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1 Introduction and main results

A closed connected manifold M is said to be of finite type if its universal cover M
is homotopy equivalent to a finite CW-complex. Equivalently, M is not of finite type
if there exists k € {2,...,dim M} such that Hk(ﬂ ) is not finitely generated. Let
m = m(M) be the minimal such k.

A finitely generated group G is called polycyclic if it admits a subnormal series
with cyclic factors. Moreover, G is virtually polycyclic if it has a polycyclic subgroup
of finite index.

Choose a point p € M and let £20 M be the space of contractible continuous loops
in M based at p. For T > 0 denote by .QOT M the space of contractible piecewise smooth
loops based at p whose length (with respect to a fixed Riemannian metric on M) is
at most 7. The inclusions ¢’ : .QOTM < $20M induce the maps LZ:I H*(.QOTM) —
H.(£29 M) in homology. Note that the image LZ: H, (.QOT M) is the part of the homology
of 20 M that is generated by cycles made of piecewise smooth loops of length < 7.

We say that a real-valued function f defined on N or on R.( grows at least like

VT if there exists a constant ¢ > 0 such that f(T) > ce¥T for all large enough 7.

Theorem 1.1 Let M be a closed connected manifold that is not of finite type and has
virtually polycyclic fundamental group. Assume also that there exists a field F such
that Hyn(M; F) is infinite-dimensional. Then the function of T

dimtIH*(.QgM; )
JT

grows at least like eV " .

Remark 1.2 (1) The assumption that Hm(I\7I ; IF) is infinite-dimensional is equivalent
to the assumption that (M) ® F is infinite-dimensional (see Sect. 5.4 for the
proof).

(i) During the proof we shall see that Hy—1(£20M; ) is infinite-dimensional and
that

dim Him—1)n(20M; F) > g(n) for n > 2,

where q(n) is the number of partitions of n into distinct parts.The fact that this
function grows like g explains the lower bound in Theorem 1.1.

(iii)) Our assumption that there exists a field [F such that Hm(ﬁ ; F) is infinite-
dimensional not only plays an important role in our proof, but may well be
essential. Indeed, in Sect. 6 we first generalize Theorem 1.1 to compact simplicial
complexes embedded in some Euclidean space, and then show that a simplicial
complex K homotopy equivalent to the mapping torus of a degree-p map of S”
(with p prime and n > 2) has the following properties: All assumptions of Theo-
rem 1.1 are met besides for Hm(f ; IF) being zero- or one-dimensional for every
field I, but LZ; H*(QOT K) is a free Abelian group whose rank grows not more
than linearly with T'.

For manifolds of non-finite type it is still possible that the rank of LZ H*(QOT M)
grows exponentially (cf. the Question in [27, p. 289] and the discussion in [8,

§7.1]).
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Example 1.3 There are many manifolds meeting the assumptions of Theorem 1.1. For
instance, take closed connected manifolds M| and M, of the same dimension, with
1 (M7) an infinite polycyclic group and M3 simply-connected and not a homotopy
sphere. For simplicity we also assume that H>(M;) # 0. Consider the connected sum
M = M \#M>. Then (M) = m1(My) is polycyclic. The universal cover M is the
universal cover M 1 with one copy of M, attached for each element of 71 (M7). Since
m1(My) is infinite, M is not of finite type, and m(M) = 2. Choose a field [ such that
Hyw(My; F) #£ 0. Then Hm(ﬂ ; IF) is infinite-dimensional.

For any closed manifold homotopy equivalent to a connected sum M = M#M>
with w1 (M) of order at least three and with M3 simply-connected and not a homotopy
sphere, it has been shown in [26,27] by a different method! that dim L*H*(.QOT M; F)
grows even exponentially. It would therefore be interesting to find manifolds of non-
finite type that are not homotopy equivalent to a non-trivial connected sum. There are
obstructions to split a manifold (up to homotopy type) into a non-trivial connected
sum, see [28, §7.4], but unfortunately these invariants are difficult to compute.

Question 1.4 How large is the class of closed manifolds of non-finite type that are
not homotopy equivalent to a non-trivial connected sum?

1.1 Applications

Lower bounds for the rank of the homology of the sublevel sets £27 M are of interest
because they classically lead, by Morse theory, to lower bounds for the number of
geodesics of length < T between non-conjugate points. Somewhat less classically,
they also lead to lower bounds for the topological entropy of geodesic flows. Moreover,
adding the tool of Floer homology, one gets lower bounds for the number of Reeb
chords and for the topological entropy of Reeb flows on spherizations.

Before stating our two corollaries, we briefly recall what Reeb flows on spheriza-
tions are. Details can be found in the introduction of [8].

Reeb flows on spherizations. Consider a closed manifold M. The positive real
numbers Ry freely act on the cotangent bundle 7*M by r(q, p) = (q,r p).
While the canonical 1-form A = pdqg on T*M does not descend to the quotient
S*M = T*M/R,, its kernel does and defines a contact structure & on S*M. We
call the contact manifold (S*M, &) the spherization of M. This contact manifold is
co-orientable. The choice of a nowhere vanishing 1-form o on $*M with kera = &
(called a contact form) defines a vector field R, (the Reeb vector field of ) by the two
conditions da(Ry, -) = 0, a(Ry) = 1. Its flow ¢/, is called the Reeb flow of «.

To give a more concrete description of the manifold (S*M, &) and the flows ¢/,
consider a smooth hypersurface X in 7*M which is fiberwise starshaped with respect
to the zero-section: For every g € M the set £, := X N Tq*M bounds a set in Tq*M

I Paternain and Petean consider a suitable finite simply-connected subcomplex K C M and prove exponen-
tial homological growth of the based loop space of K by showing exponential growth of the cohomology of
the free loop space of K, which is isomorphic to the Hochschild homology of the singular cochain complex
of K.
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that is strictly starshaped with respect to the origin of 7,7M. The hyperplane field
&y, = ker(A|y) is a contact structure on X, and the contact manifolds (S*M, &) and
(X, &x) are isomorphic.

Let 90’2 be the Reeb flow on ¥ defined by the contact form A|y. The set of Reeb
flows on (S*M, &) can be identified with the Reeb flows . on the set of fiberwise
starshaped hypersurfaces ¥ in 7*M. The flows ¢f are restrictions of Hamiltonian
flows: Consider a Hamiltonian function H: T*M — R such that ¥ = H~ (1) is a
regular energy surface and such that H is fiberwise homogeneous of degree one near
. For the Hamiltonian flow ¢}, we then have ¢}, |s = % It follows that geodesic
flows and Finsler flows (up to the time change ¢ > 2¢) are examples of Reeb flows on
spherizations. Indeed, for geodesic flows the ¥, are ellipsoids, and for (symmetric)
Finsler flows the X, are (symmetric and) convex. The flows ¢%. for varying ¥ are very
different, in general, as is already clear from looking at geodesic flows on a sphere. In
this paper we give uniform lower bounds for the growth of Reeb chords and for the
complexity of all these flows on ($*M, &) for manifolds M as in Theorem 1.1.

