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Abstract 

 
 

Abstract 
The discovery and application of the laws of quantum mechanics has led in the 

past century to the “first quantum revolution”, characterized by the development of 

electronic devices and systems of increasing complexity that have profoundly affected 

our society. There is consensus that we are now approaching the threshold of a second 

quantum revolution, in which still unexploited resources of quantum mechanics, such 

as quantum entanglement, will be used to build up quantum computers and secure 

quantum communication systems. Photons, the quanta of light, shall play a major role 

in this context, as they are the only realistic quantum information carriers for connecting 

separate quantum systems and for transmitting quantum information. In addition, 

degrees of freedom of photons can be used for quantum simulation and computation 

tasks. 

Among different systems, semiconductor quantum dots (also dubbed “artificial 

atoms”) have emerged as one of the most promising quantum-light sources because of 

their capability of emitting single and entangled photons “on demand” and at high rates. 

Several issues with these sources have been solved, while other challenges are still open. 

Arguably, the major one is that the electronic structure and optical spectra of different 

quantum dots are affected by fluctuations stemming from stochastic processes 

occurring during quantum dot growth. This limited control leads to a spread in emission 

wavelength (hindering the use of multiple quantum dots in quantum networks and 

quantum photonic circuits), the poor coupling to optical modes in predefined photonic 

circuits, the poor performance as sources of entangled photons, and to inefficiencies 

due to noise sources in the solid-state environment of a quantum dot.  

In this thesis, we focus on the use of strain fields induced in the quantum dot after 

fabrication, as a tool to control specific quantum dot properties, and, conversely, we use 

the high strain-sensitivity of the quantum dot optical properties to detect local strain 

fields in mechanical resonators.  

Firstly, we develop novel micro-machined piezoelectric actuators featuring 

geometrical strain amplification to continuously tune the emission wavelength of single 

quantum dots in an unprecedented tuning range of about ~100 meV, corresponding to 

~50.000 times the natural emission linewidth, and to reshape the optical selection rules 

in the studied quantum dots. Together with calculation results, our findings show a 

promising route to obtain quantum-light sources with ideally oriented dipoles and 

enhanced oscillator strength for integrated quantum photonics.  

Then we use the developed actuators to drive mechanical oscillations in suspended 

membranes. Mechanical resonances are detected by monitoring the light emission from 

the embedded quantum dots and their frequency tuned by applying continuously 

variable tensile stress through the same platform. Lastly, the propagation of sound 

waves in the suspended beams is studied. With quantum dots acting as optical strain 

sensors, the propagation and attenuation properties of Lamb waves are studied.  
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1. Introduction 

Since the end of last century, quantum technologies attract more and more interest 

all over the world. Motivated by the potential prospects of advanced quantum 

technologies (such as quantum communication1), significant progress has been 

achieved. Based on the present state-of-the-art, we can be quite optimistic to say that 

we are at the threshold of a second quantum revolution2, which will be characterized 

by the full exploitation of the resources provided by quantum mechanics. However, 

there are still considerate long-standing issues in front of us, one of the main ones being 

the implementation of suitable physical systems. Up to now, several kinds of physical 

systems (such as nuclear spins, electrons, superconducting qubits, photons etc.) have 

been explored. 

Photons, the basic particles of light, are considered to be promising candidates in 

quantum photonics. To maximumly realize the potential of quantum photonics, efficient 

photon counters, quantum circuits and ideal single photon sources are necessary3. 

Among them, an ideal single photon source is in urgent need.  

What is a single-photon source? As the name implies, the single-photon source 

should emit one and only one photon at a time. Moreover, for an ideal single-photon 

source, photons should be indistinguishable in all degrees of freedom and it should be 

possible to have emission at high-repetition rates (>GHz). There are already several 

established systems, which can be used as single photon emitters4. The easiest approach 

is to attenuate a pulsed laser5, however the production of single photons is probabilistic 

with this method, since the number of photons in a given time bin follows the 

Poissonian statistics. A single quantum object behaving as a two-level system would be 

an ideal single photon source.  

There are many possible candidates for two-level quantum system, like atoms6, 

molecules7, vacancy centers,8 semiconductor quantum dots (QDs), etc. Based on recent 

progress, QDs are arguably the most attractive systems for emitting single and 

entangled photons for the compatibility with mature semiconductor technology, high 

brightness and near unity entanglement fidelity 9–13.   

QDs are nanometer-sized semiconductor structures usually surrounded by another 

semiconductor material having a larger energy band gap. Due to the three-dimensional 

(3D) confinement of the charge carriers, QDs show discrete electronic states. 

Consequently, when a QD is excited, an electron and a hole recombine and emit a 

photon with well-defined energy. This is why sometimes QDs are called “artificial 

atoms”. There are several methods to prepare QDs. Colloidal QDs are obtained via 

chemical synthesis from solution. This approach allows the fabrication of large amounts 

of QDs at relatively low cost. The resulting QDs are already commercially available 

and used, e.g., in high-contrast displays. The proximity of the confined charge carriers 

to the free surfaces of the nanostructures render however colloidal QDs not ideal for 

envisioned applications in quantum technologies. Self-assembled quantum QDs 
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prepared by epitaxial growth methods (with molecular beam epitaxy (MBE) or 

metalorganic vapor phase epitaxy (MOVPE)) are in this respect preferable, as the 

nanostructures can be placed far (typically >100 nm) from surfaces and associated 

defects. This kind of QDs, which are the focus of this thesis, generally have high 

material and optical quality and can be easily integrated into optoelectronic devices by 

making use of established processes in the semiconductor industry. However, epitaxial 

growth comes with additional complexity and high costs.  

The study of semiconductor QDs can be traced back to the 1980s, partly motivated 

by the perspective of realizing lasers with ultralow threshold. The discovery that both 

colloidal QDs and epitaxial QDs can generate photons with sub-poissonian statisics14 

(a prerequisite for single-photon emission) opened the way to the exploration of these 

systems for quantum optical studies and applications. The steady progress in QD 

growth, fundamental understanding, device integration, and excitation schemes has 

brought QDs to the level of being considered as near optimal single photon sources.12.   

Although the epitaxial growth of semiconductor QDs has made substantial 

progress, as-grown semiconductor QDs are still not ready for most envisioned 

applications. As an example, we consider the Hong-Ou-Mandel (HOM) two-photon 

interference (TPI)15, which is the core of Bell-state measurements (BSM) and the basis 

of photonic-based quantum information processing. The experimental configurations 

of a HOM measurement is shown in Fig 1.1, where two photons are impinging on a 

50/50 beamsplitter16. When the involved photons are indistinguishable (same 

wavelength, same wavepacket, same polarization), TPI results in the two photons 

exiting the same port of the beam-splitter and thus provides an effective interaction 

between the two photons. Up to now the TPI has been successfully realized with various 

quantum emitters, like single trapped atoms17, ions18, molecules19 and also QDs20,21. 

The large time gap between the first demonstration of single photon emission (2000)14 

and HOM interference among photons emitted by independent QDs (2010)20,21 and still 

modest performance (interference visibilities barely reaching 50%22) is related to two 

issues of QDs. First, photon emission from an ensemble of QDs is inhomogeneously 

broadened because of the fluctuations of QD structure and hence emission wavelength 

and photon wavepacket. Second, interaction between confined charge carriers and QD 

environment (charges, lattice vibrations, nuclear spins) further reduce the 

indistinguishability of photons. Tackling these issues is still a formidable challenge.  
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Figure 1.1: Sketch of a commonly used Hong-Ou-Mandel measurement for two photon interference. 

Two indistinguishable photons entering a 50/50 beam-splitter (BS) “coalesce” and exit the same port of 

the BS. Therefore there are no coincidence counts between events registered by detectors placed at the 

two exit ports. 

 

If we think further to make use of the biexciton-exciton decay cascade of QDs to 

act as a source of polarization-entangled photon pairs23–25, additional requirements need 

to be fulfilled by the QDs. In particular, the absence of in-plane structural symmetry in 

QDs will generate a coherent coupling of the two bright excitons, which lead an energy  

difference between emitted photons, the so-called fine structure splitting (FSS). If the 

FSS is larger than the radiative linewidth of the transitions (of the order of 1-3 μeV), 

the degree of entanglement of the emitted photon pairs is strongly decreased23,26. To 

obtain entangled photons without discarding most of the photons, it is desirable to get 

most QDs to have negligible FSS. Although creating an ensemble of QDs with 

sufficiently small FSS though novel growth methods made great progress in recent 

years27–29, it is still very difficult to find QDs with zero FSS from the as-grown sample. 

From theoretical estimates30, a very low portion of QDs from an as-grown sample is 

free of asymmetries (1 over 1000 for Stranski-Krastanow (SK) QDs). Furthermore, the 

possibility to find two identical as-grown QDs to perform the quantum entanglement 

swapping (the entanglement between two particles initially belonging to two 

independent entangled pairs)31 would be even much lower (<10-9).   

Many post-growth tuning methods have been elaborated, such as thermal 

annealing32–34, magnetic field25,35, lateral36,37 and vertical38–40 electric fields as well as 

strain fields41. The latter, especially when provided by piezoelectric actuators, have 

proven particularly flexible. In 2006, a pioneering work by S. Seidl42 et al. presented 

for the first time piezoelectric-based strain tuning of QDs using a lead zirconic titanate 

(PZT) ceramic stack bonded to the semiconductor structure. Although the limited strain 

provided by the PZT ceramic did not provide too exciting results, it opened a new door 

to use strain fields to manipulate QDs. Thereafter, the strain tuning of QDs with 
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piezoelectric actuators has seen rapid developments: Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-

PT) piezoelectric actuators replaced PZT because of their larger piezoelectric 

coefficients. For efficient wavelength tuning via biaxial strain, (001)-cut PMP-PT were 

used 41,43. Anisotropic strain fields were proposed to be a more effective way to modify 

the FSS44, which could be eliminated via the combination of two independent uniaxial 

stresses45. This prediction was experimentally confirmed later46,47. The theoretical 

design and experimental realization of wavelength tunable entangled photon sources48–

51 finally removed a major obstacle towards the use of QDs as scalable solid-state 

sources of entangled photons. 

There is no doubt that various milestone-level works have been done on the strain 

tuning of QDs, but most of the work focused on the recovery of the symmetry of QDs 

and/or on wavelength tuning. In both cases, strain provided by piezoelectric actuators 

was used as a perturbation and in a quasi-static fashion to fine-tune the emission 

properties of QDs. In this thesis we move beyond this perturbative and static regime 

and explore further possibilities offered by the interaction of QDs with externally driven 

strain fields.    

 

Figure 1.2: Prospect picture on the use of strain fields to reshape material properties at will. Adapted 

from Ref
52.  

1.1 Thesis outline 

The aim of the work presented here is to study and make use of the interaction 

between elastic fields and QDs in view of potential applications in quantum 

technologies. Following this introduction, the thesis is organized as follows: 

Chapter 2: This chapter gives a general introduction on the theoretical 

background of the thesis, beginning with the epitaxial growth of quantum confined 

semiconductor QDs, strain effects on the band structure of semiconductors. Then a 

detailed description of surface acoustic waves is presented.  

Chapter 3: This chapter presents the main tuning methods on QDs in this thesis: 

strain fields arising from a piezoelectric actuator and surface acoustic waves, and the 

related experimental methods are also described. Then an overview of the experimental 

setup is presented, followed by the introduction of the simulation via COMSOL 

Multiphysics.  

Chapter 4: In this chapter, we show that the natural quantization axis of a GaAs 

quantum dot can be turned to lie in the growth plane via uniaxial elastic stress. This 90° 
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rotation, which is accomplished through a complex evolution of the confined hole wave 

function, is possible whenever confinement can be viewed as a perturbation compared 

to the strain-induced effects. The experimental and computational results suggest that 

uniaxial stress – which is already employed for enhancing the performance of integrated 

electronic circuits – may be the right strategy to obtain quantum-light sources with 

ideally oriented transition dipoles and enhanced oscillator strengths for integrated 

quantum photonic circuits. 

Chapter 5: In this chapter, a novel hybrid system is developed: QDs are coupled 

to the vibrations of the nanomembrane in which they are embedded. Using the actuator 

presented in Chapter 4, we are able to continuously tune the resonance frequency of the 

membrane resonators. This hybrid system shows promising prospects on ultrafast 

mechanical motion coupling.  

Chapter 6: In this chapter, we investigate sound propagation properties in 

suspended beams containing GaAs QDs. Based on simulations and phase-locked sweep 

measurements, the existence of antisymmetric Lamb waves in the suspended beams is 

proven. Our findings may lay the foundation for the future realization of hybrid in-chip 

optomechanical systems.  

Chapter 7: In the last chapter, we make a summary and conclusion of this thesis. 

More importantly, some new issues arise based on the progress we made, which give 

an outlook to perform further studies to explore the potential of QDs for future quantum 

systems. 
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2. Theoretical background 

In this chapter, we will give a general introduction to the electronic and optical 

properties of semiconductor QDs and their growth by epitaxial methods. We will then 

discuss the effects produced by strain; for simplicity we will limit ourselves to discuss 

the problem in the case of bulk semiconductors. Finally we discuss the generation of 

strain fields by surface acoustic waves.  

2.1 Introduction to semiconductor QDs 

2.1.1 Quantum Confinement  

According to quantum mechanics, quantum confinement effects become apparent 

in semiconductors as soon as at least one of the spatial dimensions is reduced below a 

certain value (of the order of ~10 nm for typical semiconductors). For the specific case 

of optically active structures capable of confining the motion of both electrons and holes 

in the same material, quantum confinement manifests itself with a blue-shift of the 

emission wavelength as the size is reduced. Since we will be dealing with 

semiconductors at cryogenic temperatures, light stems mostly from recombination of 

electron and hole complexes (excitons) held together by the Coulomb interaction. In 

this case, the size required to achieve quantum confinement can be argued from the free 

exciton Bohr radius aB, related to the Bohr radius of the hydrogen atom ao by 53: 

𝑎𝐵 = 𝜀
𝑚

𝑚∗ 𝑎𝑜 ,                           (2.1) 

where ε is the dielectric constant of the material, m* is the electron-hole reduced 

effective mass, and m the rest mass of the electron.  

Based on the number of confinement dimensions, the confined structure can be 

classified as quantum well (confinement only in one dimension and free motion in the 

remaining two dimensions), quantum wire (confinement in two dimensions and free 

motion in one dimension) or a quantum dot (three-dimensional confinement), as shown 

in Fig 2.1. Compared to a bulk semiconductor, due to the quantum confinement of 

charge carriers in these low-dimensional heterostructures, the density of states (DOS) 

changes significantly. In bulk semiconductor materials (without quantum confinement) 

and assuming simple parabolic bands, the DOS is continuous and increases with (E-

Eg)
1/2, with Eg the energy band gap. For quantum wells, the DOS takes the form of a 

staircase, with each step corresponding to the energy of a confined state. For quantum 

wires, the DOS diverges at the positions of each confined state. Finally, for QDs the 

DOS is ideally composed of delta functions and takes the form: 

ρ(𝐸) = ∑ 𝛿(𝐸 − 𝐸𝑣)𝑣 ,                     (2.2)  
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with 𝐸𝑣 being the energy of a confined state.  

The occurrence of discrete states can be illustrated via a simple effective mass 

approximation model54. In this model, one solves a Schrödinger equation for a particle 

with effective mass m* confined in a potential provided by the semiconductor QD 

region surrounded by barriers. Assuming that the QD has the shape of a box surrounded 

by infinitely high barriers, the particle energy is given by: 

𝐸𝑛1,𝑛2,𝑛3 =
ћ2𝜋2

2𝑚∗
(
𝑛1

2

𝑙𝑥
2 +

𝑛2
2

𝑙𝑦
2 +

𝑛3
2

𝑙𝑧
2 ).                 (2.3) 

Here the n1, n2, n3 are integers, lx, ly, lz are the box dimensions in the x-, y-, and z-

directions. The above reasoning can be applied to both electrons confined in the 

conduction band of the semiconductor and to holes confined in the valence band. 

Optical transitions between the resulting discrete states will lead to atomic-like spectra, 

this is also why sometimes QDs are called “artificial atoms”.  

 

 

 

Figure 2.1: Schematic picture of confinement potential and related density of states (DOS) of carriers in 

semiconductors with different dimensionalities. 

2.1.2 Properties of excitons confined in QDs 

As discussed earlier, the three-dimensional confinement of carriers in QDs leads to 

localized states in both conduction band (CB) and valence band (VB). The CB and VB 

edges along a spatial direction for QD material and surrounding barrier are 

schematically shown in Fig.2.2. The lowest lying confined electron states are labelled 

as s- and p- in analogy to the notation used in atomic physics. Various parameters (size, 

shape and composition)55 play important roles to the energetic level structure of QDs, 

which means that one can adjust to some extent the energy level structure through 

growth.  

To investigate the optical properties of QDs, the simplest method relies on optical 

excitation. There are three main excitation schemes: non-resonant excitation, quasi-
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resonant excitation and resonant excitation. In the case of non-resonant excitation (as 

shown in Fig. 2.2), QDs are excited with a light source (typically a laser) with photon 

energy higher than the barrier band gap. This leads to electron-hole pairs mainly 

generated in the barrier. Excited electrons and holes then relax to the respective ground 

states in the CB and VB, respectively. Actually the number of captured carriers in QDs 

during the non-resonant excitation is affected by fluctuations. This makes it almost 

impossible to achieve a quantum efficiency close to unity for a certain transition. In 

addition, carrier relaxation induces an undesired time jitter in the emission process. 

Another main drawback of the non-resonant excitation is the inevitable generation of 

additional charge carriers, which could be captured by traps or defects in the vicinity of 

QDs. These charges interact with the confined excitons, lead to emission fluctuations, 

which degrade the indistinguishability of photons emitted by the same QD.  

A potentially cleaner excitation method is the so-called “p-shell excitation” (often 

referred to as quasi-resonant excitation). In this case, the excitation laser is tuned to the 

energy separation between excited states in the QD. This leads, at least in principle, to 

improved quantum efficiency by suppressing random carrier capture events. Besides 

that, no carriers are generated in the barriers, thus reducing undesired interactions. 

However, time-jitter due to relaxation remains.  

Lastly, the most desirable scheme is the resonant excitation, which consists in 

exciting the QDs directly at the s-shell. This method combines the suppressed 

generation of carriers in the QD surrounding with the elimination of relaxation 

processes before the photon emission. The resonant emission of coherently driven QDs 

can be traced back to 200756,57, Rabi oscillations and Mollow triplets were observed, 

respectively. Remarkably, through resonant excitation of QDs embedded in pillar 

microcavities, QDs have shown nearly-optimal properties (extremely bright, near-unity 

indistinguishability and high single-photon purity)12,58. In recent years, a two-photon 

excitation (TPE) scheme has also been employed to resonantly create “biexcitons” in 

QDs59, which are particularly relevant for the generation of entangled photon pairs60 

(see below).  
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Fig 2.2: Schematic energy landscape of QDs. The CB and VB edges are displayed along a line passing 

through a QD. Three main excitation schemes are indicated as (a) Non-resonant, (b) p-shell (quasi-

resonant), and (c) resonant excitation.  

 

Let us shift our attention back to the lowest energy level (s-shell) in conduction 

and valence band. Based on the Pauli exclusion principle, there are at most 2 electrons 

(holes) occupying the conduction (valence) band with different spin configurations. 

Due to the optical selections, if an electron and a hole have the same spin orientation, 

the resulting exciton is optically inactive and called dark exciton. Optically we can just 

observe the biexciton (XX), formed by two electrons and two holes, charged excitons 

(positive exciton X+ (one electron and two holes) and negative exciton X- (two electrons 

and one hole)), neutral exciton (X (one electron and one hole)). In Fig. 2.3 (a) we 

display the three typical states in the s-shell level.  
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If we consider the biexciton state, a direct transition from the biexciton state to the 

crystal ground state (all valence band states occupied by electrons, i.e. no electrons in 

CB and no holes in VB)I is not possible because of angular momentum conservation: 

the biexciton and the crystal ground state have both zero total angular momentum, while 

a photon carries a spin of 1. The XX recombination follows instead a cascade process. 

First a photon is emitted from the biexciton state leaving the quantum dot in a bright 

neutral exciton state. Then the remaining exciton recombines and emits another single 

photon. The process is called biexciton-exciton cascade61, which is a quite well-known 

scheme to generate entangled photon pairs from QDs23. In QDs, an electron can only 

recombine with a hole with different spin configuration and emit left (σ+) or right (σ-) 

circularly polarized photonsII. That means, starting from the biexciton state, an electron 

recombines with a hole emitting a σ+ or σ- photon, then the second electron with the 

opposite spin recombines with the remaining hole emitting another photon, which is 

oppositely polarized with respect to the previous one. Before measuring the polarization 

state, the XX-X photon pairs remain maximally entangled and the polarization 

entangled state can be written as:   

|ψ⟩ =
1

√2
(|𝜎−⟩𝑋𝑋|𝜎+⟩𝑋 + |𝜎+⟩𝑋𝑋|𝜎−⟩𝑋) =

1

√2
(|𝐻⟩𝑋𝑋|𝐻⟩𝑋 + |𝑉⟩𝑋𝑋|𝑉⟩𝑋)  (2.4) 

This state has the same form in any basis, here we use the H (horizontal) and V (vertical) 

linear polarization directions to rewrite it in a rectilinear basis. 

 

Fig 2.3: (a) Schematic picture of the typical s-shell carrier configurations in QDs. Here only optically 

active biexciton (XX), positively charged exciton (X+) and neutral exciton (X) are shown. (b) Sketch of 

biexciton-exciton cascade decay in an ideal QD.  

 

Although the theoretical proposal based on the above considerations was presented 

by Benson et al. in 200023, the first experimental proof with QDs was reported only in 

200624. The biggest obstacle hindering the QDs to act as polarization-entangled photon 

sources comes from the so-called exciton fine structure splitting (FSS), i.e. a broken 

                                                             
I Here non-radiative processes, such as the Auger process, are neglected.   
II In QDs made of common direct bandgap semiconductors such as GaAs, due to the confinement, electrons with 

total angular momentum projection Jz = ±1/2 recombine only with heavy holes with Jz = ±3/2, where z is the 

direction of the natural quantization axis, coinciding with the growth direction. 
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degeneracy of the X level. The FSS stems from the exchange interaction and is closely 

related to the spatial symmetry of QDs: only QDs with an in-plane symmetry of D2d or 

higher will show zero FSS. There are many factors that cause deviations from this ideal 

situation in real QDs62–64, so that it is a big challenge to obtain QDs with zero FSS from 

the as-grown samples. Therefore, a more realistic representation of the biexciton-

exciton cascade is shown in Fig. 2.4 (a). The energy difference among the possible 

transitions will seriously deteriorate the entanglement, since it makes the two possible 

decay paths of XX (and X) distinguishable24.  

From the experimental point of view, the FSS can be easily observed via 

polarization-resolved measurements of the PL spectra. Fig 2.4 (b) is a typical 

polarization-resolved PL spectrum of exciton emission from a GaAs QD. The wavelike 

pattern followed by the energy as a function of polarization angle indicates the existence 

of FSS. To obtain entangled photon pairs from QDs, a vanishing FSS would be desirable 

(more precisely, the FSS should be below the values of the order of the radiative 

linewidth (several μeV))65.   

 
Fig. 2.4: (a) Illustration of the biexciton cascade in presence of FSS. Hi (Vi) with i = 1, 2 stand for the 

horizontally (vertically) polarized photons with respect to a specific axis. Because of the exchange 

interaction in QDs with in-plane anisotropy, the nominally degenerate X levels mix and the two new 

eigenstates are split by the FSS (with magnitude given by Δs). (b) Typical polarization-resolved PL 

spectra of the neutral exciton emission in a QD studied in this thesis. Because of the limited spectral 

resolution, a wavy pattern is observed, which stems from two linearly polarized emission lines.   

