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1. Introduction

The theory of quantum invariants of links nowaday rests on a broad theory that
includes quantum groups, their centralizer algebras and tensor categories. It is the
ultimate goal of the ‘Knot Theory and Root Systems’ program initiated in [2] to carry
over this theory to the braid groups associated to the other root systems. The greatest
progress so far has been taken for the braid group of Coxeter type B where the
notions of quasi-triangular Hopf algebra and monoidal categories have been deBned
and nontrivial examples have been found [5,7]. Furthermore, Temperley–Lieb algebras
[2] and Hecke algebras [3,11] have been studied intensively for this root system. In the
present paper we continue the study of generalizations of the Birman–Murakami–Wenzl
algebra [16,9].

Every Coxeter diagram deBnes a braid group that is an inBnite covering of its Coxeter
group. The braid group ZBn of Coxeter type B has generators �i ; i = 0; 1; : : : ; n − 1.
Generators �i ; i ≥ 1 satisfy the relations of Artin’s braid group (which is the braid
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group of Coxeter type A): �i�j = �j�i if |i − j|¿ 1, and �i�j�i = �j�i�j if |i − j| = 1.
The generator �0 has relations

�0�1�0�1 = �1�0�1�0; (1)

�0�i = �i�0; i ≥ 2: (2)

The braid group ZBn may be graphically interpreted (cf. Fig. 1) as symmetric braids
or cylinder braids [4]: The symmetric picture shows it as the group of braids with 2n
strings (numbered −n; : : : ;−1; 1; : : : ; n) which are Bxed under a 180◦ rotation about the
middle axis. In the cylinder picture (Fig. 2 ) one adds a single Bxed line (indexed 0)
on the left and obtains ZBn as the group of braids with n strings that may surround this
Bxed line. The generators �i ; i ≥ 0 are mapped to the diagrams X (G)

i given in Fig. 1.
More generally, tangles of B-type may be deBned. The special case of tangles without
crossings is the B-type Temperley–Lieb algebra TBn that has been introduced by tom
Dieck in [2].

The Ariki–Koike Algebra is the quotient of the group algebra of ZBn where the
images Xi of the generators �i for i ≥ 1 fulBll quadratic relations while X0 satisBes a

Fig. 1. The graphical interpretation of the generators as symmetric tangles (on the left) and as cylinder
tangles (on the right).

Fig. 2. Relation (1) in the cylinder picture



                                                                     

cyclotomic polynomial of arbitrary degree. The Hecke Algebra of B type is a special
case where X0 satisBes also a quadratic relation.

The standard Birman–Murakami–Wenzl algebra BAn of type A imposes cubic rela-
tions on its generators in a way that enables its interpretation as an algebra of tangles
with a skein relation that comes from the KauLman polynomial.

Thus, it is natural to deBne an Ariki–Koike like extension of the BMW algebra Bk
n

that contains a generator Y as image of �0 that satisBes
∏k−1

i=0 (Y − pi) = 0. We call
these algebras cyclotomic Birman–Murakami–Wenzl algebras. The special case k = 2
has been called restricted B-type BMW algebra and has been studied in [9]. We call
k the height of the algebra and consider as well the case k = ∞ where Y does not
satisfy a polynomial identity.

The current interest in the study of B type braid groups has several origins. Closing
B type braids yields links that can be interpreted as links in a solid torus [11] and
Markov traces on group algebras of ZBn hence allow the calculations of invariants of
such links (cf. end of Section 11). Markov traces on Hecke algebras of B-type have
been studied by Lambropoulou [11] and lead to invariants of links in the solid torus
as well. Note however, that the methods used in the Hecke and BMW cases as well as
the resulting invariants are completely diLerent in nature. Braid groups of all Bnite root
systems further act as symmetries on the corresponding quantum groups [13]. The B
braid group occurs furthermore in several physical situations [6,8]. The general idea is
that the B type braids allow to treat with knot theoretic methods also physical models
with a boundary. The �0 generator is interpreted as a reNection at the boundary.

We now outline the structure of the paper and point out the main results. After a
short review of the Birman–Wenzl algebra of A-type we go on to deBne the cyclotomic
Birman–Murakami–Wenzl algebra Bk

n in Section 2 and list a number of fundamental
relations. Section 6 shows how to obtain the Ariki–Koike algebra as a quotient of Bk

n.
Furthermore, it investigates the B type Temperley-Lieb sub-algebra.