Growth of Reeb chords between two fibers. We say that p, g € M are non-conjugate
points of the Reeb flow ¢, if |, gofx(S]"; M) is transverse to S; M. Given p € M, the
setof g € M that are non-conjugate to p has full measure in M by Sard’s theorem. This
notion of being non-conjugate generalizes the one in Riemannian geometry (defined
in terms of Jacobi fields).

For p,q € M denote by P, the space of continuous paths in S*M from S;’;M
to SZI"M , and by £2,,M the space of continuous paths in M from p to g. We shall
assume throughout that dim M > 3, since otherwise M is of finite type. The fibers
SZ’I‘M of the projection pr: S*M — M are then simply connected, and so pr induces
a bijection on the components of P,, and £2,,M. The space §2,,M is homotopy
equivalent to £2, M := £2, , M, whose components are parametrized by the elements
of the fundamental group 1 (M, p).

Corollary 1.1 Assume that M is not of finite type, has virtually polycyclic fundamental
group, and that there is a field F such that Hw(M: ) is infinite-dimensional. Let
(S*M, &) be the spherization of M. Then for any Reeb flow ¢, on (S*M, &), any pair
of non-conjugate points p,q € M and every component C of §2pq M, the number of

Reeb chords from S;M to S;M that belong to C grows in time at least like VT,

Remark 1.5 (i) For the special case of geodesic flows, the time parameter equals the
length run through. Hence the corollary translates to assertion (i) of the abstract.
To illustrate the corollary, we choose a Riemannian metric on M and a point
p € M. Let C(p) be the cut locus of p. The subset M\ C(p) is diffeomorphic
to an open ball [23] and has full measure in M. For every g € M\ C(p) there is
a unique shortest geodesic ¢, from p to g. Call a path y € £2,,M contractible
if cq_l o y is contractible in §2,, M. The set U, of points in M\ C(p) that are not
conjugate to p is also of full measure in M. Under the hypothesis of Corollary 1.1,
for every g € U, the number of contractible geodesics from p to g of length < T

grows at least like VT
(i1) Virtually polycyclic groups are either virtually nilpotent or have exponential
growth [34]. If the fundamental group 7| (M) of a closed manifold M has expo-
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nential growth, then the number of Reeb chords from S;’;M to SZ‘]‘M grows expo-
nentially in time for any, possibly conjugate, pair of points p, g (see [19, Corol-
lary 1] for Reeb flows). Indeed, one finds one Reeb chord for each element
of 71 (M). In Corollary 1.1, however, we find «eNT many” Reeb chords for each
element of w1 (M).

If one is only interested in the growth of Reeb chords from S;M to S;’I‘M , with-
out specifying the component C, then Corollary 1.1 is interesting only for vir-
tually nilpotent fundamental groups, which by Gromov’s theorem from [12] are
exactly those fundamental groups that grow polynomially. Indeed, it is believed
that every finitely presented group that grows more than polynomially grows
exponentially [9, Conjecture 11.3], and even for finitely generated groups of

intermediate growth it is believed that they must grow at least like eﬁ, ctf. [10].

(i11) Let u(y) be the Conley—Zehnder index of a non-degenerate Reeb chord y
on (S*M; a), normalized such that for geodesic flows 1¢(y) is the Morse index
of the non-degenerate geodesic y (i.e. the number of conjugate points, counted
with multiplicities, along y). In the situation of Corollary 1.1, Remark 1.2 (i1)
shows that for every component of £2,; M the number of Reeb chords from S;‘;M
to S;‘M of index w(y) = k is infinite if kK = m — 1 and is at least the number
g (n) of partitions of n into distinct parts if k = (m — 1)n and n > 2.

Intermediate volume growth. Consider a smooth diffeomorphism ¢ of a closed man-
ifold X. Denote by S the set of smooth compact submanifolds of X. Fix a Riemannian
metric p on X, and denote by Vol(o) the j-dimensional volume of a j-dimensional
submanifold o € & computed with respect to the measure on o induced by p. For
a € (0, 1] define the intermediate volume growth of o € S by

log Vol (agon(a)) € 10. 0ol. (L.1)

vol?(o; ¢) = liminf
n— 00 n
and define the intermediate volume growth of ¢ by

vol?(p) = supvol‘(c; ) € [0, o<].
oceS

Notice that these invariants do not depend on the choice of p. Finally define the volume
growth exponent of ¢ by

expy (@) := inf {a | vol’(p) < oo}.

Thus exp,(¢) is “the largest a € [0, 1] such that some submanifold grows under ¢
like ¢"*.” Since Voll(ga) < (dim X) maxycx || De(x)|| < oo we have exp,,(¢) €
[0, 1]. The intermediate volume growth and the volume growth exponent of a smooth
flow ¢’ on X are defined as vol%(¢') and expvol(wl).

Remark By a celebrated result of Yomdin [35] and Newhouse [22], the volume growth
vol! (¢) agrees with the topological entropy hiop(¢). Proceeding as above define for
a € (0, 1] the intermediate topological entropy h?op (¢). We unfortunately do not know

whether vol?(¢) = hf‘op(go) or at least that vol?(¢) < hf‘op(go) also fora € (0, 1).
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Uniform lower bounds for the volume growth or the topological entropy of geodesic
flows were found in [5,24,25,27], and these results were generalized to Reeb flows
in [19] and, on a polynomial scale, in [8]. Results in [8,19] show that the volume
growth exponent exp,(¢q)is bounded from below by the maximum of the growth
exponent of the function T +> ranktz H*(.QOT M) and the growth exponent of the
growth function of the fundamental group w1 (M). In particular, for manifolds with
fundamental group of exponential growth it is shown in [19] that vol' (¢, ) > 0 for any
Reeb flow ¢, on S* M. Since virtually polycyclic groups are either virtually nilpotent
or have exponential growth, we therefore restrict ourselves now to manifolds with
virtually nilpotent fundamental group. Since all other fundamental groups of closed
manifolds are believed to have exponential growth, this is a minor hypothesis.

Corollary 1.2 Assume that M is not of finite type, has virtually nilpotent fundamental
group, and that there is a field F such that Hn(M; IF) is infinite-dimensional. Let
(S*M, &) be the spherization of M. Then

VOII/Z(S;;M; ¢Yy) >0

for every fiber SYM of S*M and every Reeb flow ¢y on (S*M,§). In particular,
VOll/z(gDa) > 0 and exp,y (¢o) > 1/2 for every Reeb flow ¢, on (S*M, §).

The method. We end this introduction by comparing our approach to previous
approaches. As mentioned earlier, lower bounds for the homology of the sublevel
sets 27 M follow easily from the growth of the fundamental group 71 (M), since its
growth is the growth of Hy(£2 T M. If 711 (M) is finite, Gromov found a way to bound
the rank of H, (27 M) from below by the rank of @zio H; (£2M), where c is a constant
depending only on the Riemannian metric. His ingenious argument is purely geomet-
ric, see [11,13,24], and uses the fact that M is compact. In [26,27] Paternain—Petean
generalized Gromov’s construction to manifolds with infinite fundamental group, by
mapping simply connected complexes K with rich loop space homology into M. This
method gives good lower bounds for the rank of H.(£27 M) if one can find such
complexes and mappings f: K — M for which the homology of £2f(£2K) still has
large rank. This works well for many manifolds, e.g. for most connected sums, for
manifolds of finite type with 77, (£2 M) ® Q infinite-dimensional, and in small dimen-
sions, see [26,27].

