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Abstract. The goal of this paper is to give a self-contained exposition of Gro-
mov compactness for pseudoholomorphic disks in compact symplectic man-
ifolds. The proof leads naturally to the concept of stable maps which was
first introduced by M. Kontsevich. Our definition of stable maps for disks is
based on the one given by D. McDuff and D. Salamon for spheres. We also
generalize the notion of Gromov convergence to the case of disks. We show
that the homotopy class is preserved under Gromov convergence.
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1. Introduction

This paper is concerned with Gromov compactness for pseudoholomorphic disks.
It is an extract of the author’s Diploma thesis written in 1999/2000 under the
guidance of D. Salamon. The result is not fundamentally new but was considered
as a “folk theorem” for many years. However, since in the meantime the results of
this paper were used in different important works the author decided to publish
this paper despite the long time which elapsed since its first appearance.

Kontsevich’s notion of stable maps extends naturally to Riemann surfaces
with boundary. The purpose of the present paper is to give a selfcontained exposi-
tion of stable maps of genus zero with one boundary component, satisfying some
Lagrangian boundary condition. We prove that every sequence of stable maps has
a Gromov convergent subsequence, that limits are unique up to equivalence and
that the homotopy class is preserved under Gromov convergence.

Other proofs of Gromov compactness for stable maps with boundary can
be found in [Ye] and [IS1, IS2]. The definition of Gromov convergence given here
differs from the one in [IS1, IS2] as follows. Firstly, we allow the boundary of the
domains to degenerate in a sequence of J-holomorphic curves and show in some
examples how this can happen. In this case the degenerate “boundary” of the
limit curve takes the form of a single point on a holomorphic sphere. This case is
needed to guarantee that the number of boundary components is preserved in the
limit. Secondly, following [MS2] we work with sequences of holomorphic rescalings
instead of nonholomorphic parametrizations of the nodal curve. In other words, in
our definition each component of the limit stable map is obtained by convergence,
modulo bubbling, from a sequence of the form u” o ¢”, where ¢ is a sequence
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of Mébius transformations. This gives rise to an alternative definition of Gromov
convergence. Thirdly, we prove uniqueness of the limit based on this definition.
Namely, the relative behaviour of the sequences of Mobius transformations allows
us to construct an isomorphism between the trees over which two given limit curves
are modelled. Finally, we explicitly carry out the proof of Gromov compactness
for stable maps in the presence of marked points.

There are many different definitions of Gromov convergence and various
proofs of Gromov’s compactness theorem in the literature. Gromov sketched in
[Gr] a proof which used isoperimetric inequalities and the Schwarz Lemma for
conformal maps and lead naturally to the concept of cusp curves. The full details
of this proof for closed Riemann surfaces without boundary have been written up
by C. Hummel [Hu]. Compare also the article by P. Pansu [Pan] and the papers by
S. Tvashkovich and V. Shevchishin [IS1, IS2]. Another approach to Gromov com-
pactness can be found in [PW], [Parl], and [Par2]. Following Sacks—Uhlenbeck’s
covering and rescaling scheme in [SaU], they proved that sequences of pseudoholo-
morphic maps from a closed Riemann surface converge to a bubble tree, which can
be thought of as element of a quotient of a space of iterated S%-bundles over the
Riemann surface. In the spirit of Sacks—Uhlenbeck’s scheme, Ye proved Gromov
compactness for Riemann surfaces with boundary (see [Ye]). The present paper is
based on the exposition of the Gromov compactness theorem for stable maps of
genus zero without boundary given in [MS2].

Pseudoholomorphic curves were introduced into symplectic geometry by
M. Gromov in 1985 (see [Gr]). In particular, he proved existence of pseudoholo-
morphic disks and found obstructions to Lagrangian embeddings. Since then there
have been many other applications of pseudoholomorphic disks. For example, J-
holomorphic disks play a crucial role in Floer homology for Lagrangian intersec-
tions and hence in the proof of the Arnold conjecture (see [Fl], [Oh], [FOOO],
[La], [Ch]). The original motivation for the present paper was the work of [AS].
M. Akveld and D. Salamon used the fact that the homotopy class is preserved
under Gromov convergence to define Gromov invariants for loops of Lagrangian
submanifolds. The results of this paper were later used by P. Seidel [Se] and in the
joint work of P. Biran and O. Cornea [BC].

1.1. Overview

In this first subsection we recall some well known facts about pseudoholomorphic
curves and outline the content of this paper. Let (M,w) be a compact symplectic
manifold (possibly with boundary) and L a compact Lagrangian submanifold of
M without boundary. Let J be an w-tame almost complex structure, i.e. g(v,w) =
2 (w(v, Jw) + w(Jv,w)) is a Riemannian metric on M. Pseudoholomorphic curves
(also called J-holomorphic curves) are smooth maps u from a compact Riemann
surfaces (X, j) with boundary to M with complex linear differential, which map

0%, to L. The energy of a J-holomorphic map u : ¥ — M is defined by

E(u):%/2|du|2:/zu*w.
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The Lagrangian boundary condition guarantees that the energy depends only on
the relative homology class of u. This gives a uniform L2-bound on the first deriva-
tives of u. This bound does not guarantee compactness because it is a borderline
case for Sobolev estimates. If instead one has a uniform bound on the LP-norms for
some p > 2, then such a bound guarantees compactness. The elliptic bootstrap-
ping analysis fails in the case p = 2. The geometric reason lies in the conformal
invariance of the energy. For example the noncompact group G = PSL(2,C) acts
on the space of holomorphic maps from 52 to M by conformal reparametrizations.
Hence this space is always noncompact, unless holomorphic spheres are constant.

In the case of holomorphic spheres with minimal positive energy the quotient
by the reparametrization group PSL(2,C) is compact (see [MS2]). But this is not
the case in general as the following example shows (see [Hu]).

Example 1.1. Let S? = CU {cco} denote the Riemann sphere. Then u* : S? —
S? x 82 with u”(2) := (2,1/(v?2)), v > 1, is a sequence of holomorphic curves in
S2 x S2%. As v — oo the images u”(S?) converge to 5% x {0} U {0} x S2.

In the example above a sphere bubbles off at the point (0,0). Obviously, this
cannot occur in the case of minimal energy. The phenomenon of bubbling was first
observed 1981 by J. Sacks and K. Uhlenbeck [SaU]. In [Gr], M. Gromov states his
famous compactness theorem which says that every sequence of pseudoholomor-
phic curves u” : ¥ — M has a subsequence which converges smoothly away from
a finite set of points at which “bubbles” develop.

It can happen that on a bubble an additional sphere bubbles off or that at
some point several spheres bubble off as the following examples show (see [Hu]).

Example 1.2. Consider the sequence of pseudoholomorphic curves v’ : S? —
52 x 8% x 8?2 given by
1 1
v _ = ).
w(2) (z, vz’ 1/2z)

As v — oo the images u”(S?) converge to C; U Cy U C3 where
Cp =8%x {0} x {0}, Cy={0}xS*x{0}, C3={0}x{0}xS>

C is connected to Cy at the point {0} x {0} x {0} and Cj is connected to C3 at
the point {0} x {co} x {0}, but Cy and Cj5 are disconnected.

Example 1.3. Consider the sequence of pseudoholomorphic curves v’ : S? —
S2 x S? x S? given by

1 1
u(z) = (z, v2(z —1/v) v2(z + 1/u))'
As v — oo the images u”(S?) converge to C; U Cy U C3 where
C;=5?x {0} x {0}, Cy={0}xS*x{0}, C5={0}x{oc}xS%
The three spheres are connected at the point {0} x {0} x {0}.
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Phenomena of this kind led M. Kontsevich to introduce the concept of stable
maps (see [Ko]). A stable map is a connected graph whose vertices consist of
pseudoholomorphic maps u, from a closed Riemann surface >, to M with marked
points. Two vertices o and § are connected by an edge iff there exists an equivalent
pair of nodal points z,3 € X, and 25, € 23, i.€. U (2a3) = ug(28a). Marked points
and nodal points are not allowed to coincide. Note that one can always achieve this
by introducing auxiliary constant maps. Moreover, the stability condition asserts
that the set of automorphisms is finite. This means that constant spheres have at
least three special points (marked or nodal points) and constant tori have at least
one special point. If e denotes the number of edges of the graph and v the number
of vertices, then the genus of the stable map is given by the formula

g:Zga—l—e—v—}—l.

The introduction of auxiliary constant maps gives us some additional infor-
mation. Consider the case of a sequence of constant spheres each of which has three
marked points such that the marked points converge to the same point in the limit.
After rescaling by conformal transformations, one gets a constant sphere on which
the four marked points are separated. The crossratio of the three marked points
and the nodal point is invariant under conformal transformations and carries the
additional information on how the three marked points converge.

This notion of stable maps generalizes to J-holomorphic curves with bound-
ary as follows. We distinguish between marked points on the boundary and marked
points in the interior, as well as between nodal points on the boundary and nodal
points in the interior. Two nodal points can only form an equivalent pair if either
both of them are on the boundary or both of them are in the interior. The stability
condition for constant disks means that there are either three special points on the
boundary, one special point on the boundary and one special point in the interior,
or two special points in the interior. For constant annuli the stability condition
means that there exists a special point either in the interior or on the boundary.
Moreover, it is important to consider the degenerate case in which the boundary
consists of a single point on a holomorphic sphere. Indeed, it can happen that two
marked points on a constant disk converge to a single point in the interior. After
rescaling one gets a constant sphere on which the two points are separated. This
sphere is connected to a constant disk with no marked point. Hence the disk is
unstable. We collapse the disk to a point. Think of this point as the boundary of
the sphere. Note that the introduction of this point guarantees that the number of
boundary components is preserved under limits. Another example where the limit
consists of a single sphere with one boundary point is a sequence of holomorphic
curves of degree two from the disk to the sphere, which map the boundary of the
disk to the equator. If these curves represent the canonical generator of m2(S?) then
it can happen that the slit, the image of the boundary of the disk in the equator,
converges to a point. In this case a single sphere bubbles off and the constant disk
has to be collapsed to a point. See Subsection 6.1 for a detailed discussion of this
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example. One of the difficulties in carrying out the details of the analysis lies in
dealing with this degenerate limit case.

In this paper, we restrict ourselves to the case of genus zero and one boundary
component. The first condition means that the graph is a tree and the Riemann
surfaces are either spheres or disks. The second condition means that the subset
of the tree consisting of the disks is in fact a subtree.

To prove Gromov convergence we follow the exposition given by D. McDuff
and D. Salamon in their book [MS2]. We work out the analogue of their results
in the case of one boundary component. We give a careful definition of the no-
tion of Gromov convergence for sequences of stable maps of genus zero with one
boundary component and show that every sequence of stable maps of bounded
energy has a Gromov convergent subsequence. It follows from our definition that
the distinction between marked points on the boundary and marked points in the
interior is preserved under limits. We prove that the homotopy class of a stable
map is preserved under Gromov convergence and that limits of Gromov conver-
gent sequences are unique up to equivalence. Using Gromov convergence one can
define Gromov topology on the space of stable maps with some fixed number of
marked points in the interior and some fixed number of marked points on the
boundary, which represent a fixed homotopy class. Convergence with respect to
the Gromov topology is equivalent to Gromov convergence. The space of stable
maps is a compact Hausdorff space with a countable basis.

Stable maps are defined in Section 2. In Section 3 we define Gromov conver-
gence for sequences of J-holomorphic disks without marked points. This definition
will be extended in Section 4 to the case of holomorphic disks with marked points
and in Section 5 to the general case of stable maps. In Section 6 we give some
examples and applications.

In Appendix A we state some theorems which are needed for the analysis
and give references to their proofs. We prove that for every compact totally real
submanifold of an almost complex manifold, a compatible metric exists such that
the submanifold is totally geodesic. This result is needed for the proof of an a priori
estimate at the boundary and I could not find it in the literature. In Appendix B
we study sequences of Mdbius transformations which do not have a uniformly
convergent subsequence. These results are used to prove uniqueness of limits for
stable maps and to deal with marked points.

1.2. Notation

In this paper we will use the following notation:
H={zeC:Imz >0}
denotes the closed upper half-plane,

B=HU{c0}
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denotes the closed disk, and
5% = CU{o0}
denotes the two-sphere. We may think of B as a subset of S2.
The sphere is endowed with a canonical symplectic structure

dx N\ dy
wpg = ————————;
P A a2 1 y2)?
F'S stands for Fubini—Study. This form agrees up to a factor with the area form on
the unit sphere S? C R2. Moreover, wrg is compatible with the standard complex

structure
0 -1
Jo — (1 ) )

This means that grs(v,w) = wps(v, Jow) defines a Riemannian metric on S?
called the Fubini—-Study metric. We will denote by G the group of orientation
preserving conformal diffeomorphisms of (S2,Jp). Its elements are given by the
Mébius transformations

az+b
cz+d’
G is isomorphic to PSL(2,C) = SL(2,C) \ {id, —id} via the isomorphism

L 02 +5b a b
— [ad .
cz+d c d
We denote by Gy C G the set of Mobius transformations which map B to itself.
Note that Gy = PSL(2,R) = SL(2,R) \ {id, —id}.

Z

ad —be # 0.
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2. Stable maps

2.1. J-holomorphic curves

Let (M,J) be an almost complex manifold and (3,j) be a Riemann surface.
A smooth map u : ¥ — M is called J-holomorphic if the differential du is a
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complex linear map with respect to j and J:
Jodu=duoj.
One can rephrase this equation as 9 7(u) = 0. Here, the 1-form
ds(u) = L(du+ Jouoj) e Q¥ (uTM)
is the complex antilinear part of du, and takes values in the complex vector bundle
wTM = {(z,v) : z € ¥,v € Ty,)M}.

If (M, w) is a symplectic manifold then we define the space J.(M,w) as the
set of all almost complex structures J on M which tame w. This means that

w(v,Jv) >0, v #0.

In particular,
(v,w)y = 2w, Jw) + w(w, Jv))
is a Riemannian metric on M. One can show that the space J (M, w) is a nonempty
contractible space (see [MS1]). We will denote by |v[%> = (v,v), the associated
norm.
The energy of a smooth map u : ¥ — M is the L?-norm of the 1-form

du € QY (u*TM):
1
E(u):—/ |du|3dv01:/u*w.
2 Jx N

If we assume that 3 has no boundary or that 0% is mapped to a fixed Lagrangian
submanifold L of M, then the energy identity shows that the L2-norm of the deriva-
tives of a J-holomorphic curve is uniformly bounded. This bound only depends on
the homology class relative to L represented by w.

2.2. Trees

A tree is a finite connected graph with no cycles. More precisely

Definition 2.1. A tree is a finite set T' equipped with a relation £ C T x T such
that the following holds.
(symmetric) If aE( then fEa.
(connected) For all a, 8 € T with a # (3 there exist vg,...,Ym € T with v =«
and 7, = [ such that v; Fvy;+1 for all ¢.
(no cycles) o, ...,vm € T with v;Ev;+1 and ~; # 742 for all i then vy # ..

Elements of T are called vertices and elements of E are called edges. Two
vertices «, B are called adjacent if they can be connected by an edge, i.e. aEQ.
A tree isomorphism is a bijection between the set of vertices of two trees which
maps adjacent vertices to adjacent ones.

Definition 2.2. A map f : T — T is called a tree homomorphism if f~la)is a
tree for every & € T and, for all a, 8 € T with «ES and f(a) # f(B), we have
f(@)Ef(B). It is called a tree isomorphism if it is bijective and both f and f~!
are tree homomorphisms.
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We will introduce some notation from [MS2]. Let (T, E) be a tree. Then
for every pair «, 8 € T with a # 3 there exists a unique ordered set of vertices
Y05 -+, Ym € T such that v;Ev,+1, v # Vi+2, Yo = «, and 7, = B. This is called
the chain (of edges) running from « to (3, and the set of vertices belonging to this
chain is denoted by

o, 8] =B, ={yi:i=0,...,m}.