The knot theoretic point of view is elaborated in Section 3 where graphical coun-
terparts of the algebras are introduced. This is not only an application but serves as a
tool in proving that certain left ideals of the algebras of inBnite height over suitable
ground rings are free modules. This is essential for our construction of a Markov trace
in Section 10. In the case of Bnite height algebras one has to work harder to see that
the relevant left ideal is free (and hence that a Markov trace exists). The problem
is solved in Section 7 algebraically by module construction and introduces a set of
relations between the parameters. The knot theoretic origin of the diOculty is that we
are dealing with un-oriented links. In the oriented setting of type B Hecke algebras no
such relations occur [12].

Section 8 determines a partial normal form of words in Bk
n which shows that

the algebras of Bnite height are Bnite dimensional. The classical limit is studied in
Section 9.

The main theorem of this paper is contained in Section 11. We prove that Bk
n is

semi-simple in the generic case and show how its simple components can be enu-
merated in terms of the Young diagrams. The Bratteli diagram is given and we show



                                                                     

that the Markov trace is faithful. As an application a generalization of the KauLman
polynomial to links in the solid torus is deBned.

The material of this paper is part of the author’s Ph.D. thesis [10] and proBted much
from discussions with Professor tom Dieck.

2. De�nition of the cyclotomic BMW Algebra

This section introduces a generalization of the Birman–Murakami–Wenzl that is
related to the B-type braid group. Because the cyclotomic Hecke algebras of Ariki
and Koike appear as quotients we call our algebras cyclotomic BMW algebras. We set
oL by recalling the deBnition of the ordinary BMW algebra.

De�nition 1. Let R denote an integral domain with units x; q; � ∈ R such that with
� := q − q−1 the relation (1 − x)� = � − �−1 holds. The Birman–Murakami–Wenzl
(BMW) algebra BAn(R) is generated by X±

1 ; : : : ; X±
n−1; e1; : : : ; en−1 and relations

XiXj = XjXi ; |i − j|¿ 1; (3)

XiXjXi = XjXiXj ; |i − j| = 1; (4)

Xiei = eiXi = �ei ; (5)

eiX±1
j ei = �∓1ei ; |i − j| = 1; (6)

e2
i = xei ; (7)

X−1
i = Xi − � + �ei ; (8)

eiej = ejei ; |i − j|¿ 1; (9)

eiXjXi = X±
j X±

i ej ; |i − j| = 1; (10)

eiejei = ei ; |i − j| = 1: (11)

The next two lemmas recall results from the theory of Birman–Murakami–Wenzl
algebras. The proofs are easy and standard.

Lemma 2.

X 2
i = 1 + �Xi − ��ei ; (12)

X−1
i X±1

j Xi = XjX±1
i X−1

j ; |i − j| = 1; (13)

X±1
i ejei = X∓1

j ei ; |i − j| = 1; (14)



                                                                     

eiejX±1
i = eiX∓1

j ; |i − j| = 1; (15)

eiX±
j X±

i = eiej ; |i − j| = 1; (16)

X±
i X±

j ei = ejei ; |i − j| = 1; (17)

XiejX−1
i = X−1

j eiXj ; |i − j| = 1; (18)

XiejXi = X−1
j eiX−1

j ; |i − j| = 1: (19)

Lemma 3. If � is a unit in R the algebra BAn(R) is isomorphic to the algebra gen-
erated by invertible X1; : : : ; Xn−1 and relations (3)–(6). The element ei is now de5ned
by

ei := 1 − Xi − X−1
i

�
; i = 1; : : : ; n− 1: (20)

Now, we deBne our generalized algebra.

De�nition 4. Let q; x; � ∈ R be units and let A1; A2; : : : ∈ R be some further
elements. Assume that the relation (1 − x)(q − q−1) = � − �−1 holds. The cyclo-
tomic BWM-Algebra on n strings of inBnite height B∞

n (R) is deBned as R algebra
generated by Y; X1; : : : ; Xn−1; e1; : : : ; en−1 and the relations of the Birman–Murakami–
Wenzl-Algebra BAn and

X1YX1Y = YX1YX1; (21)

YXi = XiY; i¿ 1; (22)

YX1Ye1 = �−1e1 = e1YX1Y; (23)

e1Y ie1 = Aie1; i ≥ 1: (24)

The cyclotomic BWM-Algebra on n strings of height k ∈ N is denoted by Bk
n(R). It

is the quotient of the height ∞ algebra by the relation

0 =
k−1∏
i=0

(Y − pi): (25)

Here pi ∈ R∗; i = 0; : : : ; k − 1 are further invertible parameters.