To fix the ideas, take as K the wedge sum S” Vv §” of two n-spheres. The homology
algebra H, ($2 K) is the free associative algebra generated by the two generators x1, x2
of H,_1(2K) = H,(K),see [4,1II. 1. B]. If one can find continuous maps ¢t: K — M
andr: M — K suchthatro¢ishomotopic to the identity of K, then £2¢: 2K — 2M
induces an injection in homology. One then concludes that the rank of LZ H. (2T M)
grows exponentially. This method was successfully used in dimension < 5 in [27].

For general manifolds of non-finite type, however, we were not even able to prove
linear growth of the rank of H, (27 M) by this method. Citing G. Paternain, “it is as
if one has so much topology that it becomes unmanageable.”
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Our strategy to prove lower bounds for the rank of H (27 M) for manifolds of non-
finite type is to find an infinite wedge sum V;c7 S of spheres in M as in the figure and
to prove that the ordered words x;, x;, - - - x;;, i1 < i2 < -+ < Iy, are still independent
in H,(£2M; IF). The proof is neither geometric nor topological, but algebraic. The
main point is that we use the Hopf algebra structure of H,(2M;F) over the group
ring [ (M)], and prove a Poincaré-Birkhoff—Witt type theorem for this algebra.
These algebraic results (specifically Theorems 2.1 and 3.1 and Proposition 4.1) are
the main findings of this paper. They cover Sects. 2—4. Theorem 1.1, which is proven
in Sect. 5, follows readily from these algebraic results, and Corollaries 1.1 and 1.2,
which are proven in Sect. 7, follow from Theorem 1.1 by a standard continuation
argument in Floer homology and by looking at the volume growth of the Lagrangian
disc in 7y M bounded by ).

2 Healthy G-vector spaces

Let G be a group, V a vector space over the field IF, and p: G — Aut(V) a represen-
tation of G. Since the representation is fixed throughout our discussion, we abbreviate
gv = p(g)vforg € G and v € V, and we consider the G-vector space V as a module
over the group ring FG. A group G is called polycyclic if there exists a subnormal
series

1=G6Gp<G1<---<1G, =G

such that all factors G;/G;—-1, 1 < i < n are cyclic. A group G is called virtually
polycyclic it G has a polycyclic subgroup of finite index. Eleven characterisations
of polycyclic groups are given in [34, Proposition 4.1]. In this section we prove the
following result.

Theorem 2.1 Assume that G is a virtually polycyclic group acting linearly on an
infinite-dimensional vector space V such that V viewed as an FG-module is finitely
generated. Then there exists v € V and g € G such that the sequence of vectors
(g'v)iez is linearly independent.

Before embarking on the proof of the theorem we introduce some notation. For the
following discussion it is irrelevant that G is virtually polycyclic. Given ¢ € G and
v € V we denote the subvector space of V spanned by the vectors g'v by

Wf::<giv|i€Z>C V.

Definition 2.1 A vector v € V is healthy if there exists g € G such that W is
infinite-dimensional. A vector v € V which is not healthy is called sick.



1002 U. Frauenfelder, F. Schlenk

The reason why we are interested in finding healthy vectors is the following obser-
vation from linear algebra.

Lemma 2.1 Ifg € G and v € V, then the following are equivalent.

() W is infinite-dimensional.
(i1) The sequence of vectors (g'v);cz, is linearly independent.

Proof That (ii) implies (i) is clear. It remains to show that if (ii) does not hold, then
W{,g is finite-dimensional. The case v = 0 is trivial as well, so we assume that v # 0.
Since then g~/ (g'v) = v # 0, we conclude that g'v # 0 for every i € Z. Hence, if
(i1) does not hold, there exist m < n € Z and scalars a; € F form <i <n — 1 such
that

n—1

g'v = Zai g'v, ay #0. (2.1)

i=m

After applying g7 to (2.1) we can assume without loss of generality that m = O.
Applying g and g~! to (2.1) we obtain inductively that

W§:<g"v|05i5n—1>. 2.2)

This shows that W is finite-dimensional. The lemma follows. O

If v #£ O is a sick vector, we can define in view of (2.2) the functiond, : G — N by
d,(g) = min {n eN|WE=(gv|0<i<n-— 1)} — dimWE.  (2.3)

Definition 2.2 The G-vector space V is called sick if all its vectors are sick. A
G-vector space V which is not sick is called healthy, i.e., V contains a healthy vector.

Note that a healthy vector space still contains sick vectors. Indeed, the zero vector
is always sick. Moreover, observe that the concept of a healthy G-vector space is only
of interest if both the cardinality of the group and the dimension of the vector space
are infinite, since otherwise V is automatically sick.

Although we fix the representation p throughout, we sometimes have to restrict p
to subgroups H < G. In this situation, we say that V is H-healthy if the restriction
of p to H is healthy.

Lemma 2.2 Assume that H < G is a subgroup of finite index. Then V is G-healthy
if and only if V is H-healthy.

Proof The implication from H -healthy to G-healthy is obvious. We now assume that
V is G-healthy and show that V is H-healthy as well. Since V is G-healthy, there
exists a vector v € V and a group element g € G such that W} is infinite-dimensional.
Denote the right coset gH in G/H by [g].
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We first consider the special case where the subgroup H is normal. Then G/H is
a group, and its order n := |G/ H| is finite by assumption. Hence [¢]|" = id € G/H,
or equivalently & := g" € H. By Lemma 2.1 we conclude from the fact that W3
is infinite-dimensional that W/ is infinite-dimensional as well. This proves that V is
H -healthy in the special case that H < G is normal.

In the general case where H < G is not necessarily normal, we consider the normal
core of H in G defined by

Core(H) := ﬂ ¢ 'Hg.
geG

Note that Core(H) is a subgroup of H which is normal in G. It is actually the biggest
normal subgroup of G contained in H. Moreover, it still has finite index in H, see
for instance [29, Theorem 3.3.5]. In view of what we already proved, we therefore
conclude that V is Core (H)-healthy. Since Core (H) < H it follows that V is H-
healthy as well. This finishes the proof of the lemma. O

If H < G 1s asubgroup and v € V, we abbreviate by
wH = (Hv)

the subspace of V spanned by the H -orbit of the vector v. The next lemma is our main
tool to give an inductive proof of Theorem 2.1.

Lemma 2.3 Assume that H <\ G is a normal subgroup such that G/H is cyclic.
Suppose further that v € V is sick and Wlfq is finite-dimensional. Then WUG is finite-
dimensional as well.

Proof Abbreviate m = dim Wf . Then there exist &1, ..., &, in the group ring FH
such that

WH =(gv|1<i<m). (2.4)

v

Choose g € G such that [g] € G/H is a generator. Assume first that G/H = Z,, is
finite. Then

WUG:<ng,~v|1§i§m,0§j<n>.

Hence dim W < nm is finite. Assume now that G/H = 7 is infinite. The case that
v = 0 is trivial. We therefore assume that v 7% 0. Since v is sick by assumption, we
have the function d,: G — N from (2.3), and we abbreviate n = d,(g). Our aim is
to show that

WUG:<ng,~v|1§i§m,0§j<n>. (2.5)
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For this purpose we abbreviate the right hand side by
X::<gj$iv|1§i§m,05j<n>.