Cutting any edge aE3 decomposes the tree T into two components. The compo-
nent containing 3 is given by

Top = {7 eT:pe [(X?'Y]}'

This set is called a branch of the tree T. Note that T is the disjoint union of {a}
and the sets T3 over all 3 € T with aE(.

2.3. Stable maps

The concept of stable map was introduced by M. Kontsevich [Ko]. We generalize
his notion to the case of genus zero with one boundary component.

Definition 2.3. Let (M,w) be a compact symplectic manifold with boundary, L
a compact Lagrangian submanifold of M without boundary and J € J.(M,w).
A (k1, ko)-marked, J-holomorphic stable map of genus zero with one boundary
component in L is a tuple

(w,2) = ({(Za, Lo, ta) Yaer, {2aptars, {ais 2it1<i<k)

modelled over a tree (7', F), consisting of a collection of J-holomorphic maps u, :
(3Xa,Ta) — (M, L) indexed by a € T, a collection of nodal points z,g € X,
indexed by directed edges aE(, and a collection of marked points z; € 3,. They
satisfy the following conditions:
(i) For every « either ¥, = S? or ¥, = B. Moreover, if ©, = B then T, = 9B
and if ¥, = S? then #I, < 1.
(ii) There are k; interior marked points and ks boundary marked points, i.c.
Zi EIH‘EE(M fori<k; <kandz € 8Eu, for k1 <i <k =k + ko.
(iii) If o,8 € T with aEf then ua(za) = ug(zsa)-
(iv) If aEB, aEvy, and 8 # v, then 243 # zay. If 0y = o5 with @ # j then z; # z;.
If o = a and aE S then z; # zop5. If ¥4 = S? then zap ¢ Ty for aEf and
2; ¢ Ty where i = 1,... k.
(v) For @ € T define

7 _ {zap: B €T, aEB} U{z:1<i<k,o=0a} if ¥, = B,
T\ TaU{zap: BT, BB} U{zi:1<i<k,a;=0a} if%,=5>%

If ¥, is the sphere and u, is a constant function then Z, consists of at
least three elements. If ¥, is the disk and wu, is a constant function then
Z., consists either of at least three elements or of two elements which do not
both lie on the boundary.

(vi) If aE (3 then zqp € 0%, iff 234 € 035.
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(vii) The set 9T := {a € T : Ty, # (0} is a subtree called the boundary tree.
The boundary tree is never empty. It consists either of disks or of one single
sphere, i.e.

acdl, X, =52 = #0T = 1.

A stable map

The following remarks should clarify the meaning of this definition.

Remark 2.4. Ttem (v) is the stability condition of M. Kontsevich. If (v) is not satis-
fied, there are infinitely many orientation preserving conformal reparametrizations
of ¥,. Assume for example that ¥, = B and Z, = {i}. Then the set of automor-
phisms is the circle.

Remark 2.5. Let (u,z) be a stable map with & marked points. The domain of the
map can be represented as the quotient

(z) ={(,w):a €T, weX,}/~
where the equivalence relation is given by («, z) ~ (8, w) if and only if either o« = 3
and z = w, or aEQB, z = 248, and w = zg,. Denote by [o, 2] the equivalence class
of a pair (a, 2), a € T, z € 3. Then the collection {uq faer can be thought of as
map
Y(z) = M : [, 2] = ua(2).

Call [a, 2] a nodal point of X(z) if z = z,g for some [ € T with aES. The marked
points are the elements x; = [ay, z;] of ¥(z), and a boundary point is an element of
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the form x = [, 25°] where ', = {25°}. Note that nodal points, marked points and
boundary points are mutually distinct. Moreover, there is at most one boundary
point in ¥(z). A point in ¥(z) is called special if it is either a nodal, marked or
boundary point.

Remark 2.6. Item (vii) in Definition 2.3 tells us that the boundary of the image
of ¥(z) consists of exactly one connected component. As was pointed out in the
introduction, it is important to consider the degenerate case in which the boundary
consists of a single point on a holomorphic sphere.

If (u,z) is a stable map then the tree T' carries natural weights
me () = E(uy) = /2 Upw.
We will use the following notation from [MS2]: “
mag(w) = Y Eluy)

Y€Tup
for a, B € T with aE(3, and

Ea(u,Q):/uZw—}— E Mmas(a)
Q aE8
Zap ESL

for a € T and any open set Q) C X,. Then the total energy

E(u) =) E(ua)
acT
of the stable map (u,z) is equal to E4(u,X,) for any a € T'. The following lemma
shows that the energy and the number of marked points give a uniform bound on
the number of vertices of the tree.

Lemma 2.7. Let (u,z) be a (ki, ka)-marked stable map, and let T — R : o — my,
be the corresponding weights. Assume that the total energy of u is bounded by c,
i.e.
E(u) = Z me(u) < c.
acT
Then the number of vertices is bounded by

#T <3c/h+2ky + ko —2 (1)
where h is defined as in Corollary A.4.

Proof. If #T = 1, then (1) is satisfied. Hence assume #1° > 2. We first assume that
#0T > 2. Then it follows from (viii) of Definition 2.3 that for every a € T the set
T, is either empty or consists of infinitely many points. (v) of Definition 2.3 implies
that if u, is constant and the set Z, = {zoap : 8 € T, aEf} U{z 1 1 < i <k,
a; = a} consists of fewer than three points, then ¥, = B and Z, has precisely
two elements which do not both lie on the boundary of ¥,. We can even assume
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that if u, is constant and Z, has fewer than three points, then Z, consists of two
elements, one in the interior and one on the boundary. To see this, observe that
if Z,, has two points in the interior then we add an additional constant disk & to
our tree. o and & are joined on the boundary and each of them has one special
point in the interior. This procedure increases the number of vertices by one and
leaves the energy and the number of marked points unchanged. Hence it is enough
to show the formula above for the modified tree.

Now we estimate the number of constant disks having only one special point
on the boundary and one special point in the interior. The point in the interior
is either a marked point or a nodal point. If it is a node then a tree of spheres
bubbles off on it. One of these spheres must be nonconstant or contain an interior
marked point. This shows that the number of these disks is bounded by ki + ¢/h.

Now we collapse each of the disks having only one special point on the bound-
ary and one special point in the interior to a single point. This procedure decreases
the number of vertices of the tree by at most k; + ¢/h. Call the modified tree 7.
We can assume without loss of generality that 7T is not empty. Otherwise T" would
consist of constant disks having one special point on the boundary and one in the
interior. Because there are no spheres, the special points in the interior have to be
interior marked points. Hence by collapsing the #71" disks, one removes #71" interior
marked points. Then (1) follows from the inequality #1" < 2#T — 2 for #1" > 2.

We have to show that

#T < 2c/h+Fk +ky—2=2c/h+k—2.

To see this, note that each endpoint a of T either has weight m, > h or carries at
least two marked points z; and z; with a; = a; = . Hence removing the endpoints
either reduces the energy by A while increasing the number of marked points by no
more than one, or it leaves the energy unchanged while decreasing the number of
marked points by at least one. Hence the number 2E/fi+k+1— #1 gets reduced
by at least 1 whenever we remove an endpoint. After removing #T — 1 vertices
we are left with 2F'/h+ K <2E/h+k+1— #T. Since #T > 2 and T £ () the
tree T is either a single marked point or has more than one point. Hence k&’ > 1
and either &' > 3 or E/ > h. In either case 2E'/h + k' > 3, and this proves the
inequality above.

It remains to consider the case where #9T = 1. It follows from (vii) of
Definition 2.3 that there exists a € T such that Ty, = {22°} and ¥, = S2. Add
a constant disk & to the tree having one additional boundary marked point zx1.
Call the modified tree T'. Because @ is the only disk of 7" it follows that

#T <2¢/h+k—2.
Moreover, k= ki, ko = ko + 1,é¢=cand #T = #T + 1. This shows that
#T <2¢/h+ (k1 +ko+1)—2—1=2¢c/h+ ki + ko —2<3c/h+ 2k + ks —2.

Hence the lemma is proved. O
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Remark 2.8. Following [MS2| we extend the notation z,. to any pair of distinct
points o,y € T. Namely if a # + then there exists a unique element 3 € T" which
is adjacent to «, i.e. aF3, and satisfies v € T, g, or equivalently 3 € [a,]. In this
case we define 2,y = 2. In summary,

Zay = ZaB, Y € Thg.

Thus zoy € X is the unique point on ¥, through which ¥, can be reached.
Similarly, define
Z"_{Zi if a; =
o Zap if a; € Ta,@a
forae T and i€ {l,...,n}. If a # ay, then z,; = 244, is the unique nodal point
on X, through which it is connected to X, which carries the marked point z;. To
deal with boundary points we define, for a ¢ 9T,

28 = 2ap, OT CTaup.

Hence zg° is the unique nodal point through which X, is connected to the boundary
of the stable map. If 3, = S? and o € 9T let z2° be the unique element of T,.
We further introduce

— [{z2ap:B €T, aES} if 3, = B,
ST\ {2 Ufzag  BET, aEB} if By = 52,

the set consisting of nodal and boundary points. Note that 2, = Z, \ {z : 1 <
i <k, a; =a}.

There is a natural equivalence relation on the set of stable maps.! The equiv-
alence relation is determined by complex diffeomorphisms of the domains of the
curves which identify the nodal points, the marked points and the boundary points.

Definition 2.9. Two (k1, k2)-marked stable maps

(w,z) = ({(Za, Tas ta) taeTs {2aptars, {06, zi1<i<k)s
(ﬁv i) = ({(ia?f‘a» ﬂa)}aefv {ZQB}(XEﬁ’ {div Zi}lﬁiék)

are called equivalent if there exists a tree isomorphism f : T — T and a collection
© = {pataer of Mébius transformations such that the following holds.

(i) For all a € T, lip(o) = Ua © o5t Moreover, 3, and Yf(a) are either both
spheres or both disks.
(ii) For all o, € T' with aFEB, Zf(a)f(8) = Pal(2as)-
(iii) Fori=1,...,k, &; = f(ay) and Z; = @4, (7).
(iv) Ta = 05" (T f(a))-

1Strictly speaking, the stable maps do not form a set but a class. However, if one thinks of a tree
with m vertices as a relation on the set {1,...,m} then the stable maps form a set.
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3. Gromov convergence for unmarked disks

3.1. Definition of convergence

In their book [MS2] D. McDuff and D. Salamon gave a careful definition of Gromov
convergence for pseudoholomorphic spheres. We define the analogue for pseudo-
holomorphic disks. We will show that each sequence of J-holomorphic disks with
bounded energy has a subsequence which Gromov converges to a stable map.
Moreover, the homotopy class is preserved under Gromov convergence.

For simplicity we assume in this section that our disks have no marked points.
We will define Gromov convergence for sequences of disks with marked points in
the next section. In Section 5 the notion of Gromov convergence will be extended
to sequences of stable maps.

Definition 3.1. Let M be a compact manifold with boundary, L a compact sub-
manifold of M without boundary, w” a sequence of symplectic structures on M
such that L is Lagrangian for every w”, and J" a sequence of w”-tame almost
complex structures. Assume that the w” converge to some symplectic structure w
on M with respect to the C'*°-topology, and the J” converge in the C*°-topology
to some J € J,(M,w). A sequence of J-holomorphic disks u” is said to Gromov
converge to a J-holomorphic stable map

(u) = ({(Eaa Ta, ua)}aETa {Zaﬁ}aEﬂ)

if there exists a collection {¢% }oer of Mébius transformations such that the fol-

lowing holds.

(i) If £, = B, then ¢% € Gy.

(ii) If 3, = 52 then for every compact subset K C 52\ {22°} there exists v (K)
such that ¥ (K) C B for every v > vy(K).

(iii) For every o € T' and for every compact subset K of ¥, \ 2, (cf. Remark 2.8
for the definition of =,) the sequence? u” o % converges to uq, uniformly
with all derivatives on K.

(iv) If 8 € T is such that aF3, then

map(u) = lim lim E(u”, ¢ (Be(2ap)) N B). (2)
(v) If 'y = {25°}, then
lim lim E(u” o %, B(25°) N (%)~ 'B) = 0.

e—0v—o00

(vi) (ph)~" o @} converges to zas, uniformly on compact subsets of 35\ {2ga}.

2The domain of u” o @Y, is the set (¢%)~(B).

3 Note that according (ii) the expression u” o ¢% is defined on the whole of K if v > vo(K).
If f is a C°°-function from a compact manifold X to a manifold Y and f” is a sequence of
C°°-functions from a submanifold X* C X to Y, and Z C X is a finite set, then we say that f”
converges to f uniformly with all derivatives on every compact subset K of X \ Z if for every
such K there exists a vo(K) € N such that for every v > vg(K) the set K is contained in X
and fY|g converges to f|x in the C°°-topology.
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Gromov conver gence

In the following let J¥, M and L be as in Definition 3.1. The main results of
this section are

Proposition 3.2. Assume that u” : (B,0B) — (M, L) is a sequence of J”-holo-
morphic disks which Gromov converges to a stable map (u). Then the following
holds.

(i) If 2" € u”(B) converges to x € M then x € U, crp ta(Xa)-

(ii) For large v the disk u” is relative homotopic with respect to L to the connected

sum #qer Ua-

Theorem 3.3. Let v’ : (B,0B) — (M, L) be a sequence of J”-holomorphic disks
with bounded energy. Then u” has a Gromov convergent subsequence.

If a sequence u” of J”-holomorphic disks Gromov converges to some stable
map u, then it converges to every equivalent map. The following theorem tells us
that the converse also holds.

Theorem 3.4. Let u” : (B,0B) — (M, L) be a sequence of J¥-holomorphic disks.
Suppose that u¥ Gromov converges to two stable maps u andu. Then u is equivalent
to u.

We will prove this theorem in more generality, namely for disks with marked
points, in the next section.

3.2. Gromov compactness

Let us first sketch the main ideas of the proof of Theorem 3.3. If there is a bound

sup ||du”||r < o0
14

for some p > 2 then Theorem A.9 shows that a subsequence of u” converges
to a J-holomorphic disk. However, the assumption of bounded energy gives us
only an L2-bound. This gives rise to the phenomenon of bubbling. We know from
Theorem A.12 that after choosing a suitable subsequence there are only finitely
many bubble points. If one rescales a small neighbourhood of such a point, then
one gets a new J-holomorphic sphere or disk which is connected to the old one at
the bubble point. The examples in the introduction show that it may happen that
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at some point more than one sphere or disk bubbles off, or that on a bubble new
bubbling occurs. The subtle point is to find a reparametrization which detects all
the bubbles. In the terminology of [HS] this is called soft rescaling.

In [MS2] Gromov compactness was proved for sequences of pseudoholomor-
phic spheres by induction on the number of vertices of the stable map. We work
out the analogue of their proof for disks.

3.2.1. Soft rescaling

Theorem 3.5. Let M be a compact manifold with boundary, L a compact subman-
ifold of M without boundary, w” a sequence of symplectic structures on M such
that L is Lagrangian for every w’, and J” a sequence of w”-tame almost com-
plex structures. Assume that the w¥ converge to some symplectic structure w of M
with respect to the C™°-topology, and the J¥ converge in the C°-topology to some
J e T (M,w). Let S C H be an open set, let u, : (S,05) — (M, L) be a sequence
of J¥-holomorphic curves with bounded energy, and let u : (S,05) — (M,L) be a
J-holomorphic curve and w € S such that

(A) u” converges to u uniformly with all derivatives on compact subsets of S\{w},
(B) the limit
mo = lim lim E(u”, Bc(w))

e—0v—o00

exists and is positive.

Then there exists a sequence of Mobius transformations ¥, a J-holomorphic curve
v:(2,08) — (M, L) where

5. CuU{oc} ifweS\0S,
T\ HU{o} ifweds,

and a finite set Z = {z1,...,2z¢} C X\ {00} such that:

(i) If S = B then ¢* € Gy.

(ii) A subsequence of v¥ = u” o ¢V (still denoted by v”) converges to a J-
holomorphic curve v : ¥ — M, uniformly with all derivatives on compact
subsets of £\ (Z U {oo}) (cf. footnote 3 on page 228).