Relation (24) suggests to deBne A0 := x.
The generic ground ring for our algebra is a quotient of a Laurent polynomial ring.

We denote by R[x] the polynomial ring and by R{x} the Laurent ring in x over R.
The generic ground ring for B∞

n is

R∞
0 :=C[A1; A2; : : : ]{q; x; �}=(x�− �− �−1 + �): (26)



                                                                     

Here we used, as above, � = q − q−1. The following deBnition will be used for the
algebras of Bnite height:

R∞
0; k :=R∞

0

⊗
C
C[p±

0 ; : : : ; p
±
k−1]; k ∈ N: (27)

Much of the following analysis can be done as well if C in these deBnitions is
replaced by the integers. However, in connection with the classical limit we have to
require that some equations have solutions. Note that R∞

0 is an integral domain since
the generator of the principal ideal which is divided out is an irreducible polynomial.

3. Graphical interpretation

The very deBnition of Bk
n is motivated by knot theory as was vaguely explained in

the introduction. Here, we Bll in the details.
Consider the set of ambient isotopy classes of tame embeddings of unoriented ribbons

into the cylinder (R2 −{0})× [0; 1] between n upper and m lower intervals embedded
in the half-rays R+×0×{0; 1}. Closed bands are allowed as well. For any commutative
ring R let Cn;m =Cn;m(R) denote the free R module generated by these isotopy classes.
Stacking graphs deBnes a multiplication Cn;m × Cl;n → Cl;m that turns Cn;m into the
morphism space of the category of unoriented ribbon tangles in the cylinder.

Now, let q; �; A0 denote units in R and Ai ; i ∈ N further elements. The submodule
S∞n;m⊂Cn;m(R) shall be spanned by all elements that are linear combinations of classes
that have representations that diLer only locally in the way shown in Fig. 3. Thus S∞n;m
is the module of skein relations of the KauLman polynomial enriched by the rule for
eliminating certain closed bands. We deBne

K∞
n;m(R) :=Cn;m(R)=S∞n;m: (28)

For s ∈ S∞n;m and a ∈ Cl;n; b ∈ Cm;j one has bsa ∈ S∞l; j and hence the above given
multiplication carries over and deBnes a skein category.

Elementary tangles are deBned as in Fig. 1. The total number of strings is added as
a second subscript: X (G)

i; n , e(G)
i; n , Y (G)

i; n .

De�nition 5. Let the graphical cyclotomic BMW algebra of inBnite height GB∞
n (R)

be the sub-algebra of K∞
n;n(R) that is generated by X (G)

i; n ; e(G)
i; n ; Y

(G)
1; n ; 1 ≤ i ≤ n− 1.

Fig. 3. Skein relations of K∞
n;m(R).



                                                                     

Fig. 4. Relation (23) and relation (24) (on the right).

Similarly, the cyclotomic BWM-Algebra of Bnite height GBk
n(R) is the quotient by

0 =
k−1∏
i=0

(Y (G) − pi):

Lemma 6. �n : Bk
n(R) → GBk

n(R); Xi �→ X (G)
i; n ; ei �→ e(G)

i; n ; Y �→ Y (G)
1; n de5nes an algebra

epimorphism. Here k may be 5nite of in5nite.

Surjectivity is clear from the deBnitions. It remains to understand the graphical mean-
ing of the algebraic relations. Eq. (21) is the four-braid relation (1) illustrated in Fig. 2.
(22) comes from the braid group as well. Relation (23) is illustrated in Fig. 4. Y (G)

has to be interpreted as a band that is oriented always towards the cylinder axis.

4. The algebras of height ∞

This section studies some relations in the algebras of inBnite height and discusses
the relation between the graphical and algebraic versions in this case.

The following deBnitions will prove useful later on. Their graphical counterpart is
given in Fig. 5.