That X C WUG is clear. We have to check the other inclusion, namely that for every
n € FG it holds that

nv € X.

Since the right coset [g] is a generator of G/H = 7, there existn; € FH withn; #0
for only finitely many j € Z such that

n=> ng.

JEZ
In view of the definition of n = d,(g), there exists ¢ € [FG of the form

n—1
;=Y ¢gl. ¢ eFH
j=0
such that

nv =<¢v.

Since H is normal in G, there exist ;“]’. € FH for 0 < j < n such that

n—1
;=8¢

j=0

In view of (2.4) we conclude that for 0 < j < n we have
gvelEu|l<i<m).
Therefore nv = ¢v € X. This proves (2.5). We have shown that
dim WS < nm = d,(g) - dim WH,

and therefore W7 is finite-dimensional. The proof of the lemma is complete. O

We are now in position to prove the main result of this section.

Proof of Theorem 2.1 In view of Lemma 2.1 it suffices to show that V is healthy.
We argue by contradiction and assume that V is sick. By assumption G is virtually
polycyclic, hence contains a polycyclic subgroup H of finite index. By Lemma 2.2
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it follows that V' is H-sick as well. Since H is polycyclic, we conclude by applying
Lemma 2.3 inductively that W/ is finite-dimensional for every v € V. Because H
has finite index in G it follows that WC is finite-dimensional for every v € V as
well. By assumption V is a finitely generated FG-module. Therefore we deduce that
V is finite-dimensional, contradicting the assumption of the theorem. The proof is
complete. O

3 Filtered Hopf algebras

In this section we consider Hopf algebras V over a group ring FG, endowed with a
filtration V", r > 0, and exhibit a property of V that guarantees that dim V" grows at
least like eV".

3.1 Hopf algebras over FG

Let G be a group, [F a field and FG the group ring. We first explain the notion of a Hopf
algebra over FG. This might be not completely standard, since usually Hopf algebras
are defined over rings which are commutative, a requirement that our group ring in
general does not fulfill. However, the feature which distinguishes a group ring from
other non-commutative rings is that if V and W are two left modules over FG, then
we can still define on their tensor product V @ W = V ®r W the structure of a left
[FG-module by using the tensor of the two representations: g(v @ w) := (gv) ® (gw)
forve V, we Wandg € G. A product is then an FG-linearmap u: VQV — V,
or equivalently an [F-bilinear map : V x V. — V satisfying u(gv, gw) = g u(v, w)
for g € G and v, w € V. Dually, a coproduct is then an FG-linear map A: V —
V ® V. To avoid terrible headaches we assume in addition that our product is always
associative, although this requirement is probably not necessary for the results of this
section. We abbreviate the product by vw = p(v, w). If V in addition is graded, i.e.
V = @?io Vi, where each V; is an FG-submodule of V, then we grade the tensor
product by (V ® V), = P, =k Vi®V; and require in addition that the product
and coproduct preserve the grading. The product endows the tensor product V ® V
again with a product which is defined on homogeneous elements by the Koszul sign
convention

W W) (x ®y) = (—1)deWdeg®yy @y

where deg(v) denotes the degree of a homogeneous element v. Given a left module V
over 'G and a product u and coproduct A as above, we call the triple (V, u, A) a
bialgebra over FG if u and A are compatible in the sense that A: 'V — V ® Visa
homomorphism of algebras. The bialgebra (V, u, A) is called connected if Vo = I is
one-dimensional and if 1 € F is also the unit for the multiplication .

Definition 3.1 A connected graded bialgebra (V, u, A) over FG is called a Hopf
algebra over FG if for every homogeneous element v of positive degree deg(v) the
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coproduct satisfies
Av=1Qv+v®1+ D 1 ®Y (3.1)

with v; and v of positive degree. A vector v € V is primitive if Av =1 ®v+v® 1.

3.2 Filtrations

In order to endow our Hopf algebra with a filtration we shall suppose that both the
vector space V and the group ring IFG are filtered. More precisely, we assume that V
can be exhausted by a sequence of finite-dimensional vector spaces, i.e., for every real
number r > 0 there exists a finite-dimensional subspace V" C V such that V" C V*
forr <sand V = J,_, V". Define the value of v € V by

|[v| :=min{r |v e V"}.
Notice that for scalars a; € [F and vectors v; € V we have
lajvy + - - -+ ayvp| < max{|v;|}. (3.2)

Dear reader, please do not confuse the value |v| of v and its degree deg(v), in case
v is homogeneous. They are not related to each other. Also note that the grading is
indicated by a subscript while the filtration degree is indicated by a superscript. To
get a filtration on the group ring as well, suppose that the group G is endowed with a
length function, namely a function L: G — R satisfying

L(g) =L(g™", L(gh)<L(g)+L(h), g heG.

In the following we abbreviate |g| = L(g). Via the length function we can define a
filtration on the group ring: For r > 0 we define FG” to be the subvector space of FG
consisting of finite sums & = deG §q g satisfying §, = 0 whenever [g| > r.

Definition 3.2 The Hopf algebra (V, u, A) over FG is called filtered if the vector
space V is endowed with a filtration such that for v, w € V and g € G it holds that

lvw| < Jv| + wl,  [gv| = [g] + [v].
We next introduce a condition on filtered Hopf algebras which will guarantee non-
trivial lower bounds for the growth of dim V”.

Definition 3.3 Assume that (V, u, A) is a filtered Hopf algebra over FG. A primitive
sequence is a sequence (v;);cN satisfying the following conditions.

(1) The vectors v;, i € N, are linearly independent, primitive, and of equal positive
degree.
(i1) There exists a constant ¢ > 0 such that |v;| < ci.
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Remark The notion of a primitive sequence does not involve the action of the group G.
However, we shall see later that the action of G is useful to construct primitive
sequences.

The following result, whose proof is deferred to the next section, will be an important
ingredient in the proof of the subsequent Theorem 3.1, which is the main result of this
section.

Proposition 3.1 Let (V, u, A) be a Hopf algebra over I, and let vy, ..., vy be lin-

early independent and primitive vectors in 'V of equal degree. For I = {iy, i>, ..., iz}
with 1 < iy < ip < iy < N write vi = vV, ---V;,. Then the vectors vy,
I C{l,..., N}, are linearly independent.

Theorem 3.1 Assume that (V, i, A) is a filtered Hopf algebra over FG which admits
a primitive sequence (v;);cN. Then the function r +— dim V'’ grows at least like eVr .

Proof Letl ={iy,...,i¢} C Nbe afinite subset of distinct numbers which we totally
order by i; < ip» < --- < iy, and abbreviate

V] = VjjVj, -V}, € V.

Let m be the common degree of the vectors v;. In view of property (i) of a primitive
sequence, Proposition 3.1 shows that the vectors vy, I C N, are linearly independent.
We can assume without loss of generality that the constant ¢ in property (ii) of a
primitive sequence is 1. Then we have

£ l
ol <D il < Dy,
j=1

J=l1

For k € N denote by g (k) the number of partitions of k into distinct parts. We have
shown that

dimV" > g(1) +qQ2)+---+qn) > qgn).