(iii) The limit

mj =m(z;) = lim lim E(v”, (")~ "(X) N Be(z;))

e—0v—o00
exists and is positive for 1 < j < /.
(iv) If v is constant and #7Z < 2, then ¥ = B and Z consists of precisely one
point, which lies in the interior of 3.
(v) Define
me+1 :=m(o0) ;= lim lim E(v”,(CNX)\ (BrNX)).

R—o0 v—00

Then
/+1

E:= lim E(u”) = E(v)+ ij
j=1

vV—00
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and
£
mo = E(v) + Z m;.
j=1

(vi) v(o0) = u(w).
(vii) 9¥ converges to w, uniformly on compact subsets of X\ {o0}.

Proof. We only consider the case where w € 9S. The case where w lies in the
interior was proved in [MS2]. Let Q.(z0) := {z € C: |z — 29| <€, Imz > 0} where
e > 0 and zp € R. We abbreviate further Q. := Q.(0) and  := Q;. We may
assume without loss of generality that w = 0 and S = €.

By (A), |du”| is uniformly bounded in Q \ Q. for every e > 0 and, by (B),
supq, |du”| — oo for every € > 0. Hence every sequence 2" € €2 with

‘|

du ()] = supldu

must converge to zero. Let us fix such a sequence. Consider the function
py 0= E(u”, Bs(z")NQ).

It is continuous, p,(0) = 0 and, by definition of my, there are values for which p,
approaches myq as closely as desired if v is large enough. Hence it follows from the
intermediate value theorem that for v sufficiently large there exists §¥ > 0 such
that
E(u”,Bs (z") N Q) =mg — h/2
where £ is as in Corollary A.4.
We have to distinguish two cases:

(I) There is a subsequence of v (still denoted by v) such that Im z” /§” converges
to some finite number.
(IT) There is a subsequence of v (still denoted by v) such that Im 2” /6 converges
to infinity.
Define
v JRezl +6vz in case (I),
|l Rez” +Im(z)z in case (II).
Note that ¥ € Gy and that ¥ converges to 0, uniformly on compact subsets
of C.

Step 1. The sequences v¥ = u” o ¥ have subsequences (still denoted by v")
which satisfy the following: There are finitely many points z1,...,z¢ € H and
a J-holomorphic disk v : (HU {oco},R U {o0}) — (M, L) such that v¥ converges
to v, uniformly with all derivatives on compact subsets of H\ {z1,...,z¢}.

We only consider the first case. v = u” o 9" is defined on Qp, where R, =
(1 — |Rez¥|)/6Y. Because ¢V and z¥ converge to zero, R” converges to infinity.

Hence

v._ VU
vy, =0

979
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for n € N is defined for v sufficiently large. It follows from conformal invariance
that the energy of v” in Q1 is bounded by the energy of u” in €24. Hence by The-
orem A.12 there exists a subsequence of v} (still denoted by v%), a J-holomorphic
curve v, ¢ (Qy, Q NR) — (M, L) and a finite set Z, = {z},...,2%} C Q,
such that v} converges to v, uniformly with all derivatives on compact subsets
of Q, \ Z,. We can further assume that vy, |q, is a subsequence of v};. Hence
Unt1lq, = vn and Z, C Z, 1.

For every z € H there exists n(z) such that for every n > n(z) the diagonal
sequence wy(z) := vy(z) is defined and w, converges to a J-holomorphic curve
w: (H,R) — (M, L) uniformly on compact subsets of H\ Z where Z = |J,,cyy Zn-
Because the energy of w is bounded by the energy of v” in B; and the mass of
every nodal point is bounded below, (iii) of Theorem A.12 shows that Z is a finite
set.

The function w(z) := w(1/z) is a J-holomorphic curve (B, N H) \ {0} — M
with w(B, NR\ {0}) C L and finite energy. It follows from Theorem A.11 that
W extends to a smooth map on B, N H. Because L is compact, @(B, NR) C L.
Defining w(oo) := w(0) extends w to a J-holomorphic curve on HU {oc} which is
biholomorphic to the disk. Furthermore, w(R U {oco}) C L.

Step 2. The limits
m; = lim lim E(v"”, Be(z;))

e—0v—o0

exist and are greater than or equal to h where h is as in Corollary A.4.
This follows immediately from Theorem A.12.

We introduce the following notation:

oY in case (I)
vo.__ v vo,.__ )
a” :=Rez" and b := {I 2 in case (ID).

In both cases a¢” and b” converge to 0. Let
o i-Tmz”/6Y in case (I),
' i in case (II).
Note that in both cases k¥ converges to some s € H. We define further
v 1 in case (I),
o= 0¥ /Im z¥  in case (II),

and
_J1 in case (I),
2700 in case (II).

In both cases 0¥ converges to p.
Fix some R > 0 large enough. Then it follows from the definition of z” that

|dv” (K,)| = max |dv”| (3)
Qr

if v is large enough, such that v” is defined on the whole of Qg.



Gromov convergence 233

Step 3. We have
|z; —k| <o Vzje€Z (4)

This can be seen in the following way. Assume the contrary. Let z; be such
that R > |z¢ — k| > p. It follows from the definition of mg that there exists € > 0
such that
lim E(u”,Q.) <mg+ h/8.

V—00

This implies that there exist vy € N such that, for every integer v > vy,
E(u”,Q.) <mg + h/4.
In particular, this shows that for every 0 < € < € we have
Eu”, Q) < E(u”,Q:) <mg+ h/4.
Because z” and 6" converge to zero we can assume (perhaps after enlarging vy)

that
E(UV,BQRgv/(zV) n Q) < mg + h/4
Because k" converges to k we have, for v large enough,

E(w”,Br(k) NH) < E(v”, Bag(s”) NH) = E(u”, Bars(2") N Q) < mg + h/4.
On the other hand, E(v”, By (k) N Q) = mg — h/2. Choose € > 0 such that
0+e<|z— K|l Let z1,...,2 for k < ¢ be the bubbles in Byye(x) N H. Then for
v large enough it follows from (iii) of Theorem A.12 that

k
E(v, Bore(rk) NH) + Y m(z) = lim E(v”, Byre(r) NH) > mg — h/2.
V—0Q0
j=1
Choose R > 0 so large that |z, — k| < R for 1 < k < {. Because m(z¢) > h we
obtain using Theorem A.12 again
£
mo + h/4 > lim E(v”, Br(x) NH) = E(v, Br(k) NVH) + Y m(z;)
00 . =
> E(v, Boye(r) NH) + Zm(zj) + m(z¢)
j=1
> mo — h/24+ h=mo+ h/2.
This contradiction shows that |z; — k| < o for every z; € Z.

Step 4. We have
lim lim E(u”, Brsv(2") N§2) = my. (5)

R—o00 v—00

To see this, note that, by definition of mg and §¥, for every R > 1 and every
€ > 0 there exists a vy = v(R, €) € N such that, for every integer v > vy,

mo — h/2 = E(u”,Bsv (2") N Q) < E(u”, Brev(2") N Q) < mp +e.
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This shows that, for every R > 1,
mo — h/2 < lim E(u”, Brsv(2") N Q) < my.
V—00

Suppose that (5) is false. Then there exists a constant 0 < p < fi/2 such that, for
every R > 1,

lim E(u”, Bgs(2") N Q) < mgo — p. (6)
V—00
Hence, by definition of 6", we obtain, for every R > 1,
lim E(u, (Brse (2*)\ By (") 19) < /2~ p. (")
vV—00

This leads to a contradiction as follows.

For every £ € N, there exists an ¢, € (0,1/¢) and a v, € N such that
|E(u”, Be, () N Q) — mg| < 1/¢ for v > v,. Suppose, without loss of general-
ity, that €,41 < € and vpy1 > vy for every £. Then the sequence €” defined by
€ = ¢ for vy < v < vypyq satisfies

lim E(u”, B (")) = mp,  lim €’ =0. (8)
V—00 V—00

Hence for every R > 1,
lim E(u”, Bre (2")NQ) =mg, lim §”/e” =0. (9)
V—00 v—00

The first equality follows from (8) and the definition of mg. The second equality
follows from (6) and (8). Again we have to distinguish two cases:
(a) There is a subsequence of v (still denoted by v) such that Im z” /e” converges
to some finite number.
(b) There is a subsequence of v (still denoted by v) such that Im z¥ /e’ converges
to infinity.
In case (a) we consider the sequence w” : Qpv — M defined by
w”(z) = u”(Rez” + €”2)
where R” = (1 — |Rez”|)/€”. In case (b) let w” : Br» — M be defined by
w”(z) = u” (2" + €'2)
where RY = Im z”/e”. Note that R” converges to infinity in both cases.

In case (a), w” converges modulo bubbling to a J-holomorphic disk. More-
over, by (9), for every R > 1 and every 6 > 0,

VILH;O E(w”, (Br(iImz"/€") \ Bs(iImz"/e”) N H)
= lim E(u”, (Bgre (2") \ Bser (27)) N Q)

v—00

< lim E(u”, (Bre () \ Bso(27) N Q) = /2.

V—00
This implies that w" converges to a constant, uniformly with all derivatives on
compact subsets of H \ {0}.
In case (b), w” converges modulo bubbling to a J-holomorphic sphere. By
the same argument this sphere is constant too.
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Hence, for every T > 0,
Vlin(}lo E(”, (B (2")\ Be-rer (27)) N Q) = 0.
Moreover, by definition of ¢” and §”,
lim E(u”, (Be (2¥) \ Bsv(2"))) = h/2.

V—00
We can assume that % is chosen so small that the conclusion of Lemma A.6 holds

true. It follows that there exists a constant ¢ > 0 such that, for every T > 0,
h
lim B(u”, (B, (2")\ Borge () N Q) < = 2.
V—00 T 2

The last three formulas together show that
\ A
lim E(u”, (Bergs(2")\ Bsv(27)) N Q) > (1 - i) —.
V—0C T 2
For ¢h/2T < p this contradicts (7). Thus we have proved (5).

Step 5. Let v” be as in case (I). If v is constant then #Z > 2.

Because v is constant and |z; — k| < o = 1 it follows that for 1 <r < R,
lim E(”, (Br(r) \ By(x)) N H) = E(v, (Ba(s) \ B,(x)) NH) =0,

This shows that the limit of E(v¥, B,(x) NH) as v — oo is independent of r > 1.

Fix r > 1. Because x” converges to k there exist 1 < p; < r < py such
that B, (k) C Br(k") C By, (r) for v large enough. Therefore E(u”, Brs»(2") M)
= E(v¥, By(x¥) NH) is also independent of r > 1 as v — oco. Hence by (5),

lim E(v”, By(k") NH) = myg
V—00

for every r > 1. Since E(v¥,By(x”) N H) = my — h/2, this is only possible if
bubbling occurs on 0B1(x) NH. This means that the singular set Z of v¥ contains
a point z; with |z; — x| = 1. But it follows from equation (3) that, if Z # (), then
Kk € Z. Hence #7 > 2.

Step 6. E(v) + Z§=1 mj = my.

Fix any number r > 1. Then, by (5),
mo = lim lim E(u”, Bre(2") N Q)

R— o0 v—00

= lim lim E(v”, Br(x") N H)

R— oo v—00

= lim lim E(v”,(Bg(s")\ B:(x")) NH) 4+ lim E(v”, B.(x) N H)

R—o00 V—00 V—00

e—0v—oo

— E(v,H\ (B,(x) N H)) + lim lim E(U (B,, \ O Bg(zj)) mH) + Z[:m]

4
=FE(v) + ij.
j=1
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Step 7. £ = E(v) + Ef; mj.

Using conformal invariance of the energy we get

£+1
E = lim E(w)= lim E(v")=E(v)+ ij.
j=1

v—00 v—00

Step 8. Let v be as in case (I1I). Then v” converges to a constant having one
bubble of mass mgy at kK = 1.

(4) implies that v can have at most one bubble at x = i. It follows from the
definition of v and §” that

E(v", Bsv /i 2+ (1)) = mo — h/2.
Because 0¥ /Im z¥ converges to zero it follows for every € > 0 that
E(”, B(i)) > E(t", By iy (1))
for v large enough. Hence

my = !im lim E(v”, Bc(i)) > lim lim E(v", Bsv /i -v (1)) = mo — h/2.

—0 v—o0 e—0v—o00

Step 6 implies that E(v) = mg—m; < h/2. Hence the disk v is constant, F(v) =0
and m; = mg. This proves Step 8.

We have proved assertions (i)—(v) and (vii) of Theorem 3.5. Assertion (vi)
will follow from Lemma 3.6. This proves the theorem. O

Lemma 3.6. Let u”, v¥, u, v, and ¥ = a¥+b"z be as in the proof of Theorem 3.5.
Then u and v are connected. More exactly,
u(0) = v(00).
Moreover, if ¥ € Q is any sequence such that
lim ¢¥ =0, lim (") '(¢") = oo,

V500 V500
then u” (C") converges to u(zp).
Proof. We first show that we can apply Lemma A.6 to

G¥(e, RV") = (B.(a")\ By (a*)) N H
for small € > 0 and large R and v. To see this, note that

lim E(u”, B(a”) NH) = mg + E(u, Q)

vV—00

and

V—00 V—00

¢
lim E(u”, Bry (a”) NH) = lim E(v”, Br(k) NH) = E(v, Br(x) NH) + ij
j=1

= mo — E(v, H\ (Br(r) N H))
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where for the last equality we have used Step 6 of Theorem 3.5. Subtracting these
two identities we obtain

lim E(u”, (Bc(a”)\ Brp(a”)) NH) = E(u, Q) + E(v, H\ (Bgr(x) N H)).

V—00
Because the right hand side converges to zero as R converges to infinity and e
converges to zero, we see that there exist Ry > 0, ¢ > 0 and vy = vy(e, R) > 0
such that

E(u”, (Bc(a”) \ Bryr(a”)) NH) < h
if R> Ry, 0 <e<ep, v>1p(e,R) and A is as in Lemma A.6.* We define
E(e,R):=€+1/R+ lim E(u”,(Bc(a”)\ Brpy(a”)) N H).
V—00
Perhaps after enlarging vg(e, R) we can assume that
E(u”,(Bc(a”) \ Brpr(a”)) NH) < E(e, R).

Now Lemma A.6 shows

sup d(u”(¢),u”(a” + ¢/2)) = O(/ E(e, R)).

CEG¥[¢/2,2RbV]

Next observe that u”(a” +€/2) converges to u(e/2) as v — oo and, by the a priori
estimates, the distance between u(e/2) and u(0) can be estimated by a constant

times /E(e, R). It follows that
d(u”(a” + €/2),u(0)) = O(\/E(¢, R)).
Using the triangle inequality, we find

sup d(u”(¢),u(0)) = O(\VE(e, R)). (10)

CEGY[e/2,2Rb"]
Taking the limit ¥ — oo in (10) with ¢ = 2Rb” + a” we obtain
d(v(2R),u(0)) = O(\VE(e, R)).
Since E(e, R) — 0 for ¢ — 0 and R — oc we obtain v(oco) = u(0) as required.
Now suppose that
v v\— v CD —a”
¢ =0, () =
Fix constants R > Ry and € < ¢g. Then for v sufficiently large, we have
l[a”| 4+ |¢¥| < €/2, |C" —a”|>2Rb".
This implies that ¢¥ lies in G¥(e/2,2R4). Hence it follows from (10) that
d(u”(¢"),u(0)) = O(VE(e, R))

for v > vy(e, R). Hence u”(¢¥) converges to u(0), and this proves the lemma. O

— OQ.

4There is some additional subtlety because h can depend on J. But because J¥ converges to J
and A can be chosen to depend continuously on J the above inequality implies Lemma A.6 if one
shrinks A a little.



238 U. Frauenfelder

3.2.2. Proof of Gromov compactness. The proof goes via induction on the number
of vertices. We will use the notion of weak Gromov convergence which does not yet
detect all the bubbles but which takes track of the energy at the bubbling points.