Yi :=Xi−1Xi−2 · · ·X1YX−1
1 · · ·X−1

i−2X
−1
i−1; (29)

Y ′
i :=Xi−1Xi−2 · · ·X1YX1 · · ·Xi−2Xi−1: (30)

Fig. 5. Interpretation of Yi and Y ′
i .



                                                                     

The next lemma collects a stock of relations that show among other things that the
most important properties of Y can be shifted to other strings.

Lemma 7. The following relations hold in Bk
n for 5nite or in5nite k:

0 = [X1YX1Y; {Y; e1; X1}]; (31)

0 = [Yi ; Xj] = [Yi ; ej]; j �= i; i − 1; (32)

0 = [Y ′
i ; Xj] = [Y ′

i ; ej]; j �= i; i − 1; (33)

Y ′
i+1X

−1
i = XiY ′

i ; (34)

Yi+1Xi = XiYi ; (35)

XiYiXiYi = YiXiYiXi ; (36)

XiY ′
i XiY

′
i = Y ′

i XiY
′
i Xi ; (37)

�−1ei = eiYiXiYi = YiXiYiei ; (38)

�−1ei = eiY ′
i XiY

′
i = Y ′

i XiY
′
i ei ; (39)

eiYm
i ei = Amei ; (40)

Y ′
i Y

′
j = Y ′

jY
′
i ; (41)

YiY−1
i−1 = Y−1

i−1X
−1
i−1Yi−1Xi−1; (42)

Yiei−1 = �−2Y−1
i−1ei−1; (43)

ei−1Yi = ei−1Y−1
i−1 − ��ei−1Yi−1 + ��A1e1; (44)

ei−1Y ′
i = ei−1Y ′−1

i−1 ; (45)

Y ′
i ei−1 = Y ′−1

i−1 ei−1; (46)

XiYi+1 = XiYi − �Yi + �Yiei + �Yi+1 − �eiY−1
i + �2�eiYi − �2�A1ei ; (47)

Y l
i+1Xi = XiY l

i ; (48)

eiY l
i Xi = eiY l−1

i XiY−1
i − �eiY l−2

i + �Al−1eiY−1
i ; (49)

XiY l
i ei = Y−1

i XiY l−1
i ei − �Y l−2

i ei + �Al−1Y−1
i ei ; (50)

X1Yme1 = �−1Y−me1 +
m−1∑
s=1

�(Am−sY−s − Ym−2s)e1; (51)

X1Y−me1 = �Yme1 +
m−1∑
s=0

�(Y−m+2s − As−mY s)e1: (52)



                                                                     

These relations are shown by induction and similar proofs have already been pub-
lished in [9] so that we restrict here to an example that gives the taste: In the induction
step for (38) Eq. (10) is used to eliminate ei+1 in terms of ei.

Y ′
i+1Xi+1Y ′

i+1ei+1 = XiY ′
i XiXi+1XiY ′

i XiX
−1
i X−1

i+1eiXi+1Xi

= XiY ′
i Xi+1XiXi+1Y ′

i X
−1
i+1eiXi+1Xi

= XiXi+1Y ′
i XiXi+1X−1

i+1Y
′
i eiXi+1Xi

= XiXi+1Y ′
i XiY

′
i eiXi+1Xi = �−1XiXi+1eiXi+1Xi = �−1ei+1:

The last two relations allow to deBne Am for negative m if the annihilator ideal of
e1 vanishes. These coeOcient shall satisfy e1Y−me1 = A−me1. Multiplying (52) by e1

from the left yields

�A−m = �Am +
m−1∑
s=0

�(A2s−m − As−mAs)

and hence (note the change in the summation range)

A−m = �2Am + �
m−1∑
s=1

�(A2s−m − As−mAs): (53)

This allows a recursive calculation of A−m.

Remark 8. There is an anti-involution of the C-algebra B�
n(R

∞
0 ) such that

X ∗
i = X−1

i ; e∗i = ei ; Y ∗ = Y−1; q∗ = q−1; �∗ = �−1; A∗
i = A−i : (54)

Remark 9. X †
i :=Xn−i ; Y † :=Yn deBnes an involution † on Bk

n.