By Euler’s theorem, the number of partitions of n into distinct parts coincides with
the number of its partitions into odd parts, see for example [3, Corollary 1.2]. The
asymptotics of this sequence coincides up to a constant with the asymptotics of the
partition function (see for example [21, Chapter 16]), which grows like eCV for a
positive constant C according to a theorem of Hardy and Ramanujan, see for example
[21, Chapter 15]. O

Combining Theorems 2.1 and 3.1 we obtain the following result.

Corollary 3.1 Assume that (V, i, A) is afiltered Hopf algebra over FG where G is a
virtually polycyclic group. Assume further that ®; -, V; is finite-dimensional and that
Vi is infinite-dimensional but finitely generated as an *G-module. Then the function
r +— dim V" grows at least like eV
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Proof By Theorem 2.1 there exists v € V,, and g € G such that the vectors v; := g'v,
i € N,are linearly independent. The vectors v; have equal degree m. Using the defining
properties of a filtration, we estimate

luil = 1g'v] < Ig'| + |v| < ilgl+ [vl.

With ¢ := |g| + |v| we thus have |v;| < ci. The sequence (v;);eN therefore meets all
the properties of a primitive sequence, except that the v; may fail to be primitive. To
correct this, we consider the linear map A: (vy, v2,...) = V,, ® V), given by

Av)=Av—1Quv—v®I.

Since the vector space @ j -, V; is finite-dimensional, the subvector space of V,, ® V;,
spanned by the elements u; ® u; with u;, u; € @ jm V] is finite-dimensional. Since
A takes values in this finite-dimensional vector space, k := rank A, which equals the
dimension of (vy, v, ... )/ ker A, is finite. In particular, ker A in infinite-dimensional.
We shall construct by induction a sequence wi, wa, ... of linearly independent ele-
ments in ker A such that |w;| < c(k 4+ 1). The sequence (w;);eN 1S then a primitive
sequence in V, and the corollary follows in view of Theorem 3.1.

The restriction of the map A to (v, va, ..., vg+1) has a non-trivial kernel. Let
wi := ayvy + - - - + ak4+1vk+1 be a non-trivial element in this kernel. Then by (3.2),
lwi| < c(k + 1). Next, the restriction of A t0 (Vg42, Vk43, ..., V2(k+1)) has a non-
trivial kernel. Let wy 1= ag4ovk42 + - - + a2¢k+1)v2(k+1) be a non-trivial element
in this kernel. Then by (3.2), |wz| < 2c¢(k + 1), and w1, wy are linearly independent
because vy, ..., v2(k+1) are linearly independent. Proceeding in this way we construct
linearly independent vectors wi, wp, ... such that jw;| <ic(k + 1). O

4 A quantum Poincaré-Birkhoff-Witt theorem

Consider a graded bialgebra (V, u, A) over the field ' which is connected (i.e.,
Vo = I is one-dimensional) and is such that 1 € [F also serves as the unit for the
multiplication p. (The group G plays no role in this section.) We again assume that
W@ 1s associative, and write vw = u(v, w). Also recall that v € V is primitive if
A(v) = 1® v+ v ® 1. Suppose that for N € N we are given linearly independent

and primitive elements vy, ..., vy € V,, of equal positive degree m € N. Abbreviate
Ny ={1,..., N}.Weorder I C Ny using the canonical order of Ny, namely we write
I ={iy,...,i¢}satisfying i} <ip < --- < iy. We then abbreviate v; = v;,vj, - - - v;,,

where we use the convention that vy = 1. The following proposition reminiscent of
the Poincaré—Birkhoff—Witt theorem seems to be known to people working in quan-
tum group theory, cf. [31, Theorem 1.5(b)]. However, since the Hopf algebras arising
in the theory of quantum groups are usually not graded, we provide a proof for the
readers convenience.

Proposition 4.1 Assume that vy, ..., vy are linearly independent and primitive vec-
tors in V. Then the vectors vy, I C Ny, are linearly independent.
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Proof The crucial ingredient in the proof is the computation of the coproduct of
the elements v;. To determine the signs in this formula, we use the following

convention. Given a subset / of {1,..., N} we order I = {iy,...,i¢} and its
complement /¢ = {ji,..., jy—¢}. This determines a permutation (1,...,N)
(i1y---,1¢, J15---, jN—2). We denote by o (1) the signum of this permutation.

Lemma 4.1 The coproduct of vy, is given by

A(vny) = Z o(I)™" vy ® vye.
ICNy

Hence if m is even, then A(vy, ) = ZICNN v Q@vye, and if m is odd, then A(vy,,) =
ZICNN o(l)v; @ vje.

Proof We prove the lemma by induction on N. For N = 1 the lemma is an immediate
consequence of the fact that v; is primitive. For the induction step we assume that the
formula holds for N — 1. We compute

A(vny) = A(vNy_,UN)
= A(vny_,) A(vy)

= D oMy ®un_ | d@uw+uv®l)
ICcNy_;

= > o))" v ® (uny_\1 vN)
ICNy_;

4 Z (—l)deg(vNN_l\I)deg(UN)U(I)m(U[UN)®UNN_1\[.
ICNy_

Since deg(vy) = m and deg(vy,_,\;) = m(N —1—#I), we have foreach I C Ny_
that
(_1)deg(vNN_1\1)deg(vN)G(I)m — (_1)m2(N—1—#I)U(I)m
— (_Dm(N—l—#I)O,(I)m
=o(lU{NDH™.

The previous sum therefore becomes

= > o) "v vy

IcNy_;

+ >, o UND" viumg ® v aum
IcNy_

= Z o) ® UNy\I-
IcNy

This proves the induction step and hence the lemma. O
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Proof of Proposition 4.1 Recall that by assumption the vectors vy, . . ., vy are linearly
independent and have all the same degree m. Since degv; = m*! it suffices to show
that for every k < N the vectors v; with I C Ny and #/ = k are linearly independent.
For k = 1 this is an assumption. For the induction step we assume this assertion for
all k < n — 1 where n < N. Since the coproduct is linear, it suffices to show that the
vectors A(vy) with I C Ny, #I = n are linearly independent. It follows from the
induction hypothesis that for every 0 < k < n the vectors vy ® vy with I, J C Ny
and #1 = k, #J = n — k are linearly independent. This and the formulas

Awp) =D o))" v ®vny,
Jcli

that follow from (the proof of) Lemma 4.1, complete the induction step. O

5 Proof of Theorem 1.1

We shall deduce Theorem 1.1 from Corollary 3.1. We start with saying briefly “who
is who” in Corollary 3.1: Let M be a closed connected manifold, and let M be its
universal covering space. We take as G the fundamental group 771 (M) of M, and as V
we take the homology H,($2M:; F) over a suitable field F. The product p will be the
Pontryagin product given by concatenation of loops, and the coproduct will simply
come from the diagonal map QM —> QMx2M, x — (x, x). Now fix a Riemannian
metric on M. The filtration on V" will be given by taking |v| as the smallest r for which
v can be represented by a cycle of based loops of length at most r, and for g € 7 (M)
we take L(g) to be (half of) the length of the shortest curve representing g.