Definition 3.7. Let M, L, w”, JY, w and J be as in Definition 3.1. A weighted
stable map

((0,2), m) = ({(Za; L'a; ua) baer, {zap tars: {i: zib1<i<k), (Mi)1<i<k)
consists of a stable map (u, z) and positive real numbers m,. We say that a sequence
of J”-holomorphic maps u” weakly Gromov converges to a weighted stable map
((u,z),m) if there exists a sequence {¢% }4er of M6bius transformations such that
u”, {¢% Yaer, and u satisfy conditions (i), (ii), (v), (vi) of Definition 3.1 with (iii)
and (iv) replaced by
(iii") For every aw € T and for every compact subset K C ¥, \ Z, the sequence

u” o ¥ converges to g, uniformly with all derivatives on K.

(iv") For g € T such that aES,

lim lim B(u, 4 (Be(700)) N B) = > (B(u)+ Y my).
Y€ ap o=
Moreover,
liII(l) lim E(u”,¢%(B(2z;)) N B) = m,.
e—Urv—0oC
Note that if & = 0 then a weighted stable map is just an unmarked stable
map and weak Gromov convergence coincides with Gromov convergence.

Proof of Theorem 3.3. It follows from Theorem A.12 that there exists a sub-
sequence (still denoted by u”), a J-holomorphic curve v : B — M, and a fi-
nite set of points Z = {z1,...,2¢} C B such that u” converges to u uniformly
with all derivatives on compact subsets of B \ Z. Moreover, the limit m; =
lime_o lim, oo E(u”, B(2;)) exists and is positive for 1 < j < ¢. We first claim
that after a suitable reparametrization we can assume without loss of generality
that one of the following four cases holds.

(I) w is not constant.

(IT) w is constant and Z consists of at least three points.
(III) w is constant and Z consists of two points which do not lie both on the

boundary.

(IV) w is constant and Z counsists of precisely one point in the interior of B.

We have to exclude the cases where w is constant and Z consists either of
one boundary point or of two boundary points. In the first case we replace u”
by u” o ¢¥ where ¥ € Gq are the soft rescaling transformations provided by
Theorem 3.5. It follows that for some finite set Z C H the sequence u” converges
to some v : (B,0B) — (M, L) uniformly with all derivatives on compact subsets
of B\ (ZU{o0}). Because u is constant and Z consists of only one point, the mass
of u” at oo vanishes and u” converges to v even uniformly with all derivatives
on compact subsets of B\ Z. Replace u by v and Z by Z. Then it follows from
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Theorem 3.5 that either u and Z satisfy one of conditions (I)=(IV), or Z consists
of precisely two points on the boundary of B. In the latter case choose z € Z and
apply Theorem 3.5 to the sequence u” and z. As in the case where Z consists of
one point we get a soft rescaling sequence ¢v¥ € Gy, v : (B,0B) — (M, L) and a
finite set Z C H such that u” o ¥” converges to v uniformly with all derivatives
on compact subsets of B\ (Z U {co}). But because Z consists of two points, the
mass of u” o ¥ at oo does not vanish. Replace u” by u” o ¢”, u by v, and Z by
Z U {0o}. Then u and Z satisfy one of conditions (I)~(IV).
For some ny € N we construct, for each n € {1,...,n¢},

(a) a subsequence of u" still denoted by u”,
(b) a weighted stable map

((un,2y,), my,)
= ({(Za:Tayua) taern, {zaptann g, {i, 27" hi<i<km))s (M7 )1<i<k(n))

such that #7T™ = n and m,, = 0.
To start the induction we set, in cases (I)—(III),

((u1,21),m1) = (((B,0B,u), {2} 1<j<e), {mj h1<i<e)-

If case (IV) holds, we replace u” by u” o 1) where ¥V € G are the soft rescaling
transformations from Theorem 3.5. Then there exist v : S> — M and Z C B such
that u” converges to v uniformly on compact subsets of B\ (ZU {oo}). We replace
w by v and Z by Z and set

((uy,21),my) = (((5% {00}, u), {2z }1<j<e) {ms hr<j<e)-

Suppose that ((uy,z,), m,) has been constructed for some n € N and m # 0.

Pick some marked point of (u,,z,), say zk(n) Theorem 3.5 applied to u” o gpan .

and zk(n) provides us with a sequence of Mdbius transformations ¥, a J-holomor-

phic map v : (£,0%) — (M, L) where X is either the sphere or the disk, a finite
set Z ={z1,...,2¢} C %, and weights m; for 1 < i < £, such that u” o L,OZZ o ¥

converges to v uniformly with all derivatives on compact subsets of X\ (ZU {o0}),
with mass m; at z; € Z. To define the tree 7" ! add to T™ an additional vertex
v, which is only connected to o/,;‘(n). Define

Xy, Ty uy) = (5,0%,0),  Zag v = %K)y Zvag,, = O

Set k(n+1) = k(n) —1+£. For 1 < i < k(n) — 1 define o' = o, 2! = 27, and
m?“ =m}. For k(n) <i < k(n) — 1+ ¢ define af“ =7,z Z”+ = Zi—k(n)+1, and
m?“ = My_k(n)+1- This defines ((Wp41,%n41),Myy1). It remains to show that
this process stabilizes, i.e. there exists ng € N such that k(ng) = 0. If such an
no exists then weak Gromov convergence of u” to ((u,,,%n,), My,) is equivalent
to Gromov convergence of u” to (u,,). The existence of the desired ng follows
from the assumption of bounded energy. More precisely, Lemma 2.7 shows that

the process stabilizes for some ng < 3E /L — 2. This proves the theorem. O
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3.3. Proof that the homotopy class converges

The goal of this subsection is to prove Proposition 3.2. We need the following
lemma.

Lemma 3.8. Let u” be a sequence of J-holomorphic disks which Gromov converges
to the stable map

(w) = ({(Za, Las ta) Yaer: {Zaptaks)
with corresponding sequences @ € G respectively ¢% € Gy. Moreover, let a, 3 € T
with aEB. Assume that (¥ € (p%)~(B) is a sequence such that
lim ¥ = 243, Vlinolc(go”)_l(g”) = 28a

V—0oC
where ¢V = (%)~ o ¢ Then u” o pg(C”) converges to ua(zap)-
Proof. We show that one may assume without loss of generality that
W (z)=2"+6"2, 2ap=0, 2=

where z¥ € C and 0¥ > 0 both converge to zero. Then the lemma follows in
the same way as Lemma 3.6. We may assume without loss of generality that
zop = 0 and zg, = 0o. Moreover, there exists a sequence p” € G which converges
uniformly to the identity, such that ¢* o p” maps oo to oo. If 3, = Xg = B, then
p” can be chosen in Gy. By replacing ¢* by ¢” o p” we see that ¢¥ is of the form
©’(z) = 2 + §”z. Because ¢” converges to 0 uniformly on compact subsets of
Y5\ {00}, we see that z¥ and §” converge to 0. O

Proof of Proposition 3.2. The proof of [MS2] for the case of spheres translates
nearly word for word to the case of disks. We will include it here for the reader’s
convenience.

To prove (i) suppose that x¥ = u”(z”) converges to x. Passing to a subse-
quence if necessary, we may assume without loss of generality that (¢%)~!(2")
converges to some point z, € B for every a. If there exists an a € T such that
Zo 7 zap for all € T with a3, then

= lim uw¥(z") = lim u” o ¢h((¢%) (")) = talza)
V—00 V—00
and we are done. If there is no such « then there exists an edge a3 in T' such
that

Za = ZaBy 28 = ZBa- (11)
To see this, let us begin with any vertex «p and note that there is a unique
sequence of vertices ag,aq,aq, ... such that a;Ea;11 and za;, = Za;a;,,- There

must be some j with o; = ;4 since otherwise the a; would form an infinite
sequence of pairwise distinct vertices. Hence the vertices o = o; and 3 = a;41
satisfy (11). Now Lemma 3.8 with ¢V = (¢%)~1(2¥) shows

taza5) = i w0 4 ((9%) (")) = lim w(z") = .
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To prove (ii) we rephrase the conclusion of Lemma 3.8. For o, 3 € T with
aFEpB, v e N, and r > 0 consider the set

A%, B) = ©4(Br(zag) N (95) 71 (B)) N 05(Br(z50) N () (B))
= {z € B: d((¢}) (), zap) <7, d(() (), 250) < 7).

Since (gpg)_l o ¥ converges to zg,, uniformly on compact subsets of X, \ {zas},
it follows that this set is a half-annulus respectively an annulus whenever r > 0 is
sufficiently small and v > vy(r) is sufliciently large. Now the assertion of Lemma 3.8
can be rephrased in the form that, for every € > 0, there exists an » > 0 and a
vy € N such that, for all v € N and all a, 6 € T with aE3,

v>vy = sup d(u’(2),uq(za8)) <€
z€EAY(w,3)
This shows that the image of AY(«, 3) under v” is arbitrarily close to uq(zq3) =
ug(28a), provided that r is sufficiently small and v is sufficiently large. Fixing a
small number r» > 0, we deduce that u” is homotopic to the map @” : B — M in
which the images of A%(«, 3) are replaced by sufficiently short curves connecting
the two boundary circles, respectively half-circles. These curves are chosen in such
a way that @” maps 0B to L. In the limit v — oo, these deformed maps converge to
the connected sum of the u,,, which is obtained by removing disks, respectively half-
disks, of radius r around the points z,s and replacing the union of uq (By(2ag) N
(p4) "' B) and ug(Br(zpa) N ()~ ' B) by the geodesics connecting uq (9By (23a) N
(¢2)~1B) and ug(0B;(zag) N (¢%)~"'B). Hence u"” is homotopic to this connected
sum for large v. This proves the proposition. O

4. Gromov convergence for marked disks

In this section we generalize Definition 3.1 to the case where the disks are allowed
to have marked points. We will see how Proposition 3.2 and Theorem 3.3 continue
to hold in this case. We will also prove a generalization of Theorem 3.4.

4.1. Gromov convergence for marked disks

Definition 4.1. Let M be a compact manifold with boundary, L a compact sub-
manifold of M without boundary, w” a sequence of symplectic structures on M
such that L is Lagrangian for every w”, J" a sequence of w”-tame almost complex
structures, and k1 and ko two positive integers. Assume that the w” converge to
some symplectic structure w on M with respect to the C*°-topology and the J”
converge in the C*™-topology to some J € J.(M,w). A sequence (u”,z") with
2z = (z{,...,z}) of stable J”-holomorphic disks with k; marked points in the
interior and ko marked points on the boundary is said to Gromov converge to a
stable map

(w,2) = ({(Za, Lo, ta) Yaer, {2aptars, {ais 2it1<i<k)
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if there exists a collection {¢¥ } 4er of Mébius transformations such that conditions

(i)—(vi) of Definition 3.1 are satisfied and

(vii) z; = lim, oo (0a,) " 1(2Y) for i = 1,... k. Moreover, z; € 8%, iff z¥ € OB
for every v.

Remark 4.2. Note that the set of marked points naturally splits into two subsets:
the set of interior marked points and the set of boundary marked points. (vii) of
Definition 4.1 tells us that this splitting is preserved under limits.

In the same way as Proposition 3.2 one proves

Proposition 4.3. Let JY be as in Definition 4.1. Fix some k1, ko € N. Suppose that
(u”,2”) is a sequence of (k1, ke)-marked J”-holomorphic disks with boundary in L
which Gromov converges to a stable map (u,z). Then the following holds.

(i) If ¥ € u”(B) converges to x € M then v € U, cr ta(Xa)-

(if) uw” is relative homotopic to #,ecr Ua With respect to L for large v.

4.2. Gromov compactness
A natural generalization of Theorem 3.3 is

Theorem 4.4. Let JY be as in Definition 4.1 and fix some ki,ky € N. Assume
that (u”,2") is a sequence of (ki,ks)-marked JY-holomorphic disks with bounded
energy. Then (u”,z") has a Gromov convergent subsequence.

Theorem 3.3 proves the case with no marked points. The difficulty in proving
the general case lies in the fact that it may happen that two special points coincide
in the limit, or that an interior marked point converges to the boundary. To deal
with these cases one introduces auxiliary constant maps. The following example
may illustrate this.

Example 4.5. Let (u”, 27, 25, 2§) be a sequence of constant maps from the disk to a
fixed point on the Lagrangian with three interior marked points. Assume that the
three marked points converge to points 21, 29, 23 € B. There are eight cases one
has to deal with. In the first case the three limit points lie in the interior and do
not coincide. In the second case one of the limit points lies on the boundary, while
the other two are separated and lie in the interior. In this case the limit consists of
two disks connected by a node, the other having two interior marked points and
one disk having one interior marked point. In the third case two of the limit points
are different points on the boundary, while the third lies in the interior. The limit
stable map will be a chain consisting of three connected disks with one marked
point in the interior. In the fourth case all three limit points are different points at
the boundary. In this case one gets a star consisting of a disk with no marked point
whose boundary is connected to three disks having one interior marked point. In
the fifth case two of the marked points converge to the same limit point in the
interior, while the third marked point converges to a different point in the interior.
In this case the limit stable map is a sphere with two marked points connected to
a disk with one interior marked point. In the sixth case two of the marked points
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converge again to the same limit point, while the third marked point converges
to the boundary. The limit stable map is a chain consisting of a sphere with two
marked points connected to a disk with no marked points connected to a disk
with one marked point. In the seventh case all three marked points converge to
the same limit point in the interior in such a way that the cross ratio of the three
marked points with the limit point converges to some nonzero finite number. In
this case one gets a sphere having three marked points and one boundary point.
In the eighth case the marked points converge again to the same limit point in the
interior, but their cross ratio with the limit point converges to zero or infinity. The
limit stable map consists of two spheres connected by a node, one sphere having
two marked points and one sphere having one marked point and one boundary
point.

-
=

Case 1 Case 2

feentete @@

Case 3

-

Case 5

©

Case 7

4.2.1. Marked points. The lemmas in this section are needed to deal with marked
points. We will use some results of this subsubsection again to prove uniqueness
of limits.

Lemma 4.6. Suppose that (u”,z") Gromov converges to (u,z) with corresponding
Mobius transformations ¢, € G. Then the following holds.
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() If a # 3, then (p%)"to ©f converges to zap, uniformly on compact subsets

of g\ {280}

(ii) For every a € T and every i € {1,...,k}, zai = limj_ oo (%)~ H(2Y).
(iii) If Ty = {25°}, then 23° # lim, oo (%) 71 (2Y) for every i € {1,...,k}.
Proof. To show (i) let us denote by 7o, ...,7m the chain of edges in 7' running

from 9 = a to vy, = B. It follows from the definition of Gromov convergence that
(¢¥. )" top¥ converges to zy,_,,, uniformly on compact subsets of X, \{z,4,_, }.
Since zy,y, , # %y, we deduce, by induction, that (¢4 )~' o ¢¥ converges to
Zryy,, uniformly on compact subsets of ¥, \ {2z, }. (i) follows with i = m.

We show (ii). If & = a;, then z,; = z;. Hence in this case the assertion is
equivalent to (vi) of Definition 4.1. If o # «;, then (i) yields

Zai = Rao; — hm ((pl(;i)_l © 901;’1 (Z)
j—o0

for z # z4,q. It follows from (vi) of Definition 4.1 that z; = lim, o (¢4 )~ (2}).
Because z; # zq,o We have
Zai = lim (0) T ol ((02) 71 (2)) = lim (9l7) 71 (2))-
j—o0 J—00
This proves (ii).

To show (iii), assume that z5° = lim, .~ (¢%) "' (2¥) for some i € {1,...,k}.
Then (ii) shows that z4; = 25°. It follows from (iii) of Definition 2.3 that 25° # zap
for aEB. Hence z; = zo; = 25 and a = «;. But Definition 2.3 tells us also that
z; ¢ Iy, = T'y. This contradiction proves (iii). O

Lemma 4.7. Let ¢¥ € G be a sequence of Mobius transformations which converges
to y € B, uniformly on compact subsets of B\ {x}. Moreover, let & € B be a
sequence such that

lim ¢ =z, lim ¢¥(&") =y.
V—00

V—00
Then there exists a sequence p* € Go such that
(a) p” converges to 0, uniformly on compact subsets of B\ {y}.
(b) p¥ o ¥ converges to oo, uniformly on compact subsets of B\ {x}.