Proof. All relations that depend only on one index or on the absolute diLerence of
two indices are obviously compatible. We check (24)

(e1Y ie1 − Aie1)† = en−1Y i
nen−1 − Aien−1

= en−1Xn−1Y i
n−1X

−1
n−1en−1 − Aien−1 = 0:

Relation (23) is preserved as well:

(YX1Ye1 − �−1e1)† = en−1YnXn−1Yn − �−1en−1

= en−1Xn−1Yn−1X−1
n−1Xn−1Xn−1Yn−1X−1

n−1 − �−1en−1

= �en−1Yn−1Xn−1Yn−1X−1
n−1 − �−1en−1

= ��−1en−1X−1
n−1 − �−1en−1 = 0:

Remark 10. The relations show that there is a further anti-involution a �→ Ra which
Bxes all generators.

Later on we will show that there exists a Markov trace if the annihilator ideal of
En := e1e3 · · · e2n−1 vanishes. For the algebra of inBnite height the generic ground ring
has this important property:



                                                                     

Proposition 11. ann(En) = {0} in B∞
2n (R∞

0 ).

Proof. Assume 0 �=  ∈ R∞
0 to be an element of the annihilator ideal  En = 0, that

is 0 =  �2n(En). We deBne two morphisms in the category of isotopy skein classes
of cylinder ribbon tangles: Un ∈ K∞

2n;0(R∞
0 ) is the class that consists of n minima and

U ′
n ∈ K∞

0;2n(R
∞
0 ) contains n maxima. Multiplying from both sides with these elements

one obtains

0 =  Un�2n(En)U ′
n =  A2n

0 [∅]:

Here [∅] is the class of the empty knot and we have derived that it has non-vanishing
annihilator ideal. But this contradicts with Turaev’s theorem [14] on the freeness of
the KauLman skein module of the solid torus which states (in our notation) that

K∞
0;0(R∞

0 ) ∼= R∞
0 : (55)

DeBne the following submodules of the two string algebras:

N∞ = N∞(R) = spanR(Y ie1 | i ∈ Z)⊂B∞
2 (R); (56)

GN∞ = GN∞(R) = spanR((Y (G))ie1 | i ∈ Z)⊂GB∞
2 (R): (57)

Proposition 12. N∞ (resp. GN∞) is the left ideal generated by e1 (resp. e(G)
1 ). For

any ground ring that is a quotient of R∞
0 the above given sets are bases. Moreover; the

sets {Y ie1Y j | i; j ∈ Z} and {(Y (G))ie(G)
1 (Y (G)) j | i; j ∈ Z} are bases of the two-sided

ideals generated by e1; respectively e(G)
1 .

For any ground ring we have if the determinant of (Ai+j); i; j = 0; : : : ; m is not a
zero divisor; then e1; Ye1; : : : ; Yme1 (resp. e(G)

1 ; Y (G)e1; : : : ; (Y (G))me1) are linearly inde-
pendent.

Proof. The Brst claim follows from some of the relations derived above. To prove
the second claim we Brst consider R = R∞

0 . Assume there is a linear relation of the
(Y (G))ie(G)

1 . Since Y (G) is invertible, we can assume that i = 0 is the lowest term with
non-vanishing coeOcient, thus

0 =
m∑
i=0

�i(Y (G))ie(G)
1 ; �i ∈ R∞

0 :

Multiplying with U1(Y (G)) j and U ′
1 (these elements are deBned in the proof of Propo-

sition 11) yields

0 =
∑
i

�iAi+jA0[∅]

and thus, using (55) and invertibility of A0, 0=
∑

i �iAi+j. The determinant of the matrix
Ai+j ; i; j= 0; : : : ; m does not vanish and hence all �i have to be zero. By standard ring
change arguments we have the same basis for any quotient ring.

We show similarly that the sets {Y ie1Y j | i; j ∈ Z} and {(Y (G))ie(G)
1 (Y (G)) j | i; j ∈ Z}

are linearly independent. Recalling that �2 is an epimorphism it suOces to consider the



                                                                     

graphical situation. Multiply a supposed linear dependency 0 =
∑

i; j≥0 �i; j(Y
(G))ie(G)

1

(Y (G)) j from the left with U1(Y (G)) s and from the right with (Y (G))tU ′
1 to obtain

0 =
∑
i; j≥0

�i; jAs+iAj+tA0[∅]:

Written as matrices, we have 0 = A�A and hence, by the above argumentation, � = 0.
To prove the last claim one can argue along the same lines. Since the determinant is

assumed to be not a zero divisor it may be made invertible in a suitable localization.