We shall show in Sects. 5.1 and 5.2 that with these choices, (V, i, A) is a filtered
Hopf algebra over FG. In Sect. 5.3 we show that for M of non-finite type with G =
71 (M) virtually polycyclic, the assumption in Theorem 1.1 that Hy(M: F) is infinite-
dimensional implies the dimension assumptions on @V; in Corollary 3.1.

5.1 The Hopf-algebra structure on H,(S2 M;F)

Let M be a closed connected manifold, and let pr: M — M be its universal covering
space. Fix p € M and p € M over p. The spaces 2oM and 2M of contractible
continuous loops based at p and p, respectively, are canonically identified. Conjugation
of loops in £20 M by loops in M based at p yields an action of the fundamental group
G = 71 (M, p) on Hy(20M) = H,(2M): Given a cycle C = {y} of loops in 2M
based at p and given g € G, the class g[C] is defined as the class represented by the
cycle of loops {cé?l o gy o cg}, where ¢, 18 the lift to M starting at j of a loop in M
in class g, and gy is the lift of pr o y starting at g p.

Let [ be the field, and abbreviate V, := H*(.Q]l71 : F). The action of G on V
extends to an action of FG on V. Concatenation of loops in M based at p induces a
product u: V® V — V, called the Pontryagin product. Since concatenation of loops
is associative up to homotopy, u is associative. It follows from the definition of the
action of G that u is FG-linear. In order to define the coproduct A: V. — V® V, we
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consider, more generally, a topological space X and the diagonal mapdy: X — X x X,
x — (x, x). Since we work over a field I, the cross product

H, (X:F) @ Hy(X;F) = H,(X x X;F)

is an isomorphism by the Kiinneth formula. We can therefore define Ax : H.(X; F) —
H.(X:F) ® Hi(X: F) by

Ay = x 1o (8x) 4.

Assume now in addition that X is a path-connected H-space, with product v.

Lemma 5.1 The homology H(X; IF), with product induced by v and with coproduct
AYx, is a Hopf algebra.

We refer to [33, Theorem 7.15] for the proof. For the readers convenience, we verify
that for every homogeneous element v of positive degree, A xv has the form (3.1). Let
p: X x X - X, (x,y) — x, be the projection on the first factor. Then

pOSX :idx. (51)

Foranelementu = v, @ l + 1 Q@ v, + > v/ ® v;./ € ®i+j=nHi(X) ® H;j(X) with
deg v, < n we have

(Pn o X)u = v, (5.2)

by the geometric definition of the cross product (see e.g. [15, §3.B]). Now write
Axv =1, @1 +1Qv, +> v ® v;.’ with deg vlf,degv;./ > 1. Using (5.1), the
definition of Ay and (5.2) we get

vV = ppo(dx)v
= ppo XoAxv

:pnox(v;®1+1®vg—|—2vl{®v;’)

/
= v,,.
Similarly we find v, = v,andso Axv = v ® 1+ 1 Qv+ > v ® v}’ with deg v,
degv! > 1. O

Since M is simply connected, QM is path-connected. Hence Vo = Hy(S2 M; F) =
[ is one-dimensional. Moreover, 1 € [F corresponds to the class of the constant path
p € M, which is the unit for the Pontryagin product . Applying Lemma 5.1 with
X = QM and writing A for A, ;; we obtain that (V, i, A) isa Hopf algebra over FG.
(We have already noticed that p is FG-linear. The definition of the G-actions on V
and on V ® V shows that also A is FG-linear.)
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5.2 The filtration on H*(.QM IF)

Fix a Riemannian metric p on M, and let p = prep be the corresponding Riemannian
metric on M. Given a piecewise smooth curve y in M, we denote by £(y) the length
of y with respect to the Riemannian metric p. For r > 0let V" be the set of homology
classes in V = H,($2M: F) that can be represented by cycles formed by piecewise
smooth loops y based at p with £(y) <r,

V' o= L H(2"M:TF).

Then each V7 is finite-dimensional (see [20, §16]), V' c V¥ forr < sand V =
U,~0 V". As in Sect. 3.2 define the value of v € V by |v| := min{r | v € V"}.
In view of the definition of the Pontryagin product and by the triangle inequality,
lvw| < |v| + |w| forall v, w € V.

Next, for g € G = w1 (M, p) let £(g) be the minimal length of a piecewise smooth
loop based at p that represents g. In other words, £(g) is the length of the shortest
geodesic lasso based at p in class g. Set L(g) := %Z(g). Then L(g) = L(g_l) and
L(gh) < L(g)+ L(h) forall g, h € G by the triangle inequality. Finally, for g € G
denote by ¢ g the lift to M based at p of a shortest curve in class g. Then

ey  ogyocy) < blcg") +L(gy) +L(c,) = L(y) +2tc,) = £(y) + L(g)

forallg € Gand y € 2 M. In view of the definition of the G-action on £2M we find
that |gv| < |v| 4+ L(g) = |v| + |g|. We have shown that (V, u, A) is a filtered Hopf
algebra over FG.

5.3 Dimensions

Recall that M is of finite rype if its universal cover M is homotopy equivalent to a
finite CW-complex.

Lemma 5.2 [8, Lemma 2.2] The following are equivalent.

(1) M is of finite type. _
(i1) The Abelian groups Hy (M) are finitely generated for all k > 1.
(ii1)) The Abelian groups i (M) are finitely generated for all k > 2.

Now assume that M is not of finite type. By the lemma, we can define
m(M) := min {k | Hi (M) is not finitely generated} € {2,....dimM}. (5.3)

The main result of this subsection is

Proposition 5.1 Assume that M is not of finite type. Let m = m(M) be as in defini-
tion (5.3). Then

(i) H;(2M) is finitely generated fori < m — 2;
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(ii) Hm—_1(2M) is not finitely generated, but is finitely generated as a 7Z.G-module.

Proof For each k > 2 the fundamental group G = m1(M, p) acts on the homo-
topy group (M) = mi(M, p) by conjugation. Under the Hurewicz homomor-
phism h: mp (M) = nk(l\? ) — Hk(M ) this action corresponds to the action of G
on Hj (A7I ) induced by deck transformations (the commutative diagram on the left).
On mp_1(82 ]l7[) = m;—1(£20M) = (M) this action of G is induced by conjugation of
elements in 20M = £2 M. This action also induces an action on Hi_1(£2 M ), namely
the action described in Sect. 5.1, and the two actions commute with the Hurewicz
homomorphism #4: nk_l(.Q]l71 ) — Hk_l(QM) (the commutative diagram on the
right),

Hy () ~<—"— m (M) = 711 (2 M) —2— Hi_1 (2 M)

| | |

Hi(M) <—— 7 (M) = 741 (2 M) —— H—1(2 M)

Recall that m € {2, ..., dim M} is the minimal integer such that Hm(I\7I ) is not
finitely generated. By Serre’s theory of C-classes, applied to the class of finitely gen-
erated Abelian groups, m is also the minimal integer such that Tem(M) is not finitely
generated. More precisely, Serre’s Hurewicz theorem implies that for & < m the
Hurewicz map h: (M) — Hp(M) is injective and surjective up to finitely gener-
ated groups, see [30] or [16, Theorem 1.8]. Hence 74 (§2 M) is finitely generated for
k <m—2,butnotsofork =m—1.