 

As mentioned above, the FSS arises from the exchange interaction, which couples 

the electron and hole spins. Let’s start from the Hamiltonian for the electron-hole 

exchange interaction, which can be written as66: 

𝐻exchange = −∑ (𝑎𝑖𝐽ℎ,𝑖𝑆𝑒,𝑖 + 𝑏𝑖𝐽ℎ,𝑖
3 𝑆𝑒,𝑖)𝑖=𝑥,𝑦,𝑧             (2.5) 

Here the ai, bi are spin-spin coupling constants, which depend on the QD geometry. The 

z-direction is defined as along the growth direction, which is also the natural 

quantization axis for QDs because of their typical flat morphology. Jh,i, Se,i are the spin 

operators for hole and electron, respectively. As mentioned before, due to confinement 
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and strain, here we just consider the heavy hole and safely neglect the light hole band. 

Hence Jh = 3/2, Jh,z = ±3/2 and Se = 1/2, Se,z = ±1/2. Using the projection of total angular 

momentum on z-axis M = Jh,z + Se,z, there are four exciton states formed: 

|+1⟩ = | +
3

2
; −

1

2
⟩

|−1⟩ = | −
3

2
; +

1

2
⟩

|+2⟩ = | +
3

2
; +

1

2
⟩

|−2⟩ = | −
3

2
; −

1

2
⟩

                     (2.6) 

Here states with |M| = 2 do not couple to the light field and they are therefore optically 

inactive (dark excitons, DX), while states with |M| = 1 are optically active (bright 

excitons, BX). Using these four exciton states as a basis, a matrix representation of the 

Hamiltonian in equation (2.5) can be constructed as66:  

𝐻𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 =
1

2
(

+𝛿0 +𝛿1

+𝛿1 +𝛿0

0 0
0 0

0 0
0 0

−𝛿0 +𝛿2

+𝛿2 −𝛿0

)                (2.7) 

with δ0 = 1.5(az + 2.25bz), δ1 = 0.75(bx - by), δ2 = 0.75(bx + by). The matrix in 2.7 has a 

block form, therefore the bright exciton and dark exciton do not mix with each other 

and their energies differ by δ0 . While the bright states mix with each and split by an 

energy δ1 (the FSS), dark states mix with each other and separate by an energy δ2. 

Besides, the coefficient ai is larger than bi, which means the separation between bright 

states and dark states (δ0) is the largest. For an ideal in-plane symmetric QD, the FSS 

vanishes (δ1 = 0) and |+1⟩, | − 1⟩ are the degenerate states of Hexchange. However, in a 

more realistic case (QDs are asymmetric, bx ≠ by ), the bright states will hybridize: the 

two eigenstates are the linear combination of | ± 1⟩ states, split by δ1. However, the 

dark excitons always mix (split in δ2), no matter whether the QD is in-plane symmetric 

or not. Based on the discussion above, the energy diagram of the refined fine structure 

of neutral exciton with electron-hole interaction is shown in Fig. 2.5, here a lower 

symmetry (anisotropic Eexchange) is also included. 

 
Fig. 2.5: Schematic energy diagram representing the fine structure of the neutral exciton stemming from 

electron-hole interaction.  
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There are mainly two approaches to erase the FSS, the first one is trying to grow 

highly symmetric QDs. Since QDs are nanostructures consisting of thousands of atoms, 

unavoidable fluctuations in atoms arrangement and intermixing between the dot and 

barrier material are serious obstacles to grow QDs with ideal symmetry. Although some 

progress was obtained during the past to grow QDs with intrinsically low FSS27–29, it is 

a still a great challenge from the growth side. Another method is the introduction of 

external fields, i.e. post-growth tuning methods. As mentioned earlier, several methods 

are employed to tune the FSS of QDs. Due to the research topic and length constraints, 

we will concentrate on the strain tuning of QDs in the following sections. 

2.1.3 Epitaxial growth of Ⅲ-ⅤQDs 

Various methods are employed to generate high-quality semiconductor QDs, here 

we just present a general introduction on the Ⅲ-ⅤQDs used in our work: 1) self-

assembled In(Ga)As QDs, which are the most common and well-studied QDs. 2) GaAs 

QDs via droplet etching, which have emerged recently as a superior source of entangled 

photon pairs. 

The most studied self-assembled In(Ga)As QDs are grown via the Stranski-

Krastanow (SK) method. In Fig. 2.6 we present the whole process of the growth of 

In(Ga)As QDs. Generally speaking, a lattice mismatch between grown material and 

substrate is a necessary element for SK growth. There is a 7% lattice parameter 

mismatch between InAs and GaAs (aInAs = 0.605 nm, aGaAs = 0.56 nm), a biaxial strain 

ε =
𝑎𝐼𝑛𝐴𝑠−𝑎𝐺𝑎𝐴𝑠

𝑎𝐺𝑎𝐴𝑠
 will be induced when a thin InAs layer is deposited onto the GaAs 

substrate (as shown in Fig. 2.6 (b), this layer is called the wetting layer). However, the 

associated strain energy increases rapidly as the wetting layer thickens. In order to 

relieve the strain, island formation can occur in either dislocated or coherent fashion. 

The thickness of wetting layer at which island nucleation initiates is called critical 

thickness hc. This critical thickness is closely related to the lattice mismatch between 

the deposited material and substrate, and can also depend on the deposition temperature 

(the hc for InAs QDs/GaAs is about 1.7~1.8 monolayer). Although In(Ga)As QDs are 

the most studied QDs and significant achievements have been accomplished with them, 

there are still open challenges. First of all, as strain-driven In(Ga)As QDs are naturally 

formed, they have random spatial positions. In other words, the growth of this kind of 

QDs sample with suitable density for single-QD applications is quite tricky. Secondly, 

considering the intermixing between InAs and GaAs, strain effects and piezoelectricity, 

there is very complex physics behind this system. 
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Fig. 2.6: Schematic illustration of the growth of self-assembled In(Ga)As QDs via the SK method. (a)-

(c) show the whole process of the forming of QDs.  

 

In recent years, GaAs QDs obtained by in-situ droplet etching have emerged as one 

of the most promising single and entangled photon sources. In 2007, gallium droplets 

were found to act as “electrochemical drills”, etching the GaAs to obtain nanoholes67. 

After a short period, this droplet etching method was employed to grow QDs68. With 

this method, the density and emission wavelength of the resulting QDs can be well 

controlled via the manipulation of proper parameters, however, the FSS of QDs 

obtained by gallium etching is still quite large. Huo et. al29 and Graf et. al69 switched 

to using aluminum droplets as the “drills” to obtain nanoholes and, with parameters 

optimization, highly symmetric GaAs QDs were obtained, which showed the capability 

of generating highly entangled photons even without 70,71. 

Fig. 2.7 (a) illustrates the process to grow the GaAs QDs used in this thesis. Firstly, 

a layer of AlxGa1-xAs layer is deposited on a GaAs substrate by molecular beam epitaxy 

(MBE). Then the As flux is interrupted followed by the deposition of Al, which gives 

rise to the formation of nanometer-sized droplets. During a subsequent annealing step 

in As atmosphere, droplets dig nanoholes in the underlying substrate. To infill the 

nanoholes, GaAs is deposited, followed by annealing. The GaAs QDs form in the 

nanoholes due to the diffusion of GaAs driven by capillarity effects. Lastly, another 

AlxGa1-xAs layer is deposited on top acting as the top barrier. Because of the negligible 

intermixing effect between GaAs and AlxGa1-xAs, we can safely use the nanohole shape 

and size to deduce the structural properties of the derived GaAs QDs. This is also an 

advantage of the droplet etching method compared to the SK method: various 

parameters can be adjusted to effectively optimize the geometry of the nanoholes (QDs). 

Fig. 2.7 (b) shows an atomic force microscope (AFM) image of a nanohole with 

optimized parameters (sample grown by Saimon Filipe Covre da Silva at the institute 

of semiconductor and solid state physics, JKU, Linz). The in-plane circular symmetry 

is clearly seen, which is also confirmed by the polarization-resolved spectra of a neutral 

exciton in Fig. 2.7 (c). The FSS of the neutral exciton shown in Fig. 2.7 (c) is well 

below the resolution of the used spectrometer, a FSS value of 0.70±0.18 μeV is obtained 

via fitting procedures explained in Sec 3.3   
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Fig. 2.7: (a) Sketch of the steps leading to GaAs QDs growth with the droplet etching method. (b) 

Typical AFM images of a nanohole obtained by Al droplet etching. Courtesy of Saimon Filipe Covre da 

Silva. (c) Polarization-resolved PL spectra of neutral exciton from GaAs QDs with droplet etching 

method. The excitonic FSS stemming from anisotropic exchange interaction is well below the 

resolution of the used setup because of the high in-plane symmetry of the QD.  

2.2 Strain effects in bulk semiconductors 

Strain is widely used to enhance the performance of semiconductor devices, such 

as in quantum well lasers based on lattice-mismatched heterostructures and in metal-

oxide-semiconductor field-effect transistors (MOSFETs), where strain enhances carrier 

mobility72. In these applications, strain is built-in in the devices and cannot be varied 

after fabrication. For fundamental investigations and for fine tuning, it is instead 

desirable to be able to finely control the amplitude, configuration, and frequency of 

induced strain fields. This is conveniently achieved by using the piezoelectric effect, 

which transduces electrical signals into elastic deformations – the approach followed in 

this thesis. In this section, we will illustrate some of the effects produced by strain on 

semiconductors focusing on GaAs, the material used for our studies.  

2.2.1 Band structure of GaAs 

GaAs is a Ⅲ-Ⅴ direct bandgap (1.424 eV at room temperature) semiconductor 

with zincblende structure. As shown in Fig. 2.8 (a), the underlying Bravais lattice is the 

face-centered cubic (FCC) lattice, with basis consisting of two atoms (atoms of the 

group Ⅲ and Ⅴ are in purple and henna, respectively). One atom is at the origin of 
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the coordinates (0, 0, 0), another one is at 1/4(1, 1, 1)a, where a is the length of the 

conventional cubic cell (lattice constant). Since GaAs is a direct bandgap 

semiconductor, a simplified band structure of bulk GaAs near Γ point (k = 0) is shown 

in Fig. 2.8 (b). The behavior of electrons and holes are mostly determined by one 

conduction band (CB) and two valence bands (VB), since comparably large spin-orbit 

interaction energy ΔSO (0.34 eV73) moves away to the split-off (SO) band from the top 

of the valence band. The upper valence bands, the heavy hole (HH) and light hole (LH) 

bands are energetically degenerate at the Γ point in absence of strain. In the Γ point, the 

bottom of the CB is energetically separate by the top of VBs by Eg, which is the energy 

bandgap.  

 

Fig. 2.8: (a) Crystal structure of GaAs, adapted from Wikipedia74. (b) Schematic picture of the band 

structure of bulk GaAs at Γ point.  

2.2.2 Introduction of Bloch theorem and k·p theory  

The k·p theory is a powerful method to calculate the band structure and optical 

properties of semiconductors and their heterostructures based on a few empirical 

parameters describing the properties of the materials. In this section, we will give an 

introduction to the k·p theory, mainly following the work by Chuang73. 

For an electron in a periodic potential: 

V(r) = V(r + R)                          (2.8) 

Where R = n1a1+n2a2+n3a3, a1, a2, a3 are the basic lattice vectors and n1, n2, n3 are 

integers. The wave function of an electron must satisfy the Schrödinger equation: 

𝐻𝜓(𝐫) = [
−ℏ2 

2𝑚0
∇2 + 𝑉(𝐫)]𝜓(𝒓) = 𝐸𝜓(𝒓),                (2.9) 

Since the electron is in the periodic potential, 𝜓(𝒓 + 𝑹) will also be a solution of Eq. 

(2.9). In this case, 𝜓(𝒓 + 𝑹)  will differ from 𝜓(𝒓)  by just a phase. Hence, the 

general solution to the Schrödinger equation is given by: 
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𝜓𝑛𝒌(𝒓) = 𝑒𝑖𝒌𝒓𝑢𝑛𝒌(𝒓)                    (2.10a) 

where                   𝑢𝑛𝒌(𝒓 + 𝑹) = 𝑢𝑛𝒌(𝒓)                    (2.10b) 

is a periodic function and k is the electron wavevector. This results is the well-known 

Bloch theorem and the wave function 𝜓𝑛𝒌(𝒓)  is called Bloch function. The 

corresponding energy is given by: 

𝐸 = 𝐸𝑛(𝒌),                         (2.11) 

with n an integer (band index). For each given n, there is a relation between the wave 

vector k and energy En(k) (band dispersion), and one of the main applications of k·p 

theory is to calculate the band dispersion in the vicinity of a point k0 in the first Brillouin 

zone. By inserting the solution (2.10a) into the Schrödinger equation: 

[
𝑝2

2𝑚0
+ 𝑉(𝒓)]𝜓𝑛𝒌(𝒓) = 𝐸𝑛(𝒌)𝜓𝑛𝒌(𝒓)              (2.12) 

and expressing it in terms of unk(r), we obtain: 

[
𝑝2

2𝑚0
+

ℏ

𝑚0
𝒌 ∙ 𝒑 + 𝑉(𝒓)] 𝑢𝑛𝒌(𝒓) = [𝐸𝑛(𝒌) −

ℏ2𝑘2

2𝑚0
] 𝑢𝑛𝒌(𝒓)     (2.13) 

The formula can be expanded near k0.  

(𝐻0 + 𝐻1)𝑢𝑛𝒌(𝒓) = [𝐸𝑛(𝒌) −
ℏ2𝑘2

2𝑚0
] 𝑢𝑛𝒌(𝒓)            (2.14) 

With                         𝐻0 =
𝑝2

2𝑚0
+ 𝑉(𝒓)                     (2.15) 

𝐻1 =
ℏ

𝑚0
𝒌 ∙ 𝒑                       (2.16) 

When k is sufficiently small, the k·p term in H1 can be treated as a perturbation, and the 

H0 is an “unperturbed Hamiltonian”, this is the reason why this formalism is called “k·p” 

theory. If the Hamiltonian H0 has a set of orthonormal eigenfunctions at k = 0 (supposed 

to be known), 

𝐻0𝑢𝑛0(𝒓) = 𝐸𝑛0𝑢𝑛0(𝒓)                   (2.17) 

then any lattice periodic function can be written as a linear combination of un0(r). In 

other words, we can express the periodic wavefuntions away from the Г point as:                      

 𝑢𝑛𝒌 = ∑ 𝑐𝑚
𝑛

𝑚 (𝒌)𝑢𝑚0                      (2.18) 

To give a brief description of the calculation of the band structure with the k·p 

theory, we consider a single band model, i.e., we focus on a specific, non-degenerate, 

band (labelled n) and we label the other bands as n’. The energy can be expanded to 

second order time-independent perturbation: 

𝐸𝑛(𝒌) = 𝐸𝑛(0) +
ℏ2𝑘2

2𝑚0
+

ℏ

𝑚0
𝒌 ∙ 𝒑𝑛𝑛 +

ℏ2

𝑚0
2 ∑

|𝒌∙𝒑
𝑛𝑛′|

2

𝐸𝑛(0)−𝐸𝑛,(0)𝑛′≠𝑛        (2.19) 

and the wave function in first-order perturbation is: 

𝑢𝑛𝒌 = 𝑢𝑛0(𝒓) + ∑ [
ℏ

𝑚0

𝒌∙𝒑
𝑛′𝑛

𝐸𝑛(0)𝐸𝑛′(0)
]𝑛′≠𝑛                (2.20) 

with the momentum matrix element defined as: 

𝒑𝑛𝑛′ = ∫ 𝑢𝑛0
∗

Ω
(𝒓)𝒑𝑢𝑛′0(𝒓)𝑑3𝒓                  (2.21) 

Here Ω is the volume of the unit cell. In the case of GaAs, at the Γ point (k0 =0) is the 

extremum of En(k), which means En(k) must depend quadratically on k and pnn =0. The 
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formula (2.19) can be rewritten as: 

𝐸𝑛(𝒌) − 𝐸𝑛(0) = ∑ 𝐷𝛼𝛽𝑘𝛼𝑘𝛽 =
ℏ2

2𝛼,𝛽 ∑ (
1

𝑚∗
)
𝛼𝛽

𝑘𝛼𝑘𝛽𝛼,𝛽         (2.22) 

Where 𝛼, 𝛽 = 𝑥, 𝑦 𝑎𝑛𝑑 𝑧. The matrix Dαβ is an element of the inverse effective mass 

tensor multiplied ћ2/2, which is an important parameter determined by the coupling 

with the other bands75. Here we just discussed how k·p theory works in a single band 

case, the situation will become more complicated if more bands are considered, which 

is the case for the degenerate valence bands. More details on the multi-band k·p theory 

can be found in Refs.73,75.  

2.2.3 Strain effects in semiconductors  

Strain describes the deformation of a solid with with respect to its equilibrium 

configuration in response to applied forces (stresses). For simplicity, we start from a 2D 

model. As illustrated in Fig. 2.9, we imagine two unit vectors x0, y0 anchored to the 

unstrained lattice. If the lattice is strained, a deformation will occur and the vectors will 

be distorted. In case of small deformations, the new vectors x1, y1 can be written as: 

𝒙𝟏 = (1 + 𝜀𝑥𝑥)𝒙𝟎 + 𝜀𝑥𝑦𝒚𝟎 + 𝜀𝑥𝑧𝒛𝟎 

𝒚𝟏 = 𝜀𝑦𝑥𝒙𝟎 + (1 + 𝜀𝑦𝑦)𝒚𝟎 + 𝜀𝑦𝑧𝒛𝟎                    (2.23) 

If we generalize to the 3D case, one more vector z1 will be obtained: 

 𝒛𝟏 = 𝜀𝑧𝑥𝒙𝟎 + 𝜀𝑧𝑦𝒚𝟎 + (1 + 𝜀𝑧𝑧)𝒛𝟎               (2.24) 

 

Fig. 2.9: Sketch of an unstrained crystal lattice and strained lattice.  

 

Besides that, homogeneous strain is assumed here and the εij in Eqs. (2.23) and (2.24) 

can be chosen so that they form the elements of a symmetric strain tensor of second 

order (εij = εji).  

In the linear regime, the stress-strain relations can be written in matrix form using the 

generalized Hooke’s law: ij=cijklkl, where cijkl are elements of a 4-th rank stiffness 

tensor. Using the fact that both the stress and strain tensors are symmetric, the number 

of independent elements of such tensor can be substantially reduced and the Hooke’s 

law can be written using the Voigt notation.  

For a cubic crystal: 
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(

  
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧
𝜎𝑦𝑧

𝜎𝑥𝑧

𝜎𝑥𝑦)

  
 

=

(

 
 
 

𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44)

 
 
 

(

 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑦𝑧

2𝜀𝑥𝑧

2𝜀𝑥𝑦)

 
 
 

     (2.25) 

In the following, we only consider the  point at the Brillouin zone. Besides, since 

the CB is energetically well separated from the VBs, we neglect coupling and treated 

separately the CB and the VBs. The basis states for electrons in the CB and holes in the 

HH, LH, SO bands at the  point are written as73: 

|𝑢𝐶𝐵
1 ⟩ = 𝑖𝑆 ↑;         |𝑢𝐶𝐵

2 ⟩ = 𝑖𝑆 ↓ 

|𝑢𝐻𝐻
1 ⟩ = −

1

√2
(𝑋 + 𝑖𝑌) ↑ ;     

|𝑢𝐿𝐻
1 ⟩ = −

1

√6
[(𝑋 + 𝑖𝑌) ↓ −2𝑍 ↑];   |𝑢𝐿𝐻

2 ⟩ =
1

√6
[(𝑋 − 𝑖𝑌) ↑ +2𝑍 ↓]                  (2.26) 

|𝑢𝐻𝐻
2 ⟩ =

1

√2
(𝑋 − 𝑖𝑌) ↓ 

|𝑢𝑆𝑂
1 ⟩ =

1

√3
[(𝑋 + 𝑖𝑌) ↓ +𝑍 ↑]; |𝑢𝑆𝑂

2 ⟩ =
1

√3
[(𝑋 − 𝑖𝑌) ↑ −𝑍 ↓] 

Here X, Y, Z have the same angular dependence as (cos sin, sin sin, cos) and 

the arrows stand for the different spin orientation along z direction. Based on this basis, 

the Luttinger-Kohn and Pikus-Bir Hamiltonian can be expressed as: 

H = −

(

 
 
 
 
 
 
 
 
 
 
 
 

−𝐶 0 0 0 0 0 0 0
0 −𝐶 0 0 0 0 0 0

0 0 𝑃 + 𝑄 −𝑆 𝑅 0 −
𝑆

√2
√2𝑅

0 0 −𝑆+ 𝑃 − 𝑄 0 𝑅 −√2𝑄 √
3

2
𝑆

0 0 𝑅+ 0 𝑃 − 𝑄 𝑆 √
3

2
𝑆+ √2𝑄

0 0 0 𝑅+ 𝑆+ 𝑃 + 𝑄 −√2𝑅+ −
𝑆+

√2

0 0 −
𝑆+

√2
−√2𝑄+ √

3

2
𝑆 −√2𝑅 𝑃 +  0

0 0 √2𝑅+ √
3

2
𝑆+ √2𝑄+ −

𝑆

√2
0 𝑃 + 

)

 
 
 
 
 
 
 
 
 
 
 
 

   (2.27) 

with  

𝐶 = 𝐸𝑣 + 𝐸𝑔 + 𝐶𝑘 + 𝐶𝜀 ,    𝐶𝑘 =
ħ2𝑘2

2𝑚∗
, 𝐶𝜀 = 𝑎𝑐(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) 

𝑃 = 𝐸𝑣 + 𝑃𝑘 + 𝑃𝜀 ,       𝑃𝑘 =
ħ2𝑘2

2𝑚
𝛾1,         𝑃𝜀 = −𝑎𝑣(𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧) 

𝑄 = 𝑄𝑘 + 𝑄𝜀 ,     𝑄𝑘 =
ħ2

2𝑚
𝛾2(𝑘

2 − 3𝑘𝑧
2),     𝑄𝜀 = −

𝑏

2
(𝜀𝑥𝑥 + 𝜀𝑦𝑦 − 2𝜀𝑧𝑧) 
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𝑅 = 𝑅𝑘 + 𝑅𝜀 ,     𝑅𝑘 =
ħ2

2𝑚
(𝛾2(𝑘𝑥

2 − 𝑘𝑦
2) + 2𝑖√3𝛾3𝑘𝑦𝑘𝑥),     𝑅𝜀

=
√3𝑏

2
(𝜀𝑥𝑥 − 𝜀𝑦𝑦) − 𝑖𝑑𝜀𝑧𝑦 

𝑆 = 𝑆𝑘 + 𝑆𝜀 ,      𝑆𝑘 =
ħ2

2𝑚
𝛾3√3(𝑘𝑥𝑘𝑧 − 𝑖𝑘𝑦𝑘𝑧),    𝑆𝜀 = −𝑑(𝜀𝑥𝑧 − 𝑖𝜀𝑦𝑧) 

x, y, z correspond to the [100], [010] and [001] crystal direction. Eg is the energy 

bandgap, Ev is the energy of the HH and LH valence bands at the  point in absence of 

strain and Δ is the spin-orbit split off energy; the parameters  are the Luttinger 

parameters, m* is the electron effective mass and ac, av, b, d are the deformation 

potentials.  

As an example, we consider a biaxial isotropic strain in the (001) plane, 

characterized by εxx = εyy and neglect the split-off bands because of their large energy 

separation from the HH and LH bands.   

The total simplified Hamiltonian for the valence bands is given in matrix form: 

𝐻 = 𝐻𝑘 + 𝐻𝜀 = −

(

 

𝑃𝑘 + 𝑄𝑘 −𝑆𝑘

−𝑆𝑘
+ 𝑃𝑘 − 𝑄𝑘

𝑅𝑘            0
0         𝑅𝑘

𝑅𝜀
+         0

0          𝑅𝑘
+

𝑃𝑘 − 𝑄𝑘 𝑆𝑘

𝑆𝑘
+ 𝑃𝑘 + 𝑄𝑘)

 −

(

𝑃𝜀 + 𝑄𝜀 0
0 𝑃𝜀 − 𝑄𝜀

𝑅𝜀            0
0         𝑅𝜀

𝑅𝜀
+         0

0          𝑅𝜀
+

𝑃𝜀 − 𝑄𝜀 0
0 𝑃𝜀 + 𝑄𝜀

)      (2.28) 

The first term Hk contains the “kinetic energy” obtained from k·p theory and the second 

term Hε includes the contributions from the strain.   