(c) |p¥ o’ (&) =1 for all v.
Proof. We can assume without loss of generality that
0 (z)=€"z+0", w=00, y=0

where §” € R and ¢ > 0 both converge to zero (cf. the proof of Lemma 3.8).
By assumption lim,_. o, £ = oo and lim, _,, €€ = 0. Hence the sequence p¥ €
PSL(2,R) defined by
vy . €€

p (w) T w — 51,
for large v satisfies (a), (b) and (c). O

The following two lemmas can be proved exactly as the corresponding lemmas
in [MS2].
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Lemma 4.8. Let J¥ and J be as in Theorem 3.3. Let (u”,2Y,....2}) be a sequence
of stable J¥-holomorphic disks which Gromov converges to a stable map
(11, Z) = ({(Eaa Ta, ua)}aETv {Zaﬁ}ozE,Bv {aiv Zi}lgigk)
with corresponding sequences p¥, € G for o€ T. Moreover, let (¥ € B\{z},..., 2]}
and suppose that the limat
Co = lim (p0)7'(¢") (12)
vV—0Q0

ezists for all o € T. Then ezxactly one of the following conditions is satisfied.

(I) There exists a (unique) o € T such that (o ¢ Zo.

(II) There exists a (unique) o € T such that 'y, = {23°} and (o = 22°.
(IIT) There exists a (unique) i € {1,...,k} such that (y, = .
(IV) There exists a (unique) edge aES in T such that (o = zap and (3 = 23q4.-
Proof. See Lemma 5.3.3 in [MS2]. O

Lemma 4.9. Let (u”,27,....2}) be a sequence of stable J-holomorphic disks with
marked points which Gromov converges to the stable map
(0,2) = ({(Za, Lo, ta) Yacts {2ap arps {0, zit1<i<k)

with corresponding sequences b, € G respectively Go. Moreover, let o, 3 € T with
alEB. Suppose that ¥” € G is a sequence such that the following holds.

(i) (%)~ oyp” converges to zag, uniformly on compact subsets of 2:37 \ {z},
(i) (@Z)_l oy” converges to zgq, uniformly on compact subsets of ¥, \ {y},

where x and y € ¥, Then u” 0" converges to the constant ua(zap) = us(2sa),
uniformly on compact subsets of 3., \{x,y}. Moreover, if a; € Tpg then (v*) 1 (2¥)

converges to y, and if o; € Tpo then (V) ~1(2Y) converges to .

Proof. See proof of Theorem 5.3.1 in [MS2]. O

4.2.2. Proof of Gromov compactness. We prove by induction on ¢ that a subse-
quence of (u”,z2y,...,z;_;) Gromov converges to a stable map

(0,2) = ({(Za, Lo, va) baeTs {2aptars: {06, 2it1<i<e—1)

with corresponding Mdbius transformations % . For £ = 1 this follows from The-

orem 3.3. Hence suppose this has been proved for some £ € {1,...,k}. Passing to
a further subsequence if necessary, we may assume that the limit
Zoe = lm (7)) 7 (2)) (13)
V—0C

exists for all o and all . By Lemma 4.8, for each ¢, one of the following three cases
is satisfied.
(I) There exists a (unique) o € T such that zoas ¢ Za.
(IT) There exists a (unique) o € T such that T', = {23°} and zq¢ = 22°.
(IIT) There exists a (unique) ¢ € {1,...,¢ — 1} such that z,s = ;.
(IV) There exists a (unique) edge aES in T such that zqr = zap and zge = 284-
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If (T) holds and za¢ ¢ Ty, we define zp = z4,¢, where vy is the unique element
of T with 2y ¢ Z,. In the same way we proceed if z.y € 03, and 2z} is a boundary
marked point.

If (I) holds, zar € 034 and 2} is an interior marked point, we add an ad-
ditional vertex v to the tree. Because 0¥, # () we have ¥, = B and hence
@¥ € Gp. This shows that w” := (¢%)"'(2f) € B\ 0B. Let p” € Gy be a
sequence of Mdbius transformations which map w” to i. Because w” converges
to a boundary point we may assume without loss of generality that p” con-
verges to a point @ € OB uniformly on compact subsets of B\ {w}, where
w = lim, o w” = 2. Now Lemma B.2 shows that (p”)~! converges to w uni-
formly on compact subsets of B\ {i}. We define further ¢ := ¢% o (p”)~!. Then
(ex) Loy” = (p¥)7h, (¥”)"!(2)) = 0 and because w = z4; & Z, we see that
the sequence u” o ¢* = u” o % o (p”)~! converges to the constant u,(za¢). Now
choose the sequence ¢’ which corresponds to the new vertex v to be ¢”. Then in
the new stable map

new __ 7 new __ . new __ new __
Zye =W, Zay =W=Zae, Qg =7, z o =0

If (I) holds, let ¥ € Gy with ¥”(z}) = 0. Then it follows from Theorem A.12
that there exists a subsequence of u” o ¢” (still denoted by u” o 9¥), a finite set of
points W = {wy,...,wp} and a J-holomorphic curve uy, : (B,0B) — (M, L) such
that u"” o ¢¥ converges to u, uniformly on compact subsets of B \ W. Moreover,

h
E(uy) + Zm(wj) = lim E(u")

j=1
where
m(w;) = liH(l) lim E(u”, B (w;)) > h.
e—0rv—oo

On the other hand, there exists y € B such that (¢")~! o ©% converges to y uni-
formly on compact subsets of 2\ {22°}. Now Lemma B.2 implies that (¢%)~! ot
converges to z2° uniformly on compact subsets of B\ {y}. Using (v) of Defini-
tion 4.1 we see that for every € > 0 there exists vy(€) € N such that for every
v > vy(€) we have

E(u” oy, B\ Be(y)) = E(u” 0 @, (o)™ 0 0¥ (B\ Be(y))) < h/2.

Now it follows from the definition of i that h =1, w1 =y and E(uy) = 0.

We have to distinguish several cases. If y # 0 and 2 are boundary marked
points, or if y # 0,y ¢ 0B and 2} are interior marked points, then we add a vertex
v to our tree such that « is only connected to o and contains the marked point zg.
In the new stable map we have

new __ new __ 00 new __ new __
Zyo =Yy Zam =Zas  Qp =7, zg o =0

Now assume that z; are interior marked points. If y € 0B then we construct
as in Theorem 3.5 a sequence of Mobius transformations p¥ € Gy such that u” o
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Y o p¥ converges uniformly on compact subsets of the complement of a finite set
to a J-holomorphic disk. As above one shows that u” o ¥" o p” converges to a
constant uniformly on compact set of the complement of a single point y € B.
Moreover, (p¥)~1 o (¢*)71 o % converges to § uniformly on compact subsets of
S2\ {z°}. Tt follows from (iv) of Theorem 3.5 that § ¢ 9B. Hence we can add
two additional vertices v and 0 to our tree T such that - is connected to a and §
is only connected to v but contains the marked point z,. In the new stable map
we have

new __ ~ new __ _00 new __ new __ new __
Zoa =Ty Zay = Zas sy =Y, Zyg =00, otV =4,

new __
oo =0.

Z

If finally y = 0, then we add as in (IV) below a sphere to our tree, which
is connected to o and contains the marked point z,. In this case the disk is not
stable any more and we collapse it. If v denotes again the new vertex then in the
new stable map

new __ new __ o0 new __ new __ new __
Ze =0, 2=z, AN =v, V=1 I} ={c0}.

In a similar way we proceed if I'y = {23°}, 2ae = 23°, and z; € 0B for v
large enough. First choose ¥¥ € G such that u” o ¢ converges to a constant up
to one nodal point v in the interior of B. Because z; € 0B there exists w € B
such that 1”(z}) converges to w. Let v be the new vertex. Then

new __ new __ o0 new __ new __
Z,},a =, Za,y =Zaq Qy =7, Zy = w.

If (III) is satisfied for some i and z; ¢ 0%, choose 1" such that
Y0) =27, Y1) =z, ¥"(o0) =g, (w),

where w € 3; \ {2;} is chosen such that w # (p%,) "' (2¢) and w # (%)~ ' (2}) for
all v. Now we can use Lemma B.6 replacing x} by 0, 25 by 1, y” by w, x¢ by oo
and (go’;i)_l o9” by ¢”. Hence (%, )~ Lot converges to z;, uniformly on compact
subsets of C = %\ {oc}. Now add an additional vertex v to the tree, defining
@ = v¥¥. Note that u” 01" converges to uq, (zi), uniformly with all derivatives on
compact subsets of C = 52\ {oo}. Note also that in the new stable map we have

new __ new __ ) new __ new __ new __ new __
Zyas =00, Zgy =Zi, 0 =7, zgo=1 o=y, z =0

Now assume that (III) is satisfied for some i but z; € 9%,. Then (¢%,) 1 (2/) € OB
for v large enough and we may assume without loss of generality that this is
the case for every v. Choose w € 9B\ {z} such that w # (¢4 )" '(z/) and
w # (¢%.) " (z)). There exists p € Go such that p” o (9%, )71 (2/) = 0, p”(w) = o0
and |p¥ o(¢%. )" (z})| = 1. Now we add an additional vertex to our tree by defining
@ = ¢h o (p’)”". Passing to a subsequence we may assume that (%)~"(2})
converges to some ¢'? where ¢ € [0, 7]. The new relations are

Luew 0, Luew Zi, a?ew =7, Z?ew _ equ’

new new _
Y @iy .

Q; =7 Z

Note that if zj € OB for v large enough, then ¢ = 0 or ¢ = m and we are done. If
zy ¢ OB for v large enough then nevertheless it may happen that ¢ =0 or ¢ = 7.
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In this case we add a further vertex 6 to 1" as in (I), such that ¢ is only connected
to v at the point e'®.

If (IV) holds we extend the tree T' by introducing an additional vertex 7y
which is only connected to o and @ and corresponds to the constant map

Uy(2) = ua(2ap) = ug(zga)-

To see that this is possible we have to construct the sequence 2 = . We assume
that ¥, = X3 = B (the other cases are similar). Applying Lemma 4.7 to the
sequences @Y = ((,0[”3)_1 o¢¥ and & = (¢%) " (z)), with © = 2,5 and y = zg,, we
see that there exists a sequence p¥ € Gy which satisfies the following conditions.

(a) p” converges to 0, uniformly on compact subsets of B\ {234}
(b) p¥ o ()" ok converges to oo, uniformly on compact subsets of B\ {za}-
(c) [p¥ o (ph)~ (zf)| = 1 for all v.

Set ¢ = j o (p”)~1. We claim that a suitable subsequence of (u”, {¢% }acT, ")
(which will be denoted by the same symbols) satisfies the following conditions.

1) [(")"1(z)| =1 for all v.
(i) (¢%)~toy” converges to z,s uniformly on compact subsets of B\ {00}, and
(gofé)_l o 4" converges to zg, uniformly on compact subsets of B\ {0}.
(iii) w” o ¢” converges to uqy(2a3) = ug(2q) uniformly with all derivatives on
compact subsets of B\ {0,00}.
(iv) For every r > 0,
Vlinolc E” oy”, Q) = mag(u), Dllrrolo E(u” oyp”, H\ Q,) = mgy(u).
(c) implies (i), and (a) and (b) imply (ii). (iii) follows from Lemma 4.9. To prove
the first equation in (iv) note that

E(u” o ¥, Q,) = E(u” o %, (¢4) " o b o (p") 1 ().

Now the formula follows from (b) and (iv) of Definition 4.1. The second equation
in (iv) follows similarly.

We may assume that (¢)71(2}) converges to e!® where ¢ € [0, 7]. We add
a vertex 7 to our tree 7" with ¢4 = ¢”. In this new stable map, o and 8 are no
longer adjacent, but are separated by ~y. The new relations are

new __ new __ new __ new
Zoay = ZaBy 2By = ZBar  Fya = 00, 243 =0,

a?ew =7, Z?ew — ei(b'
If zj € OB for v large enough we have ¢ = 0 or ¢ = 7 and we are done. If 2} ¢ 0B
for v large enough then it may nevertheless happen that ¢ = 0 or ¢ = 7. In
this case we add a further vertex 6 to T as in (I) such that ¢ is only connected
to v at the point e’®. This completes the induction argument and the proof of
Theorem 4.4. O



Gromov convergence 249

4.3. Uniqueness of limits

The main result of this subsection concerns the uniqueness of limits of Gromov
convergent sequences. It follows immediately from the definition that if a sequence
of J-holomorphic disks (u”,z) Gromov converges to (u,z), then it converges to
every equivalent map. The following theorem asserts that the converse also holds.

Theorem 4.10. Fiz some k € N. Let (u”,2z") be a sequence of k-marked J-holo-
morphic disks with boundary in L. Suppose that (u”,z”) Gromov converges to two
stable maps (u,z) and (4,z). Then (u,z) is equivalent to (@,z).

Let us first sketch the main ideas of the proof. We will construct a bijection
between the trees T of u and T of ii. Using an idea of [MS2] we will define a map
f:T — T by setting f(a) = v if and only if ( ¥)~" o @Y, converges. Here a € T,
v € T, and 5 and 7 are the corresponding sequences of Mobius transformations.
We show that f is well defined and is actually a tree isomorphism.

Lemma 4.11. Let (u”,z{,...,2}) be a sequence of marked stable J-holomorphic
disks which Gromov converges to the stable maps

(11, Z) = ({(Ea? Ty, uot)}aETa {za,@}aE,i% {ai7 Zi}lgigk)
and

(@.2) = ({(Za: Lo ) baers {Zastams: {0 Zidicich)
with corresponding sequences py, and ¥ in G respectively Go. Assume that there
exists a € T and v € T such that (11}17)*1 oY converges to some z € f)., uniformly
on compact subsets of ¥, \ {25°}. Then Ty, # {25°}.

Proof. Suppose that I', = {z2°}. We show that this implies:
(i) If ¥, = S?, then @, is constant and =, C {z, 20} It >, = B then i, is
constant and =, C {z} (cf. Remark 2.8 for the definition of =.).
(it) (%)~ (2¥) converges to z for 1 < j < k.
(i) and (ii) contradict (v) of Definition 2.3 and this implies the lemma.

We prove (i). It follows from (v) of Definition 4.1 that for ¢ > 0 sufficiently
small

lim E(u” o ¢l Bo(23) N ()~ (B)) < h/4

v—00

where £ is as in Corollary A.4. It follows that
T B(u? o g, (42) " 0 b (B(22)) N ()7} (B)) < h/4.

As (1[1;)_1 o ¥ converges to z € iﬁ, uniformly on compact subsets of X, \ {25°},
it follows that for every 0 > 0 there exists a 19(d) such that for every v > 14(9),

E(u” oY, (3, \ Bs(2)) N (#) 1 (B)) < h/2.
Hence E(4,) < h/2. Now it follows from the definition of A that E(d,) = 0.
Moreover, 2y C {z,2°} if ¥, = 52, and 2, C {2} if ¥, = B. This proves (i).
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To prove (ii) observe that it follows from Lemma B.2 that (¢%)~" o ¢¥ con-
verges to z3° uniformly on compact subsets of X\ {z}. Assume by contradiction that
(")~ 1(2¥) does not converge to z. Then () (") = (¢%) ' ok o () 1 (2¥)
converges to z3°. But Lemma 4.6 shows that this cannot be true. g

Lemma 4.12. Let (u”,2{,...,2) be a sequence of marked stable J-holomorphic
disks which Gromov converges to the stable maps

(w,2) = ({(Xa,las ta) taers {Zaptars, {6, ziti<i<k)
and
(8,2) = ({Ca: Tar a)}aeqs {Zaptamg: (@i Zih1<ick)
with corresponding sequences wg, and 5 in G respectively Go. Let
Pl =)oy,
where o € T and v € T. Assume that p” has no convergent subsequence. Then

there exists a subsequence of p” (still denoted by p”) and nodal points xy € Z,,
Yo € Z such that p” converges to yo uniformly on compact subsets of Xy \ {x0}.

