\right)=\Phi_{\theta}\left(\nabla_{v}^{P} d h\right) r_{\theta},
$$

which holds because r_{θ} and Φ_{θ} (viewed as a homomorphism $h^{*} T P \rightarrow h_{\theta}^{*} T P$) are parallel.

Concluding remarks

(1) Equation (35) is the generalization of the cmc property $H=-\frac{1}{2}$: it says that for any complex one-dimensional submanifold (complex curve) $C \subset M$, the mean curvature vector of the surface $\left.f\right|_{C}$ in \mathfrak{g} is given by the second fundamental form of P along $\left.h\right|_{C}$. If M is itself a surface and $P=S^{2}$ with the position vector as unit normal, then $\langle\alpha(v, v)+\alpha(j v, j v), h\rangle=-\langle d f . v, d f . v\rangle$ and hence f has cmc $H=-\frac{1}{2}$. Due to (35), we would like to call the immersion f 'pluri-cmc' although in general the mean curvature vector is not constant (not even of constant length) along $\left.f\right|_{C}$.
(2) If h is isotropic pluriharmonic (see [9]), i.e. h admits a trivial associated family $h_{\theta}=h$, the maps $f_{ \pm}$are twistor lifts of other isotropic pluriharmonic maps, see [16]. If h is even holomorphic (which is stronger), then $f_{+}=0$ and $f_{-}=2 h$.
(3) All three maps $e=f, g, h$ have associated families e_{θ} formed in the same way:

$$
\begin{equation*}
d e_{\theta}=\operatorname{Ad}\left(\Phi_{\theta}\right) d e r_{\theta} \tag{44}
\end{equation*}
$$

Geometrically this means that the tangent space $d e_{u}\left(T_{u} M\right)$ which is a subspace of the J-closure of $d h_{u}\left(T_{u} M\right)$ (i.e. the smallest complex subspace of $T_{h(u)} P$ containing $\left.d h_{u}\left(T_{u} M\right)\right)$ is moved in a parallel way for all three cases, using the same automorphism $\operatorname{Ad}\left(\Phi_{\theta}(u)\right)$.
(4) There is an important difference between the case of cmc surfaces in 3-space and the higher dimensional analogues: if $f: M \rightarrow P$ is pluriharmonic but not (anti)-holomorphic, the dimension of M is strictly smaller than the one of P, with the only exception $P=S^{2}$. In fact, the flatness of $d h\left(T^{\prime} M\right) \subset h^{*} T P \otimes \mathbb{C}$ determines a dimension bound, see [7,21]. This difference is reflected in the appearance of $\alpha_{\mathfrak{p}}$ which does not occur in the cmc case.
(5) There is yet another notion generalizing cmc surfaces, the so called ppmc submanifolds, see [3]. These are Kähler submanifolds $M \subset \mathbb{R}^{n}$ with parallel $\alpha^{(1,1)}$, and they are characterized by the pluriharmonicity of their Gauss map. Our present generalization is different: note that the pluriharmonic map $h: M \rightarrow P$ is not the (Grassmann-valued) Gauss map of $f_{ \pm}$but just one distinguished unit normal vector of $f_{ \pm}$. This is the usual Gauss map only for surfaces in 3 -space ($P=S^{2}$). A flaw of the ppme notion is the difficulty of finding interesting examples, see also [5,6]. In contrast, the Bonnet-SymBobenko construction gives many nontrivial examples of 'pluri-cmc' submanifolds.