With the biaxial isotropic strain, the whole Hamiltonian will be reduced to: 

𝐻 = (

𝑃𝜀 + 𝑄𝜀 0
0 𝑃𝜀 − 𝑄𝜀

0           0
0           0

0           0
0           0

𝑃𝜀 − 𝑄𝜀 0
0 𝑃𝜀 + 𝑄𝜀

)             (2.29) 

Since the matrix takes a diagonal form, the eigenvalues of the Hamiltonian will be the 

diagonal elements. We see that the effect of biaxial us to split the HH and LH bands by 

2Qε. In Figure 2.10, we plot a simplified band structure of GaAs under biaxial isotropic 

strain (both under compression and tensionIII).  

For the anisotropic strain situation, the Pikus-Bir Hamiltonian will not be diagonal 

anymore, which will be more complicated and we will discuss in Chapter 4. 

                                                             
III For instance, under compressive strain εxx = εyy < 0, we obtain a positive Qε. The positive Qε results in a rise of 

HH above the LH. Under tensile strain, we have the opposite situation.  
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Fig. 2.10: Simplified energy band-gap of bulk GaAs with (a) isotropic biaxial compressive strain, (b) no 

strain, and (c) isotropic tensile strain. The top sketches show the corresponding in-plane deformations.  

2.3 Surface acoustic waves 

Surface acoustic waves (SAWs) are elastic waves, which propagate along the 

surface of elastic materials. The concept was first introduced in 1885 by Lord 

Rayleigh76. Nowadays SAWs are widely used in various fields, like electronic 

components, geophysics, microfluidics and so on. As we discussed before, QDs are 

considered as one the most promising quantum light source, their manipulation with 

SAWs could be a method with infinite possibilities in quantum computation77,78 and 

quantum information transfer79. 

Elastic vibration and acoustic waves are not only widely used in engineering, but 

are also important and powerful tools to study fundamental properties of condensed 

matter systems. In this section, we will give an introduction of elastic vibrations and 

surface acoustic waves in GaAs, the general idea here follows Ref80,81, where more 

detailed information can be found.  
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2.3.1 Elastic vibrations in solid matter 

In homogeneous elastic medium, by using Newton’s second law we can get: 

∇ ∙ σ = 𝜌
𝜕2𝒖(𝒓) 

𝜕𝑡2                          (2.30) 

Here σ is stress tensor, ρ is the density of material and u(r) is the displacement field. 

If consider further more on the strain ε, which can be expressed as: 

𝜀𝑘𝑙 =
1

2
(
𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
)                      (2.31) 

Using the generalized Hooke’s law, we obtain: 

𝜌
𝜕2𝑢𝑖

𝜕2𝑡2 =
𝜕

𝜕𝑥𝑗
𝑐𝑖𝑗𝑙𝑘 (

𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝜕𝑢𝑙

𝜕𝑥𝑘
)                  (2.32 a) 

This equation describes the wave propagation in bulk crystal (without considering other 

effects, like piezoelectric effect). Furthermore, if we consider the cubic crystal structure 

of GaAs and the x-direction plane wave of 𝑢𝑖 = 𝑢𝑖,0 ∙ 𝑒𝑥𝑝[𝑖(𝑘𝑥𝑖 − 𝜔𝑡)], we obtain: 

𝜌
𝜕2𝑢1

𝜕2𝑡2 = 𝑐11
𝜕2𝑢1

𝜕𝑥1
2                              

𝜌
𝜕2𝑢2

𝜕2𝑡2 = 𝑐44
𝜕2𝑢2

𝜕𝑥1
2                              

                           𝜌
𝜕2𝑢3

𝜕2𝑡2 = 𝑐44
𝜕2𝑢3

𝜕𝑥1
2                       (2.32 b) 

In this case, we assume uncoupled vibrations, u1 corresponds to a longitudinal wave, 

while u2 and u3 stand for the transverse ones, the dispersion relations and the phase 

velocities of the longitudinal and transverse waves are: 

𝜔𝑙 = √
𝑐11

𝜌
∙ 𝑘 ↔ 𝑣𝑙 = √

𝑐11

𝜌
        

𝜔𝑡 = √
𝑐44

𝜌
∙ 𝑘 ↔ 𝑣𝑡 = √

𝑐44

𝜌
                   (2.33) 

2.3.2 Rayleigh waves in GaAs 

GaAs is a well-known piezoelectric material. Considering the piezoelectric effect, 

the stress tensor σ should be rewritten as: 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘,                    (2.34) 

where ekij are the components of the piezoelectric tensor and Ek is the electric field. The 

electric displacement field Di can be expressed as: 

𝐷𝑖 = 𝑒𝑖𝑗𝑘𝑆𝑗𝑘 + 𝜖𝑖𝑗𝐸𝑗                       (2.35) 

𝐸(𝒓) = −∇ϕ is the resulting electric field. Compared to the speed of light, the velocity 

of sound waves is nearly 105 times lower, which justifies the use of a quasi-electrostatic 

equation, with ϕ is the electrostatic potential. When a time periodic displacement u(t) 

= u0e
-iωt is given and no free charge is present (∇ ∙ 𝐷 = 0), the propagation of waves 

can be described as follows: 
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𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝑐𝑖𝑗𝑘𝑙

𝜕2𝑢𝑙

𝜕𝑥𝑗𝜕𝑥𝑘
+ 𝑒𝑘𝑖𝑗

𝜕2ϕ

𝜕𝑥𝑗𝜕𝑥𝑘
 

𝜖𝑖𝑗
𝜕2Φ

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝑒𝑖𝑗𝑘

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑘
                      (2.36) 

The elastic wave is accompanied by a wave of electric field, and the medium 

behaves more stiff because of the piezoelectric coupling. Compared to the elastic 

vibration in a non-piezoelectric material (equation (2.31)), the velocity is increased by 

a small factor, which is also referred to as piezoelectric stiffening82. There is a specific 

wave propagating along the solid surface, which is called Rayleigh wave (The existence 

of the waves is predicted by Lord Rayleigh in 1885)76. For unload surface, the Rayleigh 

wave exists and consists of a linear combination of longitudinal and transverse 

vibrations. Here we can get two boundary conditions for a Rayleigh wave: 1) There will 

be no stress along the vertical (z) direction perpendicular to the surface; 2) The z-

component of the electric displacement field is continuous at the surface: 

(𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 𝑇𝑧𝑧)|𝑧=0 = 0 

𝐷𝑧|𝑧=𝑑𝑧 = 𝐷𝑧|𝑧=−𝑑𝑧                        (2.37) 

As the components in z-direction of the stress tensor vanish at the surface, we expect 

the amplitude of the waves to decrease exponentially with increasing depth. This means 

that a Rayleigh wave only exists on the surface of a solid (within a depth less than one 

wavelength)83. With the obtained boundary conditions above, the time periodic 

displacement components derived from the equation (2.30) are given by82: 

𝑢𝑥 = 𝐴𝑥 sin(𝑘𝑥 − 𝑣𝑆𝐴𝑊𝑡) 

𝑢𝑧 = 𝐴𝑧 cos(𝑘𝑥 − 𝑣𝑆𝐴𝑊𝑡),                   (2.38) 

with Ax, Az are the amplitudes of the ux and uz. vSAW is the SAW phase velocity, which is 

determined by the elastic properties. From the formula (2.38), we can see the Rayleigh 

waves cause a surface point to move in ellipses in the plane normal to the surface and 

parallel to the propagation direction. On the (001) GaAs, the velocity of SAW along 

[110] vSAW = 2864 m/s84 at room temperature and will slightly increase at cryogenic 

temperatures. The phase velocity of the SAW is in linear relation with frequency: 

𝑣𝑆𝐴𝑊 = 𝜆𝑆𝐴𝑊 ∙ 𝑓𝑆𝐴𝑊                    (2.39) 

Thanks to the increasing computing power of modern computers, we can now find  

numerical solutions for the wave equations. As described above, we use COMSOL 

Multiphysics. In Fig. 2.11, we plot the electric potential ϕ map of (001) GaAs when a 

SAW is propagating along the [110] direction. The arrows indicate the electric fields 

arise from the deformation.   
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Fig. 2.11: Result of the simulation of SAW propagation in (001) GaAs. The propagation direction [110] 

is defined as x-direction and the vertical direction is the z-direction. The dashed line is the original surface 

without SAW. The color mapping encodes the electric potential ϕ caused by the SAW, and electric field 

E is marked with arrows, with length proportional to its magnitude.  

2.3.3 Interdigital transducers (IDTs) 

The primary function of IDTs is to convert electric signals to SAWs by generating 

periodically distributed mechanical forces via the piezoelectric effect. With (001) GaAs 

used in our experiment, the IDT should be aligned along the [110] direction, since that 

direction has the strongest piezoelectric coupling. Generally an IDT consists of a comb-

like pattern of metallic electrodes, and was first proposed by White et al. in 196585. One 

part of the IDT is grounded, and another is connected to the signal generator. As shown 

in Fig. 2.12, there are two typical types of IDT used in our experiment. Fig. 2.12 (a) 

shows the most basic one, which is called Split-1, p stands for the period of this IDT. If 

we use λ as the wavelength of sound waves, the relation between p and λ can be written 

as (2n+1) λ = p, where n is an integer. When n = 0, we can get a fundamental wavelength 

λ0, the corresponding frequency is called fundamental frequency. When n > 0, higher 

order harmonic wavelengths and frequencies are obtained. With this IDT, the high 

harmonic frequency is always the odd times of the fundamental frequency. Another 

kind of IDT is shown in Fig. 2.12 (b), which is called Split-52. Due to the special 

geometry arrangement of the electrode pattern both even and odd harmonic 

wavelengths (or frequencies) can be generated. Denoting the fundamental wavelength 

as λ1. High order harmonic wavelengths can be generated: 

λ1, λ1/2, λ1/3, λ1/4, λ1/6 ··· 
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Fig. 2.12: Sketch of the (a) Split-1 and (b) Split-52 IDT. The period of Spilt-1 is marked as p and the 

fundamental wavelength of Split-52 is λ1. 

2.3.4 Lamb waves  

Lamb waves refer to elastic waves which can propagate in a system with two free 

surfaces (plate, layer or bar)86,87, 88  

Due to the presence of two free surfaces, Lamb waves are the result of interference 

between waves propagating at the two surfaces. .  

The analytical solution to Lamb wave can generally be thought as follows (for 

more detailed information can be found in Ref89). Here we take a simple geometry of a 

solid medium bounded by two parallel planes (with a distance of 2d)) and the coordinate 

system is illustrated in Fig. 2.13, the propagation direction is assumed as x. Basic Lamb 

waves can be classified as symmetric and antisymmetric modes, as sketched in Fig. 

2.14 (a), which are described as follows90: 

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑧2 =
1

𝑐𝐿
2

𝜕2𝑢

𝜕𝑡2        longitudinal wave  

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑧2 =
1

𝑐𝑇
2

𝜕2𝑤

𝜕𝑡2        transverse wave    (2.40) 

with cL and cT are the velocity of longitudinal and transverse waves. Two types of 

solutions exist in the Lamb wave systems: symmetric, with the longitudinal 

displacement component 𝑢(𝑧) = 𝑢(−𝑧) ; and antisymmetric, with displacement 

𝑢(−𝑧) = −𝑢(𝑧). By denoting with w the transverse component of displacement, for 

symmetric modes: 

𝑢 = (𝑖𝑘𝐴 cos(𝑝𝑧) + 𝑞𝐵 cos(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) 

𝑤 = (−𝑝𝐴 sin(𝑝𝑧) − 𝑖𝑘𝐵 sin(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡)            (2.41) 

and for antisymmetric modes: 

𝑢 = (𝑖𝑘𝐶 sin(𝑝𝑧) − 𝑞𝐷 sin(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡) 

𝑤 = (𝑝𝐶 cos(𝑝𝑧) − 𝑖𝑘𝐷 cos(𝑞𝑧))𝑒𝑖𝑘(𝑥−𝑐𝑡)            (2.42) 

, 𝑝 =
𝜔

√𝑐𝐿
2−𝑐2

, 𝑞 =
𝜔

√𝑐𝑇
2−𝑐2

, 𝜔 = 2𝜋𝑓 is the angular frequency. And A, B, C, and D are 

constants. If the boundary conditions (𝜎𝑥𝑧 = 𝜎𝑧𝑧 = 0 on 𝑧 = ±𝑑/2) are imposed, two 

characteristic equations are satisfied91: 

For symmetric modes，        
𝑡𝑎𝑛(𝑞𝑑)

𝑡𝑎𝑛(𝑝𝑑)
= −

4𝑘2𝑝𝑞

(𝑞2−𝑘2)2
                   (2.43) 
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For antisymmetric modes,        
𝑡𝑎𝑛(𝑝𝑞)

𝑡𝑎𝑛(𝑞𝑑)
= −

4𝑘2𝑝𝑞

(𝑞2−𝑘2)2
                   (2.44) 

With these two equations, two important conclusions can be obtained. Firstly, c is 

a function of ω, which means the waves are dispersive. The second fact is that the 

equations are transcendental, depending on the value of ωd, may have many number of 

real solutions, which are divided into the two kinds of modes: symmetric and 

antisymmetric (all these modes are schematically shown in Fig. 2.14 (b)). At low 

frequency, due to a certain threshold, only one symmetric and antisymmetric mode exist, 

which usually are called fundamental modes S0 and A0. The zero fundamental 

symmetric mode S0 corresponds to the wave of expansion-compression and the zero 

fundamental antisymmetric mode A0 refers to bending wave. Similar to the Rayleigh 

wave, although it is possible to solve numerically the dispersion relation of Lamb wave 

relations in given plate, here we still use the COMSOL Multiphysics to simulate the 

Lamb wave in our samples. 

 

Fig. 2.13: Coordinate system for Lamb wave in a plate.  

 

 

 
Fig. 2.14: (a) Schematic representation of normal symmetric and antisymmetric modes. (b) Dispersion 

curves of Lamb waves in solid plates (with different Poisson ratios σ). Ai and Si are the antisymmetric 

and symmetric modes, respectively. Adapted from92. 
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3. Experimental methods, devices and FEM 

simulations 

This chapter will present the necessary experimental details, which consist of 

concepts and fabrication methods of devices used in this thesis, experimental setups 

and related finite-element-method (FEM) simulations based on COMSOL Multiphysics. 

3.1 Strain tuning of QDs  

As the research enthusiasm on semiconductor QDs raised up over the last three 

decades, various post-growth tuning methods emerged to make QDs suitable for 

specific experiments and applications. As we discussed in the first two chapters, there 

is no doubt that strain fields IV  represent a very versatile tool for controlling the 

properties of QDs. Approaches to induce strain include oxide coating93,94, mechanical 

bending of the semiconductor hosting the QDs95,96, and bonding to piezoelectric 

actuators41–43. The latter is particularly appealing for fundamental studies, as it allows 

the QD properties to be tuned in-situ, i.e. during optical measurements and is 

compatible with on-chip integration.  

3.1.1 Integration of QDs on monolithic piezoelectric actuators 

3.1.1.1 PMN-PT piezoelectric actuator 

The first work using a piezoelectric actuator to control the emission properties of 

QDs can be tracked back to 2006, in which Pb(Zr, Ti)O3 (PZT) stacks were employed 

to control in a limited range the emission energy and FSS of QDs. After that, due to its 

exceptional piezoelectric properties, (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT) 

replaced PZT and is now used by several groups to tune QD properties. In this thesis, 

we also used mostly (001)-cut PMN-PT substrates. We discuss here briefly their 

working principles. 

According to literature97, PMN-PT is a relaxor ferroelectric material, which shows 

excellent piezoelectric properties and little hysteresis. Although the (111) oriented 

PMN-PT possess some unique and interesting properties, its piezoelectric constants are 

much lower than the (001) oriented ones, this is the reason why we choose the (001) 

oriented ones. From the chemical formula, we see that the PMN-PT is a solid solution 

of Pb(Mg1/3Nb2/3)O3 (PMN) and PbTiO3 (PT). The composition of this solution has a 

strong influence on the piezoelectric properties. Based on previous reports, a (1-

                                                             
IV The strain here is defaulted as static strain.  



3. Experiment methods, devices and FEM simulations 

30 
 

x)PMN-xPT solid solution with x = 0.3 will ensure a large piezoelectric response and 

preserve a stable compositional stability of the crystal. In our work, the PMN-PT 

substrates are purchased from TRS Technologies and have x = 0.28. An important 

parameter for ferroelectric materials is the Curie temperature Tc, a critical temperature 

above which the ferroelectric material becomes paraelectric. PMN-PT can feature an 

intrinsic electric polarization below Tc (~130 °C). When we apply an electric field Fp to 

the PMN-PT along specific crystal directions, the dipole moments will align with the 

electric field Fp if the electric field is larger than the coercive field (Fc) and keep aligned 

even once Fp is removed. We call the process, which aligns the dipole moments as 

“poling”, which is necessary before using the PMN-PT as piezoelectric actuator.  

Fig. 3.1 (a) illustrates schematically the in-plane strain when an electric field is 

applied to a poled PMN-PT substrate. The top and bottom sides of the PMN-PT are 

coated with gold, which acts as electrode. The thickness of PMN-PT substrate used in 

this work is about 300 μm. Since the semiconductor structure with embedded QDs is 

bonded on the surface of PMN-PT substrate, in-plane strain can be transferred to the 

QDs. For (001)-cut PMP-PT, the induced strain can be considered as quasi-isotropic 

biaxial. The strain configuration on the sidewalls of the PMN-PT substrate is instead 

strongly anisotropic and was employed in a previous work98. The drawback of that 

approach is that the available surface for semiconductor bonding and the tuning range 

were both limited. In this thesis we have developed a much more reliable method to 

apply uniaxial stress to QDs, which we will discuss in Sec. 3.2.2.  

Figure 3.1 (b) shows the room temperature in-plane strain dependence as a 

function of the applied electric field. In this thesis, the substrates are poled by 

application of a positive electric field. The corresponding strain relation is displayed by 

the red curve: compressive strain is obtained when Fp > 0, while for Fp < 0 we get 

tensile strain. However, the ferroelectric domains will undergo a reversal of the 

polarization if the electric field Fp keeps decreasing and reaches the coercive field -|Fc|. 

The situation is different at the cryogenic temperatures used in our experiments (5 K)99. 

Due to an exponential increase of the coercive field of PMN-PT with decreasing 

temperature100, Fc can be as large as 100 kV/cm, which allows us to achieve broad-

range tuning both in the compressive and tensile regime. On the other hand, the poling 

should always be performed at room temperature, since the coercive field Fc at low 

temperature is too large. 
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Fig. 3.1: (a) Sketch of a (001)-cut PMN-PT piezoelectric substrate when an electric field Fp is applied 

across it. In-plane biaxial strain ε is produced by the piezoelectric actuator when an electric field is 

applied. The top and bottom of the piezoelectric substrate are coated with gold electrodes. (b) In-plane 

strain dependence with electric field, the data is measured at 300 K. Figure adapted from43. 

3.1.1.2 Fabrication and state of art of QDs integrated on monolithic PMN-PT 

substrates 

    A strain-tunable QD-monolithic-PMN-PT device can be processed as follows 

(schematically shown in Fig. 3.2 (a)): First, a proper sample consists of a GaAs 

substrate, sacrificial layer, and QDs-containing layer. Usually, the sacrificial layer is 

AlxGa1-xAs layer (x > 0.6, in our work x = 0.75), which can be easily chemically etched 

to release the active layers in the form of membranes. Second, standard 

photolithography, metal deposition, and lift-off are sequentially performed. A 3 nm-

thick chromium layer and a 100 nm-thick gold layer are deposited as a metal layer, the 

chromium layer acts as an adhesive layer between GaAs and gold. After lift-off, the 

remaining metal layer is used as a mask for a mixed solution of H2SO4:H2O2:H2O 

(volume ratio 1:8:200, with an etching rate of about 200 nm/min). The sample is 

immersed into the etching solution until the AlxGa1-xAs sacrificial layer is reached. 

After that, the etched sample is put into diluted Hydrofluoric (HF) Acid solution 

(usually the concertation of 10% is used in our work) to etch away the AlxGa1-xAs 

sacrificial layer. Then the membranes with embedded QDs are detached from the GaAs 
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substrate and loosely lie on it. Before transferring the membranes onto the PMN-PT, 

the raw PMN-PT substrate is lapped (from a thickness of ~500 µm down to a thickness 

of ~300 μm), followed by polishing to get a smooth surface, which is vital for the 

following bonding step. Another two Cr/Au (3/100 nm) layers are deposited on the top 

and bottom sides of the polished PMN-PT actuator.  

The final step consists in the transfer the semiconductor membranes to the PMN-

PT substrate, which is accomplished with a Finetech (FINEPLACER lambda) die-

bonding machine. As for the bonding, different alternative approaches can be chosen, 

such as using polymers (e.g., PMMA and SU8) as a “glue” or the gold-to-gold 

thermocompression bonding. Although these two methods have different advantages, 

the bonding steps are quite similar. Illustrated in step 5 in Figure 3. 2(a), the flipped 

QD-sample is pressed on the PMN-PT substrate, a simultaneous heating is applied for 

better bonding between the membrane and the PMN-PT substrate. After some time 

(20~30 minutes) for bonding, we remove the GaAs substrate and leave the QD- 

membranes bonded on the surface of the PMN-PT substrate. Fig. 3.2 (b) is a typical 

microscope photograph of a membrane bonded on the PMN-PT substrate. 

 

Fig. 3.2: (a) Schematic diagram of the whole fabrication process of a QDs-monolithic PMN-PT device. 

The process sequence is indicated by the number. (b) Microscope picture of a QD-membrane transferred 

to a gold-coated PMN-PT substrate.  

 

Several impressive works have been accomplished on the strain tuning of QDs 

based on monolithic PMN-PT actuators, a brief overview will be given in this section 

with emphasis on two different bonding methods (polymer bonding and gold-to-gold 

bonding). The first work on QDs integrated on PMN-PT was performed with polymer 

bonding (PMMA)43. Polymer bonding has several advantages. First of all, relatively 

low operating temperature (150 ~ 200 °C) and low pressures (10 kPa) are needed, which 

is useful to prevent damage of the thin (~200 nm) membranes and also limit the 

occurrence of thermal stress during the cooling process. Secondly, Strain transfer 

efficiency via polymer bonding tends to be higher than for gold bonding101. The 
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remarkable strain transfer efficiency can be attributed to the wettability of the polymer 

when heated up during the bonding, which is also proved by the SEM cross selection 

images of GaAs bonded on a gold-coated PMN-PT actuator (Fig. 3.2 (a)): a thin and 

uniform bonding interface polymer (SU8 in this case) can be clearly observed. In 

contrast, air gaps can be clearly resolved in the gold-to-gold bonding interface (Fig. 3.3 

(b)), which stem from residual roughness of the gold layers prior to bonding. Due to 

the uniform bonding interface obtained with polymer bonding, nearly isotropic biaxial 

strain can be transferred to the membranes.  

The biaxial strain was found to be a powerful method not only to tune the emission 

energy of QDs, but also to adjust the energy separation between the photons emitted by 

InGaAs QDs during the biexciton cascade41. When the emission of exciton X goes into 

coincides with the biexciton XX, the QDs can act as entangled photon sources through 

a time reordering scheme102.   

 

Fig 3.3: SEM picture of a cross-section of GaAs membrane bonded on gold-coated PMN-PT actuator 

with (a) polymer (SU8) bonding and (b) gold to gold bonding. Adapted from103.  

 

    In spite of the fact that higher operating temperatures (250 ~ 300 °C) and higher 

pressures (~10 MPa) are needed for the gold thermocompression bonding104, some 

irreplaceable advantages exist with this method. Firstly, the Cr/Au layer is a natural 

bottom electrode, which provides an additional tuning method for the optical properties 

of QDs. Secondly, the defective gold-to-gold bonding and associated strain anisotropies 

provides the possibility to eliminate the FSS in QDs. As discussed in Chapter 2, the 

FSS, which is attributed to the anisotropic electron-hole exchange interaction, is the 

main obstacle for QDs to being polarization-entangled-photon source, and isotropic 

biaxial strain cannot effectively modify the FSS41. However, FSS of QDs can be 

effectively adjusted via anisotropic strain field44,105,106. Trotta et al. showed that tunable 

anisotropic biaxial strain fields, combined with a tunable electric field obtained by 

embedding the QDs in the intrinsic region of a p-i-n diode, can be used as a tool to erase 
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the FSS in arbitrary QDs and that highly entangled photons can be generated in this 

way47,107–109.  