Proof. By Lemma B.1 there exist points xg.yo € S? such that, after passing to a
subsequence of p” if necessary, we have lim, _ o p¥(x) = yo, uniformly on compact
subsets of 52\ {z(}. We claim that yj is either a marked or a nodal point. Suppose
this is not the case. Then u” o 97 converges to @, uniformly in a neighbourhood
of yo. Hence u” o oy, = u” o1p? o p” converges to i (yo) uniformly on every compact
subset of X, \ {zo}. Moreover yo # Z4; for i € {1,....k}. Lemma 4.6 shows that
Zyi = limy oo (%) 71 (2Y). By Lemma B.2 we see that (p)~' converges to g
uniformly on compact subsets of 27 \ {yo}. All this shows that
2o = i (¢2)71 () = Tim ()7 o (4) 7N () = 0.

Hence u,, is constant and the union of nodal and marked points of « is contained
in {zo}; this contradicts (v) of Definition 2.3.

It remains to show that yq is not a marked point. Suppose the contrary. Hence
there exists i € {1,...,k} such that Z; = Z,; = yo. In particular, yo is not a nodal
point. Hence it follows as above that u” o % converges to i (yo) uniformly on
compact subsets of ¥, \ {20} and z,; = xo for every j # i. Hence the union of
marked and nodal points of « is contained in {xg, z4;}. To deduce a contradiction
we have to distinguish different cases.

Case 1: Yy = f],y = B. In this case 97, ¢y, and p” € Go. Lemma B.1 shows that
zo and yo € 0B. It follows that Z; = yo € 9B. (vii) of Definition 4.1 shows that
z¢ € 0B. This implies that z,; € 0X4. Now Z, C {20, 2qi} and xg, za; € 0X4.

But this contradicts (v) of Definition 2.3.

Case 2: ¥, = B, ¥, = §2. Tt follows from Lemma B.2 that yo = Z3¢. (iv) of
Definition 2.3 shows that z7° is never a marked point. Hence this case does not
occur either.
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Case 3: Yo = 5%, Ty = 0. (v) of Definition 2.3 shows that Z, C {zg, 24i} cannot
happen.

Case 4: ¥ = 5%, Ty = {2°}. Lemma 4.11 shows that z # 22°. Hence Lemma B.4
implies that yo = Z3°. But we have already seen that Z7° is never a marked point.

Hence this case does not occur either. This shows that yo € Z, is a nodal point.

By Lemma B.2 we see that (p”)~! converges to xg, uniformly on compact

subsets of fly \ {%0}. Applying the above argument to the sequence u” o vy =
u? o ¥ o (p”)~1 we see that zg € Z, is a nodal point. 0

Lemma 4.13. Let (u”,2Y,...,2{) be a sequence of stable J-holomorphic disks with
marked points which Gromov converges to the stable maps

(0,2) = {(Za,Tasta) Yaer: {Zastars, {0, zib1<i<k)
and

(1,2) = ({(Za: Tar i)} ot {Zaptams: 10, Ziti<i<k)
with corresponding sequences ¥, and 1/1; in G respectively Go. Moreover, let a, 5 €
T with aEB. Let v* = Y for v € T. Then there erists a unique o € T such

that the sequence (%)~ oy has a uniformly convergent subsequence. Moreover,
¥, =%
¥ a:

Proof. We first show uniqueness. It follows from Lemma 4.6 that the sequence
(py)~t o does not have a uniformly convergent subsequence for any two distinct
elements o, 8 € T. Assume that (o) " o9 and (¢%)"' o ¥” both converge
uniformly. It follows that ((gog)_l o)t = (y¥)"1o ¢ converges uniformly and
hence also (¢%) ™" o ¥0” o ()t o @ = (¢%) ! 0 @4, This shows o = £3.

To show existence we have to distinguish different cases.

Case 1: Sv = B. If ¥, is a sphere, then there exists a point w € B such that
()71 o ¥ converges® to w uniformly with all derivatives on compact subsets of
S2\ {2°}. Tt follows from Lemma 4.11 that Ty, # {23°}. This contradicts (iv) of
Definition 2.3.

Hence there exists 8 € T such that o5 and 23° = z.g. If ¥ is a sphere
again, we obtain in the same manner a point zg” = zgy, where SE7. In particular,
v # a. Because #1 < oo we arrive after finitely many steps at a 6 € T' such that
s = B.

If (gog)_l o) has a convergent subsequence we are done. Otherwise, it follows
from Lemma 4.12 that there exist nodal points z € Y., and y € Y such that
(%)~ o 9p¥ converges to y uniformly on compact subsets of >\ {z}. Moreover,
Lemma B.1 shows that x € 3%, and y € 9%;. Hence there exists ¢ € T such that
0FEe, y = zs. and X, = B. The last equality follows from (vi) of Definition 2.3.

5Strictly speaking, a subsequence of (¢*)~! o p% does. In the following we will not explicitly
mention every transition to a subsequence.
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If (¢¥)~! o 9p” has a convergent subsequence we are done. Otherwise, we
obtain as above an n € T with eEn and T € 827 such that (¢”)~! o converges
t0 Zep, uniformly on compact subsets of 3., \ {#}. We want to show that 7 # 4.
Otherwise we could apply Lemma 4.9 to ¢ and e with é Fe. It would then follow
that u” o ¢” converges to the constant us(zse), uniformly on compact subsets of
¥\ {z, &}, and that (¢*)~'(z) converges to either x or Z for all i. But this would
imply that @, is constant and Z~., C {z,z}, where z,% € 827, which contradicts
(v) of Definition 2.3.

Using again the fact that #7 < co we see that after finitely many steps we
arrive at some ¢ € T such that (<pz)‘1 o4¥ has a convergent subsequence.

Case 2: 27 =52 f7 = (. Fix an element o € T. If (¢%)~! 0 ¢” has a convergent
subsequence we are done. Otherwise Lemma 4.12 shows that there exist = € %,
and 8 € T with aEf3 such that (©%) ' oy” converges to z43 uniformly on compact
subsets of 3, \ {z}.

If (Lpg)_l o ¥ has a convergent subsequence we are done. Otherwise there
exists § € T with BEé and & € f?,y such that (<pg)‘1oz/)” converges to zgy uniformly
on compact subsets of 3., \ {Z}. We want to show that o # §. Otherwise it would
follow from Lemma 4.9 that u” o ¢” converges to the constant u,(zqas), uniformly
on compact subsets of 3, \ {z,#}, and that (¢”)~1(2¥) converges to either z or Z

for all 7. But this would imply that 4., is constant and Zv C {z,%}. This contradicts
(v) of Definition 2.3.

Case 3: %, = S, T, # 0. Let a € T. We first show that ¥, = S2. Otherwise
there exists w € B such that (¢%)~! o ¢” converges to w uniformly on compact
subsets of 3., \ {#5°}. This contradicts Lemma 4.11.

Now proceed as in the second case. We can assume that we have found
o, 3,0 € T with aES, SES and z,T € 5)7 such that (©%)~1 o 9” converges to
Zop uniformly on compact subsets of 537 \ {z}, and (gog)_l o ¥ converges to
255 uniformly on compact subsets of 3., \ {#}. We claim that a # §. Suppose the
contrary. To finish the proof, it remains to show that this implies that 23° € {z,7}.
Because zo5 # 25 OF Zga # 23, We can assume without loss of generality that
zap # 2. Hence there exist points z1,22 € B such that

Jim (£7) 7 (@1) # 205, i€ {1,2}.
Using Lemma B.2 we sce that (¢") "1 o ¢¥% converges to  uniformly on compact
subsets of ¥, \ {zag}. This shows that
lim (*) Y(z;) ==, i€{1,2}.

V—00

But this implies that = Z3°. Hence if a = 4, then 7, is constant and Z, C {x,i}.

This contradicts (v) of Definition 2.3. Hence the lemma is proved. O
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Proof of Theorem 4.10. Given Lemma 4.13 the corresponding proof in [MS2] trans-
lates nearly word for word.

Consider the case T" = {(u”, 2¥, ..., z})} and suppose that (u,z") = (u”, 2},
..., 2}) Gromov converges to two stable maps (u,z) and (1, z) with corresponding
sequences {Qqfaer and {@o}, e of Mébius transformations. We prove in four
steps that (u,z) is equivalent to (Q,z).

Step 1. There is a unique bijection f: T — T and a subsequence (still denoted by
(u”, 27, ¢%)) such that the limit

o= lim (g2)" o @Yy (14)

V—00
exists for every o € T. Here the convergence is uniform on all of S2.

Lemma 4.13 tells us that for every a € T there exists a unique element & € T'
such that the sequence (¢%)~1o #% has a uniformly convergent subsequence. Now
we can apply Lemma 4.13 again to this subsequence and any other element 5 € T,
and proceed by induction. This gives rise to a map f : T — T and a collection

= {¥a }aer of MoObius transformations which satisfy the requirements of Step 1.
Reversing the roles of u and u we find that f is bijective.

Step 2. Let f and 1, be as in Step 1. Then
Uf(a) = Ua O Yar  Zf(ay = Yo (2ai)s  Zf(@)i(e) = Y (2a8) (15)
fora, €T witha # 6 andi=1,..., k. Moreover,
lim lim E(u” o @ (a), Be(Z5(a)5(8))) = map(w) (16)
whenever aE[.
The first equality in (15) follows from (14), namely
o 0 o = T 4 00 0 e = i 0¥ 0 By =l (a)-
The second equality in (15) also uses (14) and Lemma 4.6:
o (Zai) = 1/’;1(V1LIT§O(SOZ)_1(2§/)) = Vlijgo(‘?’?(a))_l(zf) = Zf(a)i-
To prove the third equality in (15), suppose that «,3 € T with a # 3. Then
(%) 1o ¢f converges to zag uniformly on compact subsets of ¥\ {254 }. Hence,
for z # zgo we obtain, by (14),
) = v3 (Jim ()~ 0 @5(2) = lim (o)~ 0 95(2)
= Vh_l}olc(@;(a))_l o @?(g)(%l(@)-
In other words, (cﬁ?( a))_1 o 55’;(( ) converges to 15 (2a), uniformly on compact
subsets of X g \ {'d}gl(zBa)}. This proves (15).
To prove (16), note that the limit remains the same if the ball

Be(gf(a)f(ﬁ)) = Be("pgl(zaﬁ))
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is replaced by 15 (Be(zas)). We have

Tim B(u” 0 Goy. b (Belap) N (F1a) " (B))
— lim B(u* o &ay 0 s Belzap) N (2) 7' (B))
= lim B((u” 0 ) o ((h) " 0 Ba) 0 ¥a ). Belzap) N () (B))
= Jim B(” 0 ¢ Bu(za9) 0 (¢2)”(B))

The last equality follows from the fact that (¢%)~! O(,Z?IJ: (@) ot ! converges uniformly
to the identity. Now (16) follows by taking the limit € — 0. This proves Step 2.

Step 3. Let o, B € T. Then aEf3 if and only if

lim lim (E(u” 0 ¢y, Be(zap) N (2h) 1 (B)) + E(u” 0 ¢}, Be(z8a) N (0) 1 (B)))
= E(u) (17)
and there is no i € {1,...,k} which satisfies both za; = Zap and 2, = Z3a-

If aE3 then it follows from the definition of Gromov convergence that these
conditions are satisfied. Conversely, suppose that «, 8 € T satisfy (17) and either
Zai 7 ZaB Or 28; 7 280 for all i. Choose a chain of edges 79, ...,7m € 1 running
from vy = a to vy, = 5. Then (17) is equivalent to M.y, , (0)+m.,.~,. , (0) = E(u).
This implies

Mgy (W) =My, 1, (0).
If m # 1 then it follows that E(u,) = 0 for every v € T+, \T%,. ,~.. and this set is
nonempty. Hence there must be a sphere or a disk in T, \T,, ,~,, which carries
a marked point z;. For this 7 we obtain z,; = 248 and 2g; = 2g4, in contradiction
to our assumption. This proves that m = 1 and hence a«E5. Thus we have proved
Step 3.

Step 4. (u,z) is equivalent to (Q,z).
Step 2 shows that if aF3 then
E(w) = lim lim (E(u” 0 &% (o), Be(Z¢(a)£(3) N () (B))

e—0rv—oo
+E(u” 0 ¢ 5), Be(Z5(8)7(a) N (D))" (B)))

and that either Z¢ (o) # Zf(a)f(8) OF Zf(8)i 7 Zf(8)f(a) for all i. Hence Step 3 shows
that f(a)Ef(ﬂ). Replacing f by f~! we find that f(a)Ef(ﬂ) implies aE3. Hence
f is a tree isomorphism.
By (15) it only remains to verify that I'y = ¥a(T'fq)). If X)) = B then
Yo = B and 'y, = 'y = 9B. Moreover, @?(a) € Go and ¢% € Gy and hence
a € Gp. Hence

Fa =0B = d}a(aB) = zr/Joz(Ff(oz))'
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Ty = {2;‘6 a)}, then it follows from Lemma B.2 that v (27,)) = 25" Because
according Step 2, Zf(a)f(3) = Vo '(2ap), it follows that there exists no 8 € T with
aEf3 such that z5° = z,3. This implies that

Fo = {237} = {¥a(Z7(0)} = Ya(lf@)-

If finally T'fq) = 0, then Xy, = Yo = S52. We have to show that T, = 0.
Otherwise I'y, = {25°} and it follows from the considerations above that I'f(,) =
(o) "' (Ta) # 0. This contradiction proves I'y = ¥4(I'f(4)) in this case.

5. The space of stable maps

In this section we define Gromov convergence for sequences of stable maps. We
will see that generalizations of Proposition 4.3, Theorem 4.4 and Theorem 4.10
continue to hold.

Definition 5.1. Let M be a compact manifold with boundary, L a compact sub-
manifold of M without boundary, w” a sequence of symplectic structures on M
such that L is Lagrangian for every w”, J" a sequence of w”-tame almost complex
structures, and k1 and ko two positive integers. Assume that the w” converge to
some symplectic structure w on M with respect to the C'*°-topology, and the J”
converge in the C*-topology to some J € J,(M,w). A sequence

(uy7 zy> = ({(Zgu FZH u:;)}OtETW {ZZ,B}OLE”ﬁv {ai,j? Z;}}lﬁiﬁk>

of (k1, k2)-marked, J¥-holomorphic stable maps of genus zero with one boundary
component in L is said to Gromov converge to a (k1, ks)-marked stable map

(11, Z) = ({(Eou Ty, uoz)}aET7 {za,@}ozE,B» {aiv zi}lgigk)

if, for v sufficiently large, there exists a surjective tree homomorphism f* : T'— TV
and a collection {¢% }aer of Mobius transformations such that the following holds.
(i) If ¥v(q) = B and X, = B, then ¢}, € Go.

(ii) If B = 52, then for every subsequence v; of v with X yv; () = B and for every
compact subset K of $%\{25°} there exists jo(K) such that ¢ (K) C X pvj (o)
for every j > jo(K).

(iii) For every o € T and for every compact subset K of ¥, \ Z, the sequence
u;V( ) © g, converges to uq, uniformly with all derivatives on K.

(iv) If 8 € T with aE3, then

mas(w) = lim T By o0, 94 (Bel(2a5)) 0 %o ). (18)
(v) If I'y = {2}, then

lim 1lim B(u}, (o) © @, Be(237) N (94) 7' Spvay) = 0.

e—0v—o0
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(vi) Let o, € T with aES. If f¥i(a) # () for some subsequence v; then
I K vi\—1/_ Vi
faf = jli,nolo(@f" ) (Zij (@) fYi (,3))-

If fYi(a) = f¥i(B) for some subsequence v; then (pa’) ! o Lpgj converges to
Za3, uniformly on compact subsets of X3\ {234}

(vii) af = f"(a;) and z; = lim, o0 (9%, )" (27) for i = 1,..., k. Moreover, z; €
Oy, iff 27 € 0N

(viii) If v; is some subsequence such that I'pv; () = {2
5% then T, = {22°} for 2° € 5, = S? and

Vj,00 V5,00 o
i (a)} for 2 (a) € Yvita) =

0o __ 1 i\—1( V00

Zo _jli,ngo(%) (wa(a))‘
Remark 5.2. If ¥, is a disk it follows from (iii) of Definition 5.1 that for v suffi-
ciently large, % (B) C X¢v(q). This is only possible if ¥t () = B.