Proposition 13. Over R∞
0 ; R∞

0; k or quotients thereof GB∞
2 and B∞

2 are isomorphic.

Proof. We know from Proposition 12 that the two-sided ideals I2 and I (G)
2 generated

by e1 and e(G)
1 are isomorphic. Now, consider the diagram

0 −−−−−→ I2 −−−−−→ B∞
2 −−−−−→ B∞

2 =I2 −−−−−→0� �2|I2

� �2

� �̂2

0 −−−−−→ I (G)
2 −−−−−→ GB∞

2 −−−−−→ GB∞
2 =I (G)

2 −−−−−→0

Here �̂2 denotes the induced mapping. By the Bve lemma it suOces to show that this
map is an isomorphism. The quotient B∞

2 =I2 is isomorphic to the generalized B-type
Hecke algebra H∞B2. In [4] tom Dieck has shown that this algebra is isomorphic to
the algebra of braids in the cylinder modulo Hecke-type skein relations. On the other
hand, by the deBnition of the graphical algebra, a tangle class from GBk i2=I

(G)
2 vanishes

iL it has horizontal parts. Hence, the quotient consists of the braids in the cylinder.
For these tangles, the skein relations reduce to Hecke-type relations. Therefore, both
algebras must be isomorphic.

5. The algebras of �nite height

This section is concerned with the algebras of Bnite height k ¡∞. Its main purpose
is to introduce expansion coeOcients.

De�nition 14. Let qk−1; : : : ; q0 be the signed elementary symmetric polynomials in
p0; : : : ; pk−1 such that

Y k =
k−1∑
i=0

qiY i : (58)

Note that q0 = (−1)k−1∏
ipi is invertible. We calculate Y−1,

Y−1 =
k−1∑
i=0

RqiY
i with Rqk−1 = q−1

0 ; Rqi−1 = −qiq−1
0 : (59)



                                                                     

The coeOcients are determined uniquely if the Y i are linearly independent.
By iteration one obtains elements RQi; j that satisfy

Y−i =
k−1∑
j=0

RQi; jY
j : (60)

We also introduce the following expansion coeOcients:

Y k+m =
k−1∑
i=0

q̂m; iY i : (61)

A simple calculations shows

q̂m;k−1 =
m+1∑
s=1

∑′

i1 ;:::; is

qk−i1 · · · qk−is with
∑
'

i' = m + 1; ij ≥ 1: (62)

The prime indicates that the sum is restricted by the condition on the right. Multiplying
(61) with Y 2−k and substituting m �→ m− 2 yields

Ym =
1∑

j=−(k−2)

q̂m−2; j+k−2Y j=:
1∑

j=−(k−2)

q̃m;jY j : (63)

In terms of these coeOcients the above relation reads

q̃m+1;1 =
m∑
s=1

∑′

i1 ;:::; is

qk−i1 · · · qk−is with
∑
'

i' = m; ij ≥ 1: (64)

Assuming vanishing annihilator ideal of e1 we obtain relations for Am; m ≥ k

Ame1 = e1Yme1 = e1Y kYm−ke1 =
k−1∑
i=0

qiAm−k+ie − 1:

Thus, we demand

Am =
k−1∑
i=0

qiAm−k+i ∀m ≥ k (65)

and deBne as a Brst step towards a generic ground ring for Bk
n

Rk0 := (R∞
0 ⊗C C[p±

0 ; : : : ; p
±
k−1])=(65): (66)

Remark 15. There is an anti-involution of Bk
n(R

k
0); as a C algebra such that

X ∗
i = X−1

i ; e∗i = ei ; Y ∗ = Y−1; q∗ = q−1; �∗ = �−1;

p∗
i = p−1

i ; A∗
i = A−i : (67)

The proof is trivial.



                                                                     

6. Relations to other Knot algebras

The ei together with a projector e0 on the p0 eigenvalue of Y generate a sub-algebra
that is a homomorphic image of a type-B-Temperley–Lieb algebra. The quotient by the
ideal generated by e1 is isomorphic to the Ariki–Koike algebra. For speciBc parameter
values one may also obtain the A-type BMW algebra as a quotient.

Lemma 16. Let Jn be the ideal generated by Yn−p0. Every other Yi−p0; i=1; : : : ; n
generates the same ideal and the quotient R=(�−1 − �p2

0; xp
i
0 − Ai) ⊗R Bk

n(R)=Jn is
isomorphic to the A-type BMW algebra BAn(R=(�−1 − �p2

0; xp
i
0 − Ai)).