3.1.2 Novel micro-machined device and related processing 

Although significant progress has been accomplished with strain-tunable devices 

consisting of QDs integrated with monolithic PMN-PT substrates, the limited strain 

provided by monolithic PMN-PT (~0.2%) and the poorly controllable strain 

configuration restrict the range of potential applications. One of the most desirable 

targets has been to restore the symmetry of a QD to act as polarization entangled photon 

source. Although this has been achieved by combining strain with electric fields, the 

energy of the resulting entangled photons is not tunable, which hinders the application 

of QDs in protocols involving several sources, such as entanglement swapping31. 

Inspired by the theoretical work that combined stresses can eliminate the FSS45, Trotta 

el al. proposed a microstructured semiconductor-piezoelectric hybrid device (geometry 

shown in Fig. 3.4(a))48. Based on this concept, wavelength-tunable sources of entangled 

photons (with InAs QDs) were realized in 201650. A schematic picture of the hybrid 

device and entanglement fidelity as a function of the time delay between the two 

emitted photons are shown in Fig. 3.4 (b), the center peak fidelity f exceeds the 

threshold for entanglement (0.5).  

With the micro-machined PMN-PT actuator, arbitrary stress configuration can be 

produced by adjusting the electric fields applied to the fingers of the actuator110.  

 

Fig. 3.4: (a) Sketch of a micro-machined PMN-PT actuator. With this novel PMN-PT actuator, three pairs 

of finger structures can provide three independent uniaxial stresses. The top and bottom sides of the 

PMN-PT actuator are coated with gold, as shown in the picture. Adapted from48. (b) The left panel is a 

sketch of the device which consists of a QD membrane bonded on a PMN-PT actuator. The right panel 

shows the entanglement fidelity as a function of time delay between photons when the FSS is canceled 

via stain engineering. Adapted from50. (c) Schematic representation of a three-fingers device with GaAs 

membrane bonded on top. Adapted from110.  

 

The PMN-PT actuator implemented and used in this work is also a micro-

machined piezoelectric actuator. The micro-machined PMN-PT actuators are processed 
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as follows: 500 μm thick, (001) oriented PMN-PT substrates (TRS Technology) were 

first mechanically lapped and polished down to 300 μm, then the substrates were cut 

by a commercial 3D-Micromac laser system equipped with a femtosecond laser (by Dr. 

Giovanni Piredda, in Forschungszentrum Mikrotechnik, FH Vorarlberg, Dornbirn, 

Austria). The laser was focused down to a spot with 5 μm in diameter. After cleaning, 

the top side of the cut actuator was coated with Cr/Au (5/100 nm), which is electrically 

grounded. On the bottom side, the deposition area is limited only to the fingers’ area, 

so that the electric-field-induced deformation is limited to the fingers. The geometry of 

the two-fingered PMN-PT actuator and metal deposition on the top and bottom side of 

the actuator are shown in Fig. 3.5. Furthermore, with this novel design, a “strain 

amplification” function is endowed: two fingers (l in length) are cut with a laser, a gap 

(d in length) exists between these two fingers, thus the strain in the gap can be amplified 

by the factor of 2l/d. In this thesis we make the distance of the gap to be 50 μm (as 

shown in Fig. 3.5 (d)). Our simple actuator is thus capable of delivering strain values 

comparable to state-of-the-art microelectromechanical systems111. Moreover, 

Compared to the commonly used bending method112,113, the actuator can be easily 

operated at cryogenic temperatures [here ~8 K for all measurements in this thesis] in a 

cold-finger cryostat. 

 

 

Fig. 3.5: Schematic picture of two-fingered PMN-PT actuator used in our work. Gold (marked in yellow) 

coated (a) top surface and (b) bottom surface of the micro-machined actuator. (c), Microscope image of 

the micro-machined “two fingers” PMN-PT actuator. (d), Enlarged microscope picture of the gap 

between the two fingers. 
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In this work, the GaAs sample is bonded to the PMN-PT actuator with SU8 

bonding. After that, a “back etching” is used to remove the GaAs substrate and only 

leave the QD-membranes bonded on the piezoelectric actuators. The reason is that the 

stress exerted by the PMN-PT is limited and the maximum achievable strain in the 

semiconductor drops with the stiffness of the structure, i.e. with its thickness. The flow 

diagram of the process is shown in Fig. 3.6 and the process details are as follows: First, 

standard UV photolithography is performed on the sample, followed by Cr/Au (3/100 

nm) deposition and lift-off. After that, using the metal layer as mask, the sample is 

immersed into piranha solution (H2SO4 : H2O2 : H2O = 1: 8: 200 in volume) until the 

etching reaches the sacrificial layer. Before the bonding, SU8 photoresist (2000.5, 

MicroChem) is spin-coated (1000 rpm/s for 10s followed by 4000 rpm/s for 30s) on the 

surface of PMN-PT actuator, followed by a soft-bake (65 º C for 5 minutes and 90 º C 

for 5 minutes) to evaporate the solvents from the photoresist. Then, with a flip-chip 

method (pressure and heating can be simultaneously applied), the sample is bonded 

onto the PMN-PT actuator. During the bonding, the pressing force is kept at 15 N and 

the heating temperature is maintained at 250 º C for 15 minutes to hard-bake the SU8 

photoresist. After the bonding, a “back etching” method is employed to remove the 

GaAs substrate. A mixed solution of orthophosphoric acid (H3PO4, 85% in 

concentration) and hydrogen peroxide (H2O2, 30% in concentration) (3:7 in volume) is 

used to make a non-selective etching to remove most of the GaAs substrate114. Then a 

selective etching is performed with citric acid (30% in concentration) and hydrogen 

peroxide (H2O2, 30% in concentration) (4:1 in volume) to remove the remaining GaAs 

substrate. Lastly, we remove the sacrificial layer (Al0.75Ga0.25As) with diluted 

hydrofluoric acid (HF) (10% in concentration), leaving only the QD-membranes 

bonded on the piezoelectric actuator. The performance and mechanism of the QDs-

micro-machined PMN-PT device will be discussed in detail in Chapter 4. 

 

Fig. 3.6: Flow diagram of the whole fabrication process of bonding a QD-membrane on a two- fingered 

PMN-PT actuator.  
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3.2 Tuning QDs with SAWs 

As discussed in the previous section, SAWs are phononic technologies widely 

used not only in consumer electronics but also in frontier research. Works on the 

interaction between SAWs and QDs include picking up an electron from one QD to 

another (“quantum ping-pong”) to achieve quantum information transfer115, resolved 

sideband emission116, charge injection into QDs117,118, and the use of QDs to probe 

engineered shaped strain pulses119.   

Based on the strong interaction between QDs (and other solid-state systems) and 

strain fields, it is tempting to draw analogies with electromagnetic fields and quantum 

optics and to think about phonons taking the place of photons in quantum phononic 

devices 120. However, it is still a long way to reach this final target, and several efforts 

need to be paid to study the physics underlying the interaction of QDs and sound under 

different circumstances. Fig. 3.7 (a) schematically shows the device studied in the work. 

Interdigital transducers (IDTs) are fabricated with Electron-beam lithography (EBL), 

metal deposition (Cr/Au 5/50 nm) and lift off. Usually, the IDT1 is connected to a 

function generator, to generate SAWs. The sound waves will travel the surface and will 

be converted to electrical signals when they reach IDT2, the IDT2 is usually connected 

to an oscilloscope for detection. These two identical IDT pairs constitute a delay line, 

which allows an estimation of the transmitted acoustic power and speed. The sample 

we used contains three different layers: a GaAs substrate, the sacrificial layer, and an 

active layer with embedded QDs. With this structure, not only the properties of 

Rayleigh waves can be studied, but also propagation in more complex structures 

(waveguide, phononic crystal), see Chapter 6.  

The optomechanical coupling between GaAs QDs and the deformation arising 

from SAWs is schematically shown in Fig. 3.7 (b). For QDs, the exciton transition 

energy can be treated as a two-level system. During the propagation of SAWs, the 

transition energy of QDs will be modified by the deformation potential caused by the 

pressure associated with SAWs. Thus, through the detection of the dynamic shift of the 

photoluminescence (PL) spectrum of each individual QD, the SAWs waveform can be 

determined. In other words, with the effective optomechanical coupling, we take the 

potential of QDs to sense the nanomechanical signals and convert them to the optical 

domain.  
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Fig. 3.7: (a) Schematic picture of the device used in our work. Comb-like IDTs are connected to a 

radiofrequency (RF) function generator, which allows SAWs to be generated. (b) Schematic diagram of 

the optomechanical interaction between the deformation caused by SAWs and single embedded quantum 

dots (QDs) in a semiconductor heterostructure. Adapted from 121.  

3.3 Experimental setup 

In our work, micro-photoluminescence (μ-PL) is the main characterization method 

to study the optical and electronic properties of QDs-based devices. In our work, the 

QDs are excited with lasers, which provide photons with higher energy than the 

bandgap of the barrier (non-resonant excitation, schematically shown in Fig. 2.2). Once 

the photons are absorbed, holes and electrons are formed in valence band and 

conduction band with finite momenta. Following relaxation, the electrons will 

recombine with holes and emit responding photons, which we detect with a 

spectrometer equipped with a CCD camera.  

Base on the manipulation methods (strain from PMN-PT actuator and SAWs), the 

main work in this thesis can be divided into two sets of experiments, which were 

performed at the Johannes Kepler Universität (JKU), Linz and Universität Augsburg, 

respectively. The experimental setup is quite similar on the optical side. Fig. 3.8 shows 

schematically the experimental setup at JKU. The sample is mounted on the cold finger 

of a helium-flow cryostat, with which the temperature can vary between 4 K and 300 
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K. In all experiments, the temperature is kept below 10 K during the measurement to 

reduce phonon broadening of the emission lines of the QDs. The whole cryostat sits on 

a motorized x-y stage, which allows motion with minimum step sizes of about 50 nm. 

Sourcemeters (ISEG, high voltage power supply, and R&S HMF 2550, arbitrary 

function generator) are connected to the cryostat to modulate the PMN-PT actuators. A 

diode pumped solid state laser (Millenia from Spectra Physics), which emits photons at 

the wavelength of 532 nm, is employed as the non-resonant excitation source. Firstly, 

the laser impinges onto a 50:50 beam splitter: half of the laser power is detected with a 

power meter, the other half passes a second beam splitter and then is focused with a 

50× objective (numerical aperture: 0.42) to the sample. The objective is mounted on a 

single axis piezoelectric actuator, which allows the distance between objective and 

sample to be precisely adjusted. The excited signal from the sample is collected with 

the same objective, reflected by the beam splitter and then passes a half-wave plate (λ/2) 

and a linear polarizer. The half waveplate is mounted in a computer-controlled rotary 

stage with a precision of 0.1º. The combination of rotating half wave plate (λ/2) and 

linear polarizer allows us to collect linear polarization resolved spectra of the signal 

emitted from our QDs, which is a very important method to observe the exciton 

evolutions under strain (see Chapter 4). Then a long pass filter (transparent for 

wavelengths above 650 nm) is used to remove the laser, which is reflected by the sample. 

Lastly, the signal is focused on the entrance slit of a spectrometer with 750 mm focal 

length equipped with various gratings. The diffracted signal is then focused on a 

nitrogen-cooled Si CCD (for spectral analysis) or on an avalanche photodiode (APD) 

(for time-resolved measurements).    
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Fig. 3.8: Schematic picture of the micro-PL experimental setup at JKU, Linz. 

 

One of the important measurements what we can perform with this setup is 

polarization-resolved PL spectroscopy. With polarization-resolved PL spectra, several 

useful characteristics (such as FSS, degree of linear polarization, polarization 

orientation) of QDs can be obtained. Here we just describe the fitting procedure for the 

FSS. Figure 3.9 (a) shows polarization resolved PL spectra of a neutral exciton confined 

in a QD. Since the photons emitted the QDs stem from a spontaneous emission, a 

Gaussian function can be employed to obtain the peak positions for each polarization 

angle, as illustrated in Figure 3.9 (b). Then we plot these peak positions with relevant 

polarization angles in Figure 3.9 (c). By applying a cosinusoidal fit, the FSS value can 

be estimated as twice the amplitude of the cosinusoidal function.  
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Fig. 3.9: (a) Polarization resolved PL spectra of the neutral exciton (labelled as X) from a GaAs QD. (b) 

A PL spectrum of the neutral exciton at a given polarization angle. The raw data from the spectrometer 

is plot with stars, with a Gaussian fitting as a red line. (c) The obtained emission energy (peak position) 

are plotted as a function of polarization angle, with cosinusoidal function fit (red line) to get the FSS 

value. 

 

3.4 FEM simulation using COMSOL Multiphysics 

The finite element method (FEM) is a common method for solving problems in 

physics and engineering. These problems (like structural analysis, heat transfer, 

electromagnetic problems) always follow space and/or time-independent laws, which 

are usually expressed through partial differential equations (PDEs). For the majority of 

problems (especially for objects with irregular geometries), it will not be possible to 

find analytic solutions. The basic concept of FEM can be summarized as follows: first, 

dividing the domains of problems into a collection of subdomains, with each 

subdomains represented by sets of equations to the origin problems; then recombine all 

sets of elements equations into the whole domain of equation for final solutions. 

Usually the global system of equations has known solution techniques, which can be 
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calculated by the initial value and relevant boundary conditions. With the FEM method 

one can define the mesh of the object according to the required precision and computing 

power.  

In our work, COMSOL Multiphysics (5.3) is employed to simulate the stress 

(strain), displacement, and electric field distribution in our device due to its relatively 

user-friendly characteristics and capability of treating coupled physical phenomena. In 

the following part, we will give a brief introduction to the main idea of the simulation 

in COMSOL Multiphysics in our work. 

To simulate the strain (stress) distribution in the QD membranes of the hybrid 

device, a simplified 3D model based on our device is constructed, as shown in Fig. 3.10 

(a). For saving computational resources during the simulation, the whole structure is 

simplified as shown in the following. The elements 1 and 2 are the chip carrier; the 

bottom side of these elements is set as fixed constraints. Elements 3 and 4 are made of 

PMN-PTV; their top side is set as ground and certain electric potentials are set on the 

bottom side, as in the experiment. Element 5 is the GaAs membrane, with 100 nm SU8 

photoresist (not visible in the drawing) sandwiched between 5 and 3, 4. Fig. 3.10 (b) 

shows the zoom-in view of the membrane located on the gap between the fingers of the 

PMN-PT actuator, w is the width of membrane and d is the distance between of the 

fingers, which we can set based on the real device. Here an “Adaptive Mesh Refinement” 
122 is adopted, characterized by a finer mesh at the regions where strong gradients are 

expected (like the boundary between objects), and the area of interest (the membrane), 

as shown in Fig. 3.10 (c). We should mention that in the simulation we used the elastic 

and piezoelectric parameters of PMN-PT at room temperature. Since it is known that 

the piezoelectric constants of PMN-PT will decrease at cryogenic temperature100, we 

adjusted the electric field applied to the PMN-PT to obtain strain magnitudes similar to 

our experiment. In the next chapter, results obtained with this device will be shown. 

                                                             
V Piezoelectric parameters at RT are obtained from TRS Technology, which can be found in Appendix A.1. 
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Fig. 3.10: (a) Sketch of the simplified structure of QDs-micro-machined PMN-PT actuator hybrid 

device simulated with COMSOL Multiphysics. (b) Zoom-in view of the membrane at the gap between 

the fingers of the PMN-PT actuator. w stands for the width of the membrane and d is the distance between 

the fingers. (c) Mesh used for FEM computation.  

 

Although in the previous chapter we gave a comprehensive introduction on the 

propagation of SAWs in solids and in principle it is possible to give an analytical 

solution based on that, it would be too complicated to apply the theory for a realistic 

structure. For instance, the phase velocity of SAWs is only determined by the elastic 

constant of the specific material. However, our sample consists of several layers, which 

possess different elastic parameters, in that case, the velocity could be dispersive to 

frequency. In addition, the QDs are buried into the sample and it would be desirable to 

obtain the strain and electric field arising from SAWs directly. For this reason we 

performed 2D FEM simulations. Fig. 3.11 (a) is the overview of the structure cell of the 

sample imported in COMSOL. The width of the structure is set as one wavelength (λ0) 

of the SAW, the thickness is set as three times of the wavelength of the SAW (3λ0) since 

the SAW is confined close to the surface of the sample. The bottom line 4 is treated as 

a fixed constraint. The boundary lines 1 and 3 are periodical and phase antisymmetric 

to the middle line 2. The structure of the membrane is simplified as shown in Fig. 3.11 

(b), the QDs are omitted and only 2 nm GaAs layer is left. Form the set of solutions 

provided by COMSOL, we can select the desired solutions. More results based on the 

simulations will be shown in Chapter 6. 
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Fig. 3.11: (a) Schematic structure of the sample (AS 275) used in COMSOL Multiphysics to simulate 

the Rayleigh waves. The width is defined as the wavelength λ0 and the whole thickness of the sample is 

set as three times wavelength 3λ0. (b) An enlarged view of the active layer containing QDs.   
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4. Uniaxial stress flips the natural quantization 

axis of a quantum dot for integrated quantum 

photonicsVI 

The selection rules of optical transitions in epitaxial quantum dots are determined 

to a large extent by the orientation of their quantization axis, which is usually parallel 

to the growth direction. This configuration is well suited for vertically emitting quantum 

devices, but not ideal for planar photonic circuits. In this chapter, we show that the 

quantization axis of a GaAs quantum dot can be turned to lie in the growth plane via 

uniaxial elastic stress. This rotation, which is accomplished through a complex 

evolution of the confined hole wave function, is possible whenever confinement can be 

viewed as a perturbation compared to the strain-induced effects. The experimental and 

computational results suggest that uniaxial stress – already employed for enhancing the 

performance of integrated electronic circuits – may be the right strategy to obtain 

quantum-light sources with ideally oriented transition dipoles and enhanced oscillator 

strengths for integrated quantum photonic circuits. 

4.1 Motivation 

Epitaxial QDs usually possess flat morphologies [schematically shown in Fig. 

4.1(a)], and heights comparable to the Bohr-radius of the confined excitons. Carriers 

are therefore strongly confined along the growth (z) direction, which also represents the 

natural quantization axis123–125. The vertical confinement [and possibly in-plane 

compressive strain naturally present in QDs obtained by the Stranski-Krastanow growth 

mode] splits the heavy-hole (HH) and light-hole (LH) bands, so that the HGS has 

dominant HHz character, with total angular momentum projection Jz=±3/2 (in units of 

ħ). Dipole-allowed transitions involving such states are characterized by transition-

dipoles perpendicular to z, making them well suited for efficient vertically-emitting 

single-photon devices12,58,126–129 (as shown in Fig. 4.1 (a)). However, if we consider the 

planar integrated quantum photonics applications, it would be instead desirable to have 

QDs with transition dipoles perpendicular to the propagation direction, and hence a 

quantization axis in the x-y plane.  

In spite of their importance, very little effort has been devoted to developing 

quantum sources optimized for planar photonic circuits. An exception is represented by 

Ref130. In this work, the quantization axis is rotated by 90 º via a simple way: the QDs, 

embedded in nanowires, are removed from the substrate, and then integrated into a 

silicon-nitride waveguide for efficient coupling, as shown in Fig 4. 1(b). Although an 

in-plane oriented quantization axis is realized with this method, it still remains a time-

                                                             
VI The main results in this chapter are published in Nat. Commun. 9, 3058 (2018) and Semiconductor Science and 

Technology 33, 013301 (2018).  
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consuming approach when we consider further potential large-scale integrated on-chip 

applications.  

The question we addressed here is: Is there a gentler way, which allows obtaining 

an in-plane quantization axis while preserving the compatibility of the QD 

heterostructure with planar photonic processing? Inspired by predecessors’ experience 

in our group, stress (or strain) could be a means for that. However, there are two main 

issues to be addressed if we want to obtain an in-plane quantization via stress (or strain). 

Firstly, different from most previous work of strain tuning on QDs, uniaxial stress with 

relatively large magnitude should be applied, so that confinement can be seen as a 

perturbation compared to strain-induced effects. Secondly, high quality and nearly 

strain-free GaAs QDs29,131 should be used, which could maximize the effect of 

externally induced strain.   

 

Fig. 4.1: (a) Sketch of the common “flat” QD with quantization axis along the z-direction, two bright 

eigenstates lead to photons polarized in the x-y plane, which is suitable for vertically coupling. (b) 

Schematic picture of a device with QDs featuring an in-plane quantization axis. The QDs in nanowires 

are embedded in SiN waveguides, red spheres stand for the emitted photons. The inset shows the second-

order correlation properties from the emission of a QD. Adapted from 130.  

 

4.2 Illustration of concept 

    A general view of the physics of the problem of a QD under uniaxial stress can 

be gained by inspecting the effect of stress on bulk GaAs, which is reasonable because 

our GaAs QDs are initially almost unstrained and have a relatively large height [see 

atomic force microscopy (AFM) image in Fig. 4.2 (a)], resulting in a "gentle" 

perturbation of the bulk crystal symmetry and providing the possibility of reorienting 

the relatively "soft" quantization axis with moderate strains. As mentioned above, the 

hole ground state of epitaxial QDs has dominant HHz character as a consequence of the 

vertical confinement. The same situation is encountered when biaxial compression in 

the x-y plane is applied to bulk GaAs. In these cases, the angular dependence of the HHz 
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Bloch wavefunction shows a "donut" shape (see inset in Fig. 4.2 (b)). Combined with 

the s-like electron Bloch-wavefunction, such a state couples only to light with 

polarization perpendicular to the z quantization axis. Obviously, for bulk GaAs, the 

quantization axis could be set to the [100] (x) direction by simply applying a biaxial 

stress in the y-z plane or uniaxial stress along the x-direction. Now the question is: is it 

possible to rotate the quantization axis of a QD through the same approach and with 

realistic values of stress? Previous experiments have shown that breaking the symmetry 

in the x-y plane results in substantial HHz - LHz hole-mixing132,133, but the possibility 

of reaching pure HHx or LHx states has not been discussed so far. And in fact the answer 

would be negative for conventional Stranski-Krastanow QDs because vertical 

confinement and in-plane compression (of the order of GPa) "team up" to stabilize a 

vertically-oriented quantization axis. Initially unstrained GaAs QDs with relatively 

weak confinement energies are instead ideally suited to address the question.  

To quantify to what extent the quantization axis is oriented along the original z 

direction or the desired x direction under uniaxial stress, the hole ground state was 

calculated for our QDs (Fig. 4.2 (a)) via the empirical pseudopotential method (EPM). 

The projection of this state onto the HH, LH, and SO (split-off) states using either the 

z- or the x-quantization axis is shown with symbols in Fig. 4.2 (b), (c) respectively. 

(Calculation were performed by Fritz Weyhausen-Brinkmann and Prof. Dr. Gabriel 

Bester at the Universität Hamburg). 

Using the conventional quantization axis z [Fig. 4.2 (b)] we would reach the wrong 

conclusion that uniaxial stress results in strong HH-LH mixing even for large strains. 

By using instead the new quantization axis x, we see that the topmost VB has almost 

pure HHx character (with some LHx admixture) upon sufficiently strong tension and 

almost pure LHx character (with some SOx admixture) upon compression [Fig. 4.2 (c)]. 

Remarkably, the EPM calculations predict that the “swapping” of quantization axis 

occurs already at moderate strains: the hole ground state of our QDs should have >90% 

HHx character for strains 𝜀𝑥𝑥 ≳ 0.3% and >90% LHx character for 𝜀𝑥𝑥 ≲ −0.1%. 

This result crucially relies on the use of tall and initially unstrained QDs and could not 

be achieved with conventional Stranski-Krastanow QDs. The predicted evolution of the 

hole ground state upon uniaxial stress is robust and can be even caught with a simple 

model of bulk GaAs subject to a fixed biaxial stress in the x-y plane and variable 

uniaxial stress along the x direction, as shown by the curves in Figs. 4.2 (b) and (c). 