References

1. Bobenko, A.: Constant mean curvature surfaces and integrable equations. Russian Math. Surv. 46, 1-45 (1991)
2. Bonnet, P.O.: Notes sur une propriété de maximum relative à la sphère. Nouv. Ann. Math. XII, 433-438 (1853)
3. Burstall, F.E., Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R.: Kähler submanifolds with parallel pluri-mean curvature. Differ. Geom. Appl. 20, 47-66 (2004)
4. Dorfmeister, J., Eschenburg, J.-H.: Pluriharmonic maps, loop groups and twistor theory. Ann. Glob. Anal. Geom. 24, 301-321 (2003)
5. Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R: Isotropic ppmc immersions. Differ. Geom. Appl. 25, 351355 (2007)
6. Eschenburg, J.-H., Ferreira, M.J., Tribuzy, R.: A Characterization of the standard embedding of $\mathbb{C} P^{2}$ and Q^{3}. Preprint (2007)
7. Eschenburg, J.-H., Kobak, P.: Pluriharmonic maps of maximal rank. Math. Z. 256, 279-286 (2007)
8. Eschenburg, J.-H., Tribuzy, R.: Existence and uniqueness of maps into affine homogeneous spaces. Rend. Sem. Mat. Univ. Padova 69, 11-18 (1993)
9. Eschenburg, J.-H., Tribuzy, R.: Associated families of pluriharmonic maps and isotropy. Manuscripta Math. 95, 295-310 (1998)
10. Ferus, D.: Symmetric submanifolds of euclidean space. Math. Ann. 247, 81-93 (1980)
11. Grundland, A.M., Strassburger, A., Zakrzewski, W.J.: Surfaces immersed in $\mathfrak{s u}(N+1)$ Lie algebras obtained from the $\mathbb{C} P^{N}$ sigma models. J. Phys. A Math. Gen. 39(29), 9187-9213 (2006)
12. Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, 2nd edn. Cambridge University Press, Cambridge (2002)
13. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, San Diego (1978)
14. Krahe, M.: Para-pluriharmonic maps and twistor spaces. Thesis, University of Augsburg (2007)
15. Ohnita, Y., Valli, G.: Pluriharmonic maps into compact Lie groups and factorization into unitons. Proc. Lond. Math. Soc. 61(3), 546-570 (1990)
16. Quast, P.: Twistor fibrations over hermitian symmetric spaces and harmonic maps. Differ. Geom. Appl. (in press). doi:10.1016/j.difgeo.2008.06.001
17. Rawnsley, J.: Noether's theorem for harmonic maps. Math. Phys. Stud. 6, 197-202 (1984)
18. Ruh, E., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc. 149, 569-573 (1970)
19. Schäfer, L.: $t t^{*}$-Bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24, 60-89 (2006)
20. Sym, A.: Soliton surfaces and their applications (Soliton geometry from spectral problems). In: Geometric Aspects of the Einstein Equations and Integrable Systems. Lecture Notes in Physics, vol. 239, pp. 154-231. Springer, Berlin (1986)
21. Udagawa, S.: Holomorphicity of certain stable harmonic maps and minimal immersions. Proc. Lond. Math. Soc. 57(3), 577-598 (1988)
22. Uhlenbeck, K.: Harmonic maps into Lie groups (classical solutions of the chiral model). J. Differ. Geom. 30, 1-50 (1989)

[^0]: J.-H. Eschenburg (\boxtimes) • P. Quast

 Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
 e-mail: eschenburg@math.uni-augsburg.de
 P. Quast
 e-mail: peter.quast@math.uni-augsburg.de

[^1]: ${ }^{1}$ Since harmonic maps are critical for a variational principle (the variation of the energy) which is invariant under the isometry group of S, this formula can also be obtained as a conservation law from the Noether theorem, see [12,17].

[^2]: ${ }^{2}$ Sym studied surfaces g with Gaussian curvature $K=-1$ which have no parallel cmc surfaces. Bobenko transferred this idea to the case $K=+1$ and to cmc surfaces.

[^3]: ${ }^{3}$ In order to define the Hessian one has to choose locally a Kähler metric on M. However, the definition of pluriharmonicity is independent of the choice of this metric.

[^4]: ${ }^{4}$ To keep the notation simple we assume that G is a matrix group.

[^5]: ${ }^{5}$ We have $\left\langle\alpha^{P}(X, Y), \xi\right\rangle=\left\langle\partial_{X} Y, \xi\right\rangle=-\left\langle Y, \partial_{X} \xi\right\rangle$ for any $\xi \in \mathfrak{k}$. The vector $X \in T_{p} P$ can be expressed by the action of a one-parameter group $g_{t}=\exp t \hat{X}$ for some $\hat{X} \in \mathfrak{p}$, more precisely, $X=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}\left(g_{t}\right) p=$ $[\hat{X}, p]=-J \hat{X}$. Hence $\hat{X}=J X$. Now $\partial_{X} \xi=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}\left(g_{t}\right) \xi=[\hat{X}, \xi]=[J X, \xi]$, and $\left\langle\alpha^{P}(X, Y), \xi\right\rangle=$ $-\langle Y,[J X, \xi]\rangle=-\langle[Y, J X], \xi\rangle$.