Proof. The Brst claim is a consequence of the deBnition of the Yi. The specialization
of the ground ring is necessary since in the quotient one obtains 0= e1YX1Y −�−1e1 =
e1p0X1p0 − �−1e1 = e1(p2

0�− �−1) and Aie1 = e1Y ie1 =pi
0e1. The remaining relations

present no further restrictions.

De�nition 17. In denotes the ideal generated by en−1 in Bk
n.

As we shall see, the quotient by this ideal is an Ariki–Koike algebra.

De�nition 18. AKk
n denotes the Ariki–Koike algebra [1] with generators X0; X1; : : : ; Xn−1

and parameters �; pi ; i = 0; : : : ; k − 1 and relations

X0X1X0X1 = X1X0X1X0;

XiXj = XjXi ; |i − j|¿ 1;

XiXjXi = XjXiXj ; |i − j| = 1;

X 2
i = �Xi + 1; i ≥ 0;

0 =
k−1∏
i=0

(X0 − pi):

We use a slightly diLerent normalization of the parameters than Ariki and Koike
did. From their work we need later on the result that AKk

n for the generic ground ring
is semi-simple. The proof of the following lemma is now trivial.

Lemma 19. In is generated by any of the ei and the quotient by it is isomorphic to
AKk

n .

Of some interest in knot theoretical applications is the projector on the eigenvalue p0

of Y . Such a projector is given by
∏k−1

i=1 (Y −pi). It fulBlls the modiBed B-Temperley–
Lieb algebra ([2], [8]) TB′

n with relations e2
0 = ce0; e2

i = dei ; ejel = elej ; eiejei =
ei ; e1e0e1 = c′e1; 1 ≤ i; j ≤ n− 1; 0 ≤ l ≤ n− 1; |i− j| = 1; |j − l|¿ 1. Obviously,
we have a morphism TB′

n → Bk
n.



                                                                     

7. Ground rings for �nite height

The algebra Bk
n(R) is in general not semi-simple. For the proof of semi-simplicity

over suitable ground rings we need a Markov trace and this demand in turn requires
that the annihilator ideal of a certain element vanishes. This section studies this con-
dition. We begin with the two string case n = 2 and simplify our notation by writing
B(R) :=Bk

2(R) and omitting the index 1 of e1 and X1.
The parameters of the algebra cannot be chosen independently. Note, for example,

that both e = �−1eYXY and Y k =
∑

i qiY
i Bx the length of Y .

De�nition 20. DeBne the ideal c⊂Rk0 to be generated by k Laurent polynomials that
are obtained by the following procedure: Expand Ye − �−1X−1

1 Y−1e using (24), (8),
(58) and (50) into a linear combination

∑k−1
i=0 hiY ie. The coeOcient hi of this sum

are the generators of c = (h0; : : : ; hk−1).
DeBne a ring Rk1 as a quotient Rk1 :=Rk0=c of Rk0.

To shed some light on the ideal c we note that (51) allows to write the deBning
relations in the form

Ye + ��−1Y−1e − �−1�
∑
m

RqmAme1

=�−1
∑
m

Rqm

(
�−1Y−me +

m−1∑
s=1

�(Am−sY−se − Ym−2se)

)
: (68)

We now introduce a ring that will become relevant later on as the ring of the
classical limit of the algebra. At this stage we need it purely as a tool.

De�nition 21. The ideal J kc ⊂Rk1 is given by J kc := (� − 1; q − 1; q0 − 1; q1; : : : ; qk−1).
Set Rkc :=Rk1=J

k
c .

According to results of the theory of symmetric polynomials the equations for the
qi are solvable. Hence the ring Rkc is non-trivial.

The same polynomials (� − 1; q − 1; q0 − 1; q1; : : : ; qk−1) deBne an ideal in Rk0. It
contains c since after dividing by J kc we have Y−1 =Y k−1; Rqk−1 = 1; Rqi = 0 and hence
(68) becomes trivial. It follows that Rkc is the quotient of Rk0 by J kc .

Now, we are in a position to single out ground rings with good properties.

De�nition 22. A ring R is called admissible, if
1. R is an integral domain.
2. R has Rkc as a quotient.
3. R is a quotient of Rk1.
4. The Ariki–Koike algebra is semi-simple over R.