Under tension we expect a donut-shaped Bloch wavefunction (right inset in Fig. 4.2 

(c)), an ideal configuration for light-coupling into an x-oriented waveguide. Under 

compression the wavefunction has instead a dumbbell shape elongated along the x-

direction. This configuration is well suited for coupling into y-oriented waveguides.  
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Fig. 4.2: Illustration of the concept used to rotate the quantization axis of an epitaxial QD. (a), 3D view 

of an AFM image of a GaAs QD embedded in AlGaAs matrix subject to uniaxial stress. (b), (c), the 

calculated effect of uniaxial stress on the degree of mixing of the topmost VB using the z and x 

quantization axis, for bulk GaAs subject to a fixed in-plane biaxial compression with xx=yy=-120 MPa 

(solid curves) and for the experimentally studied QDs (symbols). The plots illustrate the importance of 

the choice of the quantization axis when discussing VB mixing and show that the quantization axis of 

the chosen QDs can be rotated with moderate strains. Insets: Angular dependence of the probability 

density distribution of the Bloch wavefunctions of the topmost VB states at the  point showing the 

conversion of a HHz state into a HHx (LHx) state under tension (compression). 

 

In our experiment, large enough uniaxial stress can be provided that we can neglect 

the confinement effects. Since the spin-orbit coupling-constant  is relatively large, we 

can just focus on the topmost 4 bands, so the 44 block of the Hamiltonian can be 

written as: 

𝐻4×4 = −(

𝑃 + 𝑄 −𝑆 𝑅 0
−𝑆+ 𝑃 − 𝑄 0 𝑅
𝑅+ 0 𝑃 − 𝑄 𝑆
0 𝑅+ 𝑆+ 𝑃 + 𝑄

)            (4.1) 
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Considering the strain configuration for uniaxial stress,  𝜀𝑦𝑦 = 𝜀𝑧𝑧 =

−
𝐶12

𝐶11+𝐶12
𝜀𝑥𝑥 = −𝜈[100]𝜀𝑥𝑥, S is zero (since there is no shear stress), the Hamiltonian 

for the relevant valence bands evolves into 

𝐻𝑈 = −(

𝑃 + 𝑄 0 𝑅 0
0 𝑃 − 𝑄 0 𝑅
𝑅+ 0 𝑃 − 𝑄 0
0 𝑅+ 0 𝑃 + 𝑄

)       (4.2) 

The operator for the component x of the total angular moment is given by: 

𝐽𝑥 = ℏ

(

 
 
 
 

0
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                   (4.3) 

Now [𝐽𝑥, 𝐻4×4]=0, i.e. that the quantization axis is parallel to the x axis. So we can 

conclude that under large uniaxial stress the quantization axis is along x direction.  

 

 
Fig. 4.3: Value of the projection of the HGS on the HHn state for different values of strain. Large values 

of the projection indicate that it is meaningful to define a quantization axis along the direction specified 

by the unit vector n=(cos, 0, sin) in the x-z plane (=0 corresponds to the z-axis while =π/2 
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corresponds to the x-axis). 

 

Before presenting the experimental results we wish to further clarify that a natural 

quantization axis for the holes angular momentum can be defined in absence of strain 

and for sufficiently large strain. With EPM+CI method the hole-ground-state (HGS) 

was calculated as a function of stress and projected to the eigenstates of the angular 

momentum projection operator Jn (with n=(cos, 0, sin) in x-z plane). The result for 

the projection |⟨𝐻𝐺𝑆|𝐻𝐻𝒏⟩|2 is graphically shown in Fig. 4.3. Large values of the 

projection – let’s say above 0.9 (a typical value of |⟨𝐻𝐺𝑆|𝐻𝐻𝒛⟩|
2 for conventional 

Stranski-Krastanow QDs) can be interpreted as the indication that it is meaningful to 

define a quantization axis along the direction specified by n. Low values indicate 

instead mixed HH-LH states, for which the total angular momentum is not well defined. 

The plot clearly shows that a z quantization axis is appropriate for our as-grown QDs, 

while the quantization axis is oriented along the x direction for large values of strain). 

The data shown in red in Fig. 4.2(b) and (c) correspond to vertical scans for =0 (z-

axis) and =π/2 (x-axis), respectively. 

 

4.3 QDs-PMN-PT-actuator device: fabrication and performance 

    Through the theoretical analysis of the former section, we found that in principle it 

is feasible to rotate the quantization axis of QDs by 90°. To test this prediction, we have 

developed and used a novel micromachined piezoelectric actuator, already introduced 

in Sec. 3.1.2. The main reason is that the maximum strain achievable with monolithic 

actuators at cryogenic temperature is of the order of 0.2%, which is barely sufficient to 

achieve the desired rotation of the quantization axis.  

In this work, strain-free GaAs QDs are used, which we expect to be more tunable 

than conventional strained QDs under strain. Most of the samples used in this Chapter 

were grown by Dr. Yongheng Huo at IFW, Dresden, and some samples (with the same 

droplet etching method) grown by Dr. Saimon Filipe Covre da Silva at JKU, Linz are 

also used. Here we just present a description of the sample from IFW Dresden.  

The sample was grown by solid-source molecular epitaxy (MBE) on semi-

insulating GaAs (001) substrate. After oxide desorption, a 200 nm thick GaAs buffer 

was grown. Then a 100 nm thick Al0.75Ga0.25As sacrificial layer was deposited, 

followed by 5 nm GaAs, which was used to smoothen the surface and avoid oxidation 

of the membranes after releasing them from the substrate. Subsequently, 90 nm 

Al0.2Ga0.8As and 30 nm Al0.4Ga0.6As layers were deposited in sequence. Later the GaAs 

QDs formed with the droplet etching method. The QDs were capped with 30 nm 

Al0.4Ga0.6As layer, followed by 90 nm Al0.2Ga0.8As layer. Finally, a 5 nm GaAs 

completes the growth. The whole structure of the as-grown sample is shown in Figure 

4.4. 
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Fig. 4.4: Structure of the GaAs QDs sample used in this work.  

 

    The detailed device processing information can be found in section 3.1.2. The 

experimental configurations of our QDs-PMN-PT actuator devices are shown in Figure 

4.5. Fig. 4.5 (a) illustrates an overview of our hybrid semiconductor-piezoelectric 

device. As discussed before, the PMN-PT actuator combines the advantages of a strain-

amplifying suspension platform134,135 and continuously-variable stress42,136. This PMN-

PT actuator pattern is cut by femtosecond laser system: two long fingers are separated 

by a small gap, a membrane with embedded QDs is bonded between the two fingers. 

The [100] orientation of the membrane is aligned with the direction of two fingers, as 

the side-view illustration of the device in Fig. 4.5 (b). The detailed working principles 

of the PMN-PT actuator used in this work can be found in Section 3.1.2.  
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Fig. 4.5: Experimental configuration to apply uniaxial stress to GaAs QDs via a micro-machined PMN-

PT actuator. (a), Sketch of the actuator featuring two fingers with length l separated by a gap of width d. 

A semiconductor membrane with embedded QDs is bonded on the fingers and forms a bridge above the 

gap. Vp is the voltage applied to the bottom of the PMN-PT actuator with respect to the top contact, which 

is grounded. Because of the chosen poling direction, a negative electric field Fp across the PMN-PT 

induces a contraction of the fingers and uniaxial tensile stress in the semiconductor along the x-direction. 

The coordinate system is the same as for the (Al)GaAs crystal. (b), Side-view of the device. PL 

measurements are performed by exciting and collecting PL along the z-axis. 

 

Since in the experiment we were not able to provide an independent measurement 

of the strain configuration produced by the piezoelectric actuator, we have performed 

finite element method (FEM) simulations. We provide below the relation between 

stress and strain in the case of ideal uniaxial stress along the [100] crystal direction of 

GaAs and the results of the numerical calculations. Since in our case the uniaxial stress 

is applied along the [100] direction, there is no shear stress, so that the generalized 

Hooke’s law of Eq 2.25 can be further simplified as: 

(
𝜎𝑥𝑥

0
0

) = (
𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

)(

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

)                (4.4) 
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 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = −
𝐶12

𝐶11+𝐶12
𝜀𝑥𝑥 = −𝜈[100]𝜀𝑥𝑥           (4.5) 

Here 𝜈[100] is the Poisson ratio for uniaxial stress along the [100] direction (ν = 0.31 

for GaAs at a temperature of about 10 K137). 

Then a FEM simulation based on COMSOL Multiphysics is performed to estimate 

the stress configuration in our device. All calculations assume linear elastic 

deformations. All the parameters are set based on those of the devices.  

Figure 4.6 (a) shows the major stress σxx map in our device. It shows quite 

homogeneous tensile stress in the suspended area of the membrane. In order to have a 

clearer picture of the stress distribution along the x-direction of the membrane, we make 

a line scan [the line is located in the middle of the membrane, marked as dashed line in 

Figure 4.6 (a)] along x, see Figure 4.6 (b). The suspended area (-10 μm < x < 10 μm) 

shows homogeneous tensile stress, while the tensile stress falls rapidly when we move 

to the area bonded on the PMN-PT actuator and changes into compressive stress when 

moving away from the gap (not shown here). As mentioned above, for an ideal uniaxial 

stress, 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = −𝜈[100]𝜀𝑥𝑥. Figure 4.6 (c) and (d) show the in plane strain maps 

of the strain tensor components εxx and εyy from the simulation. It is clear that in the 

suspended area there is tensile strain along x direction (εxx = 2.0% > 0) and compressive 

strain along y direction (εyy = -0.62% < 0), the Poisson ratio 𝜈[100]  is about 0.31, 

consistent with the expected value. 

 

 

Fig. 4.6: FEM simulations of the stress and strain distribution in our devices. (a) Major stress σxx map in 

the middle of the membrane in z-direction (the same location of the QDs). The dashed line shows the 

position of the line scan in (b). (c,d) In-plane strain (εxx, εyy) maps, respectively. We verified that εzz=εyy, 

consistent with a uniaxial stress configuration. 
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    Based on the above analysis and FEM simulation, our device is supposed to 

provide strictly uniaxial stress in a wide range. To test the prediction experimentally, 

we focus first on the achievable energy shift under uniaxial stress (detailed information 

can be found in section 2.2.3). Fig. 4.7 shows a typical series of PL spectra of QDs in 

our device with an increasing tensile stress. With the “strain amplification” device, the 

emission energy of GaAs QDs can be continuously shifted by more than 100 meV 

(estimated major strain ~2%). To our knowledge, this is already the highest tuning 

range achieved via piezoelectric-semiconductor device, the magnitude of strain 

provided with this actuator is one order larger than the monolithic ones104. More 

importantly, the emission energy of our GaAs QDs can go even below the unstrained 

bulk GaAs (marked with a red dashed line in Fig. 4.7) with the help of strain, which 

indicates that the energy shift induced by the strain already overcompensates the one 

arising from the confinement. This also implies that the strain modifies completely the 

confinement configurations from the as-grown sample, as discussed in the next section. 

 

Fig. 4.7: Normalized PL spectra of a GaAs QD measured for increasing uniaxial tensile stress (from 

bottom to top). The large tuning range allows confinement energies to be overcompensated and leads to 

emission below the bandgap of unstrained bulk GaAs. The red line indicates the unstrained bulk GaAs.  

 

    Inspired by the outstanding behavior in the energy shift of GaAs QDs with our 

novel PMN-PT actuator, one potential application would be the interfacing single 

photons emitted by GaAs QDs with Rubidium (Rb) vapors. The latter can be used as a 
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quantum memory138,139, which is a crucial element for a potential quantum repeater140. 

In spite of this vision, an obstacle lies in the precise matching of the emission energy 

of QDs to the absorption lines of natural atoms (for 87Rb, the D1 transition is near 795 

nm and the D2 transition is around 780 nm). Although several previous works have 

reported the tuning of QD emission to match the transition of Rb109,141, they have two 

main limitations: firstly, the tuning magnitudes were limited, which means QDs with 

emission energy close to the desired transition must be selected; secondly, published 

work is still limited on the matching the QDs’ energy with the D2 line of 87Rb. Although 

the D2 line is used in laser-cooling experiments142, currently some nonlinear optical 

process (like electromagnetically induced transparency) has been only explored with 

the D1 transitions143, and recently a quantum memory suitable for QD photons at the 

Rb D1 transitions was demonstrated144. Here we make a simple test based on the device 

we have: a hot Rb cell is inserted between the QDs and the detector of the spectrometer, 

as shown in the inset of Fig. 4.8. By sweeping the voltage applied to the PMN-PT 

actuator, the emission energy of the exciton from GaAs QD is able to reversibly go 

through both the D1 and D2 lines of Rb (Fig. 4.8), this illustrates that no careful QD 

preselection would be needed to bring transitions of our artificial atoms into resonance 

with desired transitions of natural atoms.  

 

Fig. 4.8: The PL emission of a GaAs QD from our hybrid device as a function of the electric field applied 

to the microprocessed actuator. X and MX indicate the exciton and multiexcitons, respectively. D1 and 

D2 are two natural absorption lines of Rb. Inset schematically shows the experiment setup: a hot Rb cell 

is inserted between the QDs and the detector of the spectrometer.    
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4.4 Experimental proof of the rotation of quantization axis via 

uniaxial stress 

4.4.1 Experiments using large membranes 

    In section 4.2, we have seen that theoretical calculations predict the possibility of 

rotating the quantization axis of our GaAs QD. We present now the experimental proof 

of the concept. At first, a device with a relatively large QDs membrane (~ 2×4 mm2) is 

fabricated, the picture is shown in Fig. 4.9. Linear-polarization resolved PL spectra of 

emission of different GaAs QDs under increasing uniaxial stress are collected. We 

select 4 typical spectra under increasing uniaxial stress. Fig. 4.10 (a) shows the color-

coded PL spectra of a nearly unstrained QD, here a positive electric field 5 kV/cm is 

applied to compensate the pre-stress which comes from the processing and cooling. The 

neutral exciton (X) and multi-exciton emission (MX) can be clearly resolved: the X 

emission shows a wave pattern dependence with the polarization angle, which stems 

from the FSS, as we discussed in the previous chapter. The MX lines located at the low 

energy side, are attributed to the recombination of a ground-state electron with ground-

state hole in presence of additional carriers. The FSS has a relatively small value (~ 25 

μeV) and not evident net polarization can be observed. If we apply a moderate uniaxial 

stress to the QD (Fig. 4.10 (b)), the FSS increases substantially to ~ 80 μeV as 

expected44 and the polarization angle rotates. When we continue increasing the uniaxial 

stress (Fig. 4.10 (c) and (d)), significant changes are observed: both the emissions from 

X and MX become fully polarized parallel to the y-direction (perpendicular to the 

pulling (x) direction) and only one bright state can be observed in X. This is exactly 

what we expect based on the analysis in section 4.2, since the low numerical aperture 

(NA) of the used objective (0.42) and high refractive index of GaAs (~3.5) hinder the 

detection of the potential emerging vertically polarized component. In Fig. 4.11, we 

plot the linear polarization degree (P = (Imax-Imin)/(Imax+Imin)) (Imax/min mean the 

maximum/minimum intensity of the neutral exciton emission peak) and polarization 

orientation φ* of X and MX function with electric field (the magnitude is proportional 

to the uniaxial stress). It is clear to see the trend that P increases with the increasing 

uniaxial stress and the polarization orientation φ* rotates with increasing stress. For a 

sufficiently large stress on our GaAs QDs, the polarization degree P can 

deterministically reach 1 and the polarization orientation φ* will be perpendicular to 

the pulling direction (x), this is not only consistent with the theoretical prediction in 

section 4.2 but also confirmed by measurements on one additional dot (See Appendix 

A.2). 

The behavior of the MX line with respect to the X line under increasing uniaxial tension 

is presented in Appendix A.3.  
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Fig. 4.9: Microscope view of the semiconductor-PMN-PT hybrid device with a large membrane (~ 2×4 

mm2).  

 

 

Fig. 4.10: Color-coded linear-polarization resolved PL spectra of a GaAs QD for increasing tensile stress 

(top) and selected spectra along orthogonal directions (bottom). The polarization angle φ is referred to 
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the [100] crystal direction. Initially, (a), the emission from the neutral exciton X and multiexcitons MX 

shows no significant net polarization and the X emission is characterized by two bright components 

linearly polarized along random directions (30 and 120° for this QD). This random orientation stems 

from slight anisotropy in the confinement potential defined by the QD and also from some process-

induced prestress. At increasing stress, (b), (c) and (d), the polarization angle gradually rotates and finally 

is almost fully polarized along the [010] direction (φ* = 90°). 

 

 

Fig. 4.11: (a), Evolution of the degree of linear polarization of X emission and MX "band" (emission 

between vertical dashed lines in Fig. 4.10) for increasing tensile stress (increasing magnitude of applied 

electric field on actuator). (b), Evolution of polarization orientation φ* for the MX band and of the high 

energy component of the X line for varying stress.   

 

Although what we observed in the QDs embedded in the large membrane is 

consistent with the theoretical prediction, the proof is not complete. In fact we expect 

that the transition from HHz to HHx with increasing tension should be accompanied by 

the appearance of transition dipoles parallel to the z direction, as explicitly seen in Fig. 

4.12, which shows polar plots of the excitonic transition dipoles with increasing stress 

calculated with the EPM+CI methods. In the next section we unveil vertically polarized 

emission. 
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Fig. 4.12: Polar-coordinate representation of the excitonic transition dipole under different uniaxial strain 

calculated by the EPM+CI method using the realistic shape of our QDs (performed by Fritz Weyhausen-

Brinkmann and Prof. Dr. Gabriel Bester at University Hamburg).  

4.4.2 Measurements on narrow stripe membrane 

Based on previous reports, there are two possible methods to detect light polarized 

parallel to the growth direction. The conceptually simplest is to collect light propagating 

in the growth plane from the sample edge, i.e. with an objective with optical axis 

perpendicular to the growth direction145. However, this strategy cannot be easily 

implemented in our case considering the configuration of our device: the strained part 

of the membranes lies far away from the edge of the PMN-PT actuator, making light 

collection rather difficult. An alternative way would be the fabrication of waveguide 

and out-coupler gratings to guide this vertically polarized component towards an 

objective placed above the sample146. Because of the unavailability of some necessary 

instruments (Reactive-Ion Etching (RIE) system) at JKU for the fabrication of out-

couplers, we sought for an alternative approach: a wedged geometry produced via wet 

chemical etching can project the z polarized bright states towards the z-direction, which 

is compatible with the collection configuration we used (as shown in Fig. 4.5 (b)). 

To illustrate the feasibility of this idea, a dummy GaAs substrate is first employed. 

Then conventional UV-lithography of a 3.5 μm narrow beam is performed, followed by 

wet chemical etching (H2SO4:H2O2:H2O (1:8:200 in volume ratios) solution at room 

temperature). Then we removed the photoresist with acetone. To obtain the morphology 

of the pattern after etching, an AFM topography measurement is performed. From the 

AFM image in Fig. 4.13, it is evident that undercut occurs during the wet etching, which 

leads to tilted membrane side walls. When the QD membrane is bonded to the PMN-

PT substrate, the membrane is flipped upside down, as shown in Fig. 4.14 (a), thus the 

tilted sidewalls would act as mirrors to partially project the vertically polarized 

components along the z-direction (marked in red in Fig. 4.14 (a)). In addition, from the 

geometry, we expect the z-polarized light will be converted to y-polarized light. 
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Following this idea, narrow stripe membranes (3.5 μm) are defined with wet chemical 

etching, then bonded to the PMN-PT actuator, Fig. 4.14 (b) shows the optical image of 

the device with a narrow beam membrane.  

 

 
Fig. 4.13: (a) AFM image of stripe-like membrane after H2SO4:H2O2:H2O etching (b) 3D view of the 

AFM image of etched membrane. (c) Line profile of etched membrane. 

 

 

Fig. 4.14: (a) Sketch of the cross-section (y-z plane) of the stripe-like membrane used to project the 

vertically polarized into the collection optics. From the geometry, we expect such light to appear as y-

polarized. (b) Micrograph of a device consisting of a narrow stripe (3.5 μm in width) membrane bonded 

to the micro-machined PMN-PT actuator.  

 

With the narrow beam membrane, polarization-resolved PL spectra of neutral 

excitons X from different QDs under variable tensile uniaxial stress are measured, 

obtaining consistent results. Here we show a series of polarization-resolved PL spectra 

from two typical QDs, in Fig. 4.15. Compared to the data collected on QDs in large 

membranes, with the increasing magnitude of electric field applied (stress), an 

additional y-polarized component appears and becomes brighter with the stress. As 

shown in Fig 4.15 (a), the initially dark state Dz becomes partially bright with the aid 

of the a moderate uniaxial stress. With the increase of the uniaxial stress, the Dz 
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becomes brighter and moves from the low energy side to the high energy side of the 

bright exciton line By. This emerging component Dz/Bz is polarized along the y-

direction, consistent with our expectation for vertically polarized light. At the same 

time, the initially bright state Bx moves to the low energy side of the By with the 

increasing uniaxial tensile stress, as previously observed in large membranes. Moreover, 

the intensity of Bx drops monotonically with increasing stress (for this reason we refer 

to it as Dx for large tensile stress). 

 
Fig. 4.15: Color-coded polarization-resolved PL signal of a neutral exciton emission in a GaAs QD for 

different values of the electric field applied to the actuator. Tensile stress increases from top to bottom. 

An angle of 0° corresponds to polarization along the pulling direction x. Dz stands for one of the initially 

dark states, while Dx is the dark exciton state under tensile stress, By and Bz are the new two bright 

exciton states under tensile stress. The chosen color-scale (in log scale) enhances also weak features. (a)-

(e) show the evolution of exciton emission from QD1 (the same one shown in Fig. 4.7) and (f)-(j) show 

the evolution of exciton emission from another QD (here we name it QD2). 
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We show the evolution of the neutral exciton X emission from another QD (QD2) 

for increasing uniaxial stress in Fig. 4.15 (f)-(j). Very similar trends are observed.  

Since with increasing uniaxial stress one bright state keeps bright, we employ this 

bright state as a reference and shift other emissions horizontally to better illustrate the 

evolution of neutral exciton X under uniaxial stress. Fig. 4.16 (a)-(c) show a series of 

PL spectra of X emission from QD2 with different stresses. Initially the emission is 

characterized by two lines (Bx',y'), which are linearly polarized perpendicular to each 

other in the x-y plane and are split by the FSS, see Fig. 4.16 (a), which is the typical 

signature of a HHz exciton. For the investigated type of QDs, the orientations x’ and y’ 

are quite random and the average FSS is rather low (~ 4 μeV)29. We stress here that 

fluctuations in the azimuthal orientation of the transition dipoles are commonly 

encountered also for other QDs147 and represent a problem if the light has to be 

efficiently coupled into a waveguide. Then with increasing uniaxial stress, the distance 

between the two lines becomes larger. Meanwhile, the polarization direction (φ) of the 

high (low) energy component rotates and align to the y (x) with increasing (Figure 4.16 

(b)), and this is independent of the initial orientation of the dipoles. And as we 

mentioned before, the intensity of Bx’/Bx drops with the increasing uniaxial stress, 

indicating that this bright states Bx’ converts to a dark state with stress. Simultaneously 

an initially dark state Dz increases in brightness and moves to the high energy side of 

By. With increasing uniaxial stress, one of the initially bright states becomes nearly 

completely dark and an initial dark state becomes a new bright state Bz. Here we want 

to emphasize that, since this component Dz/Bz is never observed in QDs in the large 

membrane, we can safely attribute this feature to be a z-polarized component. After 

collecting and averaging the polarization resolved PL spectra of the QD at each specific 

voltage applied to the PMN-PT actuator, in Fig. 4.16 (d) we show the overview of the 

evolution of neutral exciton X under variable uniaxial stress. From previous 

experiments106 we know that the Bx’,y’ undergo an anticrossing at moderate strain levels 

(magnitude of Fp below -7.5 kV/cm). However, when the strain is larger enough, the 

‘FSS’ will not change linearly with the stress (Fp), which is different from the behavior 

of perturbative regime38, this is also an indirect indication that it is not proper to use the 

old quantization axis. Moreover, the (By'By)-(Bx'Dx) splitting almost saturates at a 

value of ~200 µeV for all investigated QDs.  