Since 2M is a path-connected H-space, m(.Q]VI ) acts trivially on nk(.QM ) for
k > 0. Serre’s Hurewicz theorem now implies that the map 4 : 7y (2 M ) — Hi($2 M )
has finitely generated kernel and cokernel for k < m — 1, see [30, p. 274] or [16,
Theorem 1.8]. It follows that Hj ($2 M ) is finitely generated for k < m — 2, but not so
fork=m—1.

We are left with proving the second assertion in (ii). After replacing M by a homo-
topy equivalent space, if necessary, we find a CW-structure on M. Since M is compact,
this CW-structure is finite. We lift this structure to M by the action of G. The cellu-
lar chain complex C, (M; 7Z) is then a finitely generated ZG-module in each degree.
Since G is virtually polycyclic, the ring ZG is left Noetherian, see [14] or [17]. Hence
each ZG-module C*(M 7Z) is left Noetherian. Therefore the kernel and the image
of the differential of C,(M; Z) as well as the quotient H, (M) are finitely generated
left Noetherian ZG-modules in each degree. In particular, Hw(M) is a finitely gen-
erated ZG-module. Recall that h: m(M) — Hpn(M) is injective and surjective up
to finitely generated groups. In view of the commutative diagram above, it follows
that JTm(M ) and hence TTm—1 (2 M ) are ﬁmtely generated ZG-modules. As we have
seen before, h: wm_1(52 M ) = Hmp_1(£2 M ) has finitely generated cokernel. Hence
Hin_1(82 M ) is also a finitely generated ZG-module. O
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5.4 Proof of Theorem 1.1 and Remark 1.2 (i)

By the universal coefficient theorem,
Hi(2M;F) = Hi(2M)®F @ Tor (Hj—_i(2M); F) (5.4)

for every field . Hence assertion (i) of Proposition 5.1 implies that H;(2M;F) is
finite-dimensional for i < m — 2, and assertion (ii) implies that Hyp,— 1(.(21\71 ;F) is
finitely generated as an [FG-module.

Assume now that [F is a field such that Hm(ﬂ ; IF) is infinite-dimensional. Since

Hn(M:;F) = Hn(M) ® F & Tor (Hw_1(M); F) (5.5)

and since Hm_l(]l7l ) is finitely generated, Hm(M ) ® FF is also infinite-dimensional.
As we have seen in the proof above, the two Hurewicz maps

Han(M) ~——— m0(M) = 7ty (M) ——> Hp_((201)  (5.6)

both have finitely generated kernel and cokernel. Hence Hm_l(QM ) ® [F is also
infinite-dimensional. This and (5.4) imply that Hy,—1($2 M: [F) is infinite-dimensional.
The dimension assumptions in Corollary 3.1 are thus satisfied, and we conclude
that dim V7 grows at least like VT B
Similarly, the identity (5.5) shows that dim Hn(M;F) = oo if and only if
dim Hn(M) ® F = oo, which holds if and only if dim 7 (M) ® F = oo because the
left map in (5.6) has finitely generated kernel and cokernel. O

6 A generalization to simplicial complexes, and a ‘‘counterexample”
6.1 An extension to simplicial complexes

Our main result Theorem 1.1 holds true for CW-complexes. To avoid some techni-
calities with rectifiable loops, we restrict ourselves to simplicial complexes, linearly
embedded in some Euclidean space.

Consider a finite simplicial complex K. Fix a piecewise linear embedding of K
into some RY. Then every point x € K has a neighbourhood U C K such that for
every u € U the straight line from x to u lies in K and is strictly shorter than any other
rectifiable curve in K from x to u. Milnor’s method of approximating the loop space
by broken geodesics, [20, §16], now shows that every cycle in 2 K is homotopic to a
cycle in the space of piecewise linear loops in K. Hence every homology class in the
loop space §2 K can be represented by a cycle formed by piecewise linear loops.

Denote by QOT K the space of contractible based loops in K that are piecewise
linear and of length £(y) < T. For further use we state two other consequences of the
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approximation method in [20, §16] (see also [13, p. 353]): First, each sublevel .QOT K
is homotopy equivalent to a finite polyhedron, and hence

Lf H, (.QOT K ) is finitely generated for each T'. (6.1)

In particular, all vector spaces LZ: H*(.QOT K; IF) are finite-dimensional. Second, there
exists a constant ¢ = c(X, p) such that no k-cycle in £2oK can be represented by a
cycle in .ng K. In other words, for every k > 1,

LZHk(QgK) =0 forT < ck. (6.2)

The proof of Theorem 1.1 applies literally to the present situation:

Theorem 6.1 Let K be a finite connected simplicial complex, embedded into
some RN . Assume that K is not of finite type and has virtually polycyclic funda-
mental group. Assume further that there exists a field ¥ such that Hm(K: F)is infinite-
dimensional. Then the function of T

dimti H*(QOTK; )

\/T-

grows at least like e

6.2 A “counterexample”

We now illustrate the role of the assumption that there exists a field ' such that
Hm(K ; F) is infinite-dimensional by an example. Let X be the mapping torus of a
degree-p map f of the sphere S”, where p is prime and n > 2. Since self-maps
of spheres of equal degree are homotopic, p and n determine X up to homotopy
equivalence. If we endow §” with the CW-structure with two cells, the 0-cell x being
a fixed point of f, then the attaching map f is cellular, and we obtain a CW-structure
on X. Since Hy(X) = Z for k = 0, 1 and H;(X) = 0 otherwise, X is not homotopy-
equivalent to a topological manifold.

We now compute H, ()? ) and H, (.Q)N( ). The fundamental group of X is infinite
cyclic, w1 (X) = Z. The universal cover X is the “double mapping telescope” obtained
by glueing together the mapping cylinders of f; = f, i € 7. For integers i < j
consider the part of X over [z, jl,

Xjij) = {(x.0) e X |t eli, jl,

and write X j = = X|; j.j1- By moving along 7 we see that X;. ,j1 deformation retracts
onto XJ = §". Retract X[ 1.0] to Xo in time [0, ] Then X[ 2.-1] C X becomes
X [—1,0]; retract it to XO in time [2 4] Going on thlS way we construct a deformation
retraction X — X >0 onto the mapping telescope formed by the mapping cylinders of

fi=f,i>0.
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Since f has degree p, the inclusion X [0,j1 —> X [0, j+17 induces multiplication by p
in homology,

~ p ~
H,(X0,j) =% — Z = Hy(X|0,j+17)-

The direct limit of the sequence 7Z /A -+ can be identified with
Z[1/ p], the subgroup of @ consisting of rational numbers with denominators a power
of p. Hence

Hy(X) = Hy(X=0) = lim Hy(Xj0,57) = Z[1/p],

(cf. Example 3.F.3 in [15]), and Hk()~( ) = O for all other k > 1. The Abelian group
Z11/ p] is not finitely generated, hence m = n in this example. However, for a field F
of characteristic ¢ we have Hy, (X F)=0ifg = p and H, (X ) = F otherwise.