We will show that the homotopy class converges under Gromov convergence,
that every sequence of stable maps with bounded energy has a Gromov convergent
subsequence and that the limits are unique up to equivalence. In the following let
JY, M and L be as in Definition 5.1.

Proposition 5.3. Suppose that (v”,z") is a sequence of (ki1, ke)-marked, J"-holo-
morphic stable maps of genus zero with one boundary component in L which Gro-
mov converges to a stable map (u,z). Then the following holds.
(1) If ¥ € Uperw ug(X4) converges to x € M then v € U, cp ta(Xa)-
(if) For large v the connected sum #,cp u%, is relative homotopic to #,cr Ua
with respect to L.

Theorem 5.4. Fiz some k1, ko € N. Assume that (u”,z") is a sequence of (k1,ka)-
marked, JY-holomorphic stable maps of genus zero with one boundary component
in L whose energy is uniformly bounded. Then (u”,z") has a Gromov convergent
subsequence.

As an immediate corollary of these two results we obtain

Corollary 5.5. For every J € J,(M,w) and every constant ¢ > 0 there exist
only finitely many homotopy classes A € mo(M,L) with w(A) < ¢ which can
be represented by a J-holomorphic stable map of genus zero with one boundary
component in L.

Theorem 5.6. Fiz some k1, ko € N. Let (u”,z") be a sequence of (k1, k2)-marked, J-
holomorphic stable maps of genus zero with one boundary component in L. Suppose
that (u”,z") Gromov converges to two stable maps (u,z) and (@,z). Then (u,z) is
equivalent to (1,%).

The idea of the proof is the same for these three results. We show that we
can assume without loss of generality that the sequence of stable maps is modelled
over the same tree. Then the results follow from Proposition 4.3, Theorem 4.4,
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Theorem 4.10 and their analogues for spheres which are proved in [MS2]. Our
main problem will be to show that the energy of a Gromov convergent sequence
converges.

Lemma 5.7. Let (u”,z”) be a sequence of stable maps which Gromov converges to
(u, z) with corresponding surjective tree homomorphisms f¥ : T — TV and Mdbius
transformations ¢4, € G. Then E(u”) converges to E(u).

Proof. The proof is in four steps.
Step 1. If a # [ and v; is a subsequence such that f¥i(«) # f*/(53) then
ZaB = hm (‘Pa )" 1( Zy J(a)f J(@))

Let ~vo,...,vm be the chaln of edges from « to 8. Passing to a further sub-
sequence, we may assume that, for every i, either f“i(v;) = f"(vi41) for all
jgor fYi(v) # fY(yig1) for all j. If fY(a) = fY(y,,) then it follows that
fYi(a) = f¥(y;) for all i < 4. This is because 7g,...,7:, is a chain of edges
in T running from « to v;,. Hence there exists £ < m such that f¥i(a) = ¥ ()
for i < ¢ and fYi(a) # f¥(y;) for i > £. Then

28 = o = Zov g a)(8) = 1 o e
By (v) in Definition 5.1, this implies that (@Z‘é)_l(z;‘ij (ye) 3 (’w+1))
Zypyein 7 Zyemo- Hence it follows from Lemma 4.6 that

converges to

Zaf = Zygye = hm ((p’yo) 1o @;ﬁ((‘pfyyi)_l(z;zﬁ (ve) f¥i (W+1)))
1.V
hm (9070) (Zf'/j (ve) f¥3 (’Yz+1))'

Thus we have proved that every subsequence of v; has a further subsequence
which satisfies the assertions of the lemma. Hence the sequence v; itself satisfies
the claim.

Step 2. For every € > 0 there exists a vy € N such that

v > vy, fU)EY = (05) (2 arre) € | Belzap). (19)

BET
aE(

Suppose otherwise that there exist sequences v; — oo and v* € T™/ such
that ¥ (a)EYi~v"i and z;i] (i F e (Be(zap)) for all 8 # a. Choose v, € T such
that f”(v;) = ~"7. Passing to a further subsequence we may assume that v; =~
is independent of j. By Step 1, the sequence (ga';"")_l(z;"lj ()75 (7)) converges to
Zary, contradicting our assumption. This proves (19).

Step 3. For every compact set K C X\ {245 :8€ T, aES},
E(ua, K) = lim E(u},(q) 0 ¢g K N ()™ (S5))-

This follows immediately from (iii) and (v) of Definition 5.1.
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Step 4. We can now prove the lemma. It follows directly from the definitions that

E(u) = E(uq, 2a) + Z mas(n).
BET
aES
Because the z,3 are a discrete set, the sets B(z,g) are distinct for small e. Hence
B(ua, | Belzas)) = Y Blua, Be(z0)):
aEs BET
aES
This two formulas together show
E(u) = E(ua,Ea U Be(zaﬁ)) + 37 (mas(u) + E(ua, Be(zap)))-
aEp BeT
aES
From Step 3 it follows that

E(ua,Za\ U Be(zag))

aES
= lim E(u;,,(a) o Yo, (Ea\ U Be(zaﬁ)) N (@Z)_l(zﬂi))'

Voo s
For the second term we observe that
E(ta, Be(2ap)) = E(ta, Be(2a8) \ Bs(2ap)) + E(u®, Bs(2ap))
for § < €. Because of (19) we can use Step 3 to obtain
Blta. Bu(2ap) = im Bt (a0 2% (Be(za0) \ Bi(209)) N ()™ (2 po())
+ E(uq, Bs(2a8))-
Using (iii) of Definition 5.1 we have
Map() + B(ua, Be(zap)) = lm lim B ) (0", 9o (Bs(2a6)) N Bfv(a)
+ }im lim E(ufs(q) © 9as (Be(2ap) \ Bs(zas))

— 0 v—o0
N (e2) " (Erv ()
= ylglolo Efu(u)(u”,cpZ(Be(zag)) n Efl/(u)).

Altogether
_ 3 vV v vy—1
B(w) = lim B (a0 ¢ (Ta\ | Belzan)) 0 (62) 7 (51))
aEg
+Y Jim By ) (07,00 (Be(2a8)) 0 E v (a))-
BET

akES
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It follows directly from the definition that
Epv(ay (0, 90(Be(2ap)) N X pv(a) = E(uf gy © 9 Be(Zap) N (00) " (Epv(a)))
+ > M o () (W),

f”(a)VEV’Y"
251 (a)yv €95 (Be(zap))

It follows from (19) that

Jim D B oy (07, 04 (Be(2ap)) N Epv(a)

BET

aES
= Ulirr;o (E(u?u(a)ogag, U Be(2a8) N (5) T (Zfva))) + Z mf,,(a)w,,(u”)).

akEp Y ET”
1 (@) BY

Hence

E(w) = lim (E(u?u(a) A CARIOITN) mfu(aw(uV))

yrer”
I (@) By
= lim E(u"). O
vV—00

Proof of Proposition 5.3. We prove (i). By Lemma 5.7, the energy F(u”) is uni-
formly bounded. Since the constant i = A(M,w, J) of Corollary A.4 depend con-
tinuously on w and J (cf. Remark A.5), we have

inf{A(w”, J")} > 0.

By Lemma 2.7, this implies that there exists a finite set of isomorphism classes
of trees which contains all the T". Passing to a subsequence if necessary, we may
assume that the curves (u”,z”) are all modelled over the same tree T/ = T".
Perhaps passing to a further subsequence we may even assume that =¥ € u} (X))
for some fixed a € T". If 32/, = B then (i) follows from Proposition 3.2. The case
¥/, = 52 is proved in [MS2]. A similar argument shows (ii). O

Proof of Theorem 5.4. Let

(0”,2") = ({(36: T6s wa) Yaervs {zap amv s, {0, 27 hi<ick)

be a sequence of stable J”-holomorphic curves which satisfies F(u”) < ¢ for all
v and some constant ¢ > 0. As in the proof of Proposition 5.3 one shows that
there are only finitely many trees, up to isomorphism, which correspond to stable
JY-holomorphic curves with energy bounded by c. Passing to a subsequence, we
may assume that the trees T" are all isomorphic. We choose an isomorphism
T'=T' — TV for each v.

Interpret the points 27,5 and zo0V for o, 3 € T with o/ E'f’ as marked
points. One can generalize Theorem 4.4 to the case of spheres (see [MS2]). Hence

(ul,, Z”,) has a subsequence which Gromov converges to a stable J-holomorphic
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curve with marked points for each o/ € T”. Then connect the limit curves to a tree
by introducing an additional edge for each pair o/ E’S’ connecting the points z,/ g
and zgq. This proves Theorem 5.4.

Proof of Theorem 5.6. Passing to a subsequence if necessary, we may as in the
proof of Proposition 5.3 assume that the curves (u”,z") are all modelled over the
same tree 17 = T%. We may also assume that the subtrees (f)"1(o/) =Ty C T
and (f*)~1(a/) = Ty C T are independent of v for all o/ € T”. Our considerations
imply uniqueness for the sequences (uY,, Z%,) if ¥, = B. An analogous result

ar “a

holds for the case ¥, = S? (see [MS2]). This proves the theorem. O

Remark 5.8. One can use Gromov convergence to define a topology on the space
My kg A = Mo 1k ke,a(M, L, J) of equivalence classes of (k1, k2)-marked stable
maps of genus zero having one boundary component in L, which represent the
relative homology class A. The Gromov topology is the collection U C 2Mrik2.4
of all subsets U C My, x, 4 such that for all (u,z) € U and all sequences (u”,z")
which Gromov converge to (u,z) there exists an N € N such that v > N implies
(u”,z”) € U. As in [MS2] one can show that the Gromov topology has the following
properties.

(i) A sequence in My, , 4 converges with respect to the Gromov topology if
and only if it Gromov converges.
(ii) The topology of My, r, 4 has a countable basis.
(iii) Mg, k,,4 is a compact Hausdorff space.

In particular, My, 1, 4 is a compact metrizable space.

6. Examples and applications

6.1. Maps from the disk to the sphere

Let (M,w) be (S%,wpg) and let L = S* = RU {oo} be the equator. Note that
7r2(S2, S1) is generated by two elements A; and Ay, where A; represents the north-
ern hemisphere and A, represents the southern hemisphere. In particular, A; + Ao
is the canonical generator of m5(5?). A J-holomorphic map from B to S? has to
represent k1 A1+ko Ao where ki1, ko > 0. Proposition 3.2 implies that J-holomorphic
spheres cannot bubble off from sequences of maps which represent a class kA; or
kAs for k > 0. Hence there cannot be bubbling off in the interior. However, bub-
bling off may occur at the boundary such that the limit consists of a bubble tree
consisting of several maps which represent multiples of the same relative homotopy

class. An example of this case is the sequence of maps
2
z¢—1/v
vyt HU {0} — CU{o0}, z»—>—/.
z

For sequences of maps B — S? which represent a class k1 A; + koAs with
ki1,ko > 0, bubbling in the interior is possible. To see this in the case k1 = ko = 1,
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let @ € H \ R and pick a sequence 0 <z, < 1 which converges to 1. Define

~ (z—ax,)(z —ax,)
SR e g Y

One easily verifies that ¢, converges to |a|? uniformly on compact subsets of
H U {oc} \ {a}. Hence ¢” Gromov converges to a stable map consisting of one
sphere with one boundary point.

6.2. Calculation of some Gromov invariant

This application is due to M. Akveld and D. Salamon (see [AS]). They examine
manifolds of the form B x CP" with the submanifold

A= |J {&¥™"} x w(RP") C OB x CP"
t€[0,1]

where the inclusion is defined by
tg i RP™ — CP"; [g:...: %) — [e 201 ... 1 2]
These manifolds are endowed with the following almost complex structure:

i 0 -1 0
Joy = 1 0 0
—JxﬁyXF +Xe —Xp-— Jx,yXG Jx,y

where for (z,y) € B, Jy, is a family of almost complex structures on CP™ compat-
ible with wrg, and X and Xg are the Hamiltonian vector fields for the functions
F, , and G, , on CP".

A J-holomorphic curve defines a relative homotopy class A € mo(BxCP™ A).
For such a relative homotopy class and for a triple (F, G, J) € T = C®(BxCP™) x
C®(B x CP™) x J where J denotes the set of families Jz,y of almost complex
structures compatible with wpg we define

ou ~0u
M(A F.G,J) = {u € C®(B,BxCP"): %(xy) + Ja—y(:c,y) =0, [u] = A}.

One can show that for ‘most’ triples (F, G, J) € Z, M(A; F,G, J) is a smooth
manifold. Call such triples regular. Then for two regular triples (Fy, Go, Jy) € T
and (F1,G1,J1) € T the manifolds M(A; Fy, Go, Jo) and M(A; Fy,Gq,J1) are
cobordant via a manifold of the form M(A;{(F;, G, Ji)}:). Here (Fy, Gy, Jy) is a
smooth path in Z which connects (Fy, Go, Jo) to (F1,G1,J1) and satisfies some
regularity conditions. This in itself is not very relevant information because every
manifold V is cobordant to the empty manifold via the noncompact cobordism
V % [0,1). However, this fact will become useful if we are able to establish certain
compactness criteria.

For a regular triple we know from Riemann—Roch that the dimension of the
moduli space M(A; F,G, J) is given by the formula

dim M(A; F, G, J) = upxcpr(A) +n — 2.
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Here ppxcpr is the Maslov index which associates an integer to a relative homo-
topy class in my(B x CP", A). We will now consider the homotopy class A = Dy
which is represented by the map u(z,y) = (x,y,[1:0:...:0]). The Maslov index
of Dy can be calculated to be 2 — n so that for a regular triple the moduli space
is 0-dimensional.

M. Akveld and D. Salamon prove that for a regular homotopy (F3, Gy, J;) the
moduli space M(Dy; {(F%, Gt, J¢) }1) is a compact one-dimensional manifold. They
first show that bubbling can occur only fibrewise. Then it follows from Gromov’s
compactness theorem that every sequence in M(Dy;{(Fi, Gy, Ji)}+) converges to
a bubble-tree consisting of a J-holomorphic map u : B — B x CP™ and a finite
number of maps

v; : 82 -5 CP"™ and w; : B— CP"
withi=1,...,k and j = 1,...,[ such that v; is J,-holomorphic for some ¢; € B
and w; is J¢,-holomorphic for some (; = e*™i € 9B and w;(dB) C v, (RP™).
Moreover, because the homotopy class converges, we get

[w;] = Dn.

4
=1

k
M+Zw+

1=

J

Because the homotopy class is preserved it follows that the Maslov class is pre-
served too. So this reads

k l

(D) = p(w) + > p(vi(S%) + > p(w;(B)).
i=1 j=1

Now the spheres represent elements of w2 (CP™) and the disks of mo(CP", L) where
L = (RP"™) for some t € [0,1]. The generator of m3(CP™, L) has Maslov index
n + 1 and the generator of mo(CP™) = Z has Maslov index 2n + 2. In order to be
holomorphic the disks and spheres must be positive multiples of the generator, so
we get the following equation for the Maslov index:

2—n=npu)+kn+1)+A2n+2),

where Kk > 0 and A > 0. If Kk > 0 or A > 0 then p(u) < 2 —n and hence the
corresponding moduli space is empty. Hence there cannot be fibrewise bubbling
and therefore there is no bubbling at all.

The Gromov invariant of the class Dy is defined by

Gr(Dy) = #M(Dy; F,G,J) mod 2.

Since there is no bubbling, the moduli space for a regular homotopy {(F;, G¢, Ji)}+
connecting the regular points (Fy, Gy, Jy) and (Fy,G1,J1) is a one-dimensional
compact manifold with boundary. Its boundary is the disjoint union of moduli
spaces at ¢ = 0 and ¢ = 1. So we have found a compact cobordism between two
zero-dimensional manifolds. Since the boundary of a one-dimensional manifold
consists of an even number of points, we deduce that the parity of the number of
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points of M(Dy; Fy, Go, Jo) and M(Dy; Fy, Gy, J1) is the same. This shows that
the Gromov invariant is independent of the regular triple (F, G, J).