Figure 4.16 (e) shows the evolution of the X emission under tensile stress along 

[100] as calculated with EPM+CI. As in the experiment, energies are referred to the By 

line. The size of the symbols is proportional to the strength of each transition. The 

calculations qualitatively reproduce all the experimentally observed features including 

the darkening of one of the initially bright excitons and the brightening of one of the 

initially dark excitons. Also the energy shifts follow the experiment, although the 

absolute magnitudes are systematically smaller, which is currently under investigation. 
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Fig. 4.16: (a)-(c), Representative linearly polarized PL spectra of the X emission in QD2 for different 

values of the field Fp applied to the actuator (uniaxial stress). In (a) we see the usual fine-structure-

splitting (FSS) of a HHz exciton, characterized by two orthogonally polarized lines. The observed 

polarization anisotropy, relatively large FSS (14 µeV), and random orientation of the polarization 

directions are ascribed to HHz-LHz mixing induced by QD anisotropy and process-induced prestress. The 

applied uniaxial stress aligns the transition dipoles along the crystallographic axes, as shown in (b) and 

(c). z-polarized emission appears first as a shoulder on the low energy side of the By line (marked as Dz 

in (b). The emission of a HHx exciton is shown in (c). (d), PL spectra of the neutral exciton (X) emission 

of a QD as a function of electric field applied to the piezoelectric actuator. Spectra are shifted horizontally 

using the line labeled as By' or By as reference. (e), Relative transitions energies of the four excitonic 

components under uniaxial stress (compressive, top and tensile, bottom) computed by EPM+CI. The 

symbol size is proportional to the oscillator strength of the transitions. 

 

4.5 Quantitative determination of stress using monolithic PMN-PT 

actuator and embedded strain gauge 

In the previous sections we have discussed the effects produced by uniaxial stress 

on the emission of GaAs QDs. In the used samples it was unfortunately not possible to 

determine the quantitative values of stress and also to study the behavior under 

compressive stress. To address these point and enable the quantitative comparison of 
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experimental results and calculations, a new device was employed, although at the 

expense of a narrower tuning range. In this new device, a 100 μm thick (110)-cut PMN-

PT actuator was used to provide highly anisotropic in-plane (quasi-uniaxial) stress. 

Hence we just need to align the [100] crystal axis of GaAs to the major anisotropic 

stress axis of the PMN-PT actuator and make the bonding. By sweeping the voltage 

applied between the top and bottom sides of the actuator, the properties of QDs under 

both tensile and compressive quasi-uniaxial stresses can be studied, as shown in Fig. 

4.17 (a). To experimentally quantify the values of stress applied on the QDs, a sample 

with 150 nm GaAs layer was used (the structure of the QDs-contained membrane is 

displayed in Fig. 4.17 (b)) and the PL emission of the GaAs layer will be used as the 

stress (strain) gauge, since its PL response to the deformation was well studied110,148,149.  

 

 Fig. 4.17: (a) Sketch of the device, in which a QDs-containing membrane was bonded on a (110) cut 

PMN-PT substrate. A quasi-uniaxial stress can be obtained through applying the voltage between the top 

and bottom sides of the actuator. (a) The schematic structure of the membrane, which consists of 150 nm 

GaAs, 95 nm Al0.4Ga0.6As, 120 nm Al0.4Ga0.6As, 4 nm GaAs, 5 nm chromium and 100 nm gold. The QDs 

were sandwiched between layers of Al0.4Ga0.6As. 

 

The main idea is as follows: LH and HH are degenerate at Г point in absence of 

strain, while in-plane stress will break the crystal symmetry and eliminate the 

degeneracy, leading to the appearance of two PL emission peaks (as shown in Fig. 4.18 

(a)-(c)). These two peaks can be attributed to the radiative recombination of the 

electrons in CBs and holes in the strain-split VBs. Using these energy values and 

polarization angles of the two peaks as input data, we adopted the Pikus–Bir 

Hamiltonian model148 (see Sec. 2.2.3) to figure out the strain configurations which show 

minimum deviations between the experimental and fitted value. Fig. 4.18 (b)-(f) are the 

polarization resolved PL spectra of the neutral exciton X under different strains (the εxx 

were calculated from the PL spectra of thick GaAs layer). Compared to the studies using 

two-finger PMN-PT actuator, qualitatively consistent results were obtained: with an 

increasing tensile quasi-uniaxial stress, the FSS increased and an evident linear 

polarization was observed. While if we took a sight to the compressive regime, which 

was within the scope of study using the two-finger PMN-PT actuator, the FSS kept 

increasing with an increasing amplitude of compressive stress and linear polarization 

degree, which is parallel to the compression direction, started to emerge. Besides, the 

FSS and DOLP for neutral exciton X showed an asymmetric dependence under tension 

and compression. Some further studies, including the physical origin and intrinsic 
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lifetime dependence on the uniaxial stress, are under investigation within a 

collaboration with Dr. Petr Klenovsky from Masaryk University, Brno.  

 

 

Fig.4.18: (a)-(c), Polarization resolved PL spectra of GaAs (the 150-nm-thick layer seen in Fig. 

4.17(b))for various voltages (Vp) applied to the PMN-PT actuator. (d)-(f) Polarization resolved PL spectra 

of the neutral exciton (X) emission from GaAs QDs at different strains, the εxx indicated the major strain 

obtained from the PL spectra of thick GaAs layer. 

4.6 Conclusion and outlook 

In summary, the rotation of the natural quantization axis of GaAs QDs is 

demonstrated upon application of uniaxial tensile stress. With this new quantization 

axis, two new bright eigenstates replace the old ones. 

Through a novel micro-machined PMN-PT actuator, strain-free GaAs QDs and 

narrow stripe membranes with tilted sidewalls, we managed to experimentally prove 

the rotation of quantization axis with uniaxial effect. We believe this work will have 

potential implications for integrated quantum photonics124,150. Especially relevant 

features of quantum emitters in such applications are: (i) efficient light-coupling to 

guided modes. Indeed what counts is the orientation of the transition dipoles d with 

respect to the electric field Ek corresponding to the guided mode k in a photonic 

waveguide. The coupling efficiency is in fact proportional to |𝑑 ∙ 𝐸𝑘|
2. For optimal 

coupling, the QDs should thus feature at least one transition dipole parallel to Ek. 

However, in conventional QDs, (with the heavy-hole ground state, described by a total 

angular momentum projection Jz=±3/2 along the z-quantization axis, which coincides 

with the growth direction) the azimuthal orientation of the transition dipoles (in the 
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growth plane) is affected by random fluctuations29,147. By setting instead the of 

quantization axis for the holes total angular momentum in the growth plane, we achieve 

a deterministic control of the orientation of the transition dipoles. (ii) Fast radiative 

recombination, which is beneficial for high photon rates and indistinguishability. 

Indistinguishable single photons are considered as the most fundamental and key 

building blocks for quantum computation and networks, however the non-ideal 

indistinguishability of photons emitted by QDs is a longstanding obstacle to application. 

The QDs used in this work already show excellent single photon purity and good 

indistinguishability when excited resonantly with two-photon absorption22,70,71, which 

is compatible with planar photonic circuits and strongly reduces exciton recapture. 

Besides, no line broadening is observed during the experiments presented above, which 

make us confident that the optical properties are not deteriorated by the uniaxial stress 

along [100] direction. (Results of experiments with stress applied along piezoelectric 

directions ([110] and [11̅0] directions) are shown in Appendix A.4) 

If we inspect the calculated transition strengths of excitonic dipoles under uniaxial 

compression (shown in Fig. 4.19 (a)), the emission of a LHx-exciton is dominated by a 

single emission line with polarization parallel to the compressive stress direction and 

with an oscillator strength which is almost twice that of each of the two bright excitons 

in our HHz QDs. Considering that HHz excitons in GaAs QDs are already characterized 

by very short lifetimes (~250 ps)70,71, the combination of deterministic QD positioning 

in photonic structures151,152, and uniaxial-strain-engineering (as sketched in Fig. 4.19 

(b)) may lead to ideal single-photon sources with enhanced recombination rate [~8 GHz, 

see right axis of Fig. 4.19 (a)] and indistinguishability levels. Different from the most 

common strategy to couple the QDs to high Q optical cavity153,154, here strain induced 

suppression y and z polarized emission will result in a "oscillator-strength 

concentration" on the x-polarized emission, and a lifetime reduction and higher 

indistinguishability are expected.  
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Fig. 4.19: Envisioned applications of strain-engineered single photon source for integrated quantum 

photonic circuits. (a), Calculated transition strength and estimated rates for light polarization along the x 

(blue), y (red), and z (black) directions for varying uniaxial stress along x for QDs with structure taken 

from experiment (symbols) and GaAs subject to a fixed biaxial compression with σxx=σyy=-120 MPa 

(solid lines). (b), Envisioned approach to obtain high-speed single-photon sources based on LHx excitons 

confined in GaAs QDs. A waveguide is fabricated to contain preselected QDs followed by deposition of 

side dielectric layers, which act at the same time as cladding, passivation and stressor layers. The uniaxial 

stress (produced, e.g. by the different thermal expansion coefficients of dielectric and (Al)GaAs 

heterostructure aligns the quantization axis of the QD along the stress direction (x) and the resulting LHx 

exciton acts as an ultrafast source of single photons ideally matched to the propagating modes in the 

waveguide. 
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5. Monitoring the motion of a frequency-

tunable micromechanical oscillator with 

single quantum dots 

    In the previous chapter, we have discussed how a novel micromachined 

piezoelectric actuator can be used to study the effects produced by uniaxial stress on 

the electronic structure and optical properties of GaAs QDs embedded in suspended 

nanomembranes. These nanomembranes, with mass down to about 100 picograms, can 

be considered as micromechanical oscillators. Because of the high sensitivity of QDs 

to mechanical deformations, we now use the emission of single QDs to monitor the 

oscillations of nanomembranes and show that our actuator can be used both to excite 

mechanical resonances and tune their frequencies. 

5.1 Introduction 

Micro- and nano-mechanical resonators are widely employed as sensors because 

of their response to, e.g., electric, magnetic and optical forces. New avenues for nano-

mechanical resonators have recently opened up by combining such mesoscopic objects 

with two-level quantum systems 155. Ideas range from mechanical control of quantum 

mechanical systems such as single spins156, quantum non-demolition (QND) 

measurements of the state of the quantum systems by reading the mechanical state of 

the resonator157, to the use of mechanical oscillations to mediate the interaction between 

distinct quantum mechanical systems158,159  

Work on optically active quantum dots coupled to mechanical resonators is still 

limited. Yeo et al.160 and Montinaro et al.161 presented first steps towards the 

experimental realization of these hybrid devices: QDs embedded nanowires were 

coupled with the mechanical resonance. In both cases oscillations were excited by 

piezoelectric actuators. In a recent work, Carter et al.162 have investigated the coupling 

of spins to the motion of a cantilever excited with an amplitude-modulated laser. They 

found that the hole g-factor sensitively responds to the modulated strain produced by 

the oscillations. The possibility of modulating the g-factor of electrons or holes 

confined in QDs via strain opens up the possibility of controlling the state of confined 

spins via g-tensor modulation techniques at constant magnetic fields 163. Compared to 

electric-field based g-tensor modulation, a strain-field g-tensor modulation may be 

beneficial because of reduced hole dephasing produced by charge noise 164. In all the 

mentioned works the frequency of the oscillations was dictated by the structural 

parameters of the used mechanical resonators. 

Although some groundbreaking works on QDs optomechanical device have been 

achieved160,161, the coupling strength and resonant eigenfrequencies are not in-situ 
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tunable through the external fields. In this chapter, we realize a novel tunable hybrid 

quantum-dot-mechanical-resonant-system, a strong coupling is implemented between 

nanomembranes and QDs. Since QDs are sensitive to strain fields, here we take the 

advantage of the vibration theory of beams to couple the QDs with the mechanical 

vibrating of nanomembrane.  

5.2 Vibrations theory of beams 

The mechanical resonator used in this work can be simplified as a vibrating beam. 

Oscillations are excited by applying an AC voltage across the two fingers of the 

micromachined actuator. Considering the deformation caused by the PMN-PT actuator, 

there will be two main modes of the vibrations: transverse and longitudinal vibrations. 

In this work we only focus on the transverse modes and more information on 

longitudinal mode can be found in Ref165. Here a classic model on the effect of an axial 

force on the transverse vibration of beams will be introduced. A vibrating beam is 

subject to a tensile force S along x, as shown in Fig. 5.1. The differential equation for 

the deflection v at a position x under dynamic transverse loading reads (Euler-Lagrange 

equation)166,167: 

𝐸𝐼
𝑑2𝑣

𝑑𝑥2 = 𝑀 + 𝑆𝑣,                        (5.1) 

where E is the modulus of elasticity, M stands for the bending moment produced by a 

transverse loading of intensity w, I is the area moment of inertia. Then by two times 

differentiation of equation (5.1) with respect to x, we get 

𝑑2

𝑑𝑥2 (𝐸𝐼
𝑑2𝑣

𝑑𝑥2) = 𝑤 + 𝑆
𝑑2𝑣

𝑑𝑥2                     (5.2) 

To obtain the differential equation for transverse vibrations, the inertial force per unit 

length for w is assumed and equation (5.2) can further reads:  

𝜕2

𝜕𝑥2 (𝐸𝐼
𝜕2𝑣

𝜕𝑥2) − 𝑆
𝜕2𝑣

𝜕𝑥2 = −𝜌𝐴
𝜕2𝑣

𝜕𝑡2                (5.3) 

Where ρ is the density of beam and A is its cross-section area.  

Assuming the beams is under one of the modes of transverse vibration, the solution of 

equation (5.4) can be expressed in the form as follows, 

𝑣 = 𝑋(𝐴1 cos𝜔𝑡 + 𝐴2 sin𝜔𝑡)                  (5.4) 
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Fig. 5.1: Schematic picture of an axially forced beam 

 

Where X is a spatial distributed function, and substituting equation (5.4) into equation 

(5.3), 

𝐸𝐼
𝑑4𝑋

𝑑𝑥4 − 𝑆
𝑑2𝑋

𝑑𝑥2 = 𝜌𝐴𝜔2𝑋                    (5.5) 

To obtain the analytical solution of the equation, we follow Ref.168. By introducing the 

dimensionless beam coordinate ς = x/l, where 0 ≤ ς ≤ 1, the general solution of (5.5) 

can be written as: 

𝑋 = 𝑐1 sinh𝑀1𝜁  + 𝑐2 cosh𝑀1𝜁 + 𝑐3 sin 𝑁1𝜁 + 𝑐4 cos𝑁1𝜁         (5.6) 

Where c1, c2, c3, c4 are constants and M, N are defined as: 

𝑀1 = 𝑙√
𝑆

2𝐸𝐼
+ √(

𝑆

2𝐸𝑖
)
2

+
𝜌𝐴

𝐸𝐼
𝜔2 = √𝑈 + √𝑈2 + Ω2 

𝑁1 = 𝑙√−
𝑆

2𝐸𝐼
+ √(

𝑆

2𝐸𝑖
)
2

+
𝜌𝐴

𝐸𝐼
𝜔2 = √−𝑈 + √𝑈2 + Ω2        (5.7) 

𝑈 =
𝑆𝑙2

2𝐸𝐼
 is the dimensionless tension parameter, Ω =

𝜔𝑙2

𝛼
 is dimensionless natural 

frequency parameter, I is the second moment of area, α = √
𝐸𝐼

𝜌𝑎
 is a dimensionless 

parameter and i is the vibration mode number.  

If we consider the boundary conditions for the doubly clamped beam model, which are： 

𝑋𝑥=0 = 0; (
𝑑𝑋

𝑥
)
𝑥=0

= 0; 𝑋𝑥=𝑙 = 0; (
𝑑𝑋

𝑥
)
𝑥=𝑙

= 0          (5.8) 

After a series substitution and simplifications, we obtain a final “characteristic-beam-

equation”165: 
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𝛺 + 𝑈 sinh√𝑈 + √𝑈2 + Ω
2
sin√−𝑈 + √𝑈2 + Ω2 − Ω ∙

cosh√𝑈 + √𝑈2 + Ω2 cos√−𝑈 + √𝑈2 + Ω2 = 0      (5.9) 

A numerical solution of this equation can be obtained165:  

𝑓𝑖
𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑓𝑖

𝑓𝑟𝑒𝑒
∙ Ω̅ 

       𝑓𝑖
𝑓𝑟𝑒𝑒

≈ (𝑖 +
1

2
)
2

∙
𝜋

2√12
∙

ℎ

𝐿2 ∙ √
𝐸

𝜌
           (5.10) 

𝑓𝑖
𝑠𝑡𝑟𝑒𝑠𝑠  and 𝑓𝑖

𝑓𝑟𝑒𝑒
 are the vibration eigenfrequencies with and without axial stress, 

respectively.   

And Ω̅ =
Ω

Ω
𝑖

= √1 + 0.97�̅�                    (5.11) 

Which defines the variation of the normalized natural frequency parameters with the 

normalized tension parameter for all modes, Ω𝑖 is the dimensionless natural frequency 

parameter under no axial force in vibration mode i. Here the normalized tension 

parameter �̅� =
𝑈

𝑈𝑚𝑖
, 𝑈𝑚𝑖 =

(𝑖+1)2𝜋2

2
, and Umi denotes the dimensionless critical 

buckling load.  

Lastly, if insert the second moment I for a rectangular cross-sectional area with 
𝐴ℎ2

12
, 

T = σA, σ is the tensile stress. Equation (5.11) can be further written as: 

Ω̅(𝜎) = √1 + 0.97 ∙
12

𝜋2 ∙
𝜎𝑙2

𝐸ℎ2 ∙
1

(𝑖+1)2
            (5.12) 

From this equation we see that the resonance frequency increases with tensile stress. To 

give a visualized image of the transverse vibration modes, the first four transverse 

vibration modes are presented (with COMSOL Multiphysics) in Fig. 5.2 
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Fig. 5.2: Transverse vibration modes (lowest four modes) of the double clamped beam model obtained 

via COMSOL Multiphysics. The color scale is proportional to the deformation amplitude |ui|, normalized 

to the unity. 

5.3 Experimental implementation of frequency-tunable oscillator 

As in the previous chapter, stripe-like nanomembranes with embedded QDs are 

bonded on a micro-machined piezoelectric actuator, forming a double-clamped beam 

mechanical resonator. With the introduction of a bias tee, both an alternating current 

(AC) voltage (acting as the mechanical driving force) and a direct current (DC) voltage 

(adjusting the hydrostatic axial stress) can be simultaneously applied to the PMN-PT 

actuator. The chosen arrangement not only guarantees a strong intrinsic coupling 

between actuator and mechanical resonator but also allows the resonant frequencies to 

be reversibly tuned through different uniaxial stresses.  

A sketch of our device is shown in Fig. 5.3 (a). There is a small gap (usually the 

distance ranges from 20~60 μm, as shown in Fig. 5.3 (b)) between the “two fingers” of 

the PMN-PT actuator and the suspended stripe-like nanomembranes lie on the gap. A 

voltage is applied between the bottom and top (ground) of the actuator. The induced 

electric field will lead to a deformation of fingers, which will induce uniaxial stress to 

the nanomembranes. Since the total length of the fingers (3.0 mm) is much larger than 

the gap width, strain is strongly amplified. In addition, here we keep the same length of 

fingers in order to avoid in-plane displacement of QDs arising from the stress.  

To ensure that the QD emission is affected by transversal oscillations, the QD layer 

is displaced from the center of the membrane. Specifically, the membrane structure 

comprises the following layers (from bottom to top): 100 nm Au, 10 nm Cr, 127.4 nm 
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GaAs, In(Ga)As QDs and 127.4 nm GaAs. During an oscillation period the QD will be 

alternatively subject to compressive and tensile strain, leading to an oscillation of the 

transition energy with an amplitude 2 (see Fig. 5.4).  

 

Fig. 5.3: (a) Sketch of the quantum dot embedded in a mechanical resonator. QDs are embedded in stripe-

like nanomembranes with both sides bonded to the PMN-PT actuator. (b) Micrograph showing two 

membranes. The scale bar corresponds 30 μm.  

 

.  
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Fig. 5.4: (a) Sketch map of the nanomembrane deformation in the first-order transverse vibration mode. 

The hydrostatic strain field is plot in blue-to-red scale (blue: compression, red: tension). 1 is the static 

state, 2 and 3 are the typical states when the QD experiences tensile and compressive strain. The yellow 

inverted triangles indicate the QD. (b) Energy level diagram of QD in static states (1), under strain fields 

(2, 3), the strain fields shift the transition energy by –ћδω and +ћδω. (c) Typical QD PL spectrum off 

(black) and in (red) mechanical resonance. 

 

The whole experimental setup is shown in Fig. 5.5. In order to collect the 

photoluminescence (PL) signal, the device shown in Fig. 5.3 is mounted in a liquid-

helium-flow cryostat that can be cooled to a cryogenic temperature below 10 K. A 

continuous-wave (cw) laser with wavelength of 532 nm was employed as the optical 

excitation source, the PL signal emitted from QDs is collected by a 50× objective with 

numerical aperture 0.42. After passing through a long-pass filter to block the laser, the 

signal is introduced into a spectrometer equipped with an 1800 groves/mm grating and 

liquid-nitrogen-cooled silicon Charge-Coupled-Device (CCD). To study the time-

resolved PL evolution, an avalanche photodiode (APD) is employed. In this case, a 

mirror is used to send the signal to the APD and the spectrometer acts as a 

monochromator. Mechanical oscillations of the nanomembranes are excited by AC 

signals provided to the PMN-PT actuator. As mentioned before, a static uniaxial stress 

can be simultaneously applied by adjusting the DC voltage applied to the actuator 

 

Fig. 5.5: Schematic diagram of experimental setup: DC sourcemeter and function generator are employed 

to apply DC and AC signals to the PMN-PT actuator. The PL signal, dispersed by a grating spectrometer, 

is collected either by a CCD camera or by an avalanche photodiode (APD). 
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5.4 Opto-mechanical behavior of beam oscillators 

As mentioned above, strain will produce an energy shift of the QD emission. For 

oscillations with small amplitude we can assume that the energy shift is proportional to 

the local strain. In time-integrated PL spectra, such as those shown in Fig. 5.4(c), 

oscillations produce broaden emission lineshapes. We first fit this broaden emission 

lineshpes with a time-integrated Lorentzian equation169,170, which a strain modulated 

energy shift ΔE can be extracted, then we quantify the amplitude of the oscillations with 

ΔE. Fig. 5.6 (a) shows one of the resonances and its evolution with varying driving 

amplitude. Here the trion emission line of a QD is chosen because of its relatively sharp 

linewidth (full width at half maximum (FWHM) of 29 μeV, corresponding to the 

resolution limit of the used setup) and relatively high intensity. An example of data used 

to generate Fig. 5.6 (a) is shown in the inset, which present PL spectra collected for 

different driving frequencies with a driving amplitude of 100 mV. At lower driving 

amplitude the lineshape of the resonance is symmetric and has a quality factor between 

5500 and 6500.  

With increasing driving amplitude, the peak becomes more asymmetric and shifts 

to lower frequency. This shark-fin shape can be attributed to the onset of nonlinear 

behavior, which can be modelled with a Duffing oscillator model171. In this model, the 

restoring force takes the form: α𝑥 + β𝑥3, in which x stands for the displacement, α is 

the linear stiffness parameter and β is the non-linear parameter in restoring force. The 

cubic term becomes important at sufficiently large excitation forces.  

In order to exclude non-linear effects and investigate the tuning of the resonance 

frequency, a smaller driving amplitude of 25 mV is used. The resonance evolution with 

different DC voltages (tensile stress) is plot in Fig. 5.6 (b). With increasing tensile stress, 

the PL emission shows a redshift. At the same time, the resonance frequencies (marked 

by red dashed circles) increase with the increasing tensile stress, which follows the 

rising tendency of equation (5.11). However, due to the limited hydrostatic axial stress 

applied, no clear 𝑓 ∝ √𝜎 dependence can be observed. Although the frequency tuning 

shown in Fig. 5.6 (b) is not large (~0.46%, from 2.772 MHz to 2.785 MHz), the axial 

strain we applied here is also moderate (below 0.1%). Since the actuator is capable of 

strains of up to ~2%, much larger tuning ranges could be in principle achieved.  