We next compute H,(S2 X (). We choose as base point of X the point x € X0 = s,
Let p be the path from * € Xo to (x, j) € X traced by » under the canonical defor-
mation retractlon X [0,j1 —> X The space (.Q X [0, 1, *) 18 homeomorphlc to the sub-
space of (.QX 0,1, O J)) obtamed by conjugatmg by p the loops in (.QX 0,1, O J)).
Under the deformation retraction X [0,j1 = X this subspace deformation retracts
onto (.QX], (x, j)) = (£28", x). We have

Z ifke(n—-1)NUO,
ny —
i ($257) = IO otherwise.
Fix k = (n — 1)£. The natural homotopy equivalence J(S"*~!) — 25" from the
James reduced product of S"~! to £25” shows that the map 2f: 25" — 5"
induces multiplication by p¢ in Hy,

L

H (28" =7 L5 7 = H (25,

14 14

see [18] or [15, §4.J]. The direct limit of the sequence Z P72 2,7 ... can
be identified with Z[1/p*], the subgroup of @) consisting of rational numbers with
denominators a power of p‘. Hence

Hi(2X) = H(2X>0) = lim H(2Xp0,j) = Z[1/p"].

Moreover, Hk(.Qf() =0ifk¢ (n—1)NUDO.

Every finite CW-complex is homotopy equivalent to a finite simplicial complex,
see [32, Theorem 24]. So choose a finite simplicial complex K homotopy equivalent
to X, and fix an embedding of K into some Euclidean space.

Proposition 6.1 The space K fulfills all assumptions of Theorem 6.1 with m = n,
besides for Hn(K; IF) being zero- or one-dimensional for every field . Moreover,
LI H*(.QOT K) is a free Abelian group whose rank grows not more than linearly with T .
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Proof Since X and K are homotopy equivalent, so are X and K. The homologies
of X and K are thus isomorphic, and so are the~homologies of 22X and 2K.
It remains to understand the growth of LZ: H (2TK). If k ¢ (n — 1)N U 0, then
T H(2TK) € H(2K) = 0, 50  Hi(2TK) = 0. If k = (n — 1)¢, then
I H(2TK) € H(2K) = Z[1/p’]. By (6.1), the group ¢ Hy (27 K) is finitely
generated. Every finitely generated subgroup of Z[1/p?] is contained in the subgroup
generated by some element 1/p* and hence is trivial or infinite cyclic. Moreover,
by (6.2) there exists a constant ¢ depending only on K and p such that LZ He(R2TK)=0
for T < ck. Hence LZ: H. (2T K) is a free Abelian group whose rank grows not more
than linearly with T'. O

7 Proof of Corollaries 1.1 and 1.2

Proof of Corollary 1.1 Let C be a component of £2,,M. Fix a smooth path ¢ € C,
of length £(c). The map h: $20(M, p) — C, y — c o y is a homotopy equivalence.
It maps .QOT M to CTH4©)  where CT is the space of piecewise smooth paths in C of
length < T'. Theorem 1.1 now implies that

dim L>ZH>k CT.F) grows at least like VT, (7.1)

Notice that dimtg H,.(CT:TF) < dim H.(CT;F). For geodesic flows, Corollary 1.1
now follows from classical Morse theory, see [20, Theorem 16.3] or [25, p. 116]. For
the general case of Reeb flows, we use (7.1) and Lagrangian Floer homology, exactly
as in [19, Section 6]. We outline the argument, omitting all technical issues.

Let ¥ C T*M be the fiberwise starshaped hypersurface corresponding to the
cooriented contact manifold (S*M, «), and (up to the time change t — 2¢) view the
Reeb flow ¢, on (S*M, «) as the restriction of the Hamiltonian flow (,0§< on T*M,
where ¥ = K~!(1) and K is fiberwise homogeneous of degree 2.

Denote by P(K, C) the set of smooth paths x: [0, 1] — T*M with x(0) € X,
x(1) € X, that are solutions to Hamilton’s equation x(#) = Xk (x(#)) and whose
projections to M belong to C. The action of x € P(K, C) is

1
Ag(x) = /(k (x(1)) — K(x(1))) dt,
0

where A is the Liouville 1-form on 7*M. Since K is homogenous of degree two,
the set PT/2(K, C) = {x € P(K,C) | Ak (x) < T?/2} is in bijection with the Reeb
chords from X, to X, of time < 7. We thus wish to show that #PTZ/ 2(K,C) grows
at least like ev7 .

Seta = T'?/2. Since p, ¢ are non-conjugate for the Reeb flow @l the set P*(K, C)
is finite. The Floer chain group CF* (K, C) is the [F-vector space freely generated by
the chords in P*(K, C). The Conley—Zehnder index of these chords (normalized such
that it agrees with the Morse index in case of a non-degenerate geodesic chord) gives
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this vector space a grading *. The Floer boundary operator on CF{(K, C) is a map
of degree —1. Its homology is the Floer homology HF{ (K, C). Since the dimension
of the homology HFY(K, C) is not greater than the dimension of the chain group
CF{(K, C), which equals #P“ (K, C), we wish to show that dim HF{ (K, C) grows at
least like e¥7 .

Fix a Riemannian metric g on M, and let G: T*M — R be the corresponding
geodesic Hamiltonian. After multiplying g with aconstant, we can assume that G < K,
and since X is fiberwise starshaped with respect to the origin, we find a constanto > 1
such that

G <K <oG.

The Floer homology of the functions G and o G is defined in the same way.
There is a commutative diagram

DG o
HFY(G, C) — 2"~ HF° (4G, C) — %> H,(CT; F)

HF4 (K, C) —~"% > HFY(6 G, C) —2M oy (¢VoT. )

Here, the three maps ® between Floer homologies are Floer continuation maps, and
@, is an isomorphism. The upper map ASM is the composition

HMY’ (L, C) — M g F)

HFY° (6 G, C)

of the Abbondandolo—Schwarz isomorphism AS from Floer homology to the Morse
homology of the Legendre transform L of o G with the Abbondandolo—Majer isomor-
phism AM from this homology to the homology of C7, see [1] and [2]. Finally, the
two unlabeled vertical arrows are induced by inclusion.

It follows that dim HFS (K, C) is at least the rank of the right vertical map. This

rank is at least dim LZ; H.(CT;TF), which by (7.1) grows at least like VT, O

Proof of Corollary 1.2 For geodesic flows the claim follows from Corollary 1.1 and
the geometric arguments in [25, Section 3.1]. For the general case of Reeb flows we
use Theorem 1.1 and the idea from [6], that was further developed in [7,8,19]. The
proof goes exactly as the proof of Theorem 4.6 in [19]; we therefore again only sketch
the proof.

Forg € M consider £, = £ NT;M and the bounded component Dy of T/ M\X,,.
The “spheres” %, are Legendrian and the “discs” D, are Lagrangian. Fix n € N, and
take ¢ € M not conjugate to p for the flow ¢/,. Recall from the previous proof that

2
the generators of the Floer chain groups CF, / 2(K ) (where we now do not restrict to
a component C) are in bijection with the Reeb chords from X, to X, of time < n.
This set is in bijection with the intersection points of the Lagrangian discs ¢% (D)

and D,. By the previous proof, this number grows at least like eV, uniformly in q.
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Since this holds for almost every ¢ € M, the volume of the discs ¢ (D)) grows at
least like eV, We refer to Section 4 of [19] for details. Finally, the volume of % (%)
also grows like eV in view of Proposition 4.3 in [8]. O
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