M. Akveld and D. Salamon show in [AS] that Gr(Dy) = 1. This is done by
calculating the Gromov invariant for a special pair and then showing that this is
actually a regular pair.

Appendix A. Analytical background

A.1. Mean value estimates

We always assume in this subsection that (M, w) is a compact symplectic manifold
(possibly with boundary), L € M a compact Lagrangian submanifold without
boundary and J an w-tame almost complex structure on 1T'M. The following two
a priori estimates give an L°°-bound for J-holomorphic curves whose energy is
small enough.

Lemma A.1 (A priori estimate). There ezists a constant iy > 0 such that the
following holds. If r > 0 and v : B, — M s a J-holomorphic curve such that

/ |du|? dvol < g

™

then <
|du(0)]* < —2/ |du|? dvol.
mr B,
The proof of Lemma A.1l relies on a result about the partial differential
inequality Ae > —Be? for the energy density e = |du|? (see [Sa] for example).

Lemma A.2 (A priori estimate on the boundary). There exist constants iy > 0
and ¢ > 0 such that the following holds. If r > 0 and u : B, "H — M is a
J-holomorphic curve such that (B NR) C L and

/ |du|? dvol < hy
Bo,. NH

c
sup |dul? < —2/ |du|? dvol.
B,NH = JBs,.NH

then

The idea of the proof of Lemma A.2 is to extend u to Bs, by a reflection. Then
the lemma follows as Lemma A.1. This works only for special metrics. Lemma A.3
is needed to construct such a metric.

Lemma A.3. Let (M,J) be an almost complex manifold and L C M be a totally
real submanifold. Then there exists a Riemannian metric g on M such that

(i) g(J(p)v, J(p)w) = g(v,w) forpe M and v,w € TyM,

(if) J(p)TpL is the orthogonal complement of T, L for every p € L,

(iii) L is totally geodesic with respect to g.
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Proof. Choose coordinates x1, ..., %, on L and extend them to coordinates =1, ...,
TpyYls-- -, Yn o0 M such that
0 = 0 1=1 n
8xz_8yl7 - A )

on L. In these coordinates the almost complex structure is represented by the
matrices

_ (Alz.y) Ba.y)
J@’y)‘(c(x,é) D(a:,é))

where
A(z,0) = D(z,0) =0, C(z,0)=—B(z,0)=1id.

_ (alx,y) b (x,y)
g@,y)_(b(%;) c(mxyﬁ)

A metric

satisfies (i)—(iii) iff
a(z,0) = c(z,0), b(z,0)=0, 9Jya(x,00=0, g=J gl (20)
To find this metric we first construct an auxiliary metric
oo (alzy) V(@)
§@y) = (b(fr,y) . y)

where g satisfies

d(l‘,O) :5(3370)v b(l’,O) =0,
0y a(x,0) 4 9, C" (z,0)a(x,0) + a(x,0)d,,C(z,0) = 0.

Then g(v1,v2) = 5(G(Jv1, Jva) + §(v1,v2)) satisfies (20). Conditions (i)—(iii) are
intrinsic and they continue to hold under convex combinations and under multi-
plication by cutoff functions 8 = B(z,y) that satisfy

Oy, B(x,0) = 0.
This condition on the cutoff function is intrinsic. It asserts that
ge L, veT,L = dB(q)J(q)v=0. (21)

Hence the result follows by choosing local metrics g which satisfy (20) and patch-
ing with a partition of unity consisting of finitely many cutoff functions that sat-
isfy (21). O

Proof of Lemma A.2. By Lemma A.3 there exists § such that L is totally geodesic
with respect to g and JT'L = TL". Now extend the energy density e : B,NH — R
defined by e(s,t) = 5|9;u(s, t)|? to the ball B, by

e(s,—t) = e(s,t).
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We must prove that e is twice continuously differentiable. For this it suffices to
show that 9de(s,0) = 0. Now

Ore = (Vi05u, 0su)5 = (Vs0pu, Osu)g = (Vo (JOsu), Osu)g
= ((VJ)0su, Osu)g + (JV0su, Osu)g = (JV0su, Osu)
where the last equality follows from (i) in Lemma A.3. Because L is totally ge-
odesic we have V 0su(s,0) € Ty (s L. Since JT'L is orthogonal to T'L we obtain
(JVs0su,0su); = 0 for t = 0. Hence e is of class C? as claimed. One can show
that in this case e satisfies a partial differential inequality of the form Ae > —B e?.
It follows that there exist constants A; > 0 and é > 0 such that

/ |du|g dvol < Iy
Bo,.-NH

2 ¢ 2
sup |du|z < —/ |dul|z dvol.
B,.mH' |g w2 By, NH g

Because M is compact there exist constants ¢y, cs > 0 such that

implies

c1g < g < cag
where g(v,w) = 1(w(v, Jw)+w(Jv,w)). Hence the lemma follows with f; = hy /ey
and ¢ = éca/cy. O

An immediate corollary from the a priori estimates is the following:

Corollary A.4. Let Y be the sphere or the disk. Then there exists a positive constant
h such that E(u) > h for every nonconstant J-holomorphic curve u : (X,0%) —
(M, L).

Proof. Let h = min(hg, Ai1). Then the claim follows from the a priori estimates as
r goes to infinity. O

Remark A.5. By carefully checking the details of the proof of the a priori estimate
one can show that A in Corollary A.4 depends continuously on J and w.
Let
G(r,R) :=G,,(r,R) :={z€H:r <|z— 2| <R}
where zo € H and r < R. Denote by (¢, ¢} ] C [—n/2,37/2] the maximal interval
such that 2o + ™% ¢ H for every 0 € [¢-,¢7]. Lemma A.6 below says that if
the energy of a J-holomorphic curve on an arbitrarily long cylinder is sufficiently

small then it cannot spread out uniformly but must be concentrated near the ends.
It is proved as Lemma 4.7.3 in [MS2].

Lemma A.6. Let u: G(r,R) — M be a J-holomorphic curve such that

im(u|g(r,r)nr) C L.
Then there exist constants h > 0 and ¢ > 0 such that if E(u) < h then

d(u(newl),u(rzew:’)) <cVE(u,G(r,R)) forre<ri,ro < Re™!
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and
E(u,G(r,R))

E(u,G(eTr,e"TR)) < ¢ T

whenever 2 < 2T < R/r.

A.2. Compactness and regularity

J-holomorphic curves are smooth and if one has a uniform LP-bound on the first
derivatives for some p > 2, then one gets compactness. The proofs are based on
elliptic bootstrapping. We assume that (M, J) is a compact almost complex man-
ifold (perhaps with boundary) and L C M is a compact totally real submanifold
without boundary.

Definition A.7. Let (X,j) be a Riemann surface with complex structure j. We
call j standard near the boundary if each boundary point has a neighbourhood
which is biholomorphic to the intersection of the unit disk U; = {z € C : |z| < 1}
with the closed upper half-space H = {z € C : Im z > 0}.

Theorem A.8 (Regularity). Let (X,j) be a Riemann surface standard near the
boundary. If u : ¥ — M is a J-holomorphic curve of class W*P with kp > 2 and
u(0X) C L then u is smooth.

Proof. See [MS2, Theorem B.4.1]. O

Theorem A.9 (Compactness). Let ¥ be a Riemann surface with complex struc-
ture j. Let J, be a sequence of almost complex structures on M converging to J in
the C™ -topology® and j, be a sequence of complex structures on ¥, standard near
the boundary, converging to j in the C*°-topology. Let U, C ¥ be an increasing
sequence of open sets whose union is 3 and u, : U, — M be a sequence of (j,, J,)-
holomorphic curves such that u, (U, N 0X) C L. Assume that for every compact
set QQ C X there exist constants p > 2 and ¢ > 0 such that

ldw, | 1rQ) < ¢

for v sufficiently large. Then a subsequence of u, converges uniformly with all
derivatives on compact sets to a (3, J)-holomorphic curve u : (X,0%) — (M, L).

Proof. See [MS2, Theorem B.4.2]. O

A.3. Removable singularities

The removable singularity theorem says that any J-holomorphic curve u : B\ {0}
— M on the punctured disk which has finite energy extends smoothly to the disk.
An analogous result holds for the punctured half-disk (B NH) \ {0}. The proof is
an application of the a priori estimates.

We assume that (M, w) is a compact symplectic manifold with boundary, L
a compact Lagrangian submanifold of M without boundary, and J € J,(M,w).
The metric is given by g(v, w) = 1(w(v, Jw) + w(Jv, w)).

SHence L is totally real with respect to J, for v sufficiently large.
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Theorem A.10 (Removable singularities in the interior). Let B, = {z € C :
|z| < r}. Then every J-holomorphic curve u: B, \ {0} — M with finite energy

1
E(u) = —/ |du|? < oo
2 /B,
extends to a smooth map on B,.
Proof. See [MS2, Theorem 4.1.2(i)]. O

Theorem A.11 (Removable singularities on the boundary). Let u: B.NH\ {0} —
M be a J-holomorphic curve with u(B,NR\{0}) C L and finite energy E(u) < 0.
Then u extends to a smooth map on B, N H.

Proof. See [MS2, Theorem 4.1.2(ii)]. O

A.4. Bubbling

The bubbling theorem asserts that a sequence of J-holomorphic curves with bound-
ed energy converges to a J-holomorphic curve up to finitely many points where
bubbles occur. For a proof of this theorem see for instance [MS2]. The idea of the
proof is that at every point where the energy density tends to zero one rescales
the sequence using conformal invariance. Then it follows from the compactness
theorem for sequences of J-holomorphic curves with a uniform L° bound on the
first derivatives that a subsequence converges. Using removal of singularities one
shows that the bubble is either a sphere or a disk. If the bubble point lies in
the interior, then one always get spheres. However, if the bubble point lies on
the boundary, then it depends on how fast the energy converges to the boundary.
Because the energy of a J-holomorphic disk or a J-holomorphic sphere is bounded
uniformly from below by a constant greater than zero, one sees that there cannot
be infinitely many bubble points.

We assume that (M,w) is a compact symplectic manifold with boundary, L
a compact Lagrangian submanifold of M without boundary, and J € J,(M,w).

Theorem A.12. Let (X, 5) be a compact Riemann surface with complez structure j.
Let J, be a sequence of almost complex structures on M converging to J in the
C™>-topology and j, be a sequence of complexr structures on X, standard near the
boundary, converging to j in the C-topology. Let u, : (X,0%) — (M, L) be a
sequence of (4, Jy)-holomorphic curves whose energy is uniformly bounded. Then
there exists a subsequence (still denoted by u, ), a J-holomorphic curve u : ¥ — M
and a finite set of points Z = {z',..., 2"} C ¥ such that the following holds.

(i) wy, converges to u uniformly with all derivatives on compact subsets of 3 \Z.
(i) For every j and every ¢ > 0 such that B.(27) N Z = {27}, the limit

me(2?) = lim E(u,, B(2))

exists. Moreover, _ )
m(2?) = limme(2) > h
€E—

where h is as in Corollary A.4.
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(iii) For every compact subset K C ¥ with Z C int(K),

¢
E(u,K) + Zm(zj) = lim E(u,, K).
por V—00

Proof. See [MS2, Theorem 4.6.1]. O

Appendix B. Sequences of Mobius transformations

The group of Mébius transformations is noncompact. For example, the sequence
©"”(2) = vz has no convergent subsequence. However, ¢” converges to co uniformly
on compact subsets of 52\ {0}. More generally, the following holds.

Lemma B.1. Let ¢” : S? — S? be a sequence of Mdbius transformations which
does not have a uniformly convergent subsequence. Then the following holds.

(i) There exist points xg,yo € S? and a subsequence @"* which converges to yo,
uniformly on compact subsets of 5%\ {xo}.
(ii) If ¥ € Gq then xg,yo € OB.

Proof. Assertion (i) follows immediately from Theorem A.12 with E(p) =7 = h
for p € G.

To prove (ii) interpret ¢ as a J-holomorphic map B — B with FE(p) = 7/2
= h. O

The lemma above shows that every divergent sequence of Mobius transfor-
mations provides us with two exceptional points. The following lemma tells us how
these exceptional points of two sequences of divergent Mobius transformations are
related if one assumes that the product of the Mobius transformations converges.

Lemma B.2. Let ©” : S? — S? and 4" : S? — S? be sequences of Mdbius trans-
formations and x1,2,y1,y2 € S? be such that ©¥ converges to xy uniformly on
compact subsets of S?\ {xa} and ¥V converges to yi uniformly on compact subsets
of S?\ {y2}. Assume that ¥ o ¥ converges to a Mbius transformation p. Then
the following holds.

(i) z1 = yo.
(i) p(z2) =y1.

In particular, (p¥)~*

converges to xo uniformly on compact subsets of S\ {z1}.

Proof. We first prove (i). If x1 # yo then (") o ¢” converges to y; uniformly on
compact subsets of 52\ {x}. But this contradicts the assumption that " o @
converges uniformly on all of S2. Hence z; = y».

Let us prove (ii). Fix 6 > 0. Let z € 5%\ Bs(p(x2)). Because (¢ o p”)"Lop
converges uniformly to the identity, we see that there exists ¢ = ¢(J) > 0 and
vo(€) € N such that for all v > wvg(e), (¢¥ o ") L(x) € S%\ {Bc(x2)}. This
shows that (")~ 1(z) = ¢ o (V" o ¢¥)~L(z) converges to x; = yo uniformly on
S2\ Bs(p(z2)). Because § was arbitrary, (i) implies that p(z2) = y1. O
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The following lemmas are rather technical. They are needed to prove unique-
ness of limits for stable maps and to deal with marked points.

Definition B.3. Let X be a topological space. Let A, be a sequence of subsets
of X. We say that A, converges to Y C X if for every compact subset K C Y and
every open set U, Y C U C X, there exists a vo(K, U) such that

KcA cU, v>p(K/U).

Lemma B.4. Assume that there exist x,y € S? and sequences of sets A,, B, C 5>
and ¢¥ € G such that the following holds. A, converges to S\ {x}, B, converges
to S2\ {y}, and " is a bijection between A, and B,. Assume further that the
sequence @Y has no convergent subsequence. Then the following is fulfilled.

(i) There exist points xg,yo € S? such that ¢¥ converges to yo uniformly with
all derivatives on compact subsets of S%\ {zo}.
(ii) z =zo ory = yo.

Proof. The first assertion follows directly from Lemma B.1. To prove the second
one, assume that y # yo. We want to show that z = x. Otherwise for every r > 0
there exists vo(r) such that

¢"(x) € Ur(yo), v > wo(r).
Because y # yo there exists » > 0 such that
Ur(yo) € S\ Ur(y).
Perhaps after enlarging vo(r) we can assume that
S2\U.(y) C B,. A, CS*\{z}, v>uwp(r).
Altogether
€ (") Y(B,) = A, C $%\ {z}.
This contradiction shows that y # 1o implies © = zy. Applying the same argument

to (¢¥)~! one sees that = # o implies y = yo. O

Example B.5. The following example shows that in Lemma B.4 one cannot assume
that © = 2o and y = yo. Let x = o0, y = 00, A, = By/ev, B, = By/sv, where ¢”,
§” and €’ /8" converge to zero. It follows that A, converges to S\ {z} and B,
converges to S2 \ {y}. The sequence of Mébius transformations ¢” defined by

(@)= (2)

gives a bijection between A, and B,. Because €’/ converges to zero we see that
¢ converges uniformly to zero on compact subsets of 5%\ {co}. Hence 2y = 0o = x
but yo =0 # oo = y.

We finally mention the following result without proof.
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Lemma B.6. Let ¢ : S? — S? be a sequence of Mébius transformations. Suppose
that v, yo € S? and oY, x5, y” are convergent sequences such that

zo # lim oy # lim x5 # xo, yo # lim y”,
V—00 V—0C V— 00
and
lim ¢¥(z}) = lim ¢"(z%) =yo,  lim (¢")7'(¥") = .
V—0Q V—00 V—00

Then ¢* converges to yo, uniformly on compact subsets of S%\ {xo}.
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