The reason for the limited tuning range shown here is that in several attempts 

resonances disappeared during the experiment, so that we were not able to follow them 

systematically. A possible explanation is that some irreversible structural change 

occurred (for instance a structural change of the bonding layer or detachment of 

particles present on the membrane). Fabrication imperfections also prevented a 

quantitative comparison of calculated and measured resonance frequency positions. For 

possible further experiments, the bonding and cleaning procedures should be therefore 

improved. 
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Fig. 5.6: (a) Variation of the width of the PL emission of a trion confined in a QD as a function of driving 

frequency and with different driving amplitude of the AC voltage applied to the piezoelectric actuator. 

The DC voltage is kept at 0 V (no external static stress is applied through the PMN-PT actuator). Inset 

represents color-coded PL spectra of the trion emission as a function of driving frequency with 100 mV 

driving amplitude. (b) Frequency-resolved PL spectra of trion emission with different tensile stresses. 

From left to right, the DC voltage is 0 V, 10 V, 20 V, 30 V, 40 V, 50 V. The driving amplitude (AC) is 

kept at 25 mV.  

 

For possible applications of the oscillator (e.g. for g-tensor modulation), higher 

operation frequencies than those shown in Fig. 5.6 will be required. In spite of the bulky 

structure of the actuator employed here, we searched for high-frequency resonances.  

Fig. 5.7 (a) shows the time-integrated spectrum for a resonance at a frequency of  

19.75 MHz and an AC driving voltage of 1.9 V. To study the oscillations in the time-

domain we have performed series of time-resolved PL measurements using an APD. 

The general measurement procedures are as follows: first we choose a mechanical 

resonance, indicated by line broadening in time-integrated PL (here we chose a trion 

emission line), then a monochromator was used to select emission at several particular 
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wavelengths and the photons were detected by an APD with the time correlated 

counting electronics triggered by the RF function generator. The APD counted the 

photons at each specific wavelength within the RF period. Lastly, we collected all the 

data (three demensional matrix of wavelength-time-photon count) and plot a color-

mapped time-resolved QD emission shift under mechanical resonance, An example of 

result is shown in Fig. 5.7 (b). For this experiment a square pulse wave (generated by a 

Keysight (Agilent) Technologies 81134A Pulse Pattern Generator), instead of a 

sinusoidal wave, was employed as the mechanical excitation source.  

Due to the limitations of the available function generator, the maximum resonant 

frequency we observed was around 61.5 MHz, the time-resolved PL spectra are shown 

in Fig. 5.7(c). We note that in this experiment the rate at which the emission energy 

shifts exceed values of 50 µeV/ns. Taking into account that the typical lifetime of the 

excitonic transitions in the used GaAs QDs is of the order of 250 ps and the 

corresponding natural linewidth is 2.3 µeV, this means that the strain modulation 

produces energy shifts of the order of 5 times the natural linewidth during the lifetime 

of the exciton. As strain also changes the excitonic fine-structure splitting, this speed 

may be already sufficient to observe non-trivial phenomena, such as Landau-Zener 

transitions172,173.  

 

 

Fig. 5.7: (a) Comparison of the PL Spectra of the trion emission when the mechanic frequency applied 

out of (open squares with black line) and in (filled squares with red line) resonance with the mechanical 

mode. Time-resolved PL evolution at (b) 19.75 MHz and (c) 61.5 MHz. 
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5.5 Conclusion and outlook 

In summary, we have investigated here the possibility of using microprocessed 

piezoelectric actuators to drive oscillations in micromechanical resonators consisting 

of semiconductor nanomembranes with embedded QDs. By combining the AC voltage 

used for excitation with DC voltages, the resonance frequencies can be tuned in-situ 

through the tensile stress provided by the PMN-PT actuator. Furthermore, through the 

time-resolved PL measurement of QDs, we confirmed the feasibility to modulate the 

transition energies on timescales faster than the excitonic lifetime, opening the way to 

interesting experiments on two-level systems with time-varying energies.  

One of the disadvantages of our hybrid device lies in the mechanic resonator. In 

principle, the resonances should be well-resolved, as discussed in section 5.2. However, 

the resonance frequencies in our device show no sign of deterministic, which may arise 

from frowsy integration between the membrane and PMN-PT. Compare to the 

monolithic device160,174, the SU8 adhesion layer is a poor medium to effectively transfer 

the strain. In addition, some residue particles (which can be found in Fig. 5.3 (b)) from 

the SU8 and by-product of chemical etching will make some non-negligible effect on 

the effective mass of the membrane161,175, which definitely will alter the resonant 

frequencies and decrease the Q-factors, further restrict the optomechanics engineering. 

Considering the most promising application to use the hybrid device as transducer for 

quantum information, the hybrid interaction rate should be comparable to decoherence 

time of the quantum system to the local environment176,177, high vibration modes 

(higher frequencies) and large optomechanical coupling parameter are needed. 

However, all of this get stuck with the chaotic vibration modes in the present device. 

So a hybrid device with deterministic resonant frequencies should be fabricated in the 

next step, or some other mechanical excitation method (such as SAWs) should be 

adopted.
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6. Quantum dots manipulation with surface 

acoustic wavesVII 

6.1 Motivation to manipulate QDs with SAWs 

In the previous chapter, a promising QD-mechanical resonator hybrid system was 

described and its tunability was demonstrated. However, several issues still exist 

through the straight strain modulation from the piezoelectric actuator: the mechanical 

coupling between actuator and semiconductor resonator turned out to be little 

predictable and high mechanical frequencies (in the GHz regime, needed to achieve the 

quantum coherent coupling to the QDs) may be challenging unless the piezoelectric 

actuator is miniaturized.  

SAW technologies have been thoroughly developed over several decades178. 

Definitely, it would be an advantageous method to manipulate the QDs with SAWs: a 

monolithic device with robust and stable SAWs coupling can be monolithically 

fabricated since GaAs is piezoelectric material, and SAWs in GaAs have been 

thoroughly investigated.  

Although QDs emerged as a leading single photon source for much impressive 

progress being made during the past decade, the dephasing and resulting 

indistinguishability reduction of emitted photons is a long-term obstacle for QDs being 

the ideal single-photon source179,180. Considering the solid-state nature of QDs, several 

elements could lead to the reduction of photon coherence and decrease the 

indistinguishability level181–183. Phonons are commonly believed to play complex but 

vital roles to the decoherence properties of photons emitted by QDs153,154,184. It would 

be thus desirable to control and manipulate the phonons and their interaction with 

excitons confined in QDs as will. Analogous to photonic structures, phonons can be 

engineered via designed phononic structure. Thus with the integration of photonic 

structure and phononic structure to the QDs, a fully on-chip hybrid optomechanical 

system can be realized via the independent manipulation of light (photons), sound 

(phonons) and matter (excitons)170.  

Although many excellent works on the combination of SAWs and QDs have been 

done, most of the works are still limited on Rayleigh waves116,119,185, basic research 

work on the QDs reaction to phononic structures need to be done. In this chapter, we 

will make a systematic study of the behavior of QDs located in a basic waveguide with 

SAWs. 

                                                             
VII The work in this chapter was conducted at Universität Augsburg jointly with Anja Vogele, Maximilian Sonner 

and Matthias Weiß.  
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6.2 Device design and experimental implementation 

In order to make a systematic study of the sound wave propagation properties and 

make a comparison with the usual Rayleigh waves, a new device is designed and 

fabricated. The sketch of the whole device is shown in Fig. 6.1 (a). An IDT is placed 

on one side of the sample, the IDT’s fingers are aligned to be perpendicular to the [110] 

direction on the (001) GaAs surface. Along this direction the piezoelectric coupling is 

maximum and employed to generate SAWs. A signal generator is connected to the 

IDTs- to apply a radio frequency voltage to the interdigital comb electrodes. Thus the 

(Al)GaAs material will deform underneath the comb fingers. The sample we used 

consists of three main layers: GaAs substrate, (Al)GaAs sacrificial layer and a second 

(Al)GaAs layer of lower Al-content with QDs embedded in its center. With this kind of 

structure, suspended beams can be fabricated through a series of processing steps (the 

details will be introduced later). In this work, two regions are mainly studied: the bulk 

material area (marked with red dashed line) and the suspended area (marked with white 

dashed line). The geometry of the suspended beams studied here can be seen in the 

scanning electron microscope (SEM) image in Fig. 6.1 (b). These beams possess the 

same width but different lengths. In the SEM image, the suspended areas of all three 

beams are clearly visible. 
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Fig. 6.1: (a) Sketch of the device in our work, the coordinate system corresponds to the crystal orientation 

of cleaved GaAs. (b) SEM image of the suspended beams studied in this chapter, the widths of them are 

all 1.5 μm and the lengths are 10 μm, 50 μm, and 30 μm.  

 

    The sample used here (AS275) contains GaAs QDs grown with the droplet etching 

method. The detailed structure of the as-grown sample is illustrated in Fig. 6.2 (a), 

which is the same as the “bulk” area shown in Fig. 6.1 (a). The sample comprises GaAs 

substrate, 1.2 μm Al0.75Ga0.25As sacrificial layer and the layer with embedded QDs. The 

GaAs QDs are sandwiched by 75 nm and 77 nm Al0.4Ga0.6As layers, with 4 nm GaAs 

capping layer on the top and bottom sides. In the “suspended beam” area, only the layer 

containing the QDs is left. Two types of GaAs QDs exist in our sample: one comes 

from the deposition of GaAs on the surface of the AlGaAs layer (type I), where residual 

roughness induces the unintentional localization of excitons, giving rise to “natural 

QDs”; the other one is formed by the GaAs filling to the nanoholes etched by Al droplet 

(type II). A typical PL spectrum of the sample is shown in Fig. 6.2 (c). Because of the 

difference in forming mechanisms, these two types QDs show different properties. First 

of all, the type II QDs have larger sizes compare to type I, as indicated in Fig. 6.2 (c), 

the PL emission of type 2 is usually located from 775 nm to 800 nm, while the type I 

QDs emit around 680~730 nm. Secondly, the density of type I is much higher than type 

II, which is also apparent from Fig. 6.2 (c). 

 

 

Fig. 6.2: Sample structure of (a) bulk and (b) suspended beam area. Besides intentional dots obtained by 

droplet etching (type II), thickness fluctuations in the 2-nm-thick GaAs quantum well induce “natural 

QDs” of type I. (c) Typical PL spectrum of the sample we used in this work, QDⅠ,Ⅱ are marked.   

 

The device processing was performed by Matthias Weiß at the “Lehrstuhl für 

Experimentalphysik 1”, University Augsburg, and the whole processing flow is 
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presented in Fig. 6.3. To illustrate the steps, the view is chosen to be perpendicular to 

(110) plane. The processing proceeds as follows: after proper cleaning, the sample was 

spun with photoresist and electron beam lithography (EBL) was employed to write the 

pattern. After development, the sample was inserted into the chamber of a Reactive-Ion 

Etching (RIE) system, the remaining photoresist was used as mask. A RIE dry etching 

step was performed down to the (Al)GaAs sacrificial layer. After that, the sample the 

photoresist was removed. Later the sample is immersed in a 20% HF solution for 20 s 

to make the undercut etching of the (Al)GaAs sacrificial layer. Then supercritical drying 

was performed in order to avoid the collapse of the suspended area after the cleaning 

of the residue of HF. Lastly, plasma cleaning was carried out to clean the residues, 

which may come from the remnant resist or hydroxide of aluminium175.  

 

Fig. 6.3:  Schematic flow chart of the processing steps for the studied device. The view is perpendicular 

to the (110) plane. The device was fabricated by Matthias Weiß at University Augsburg. 

6.3 FEM simulation of SAWs interaction with QDs 

Due to the different materials contained in the multilayer structure, we use the software 

COMSOL Multiphysics to analyze the propagation of SAWs (frequency-velocity 

relations, strain field, electric field, etc.) in our structures.    

6.3.1 Simulation of Rayleigh waves 

    First, we consider Rayleigh waves. The setting and boundary conditions is briefly 

described in Section 3.4. In this simulation, only a single unit cell is considered: its 

width is set to one SAW wavelength (λSAW) and the depth of the unit cell is set as three 

times of λSAW, since the Rayleigh waves decay exponentially with the distance from 

surface (usually limited to one wavelength). The two side edges are set as periodic 

boundary conditions with the middle line as antisymmetric axis. Then we set different 

wavelengths, make a parametric sweep for searching the eigenfrequencies. With this 

method, we can obtain the dispersive frequency-velocity relations, the result of our 

sample is shown in Fig. 6.4 (a). Inset of Fig. 6.4 (a) show the hydrostatic pressure and 

electric potential. Here we point out that these mechanical and electric properties scale 

linearly with the SAWs amplitude, so the absolute value is not critical. These 

simulations clearly show the surface-confined mode of the Rayleigh waves. Fig. 6.4 (b) 
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is the total displacement utotal, longitudinal displacement ux and transverse displacement 

uz of the QDs along the propagation [110] direction. As introduced in Section 2.3.2, for 

a Rayleigh wave a lattice site follows an elliptical trajectory, which is indicated by the 

π/2 phase difference and amplitude difference of dx and dz. The calculated electric 

potential ϕ is plot in the inset of Fig. 6.4 (a) and the longitudinal and transverse electric 

fields Ex and Ez with x position are in Fig. 6.4 (c). Here the electric fields at the QDs 

positions from the longitudinal and transverse components reflect again the π/2 phase 

difference. 

 
Fig.6.4: (a) Calculated velocity dependence with frequency when SAWs are propagating along the [110] 

direction of the sample AS275. The inset shows the mechanical and electric properties of the unit cell of 

the sample with the interaction of SAWs. The [110] direction is defined as x-direction while [001] 

direction is defined as z-direction. The extracted displacements components (b) and electric fields 

components (c) at the QD position.  
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6.3.2 Simulation of Lamb waves 

    With regard to the Lamb waves, the settings for FEM simulation are similar, the 

difference is that now the layer containing the QDs is suspended. Because of the lack 

of a bottom matter-vacuum interface, the solutions corresponding to Lamb waves is 

significantly more difficult to indentify than that of Rayleigh waves. According to the 

brief introduction to Lamb waves in Section 2.3.4, there are two types of solutions, 

which correspond to the symmetric and antisymmetric (flexural) modes (shown in Fig. 

6.5 (a)). If we go back to the equation (2.41) and (2.42) for the two modes, the allowed 

values of velocity will emerge for a given value of angular frequency 𝑤. Fig. 6.5 (b) 

shows the velocity dispersion curves of Lamb waves propagating in a suspended beam 

of the AS275 sample. For moderate frequencies (<15 GHz), only a single symmetric 

and a single antisymmetric (flexural) modes exist, referred to as the fundamental modes, 

labeled as S0 and A0. As the frequency increases, additional new modes (labeled as Sn, 

An according to their order) appear. In our work, we focus exclusively on the low-

frequency range to exclude the high order modes. The fundamental modes S0 and A0 

have distinct velocities, which is also helpful to distinguish them. 

 
Fig. 6.5: (a) Calculated profile of symmetric and antisymmetric Lamb waves. (b) Calculated phase 

velocity relations with frequency. A indicates antisymmetric modes and S symmetric modes.  
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6.4 Experimental data and analysis 

After the theoretically analysis, we now move to the experimental results. The first 

element to consider is the IDTs used to generate a SAW to be after a free propagation 

distance coupled into the suspended membrane. In this work, we employ wide passband 

IDTs, which have the same design with the ones in Ref185. A schematic picture of the 

IDTs is illustrated in Fig. 6.6 (a), this IDT is designed based on a split-52 configuration, 

the λ(x) is the wavelength of the generated SAW fulfilling the relation 2p(x) = λ(x), with 

p the fundamental periodicity of the IDT. With this split-52 configurations, usually one 

fundamental resonant frequency fSAW,1 (Here fSAW,1 = 250 MHz) and three overtone 

harmonic frequencies fSAW,n exist. By introducing a linear variation of the fundamental 

periodicity 

2p(𝑥) = λ(𝑥) = λ0 + 𝛼𝑥,                        (6.1) 

with α is the dimensionless chirp parameter, the IDT resonance can be expressed as  

𝑓𝑆𝐴𝑊,𝑛 =
𝑛𝑣𝑆𝐴𝑊

𝜆(𝑥)
=

𝑛𝑣𝑆𝐴𝑊

(𝜆0+𝛼𝑥)
                       (6.2) 

Hence with the introduction of a chirp, broadened resonances will be obtained. Fig. 6.6 

(b) shows the SEM image of this wide passband IDT, and the variation of the periodicity 

of the IDTs can be clearly seen from the enlarged picture of the IDTs at left and right 

panels. More details about the design and parameters of this IDTs can be found in Ref185.  

 

 



6. Quantum dots manipulation with surface acoustic waves 

88 
 

Fig. 6.6: (a) Schematic picture of a patterned metal IDT used in this work. λ indicates the wavelength of 

the SAW. (b) SEM image of the IDTs, the left picture represents a region used to generate long 

wavelengths and the right short-wavelengths. Adapted from185. (c) False color plot of the frequency scan 

of the PL emission of a single QD. The characteristic frequency bands for IDTs are marked as n=1, 2, 3. 

(d) PL spectra of emission from QD with and without SAW. The solid lines are fitted with a Lorentz 

function (black) and the equation (6.3) (red). 

 

We characterized the passbands of the fabricated IDTs by frequency-resolved PL 

spectra of QDs in the bulk area, which is presented in Fig. 6.6 (c). If the frequency 

corresponds to a resonance, periodical strain field (and electric field) from the SAW 

will be applied to the QDs, a periodical emission energy shift will occur. Since here the 

acquisition time for PL is much larger than the period, abroadened PL peak will be 

observed. If the frequency is not in resonance, the input power will be reflected by the 

IDT and no SAW will propagate to the QDs, thus in principle the PL peak keeps the 

same. From the plot of Fig. 6.6 (c), we observe the fundamental resonance and the first 

two harmonic resonances. Furthermore, these resonances show relatively wide 

passband, especially the first harmonic one. Fig. 6.6 (d) shows the typical Lorentzian 

emission peak of QDs and the emission modulated by SAWs. Assuming a harmonic 

modulation, the time-integrated broadening peak can be fit by the169,185 

𝐼(𝐸) = 𝐼0 + 𝑓𝑆𝐴𝑊
2𝐴

𝜋
∫

𝑤

4(𝐸−(𝐸0+∆𝐸∙sin ( 2𝜋𝑓𝑆𝐴𝑊𝑡)))2+𝑤2 𝑑𝑡
1

𝑓𝑆𝐴𝑊
⁄

0
,     (6.3) 

where A is the integrated intensity without SAW and w is the linewidth without SAW, 

E0 is the unperturbed energy and ΔE is assumed as the energy shift induced by the SAW. 

The solid line in Fig. 6.6 (d) is the fit according to the equation (6.3). 

     After confirming that the IDT used in this work is capable of generating SAWs 

at different frequencies, we switch to the suspended beam, which is the core of this 

study. According to the previous analysis, two main types of Lamb waves are expected 

in the suspended beam (because the thickness of the beam is much smaller than the 

sound wavelength, see section 2.3.4). Here, we only explore the low-frequency range 

(200 MHz < f < 1000 MHz) in which only two fundamental modes (A0 and S0) 

propagate in the suspended beam. Fig. 6.7 (a) is the typical cross section color plot of 

the calculated displacement in our device at a specific time. We assume an ideal 

condition in this case: no attenuation in the suspended beam; the suspended beam has 

infinite length so that there is no reflection and related interference. When the sound 

waves propagate in bulk materials, only Rayleigh waves propagate. In contrast, when 

it reaches the bounadary to the suspended beam, the Rayleigh wave is converted to 

Lamb waves, potentially as a superposition of antisymmetric and symmetric modes. 

After injection, the antisymmetric and symmetric modes will gradually separate over 

time because of the velocity difference. Fig. 6.7 (b) is the calculated wavelength-

frequency relations of the Rayleigh wave, antisymmetric and symmetric Lamb waves. 

In the frequency range between 200 MHz and 1000 MHz, the symmetric modes shows 

much larger wavelengths compare to the antisymmetric mode. Similar to an optical 

waveguide, a cut-off wavelength exists in the acoustic waveguide. By optimizing the 

width of the suspended beam, it is possible to suppress the propagation of symmetric 
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mode. With the width w of 1.5 μm (cut-off wavelength λcut-off = 2w = 3 μm) of the 

suspended beams, only waves which possess wavelength shorter than 3 μm can 

effectively propagate through the suspended beam. Based on the extracted wavelength-

frequency relation results shown in Fig. 6.7 (b), the symmetric mode can not propagate 

in the frequency range between 200 MHz and 1000 MHz.  

 

Fig. 6.7: (a) Color plot the propagation of sound waves in our sample in the ideal case of no attenuation 

and no reflection. Adapted from 186. (b) Extracted wavelength-frequency relations of the Rayleigh, Lamb 

waves (A0 and S0 are the fundamental antisymmetric and symmetric mode, respectively).  

 

    After confirming the different propagating wave modes between the bulk area and 

suspended beam area, it is important to make a comparative study on the corresponding 

optomechanical coupling effect between them. A qualitative comparison of the 

optomechanical coupling effect in membrane between Rayleigh wave and Lamb wave 

is illustrated in Fig. 6.8. The experimental configurations are schematically shown in 

Fig. 6.8 (a), an IDT-generated SAW (with a frequency of 260 MHz and 7 dBm power) 

propagates from left to right. Here, we select two QDs, which are located in the bulk 

area and inside suspended beam, respectively. According to the analysis above, these 

two QDs were modulated by the Rayleigh wave and Lamb wave, respectively. And the 

time-integrated emissions of these two QDs without and with Rayleigh/Lamb wave 

applied were plot in Fig. 6.8 (b) and (c), with the center energy of unperturbed QDs’ 

emission being a reference. Remarkably, the spectral broadening induced by the Lamb 

wave is clearly enhanced compared to that by the Rayleigh SAW. The extracted spectral 

broadening ΔE from the Lamb wave (ΔEL=1.46 meV) is about three times of the one 
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(ΔER=0.485 meV) induced by Rayleigh wave, which further confirms a stronger 

modulation from Lamb wave, and more investigation on the mechanism of it should be 

made in the future.    

 

 

 

 

 

Fig. 6.8: Optomechanical coupling study of Rayleigh wave and Lamb wave. (a) SEM image of the device, 

in which different areas (bulk area and suspended area, as indicated by arrows) were chosen to make a 

comparison on the optomechanical coupling. Emissions of QDs (b) in bulk area and (c) in suspended 

beam without SAW applied (black squares) and modulated by a 260 MHz SAW (red circles). Solid lines 

are the fit results from equation (6.3). Data courtesy of Anja Vogele at University Augsburg187. 

 

The frequency dependent Lamb waves interaction with QDs in the suspended 

beam are characterized by measuring the PL spectra of QDs while sweeping the radio 

frequency f generated by the signal generator, as shown in Fig. 6.9 (a). From the color 

plot of the normalized PL spectra, spectral broadening could be clearly observed at the 

same frequencies as what we observed in the bulk area, as also illustrated in Fig. 6.9 

(b), which is the extracted energy broadening ΔE as a function of frequencies f using 

the equation (6.3). 
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Fig. 6.9: (a) Color plot of the normalized emission of QDs located in a suspended beam as a function of 

frequency f and energy shift ΔE. The characteristic frequency bands for IDTs are marked. (b) The energy 

shift ΔE-frequency f relation derived from the data in the upper panel with equation (6.3). 

 

    Before further distinguishing the Rayleigh wave and Lamb waves, which 

propagate in our sample, let’s first introduce a phase scan measurement via phase-

locked setup. There are several methods to perform the time-resolved measurement of 

the QDs emission under periodical modulation. In the last chapter, we used an APD to 

make the time-resolved measurement. The biggest advantage of this method is the high 

time resolution in time scale. However, APD is a single channel detector and each time 

only one specific position (wavelength) can be chosen, this is a limitation and makes it 

difficult to compare the behavior of different QDs. A stroboscopic method is therefore 

adopted. The overview of the experimental setup of the phase-locking method is 

illustrated in Fig. 6.10 (a). In this setup, a delay generator is used for synchronization. 

Control pulse signals will be sent to both laser and function generator, and a short delay 

Δt is provided to the signal to the laser to compensate the velocity difference between 

light (laser) and sound (SAW). Laser and SAWs are only active with the “ON” stage of 

the control pulse signal, which is an effective way to avoid heating effects from the 

laser and SAWs. Different from previous experiments, here a frequency relation 

between SAWs and laser should be fulfilled to get the phase locking: fSAW = m·flaser, m 

is an integer. As illustrated in Fig. 6.10 (b), then the laser will always hit the same phase 

of the signal of the SAW. Through changing the delay time Δt or phase difference Δφ 

between the signal of SAW and laser, we can make a phase sweep measurement through 

the whole period.  
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Fig.6.10: (a) Schematic picture of the experimental implementation of the phase scan. (b) Sketch of the 

electric signal of SAW and laser with phase-locked configuration. The frequency of SAW is integer 

multiples of the frequency of the laser.  

 

Considering that the wavelength of antisymmetric Lamb waves (0.7 μm<λA<2.5 

μm) is much shorter than the one of Rayleigh waves (5μm<λRayleigh<15μm) in the 

working frequency (full data see Fig. 6.7 (b)), and the diameter of the excitation laser 

is roughly 1~1.5 μm, the QDs modulated by antisymmetric Lamb modes should exhibit 

quite an evident phase difference compared to the ones interfaced with Rayleigh waves. 

In aother words, we need to make a comparison of the phase sweep measurements of 

QDs in the bulk area and suspended beam under the modulation of SAWs. For this 

purpose we use the type I QDs because of their higher surface density. Fig. 6.11 (a) is 

the PL spectrum of QDs which are excited in the unsuspended, bulk area, where 

Rayleigh waves propagate. Several peaks appear in this spectrum, which we attribute 

to different QDs located in the laser spot area and are excited simultaneously. With 

these QDs, a phase sweep measurement was performed under the SAWs resonance. The 

right inset is the color plot of the PL emission of a QD (QD2) during the phase scan. 

The position of the peak is fitted with a Lorentz function, then the peak position-phase 

relations is fitted with sinusoid. Fig. 6.11 (b) summarizes the fitted data of all the seven 

QD lines labeled in Fig. 6.11 (a). These data are fitted with a general sinusoidal function 

𝑦 = 𝑦0 + A ∗ sin(𝜋 ∗ (𝑥 − 𝑥𝑐)/𝜔) , xc is the phase constant. The calculated phase 

constants for each QDs are shown below: 
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QD 0 1 2 3 4 5 6 

xc (º) -40.67 -40.16 -27.53 -19.07 -28.82 -49.18 -20.73 

The phase constants xc for all QDs are quite close. The deviations could mainly come 

from the following aspects: the natural phase difference. Considering the diameter of 

the laser spot is 1μm and the wavelength of the Rayleigh wave is 11.5 μm, the maximum 

phase difference ∆𝑥𝑐 =
1

11.5
× 360 ° ≈ 31.3 °, and the phase variations are below this 

threshold.  

 

 
Fig. 6.11: (a) PL spectrum of QDs in the bulk area, which are excited with the same laser spot. The 

different peaks are attributed to the emission of different QDs and are marked with numbers. The left 

inset shows schematically the mode deformation of a unit cell of sample AS275 due to the interaction to 

Rayleigh wave. The right inset is the color plot of phase-resolved PL spectra of QD2 with a sinusoidal 

fit. (b) Summary of all the QDs energy shift as a function of phase. The data (symbols) are fit with 

sinusoidal functions (solid lines). Data courtesy of Anja Vogele at University Augsburg187.  

     

    Then we perform the same phase sweep measurements on the suspended beam, 

the PL spectrum is shown in Fig. 6.12 (a). Following the same procedure as above, we 

obtain the data shown in Fig. 6.11 (b). The phases xc for each QD are shown in the table. 
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Here it is evident to see the QDs experience a periodical oscillation with substantially 

different phases, which can be explained by the shorter wavelength of the fundamental 

antisymmetric Lamb wave (λA=2.38 μm for f=260 MHz). In summary, through the 

phase sweep measurement on QDs located in bulk area and suspended beam, we 

manage to obtain an indirect proof of the propagation of the antisymmetric Lamb wave 

in the suspended beam. 

QD 0 1 2 3 4 5 

xc (º) -70.56 253.79 236.79 -76.32 275.34 -60.55 

 

 

 

Fig. 6.12: (a) The PL spectrum of QDs in the suspended beam, which is excited with the same laser spot. 

The inset shows the mode deformation of the suspended beam with the propagation of an antisymmetric 

Lamb mode. (b) Relative energy shift of all the QDs in the suspended beam as a function of the phase 

(symbols are the experimental data, solid lines are sinusoidal fit to the data).  

 

Another important issue which is important in this study is the attenuation of the 

propagating Lamb waves in the suspended beam. Thus, we studied three suspended 

beams (50×1.5 μm2) and measured modulated PL spectra of the QDs for different Lamb 
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wave frequencies. The QDs are located at different positions along the propagation 

direction to obtain information on the attenuation. . A schematic of this experiment is 

shown in Fig. 6.13 (a). Fig 6.13 (b) shows as an example the positions of five QD we 

chose in one particular beam. 

 
Fig. 6.13: (a) Schematic picture of the measurement on QDs located at different positions along the sound 

wave propagation direction. (b) Microscope pictures of the typical 5 dots we chose for the measurement, 

the green crosses indicate the position of QDs. The sound waves propagate from top to bottom.  

 

    The spectral broadening ΔE is again obtained by fitting the time-averaged spectra 

using equation (6.3), and the obtained data are shown in Fig. 6.14. To further analyze 

the possible attenuation properties, an exponential attenuation function is assumed:  

y(x) = 𝑦010𝛿∙𝑥                        (6.4) 

y0 is the amplitude at x=0 and δ is the attenuation coefficient. Then we take the log of 

the equation: log y(x) = log 𝑦0 + log(10𝛿∙𝑥) = A + 𝛿 ∙ 𝑥, A is a constant. Therefore, 

the spectral broadenings ΔE induced from the Lamb wave are shown in log scale. Then 

we perform a linear fit of the spectra broadening ΔE-position x relations for different 

frequencies, the slopes of the linear fits (δ) for different frequencies are listed in Table 

6.1. From Figure 6.14 and the slopes of the linear fits in Table 6.1, it is obvious that no 

clear trend can be extracted. Most importantly however, no pronounced attenuation is 

observed in all data. This finding indicated that on these length scale the elastic wave 

is hardly damped at all. Moreover, we assume that extrinsic effects (such as local 

imperfections of the beams or different distance between a QD and one edge of the 

beam) are responsible for the scatter of the data points, preventing us a reliable estimate 

of the small attenuation coefficient.  
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Fig. 6.14: Log scale plot of the spectral broadening ΔE induced by Lamb waves of different QDs located 

at different positions along the propagation direction. (a), (b) and (c) are data from three different 

suspended beams of identical size (50×1.5 μm2, referred to as Beam 1, 2 and 3, respectively). Data 

courtesy of Anja Vogele, University Augsburg187.  

Beam 1 Frequency 

(MHz) 

260 264 268 274 290 

Slope δ 

(0.1·dB/μm) 

0.03164 ± 

0.00928 

-0.00204 ± 

0.00456 

-0.02189 ± 

0.00909 

-0.01562 ± 

0.00653 

-0.0053 ± 

0.00556 

Beam 2 Frequency 

(MHz) 

305 312 333 337 342 

Slope δ 

( 0.1· dB/μm) 

0.01087 ± 

0.00650 

0.00444 ± 

0.00515 

-0.00442 ± 

0.00665 

0.00588 ± 

0.00873 

0.00612 ± 

0.00712 

Beam 3 Frequency 

(MHz) 

355 365 370 375 396 

Slope δ 

( 0.1·dB/μm) 

-0.00536 ± 

0.00232 

0.00592 ± 

0.00853 

0.00395 ± 

0.00554 

0.00191 ± 

0.0047 

0.00064 ± 

0.00462 

Table 6.1: Extracted attenuation coefficient δ (the slopes of linear fit) at different frequencies. Data 
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courtesy of Anja Vogele at University Augsburg187. 

6.5 Conclusion and outlook 

In summary, a sample with suspended beams containing QDs was fabricated. 

Firstly, employing wide passband IDTs, we are able to study and make a comparison of 

the acoustic wave propagation properties in bulk and suspended beams over a wide 

range of frequencies. Secondly, with a stroboscopic, phase-locked spectropscopy, we 

verify the propagation of predominantly the antisymmetric, flexural Lamb wave in the 

suspended beam, consistent with the simulation. Last but not least, using QDs as 

vibration sensors, the propagation attenuation properties of the antisymmetric Lamb 

waves is studied and no evident sign of attenuation is observed along the propagation 

direction. 

Based on the work we have presented in this chapter, next steps can be envisioned: 

1. Although no clear indication of pronounced attenuation of Lamb waves was 

observed in the suspended beams, some more detailed and convincing experiments 

need to be performed in particular using waveguides of different geometries. 

2. In chip hybrid devices which sound-light-matter interaction can be fully integrated 

between the phononic/photonic resonators and QDs, and we believe this will make 

a great advancement of state-of-the-art quantum cavity electrodynamic, nano-

photonic and optomechanical systems188,189.  

3. Since SAWs is a very powerful method to manipulate the QDs, more work may be 

done on the optomechanical systems (as proposed in Chapter 5), resolve the 

acoustic sidebands of QDs116, especially based on the novel droplet etched GaAs 

QDs.  
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7. Conclusion and outlook 

7.1 Conclusion 

In this thesis, we focused on the tuning of the properties of QDs with strain fields 

and the following contributions to the field have been made: 

1.   A novel micro-machined PMN-PT actuator, which combines the advantage of 

strain amplifying suspension platform and continuously variable stress, is designed and 

implemented. With this PMN-PT actuator, a highly variable uniaxial stress up to 1.5 

GPa was applied to strain-free GaAs QDs. Through a wedged geometry of the 

suspended membranes, we were able to follow the evolution of the excitonic emission 

as a function of applied stress. Together with theoretical calculations, our findings prove 

that the natural quantization axis of GaAs QDs can be flipped into the growth plane, 

which paves a new door for the use of QDs as light emitters in integrated quantum 

photonic systems. 

2.  A QD-based mechanical resonator is proposed and realized. Here a PMN-PT 

piezoelectric actuator is employed for the mechanical excitation. With the use of a bias 

tee, AC and DC signals can be applied to the PMN-PT actuator simultaneously to 

achieve the reversible tuning of the resonant frequency. Besides that, we show that the 

actuator can sustain oscillations of at least up to 61.5 MHz, according to time-resolved 

measurement. The hybrid quantum device, once optimized and miniaturized, may be 

appealing for applications in which tuning of the resonant frequency is important.   

3.  A GaAs QD sample with suspended beams (phononic waveguide) is fabricated. 

With the assistance of wide bandpass IDTs, we are able to observe the acousto-optic 

spectroscopy of the QDs located both in the bulk and suspended beam over wideband 

frequencies. Through the stroboscopic spectroscopy of QDs based on phase-locked 

scheme, the propagation of antisymmetric Lamb waves in the suspended beam is 

proved. Lastly, the propagation attenuation properties of the sound waves in suspended 

beam is studied.  

7.2 Outlook 

In this thesis, substantial progress has been made on the strain tuning of the optical 

and electronic properties of QDs. To make QDs the suitable quantum source for the 

future large-scale quantum system the following requirements have to be met: 

1. According to the theoretical calculation on the transition strength of the QD dipoles 

under uniaxial stress (Fig. 4.19) in Chapter 4, it would be very interesting to go to 

the compression regime, in which in-plane light hole exciton LHx can be obtained. 

The lifetime of one component will prominently drop under the compressive stress, 

which we expect to lead to an improvement of the indistinguishability due to the 
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effective suppression of spectral jitter. To achieve this, several obstacles need to be 

overcome. First, the PMN-PT actuator we used now is not suitable for compressive 

stress, some other methods need to be used, such as the employment of materials 

with different thermal expansion coefficient94. Second, a proper excitation method 

is required to obtain the real lifetime. Due to the existence of long relaxation time 

in GaAs QDs, resonant excitation or specific quasi-resonant excitation methods 

should be. A scheme in which the QDs is excited quasi-resonantly one LO-phonon 

above the exciton energy190 level could be a suitable method for that.  

2. In Chapter 5 a hybrid system with QDs (two-level system) coupled to the mechanic 

resonator is demonstrated to mechanical eigenfrequencies up to 61.5 MHz . 

However, one of the most appealing features of the hybrid optomechanical system 

is the QND readout, which require a comparable mechanical period to the lifetime 

of QDs (InAs QDs: 1 ns, GaAs QDs: 250 ps), which may be hard to achieve. 

Furthermore, instead of using electric field to manipulate the g tensor163, strain field 

provided by the device we presented in this thesis would be a better choice because 

of the exclusion of charge noise. However, to effectively manipulate electron spin 

(relatively short decoherence time in QDs: 0.1-1 ns)191, high frequency resonance 

is desirable and an optimized hybrid system with excellent high-frequency behavior 

is needed for the future work. For long-lived quantum systems such as spins, 

mechanical modulation may be instead feasible. Here systematic studies of the 

effect of strain on the g-tensor will be required first. 

3. In Chapter 6, we present a first study of the propagation properties of the sound 

waves in suspended beams. In the future, it would be desirable to continue on the 

phononic/photonic circuits on chip, which can interact with the QDs188. Besides, 

considering the lateral electric field generated by the Lamb wave, the Lamb wave 

could act as a “clean” method to study the effect of lateral electric field modulation 

to the properties of the QDs.  
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Appendix 

A.1 Piezoelectric parameters of PMN-PT (RT) 

The PMN-PT piezoelectric actuators used in this work are purchased from TRS 

Technologies, and we get the piezoelectric parameters (RT) from the company, we 

employ these parameters in the stress/strain simulations by COMSOL Multiphysics. 

The piezoelectric parameters are listed as below: 

Compliance matrix  

𝑠𝐸 =

⌈
⌈
⌈
⌈
⌈
 

52.1 × 10−12 −24.6 × 10−12 −26.4 × 10−12

−24.6 × 10−12 52.1 × 10−12 −26.4 × 10−12

−26.4 × 10−12 −26.4 × 10−12 59.9 × 10−12

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

16.0 × 10−12 0 0
0 16.0 × 10−12 0
0 0 28.3 × 10−12⌉

⌉
⌉
⌉
⌉
 

  

1/Pa. 

 

Piezoelectric coupling matrix 

𝑑 =

⌈
0 0 0
0 0 0

−699 × 10−12 −699 × 10−12 1540 × 10−12

0 164 × 10−12 0
164 × 10−12 0 0

0 0 0

 ⌉

C/N 

 

Relative permittivity 

𝜖𝑟𝑇 = ⌈
1560 0 0

0 1560 0
0 0 5400

⌉ 

 

And density 𝜌 = 8093 kg/m3.  

A.2 Additional PL data on macroscopic and narrow stripe 

membranes 

To confirm the reliability and reproducibility of the results shown in Chapter 4, 

measurements on another device with a macroscopic membrane were performed. The 

data collected on a randomly chosen QD located in the area of the membrane suspended 

above the actuator gap are shown in Fig. A.1. Fig. A.1 (a) shows the color-coded PL 



Appendix 

102 
 

spectra of the selected QD as a function of linear-polarization direction with no applied 

voltage to the actuator (Fp = 0 kV/cm). In spite of the fact that no stress is intentionally 

applied to the membrane, we see slightly polarized emission from the neutral exciton 

(X) and multiexcitonic lines (MX) and a substantially larger X fine-structure-splitting 

(FSS) compared to the values obtained on as-grown samples. We attribute these two 

observations to residual (anisotropic, see below) stress arising from the device 

processing and from the different thermal expansion coefficients of the materials 

present in the device (PMN-PT, semiconductor, SU8 etc.). Under strong tension, see 

Fig. A.1 (b), all lines are nearly 100% polarized, similar to the results shown in Fig. 

4.10 (c). In Fig. A.1 (c), we plot the degree of linear polarization P of X and MX as a 

function of Fp (tensile stress). For the MX lines we integrated the intensity of all lines. 

It is obvious that P increases with the increasing tensile stress, which is consistent with 

the experimental and theoretical analysis in the main text.  

The presence anisotropic prestress combined with random fluctuations in the 

confinement potential defined by the QD lead to emission which is partially linearly 

polarized along a random direction. In Fig. A.1 (d) we plot the polarization direction 

* along which the emission intensity is maximal as a function of the electric field 

across the actuator fingers (which we expect to be approximately proportional to the 

applied uniaxial stress). Although the QD was initially pre-stressed, the emission lines 

(X and MX) become fully polarized perpendicular to the pulling direction at large 

uniaxial stress, which is consistent with the theoretical prediction.   
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Fig. A.1: Color coded linear-polarization-resolved PL spectra of a GaAs QD in macroscopic membrane 

at (a) 0 applied field across the actuator and under (b) high tensile stress. X and MX stand for neutral 

exciton and multiexcitonic lines. The slight polarization anisotropy observed in (a) is attributed to 

process- and cooling- induced stress. (c) Evolution of polarization degree with increasing tensile stress 

(magnitude of electric field Fp). (d) Evolution of the polarization orientation of X and MX for increasing 

|Fp|. While the initial polarization is randomly oriented, light becomes fully polarized parallel to the y 

direction (perpendicularly to the pulling direction) at large stress.   

 

Figure A.2 shows a set of polarization-resolved PL spectra of a neutral exciton X 

confined in a GaAs QD (QD1) under different tensile stresses [the same dot shown in 

Fig. 4.7]. These spectra provide a clear picture of the evolution of the X fine structure 

during the transition from a HHz to a HHx hole ground state (HGS). With increasing 

uniaxial stress, the initially dark exciton Dz becomes bright and gradually moves from 

the low energy side of the bright exciton By to its high energy side, and finally becomes 

a bright exciton Bz. The z-polarized component (Dz or Bz) is reflected by the sidewalls 

of stripe membrane and appears to have polarization approximately parallel to the y 

direction, as expected. The initially bright exciton Bx moves to the low side energy side 

of By with increasing stress. Moreover, the intensity of Bx drops monotonically with 

increasing stress (for this reason we refer to it as Dx for large tensile stress). Data shown 
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in Fig. 4.15 and additionally collected for different values of the field Fp applied to the 

actuators were averaged to obtain a single spectrum for each value of Fp. To highlight 

the evolution of the fine structure, such spectra were shifted along the energy axis using 

the By as a reference. The result is shown in Fig. A.2 (a,b). The same procedure was 

used for another QD (QD2) [Fig. 4.15], which shows fully consistent behavior. Similar 

data for still another QD (QD3) are shown in Fig. A.2 (c,d).  

 

 

Fig. A.2: Evolution of fine structure of the neutral exciton confined in different QDs in narrow stripe 

membrane for increasing magnitude of electric field applied (uniaxial stress). (a), (b) for QD1, (c), (d) 

for QD3. Similar plots for QD2 are shown in Fig. 4.16 of Chapter 4. (e) Evolution of the neutral exciton 

polarization orientation for different QDs for varying magnitude of electric field applied to the actuator 

(uniaxial stress). 

 

Overall, we see very similar behavior for all QDs. In addition, the high energy 

component Bz is consistently observed only in QDs contained in narrow stripes and not 

in large membranes. It should be noted that - especially for QD3 - a "full darkening" of 
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the Dx line is not achieved within the applied range of Fp values. We qualitatively 

attribute this observation to the presence of prestress with main axes away from the 

[100] and [010] directions, consistent with the large FSS observed at low Fp. 

Lastly, the polarization orientation of the neutral exciton in QDs embedded in 

stripe membranes with increasing magnitude of the electric field (uniaxial stress) is 

plotted in Fig. A.2 (e). Consistent results are obtained with QDs embedded in 

macroscopic membranes: the polarization orientations show initially (no intentional 

uniaxial stress applied) quite a random direction, and become perpendicular to the 

pulling direction ([100] direction) with increasing uniaxial stress. All these results 

provide compelling evidence that uniaxial stress can be used to deterministically set the 

orientation of the transition dipoles in a QD, consistent with the theory.   

A.3 Energy shift of other excitonic species under uniaxial stress 

along the [100] direction 

In Chapter 4 and in the previous appendix, we have mostly focused on the behavior 

of neutral excitons under uniaxial stress. The main reason is that the origin of the other 

lines was not well established at the time of writing this thesis and attempts to reproduce 

the behavior of charged excitons via theoretical calculations were not conclusive. Fig. 

A.3 shows the relative shift of the excitonic spectra for two QDs obtained by using one 

of the bright states of the neutral excitons as references. We clearly note that different 

lines react differently to the applied stress. In particular, a bright line on the low energy 

of the X (most probably related to the positive trion, consisting of an electron and two 

holes192) shows a non-monotonic shift relative to the neutral exciton.  

These data, combined with other experiments, may be helpful to obtain a complete 

picture of the excitonic structure of GaAs QDs used here and in other recent works of 

our group and other groups69,70,193. 
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A.3: Representative evolution of the emission of different GaAs QDs ((a) and (b)) as a function of electric 

fields (Fp) applied to the PMN-PT actuator (uniaxial stress). Here the same bight states (By’ or By , as 

illustrated in Fig. 4.15 and Fig. 4.16) are used as reference to shift the spectra horizontally. X indicates 

the neutral exciton and MX means the multiexciton.   

A.4 Uniaxial stress tuning along piezoelectric directions 

Since [110] direction is another a vital uniaxial stress direction to effectively tune 

the excitonic properties of QDs44,45, it would be desirable to see what we can get if we 

apply the uniaxial stress along [110] direction. 

Before go to the experimental results, stress configurations were analyzed. Here using 

the same coordinate system as in Chapter 4, the uniaxial stress along [110] direction 

can be decomposed into uniaxial stresses along [100] σxx, [010] σyy directions and shear 

stress σxy, with the same amplitude. The Hooke’s law for cubic semiconductor reads 

(

  
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧
𝜎𝑦𝑧

𝜎𝑥𝑧

𝜎𝑥𝑦)

  
 

=

(

 
 
 

𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44)

 
 
 

(

 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

2𝜀𝑦𝑧

2𝜀𝑥𝑧

2𝜀𝑥𝑦)

 
 
 

 

With σ𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 𝜎𝑦𝑥, 𝜎𝑧𝑧 = 𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 0.  

then we can get 𝜀𝑥𝑥 = 𝜀𝑦𝑦, 𝜀𝑧𝑧 = −
2𝐶12

𝐶11
𝜀𝑥𝑥, 𝜀𝑥𝑦 =

𝐶44∙𝜎𝑥𝑦

2
, 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 0,  

Besides, a electric field inside GaAs crystal appears under the shear stress or strain, the 

piezoelectric field under [110] stress or strain reads194 

E[001] = −
𝑑14𝜎𝑥𝑦

2𝜀0(1 + 𝜒)
= −

𝑒14𝜀𝑥𝑦

𝜀0(1 + 𝜒)
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Where d14 and e14 are the piezoelectric tensor coefficients, ε0 is the permittivity of free 

space and (1+ χ) is low frequency dielectric constant. So in the case of uniaxial stress 

along [110] direction, an additional vertical electrical field need to be taken into account.  

There are two effects could be induced by the vertical electric field: (i) valence and 

conduction bands become tiled, which causes a relevant energetic difference between 

electrons and holes, which is called Stark effect195. (ii) Carrier capture from the AlGaAs 

layer is sensitive to the electric field, When the tunneling rate arrives at a comparable 

level of the radiative recombination rate, the emission peaks get broaden and even 

quenched196–198. Nevertheless, we performed the experiments which pulled the GaAs 

QDs both along [110] and [11̅0] directions, the results are shown in Fig. A.3 (a)-(b), 

(c)-(d), respectively. The spectra evolution under [110] direction uniaxial tensile stress 

is consistent with what we analyzed. However, sudden annihinations of the PL spectra 

was observed during the pulling along [11̅0] directions (as shown in Fig. A.3(c)), 

currently this is still a puzzling issue to us and more time need to be spent to explore 

the physics behind it.    

 

Fig. A.4: (a) Color coded PL spectra of GaAs QDs emission as the function of the voltage applied to the 

PMN-PT actuator, the pulling direction is along [110] direction. (b) Two typical PL spectra of GaAs QDs 

under different tensile stresses (voltages) along [110] direction. (c), (d) are similar data to (a), (b), 

respectively, but with a different pulling direction along [11̅0]. The neutral excitons are marked as X. 
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