The ring is called potentially admissible if it has the second and third properties.



                                                                     

The Brst point is motivated by the intended application of Jones–Wenzl theory which
needs passing to the Beld of quotients. The second allows to use the classical limit as
a tool. The third point plays a role in the construction of certain modules as we shall
see now.

Lemma 23. If R is potentially admissible and k¡∞, then the determinant of
(Ai+j)i; j ; 0 ≤ i; j ¡ k does not vanish.

Proof. First map d := det(Ai+j) to Rkc . Then we have Ai = Ai+k . In a second step map
the image of d into Rkc =(A1 = 0; : : : ; Ak−1 = 0). The result is (−1)k−1Ak0. As this is
non-zero, d itself cannot be zero.

Using (24), (58) and (50) we see that the ideal I2 is spanned Y ieY j ; i; j = 0; 1; : : : ;
k − 1.

De�nition 24. Let R be as in the deBnition of Bk
n. Let V :=V (R) be the free R-module

of dimension k. The basis is denoted by bi ; 0 ≤ i¡ k. V is turned into a module of
the free algebra generated by e; X; Y by the following deBnitions:

e:bi :=Aib0 with A0 = x;

Y:bk−1 :=
k−1∑
j=0

qjbj ; Y:bi := bi+1;

X :b0 := �b0; X :b1 := �−1Y−1:b0;

X :bi := (Y−1:X :bi−1 − �bi−2 + �Ai−1Y−1:b0); i ≥ 2:

The deBnition of this action is guided by the desire that it should factor over B(R).
Y−1 and X−1 shall act by their expansions in terms of Y i (implying (Y−1):=(Y:)−1),

resp. X; e; 1. It turns out, however, that V is not in general a B-module. Most relations
are easy to check but two of them may not hold: (a) XYXY =YXYX and (b) X 2 = 1 +
�X − ��e. Relation (b) is equivalent to (X−1): = (X :)−1.

Lemma 25. For any potentially admissible ring R the module V (R) is a B(R)-module.

Proof. By the very deBnition of a potentially admissible ring we have

b1 = Y:b0 = �−1X−1:Y−1:b0: (69)

On b0 relation (b) holds trivially. We check (a):

X :Y:X :Y:b0 = X :Y:X :b1 = �−1X :Y:Y−1:b0 = �−1X :b0 = b0

= Y:Y−1:b0 = �Y:X :b1 = Y:X :Y:X :b0:

Furthermore, we check the inverse of (a):

X−1:Y−1:X−1:Y−1:b0
(69)
= �−1−1

X−1:Y−1:Y:b0 = �−1−1
X−1:b0 = �−1−1

�−1b0;



                                                                     

Y−1:X−1:Y−1:X−1:b0 = �−1Y−1:X−1:Y−1:b0
(69)
= �−1−1

�−1Y−1:Y:b0

= �−1�−1−1
b0:

Eq. (69) enables us to write for all i = 0; : : : ; k − 1,

X :Y:bi−1 = X :bi = Y−1:X−1:bi−1: (70)

Here we used the convention that b−1 =Y−1:b0. The case i= 0 follows from (69), the
case i = 1 is trivial, and the cases i¿ 1 are simple rewritings of the action of X .

Now, we can start the inductive proof that (a) and (b) hold on all basis vectors.
The induction assumption Hi is relations (a) and (b) hold on bi−1. We show that the
inverse of relation (a) holds on bi−1,

Y−1:X−1:Y−1:X−1:bi−1
(70)
= �−1−1

�−1X :Y:�−1−1
�−1X :Y:bi−1

= �−1−2
�−2X :Y:X :Y:bi−1

Hi= �−1−1
�−1bi−1;

X−1:Y−1:X−1:Y−1:bi−1 = X−1:Y−1:X−1:bi−2
(70)
= �−1−1

�−1X−1:X :bi−1

Hi= �−1−1
�−1bi−1:

We now check (b):

X−1:X :bi
(70)
= X−1:Y−1:X−1:bi−1 = Y:Y−1:X−1:Y−1:X−1:bi−1

= Y:X−1:Y−1:X−1:Y−1:bi−1
(70)
= Y:X−1:X :bi−1

Hi= bi :

Finally, we look at (a):

Y:X :Y:X :bi = Y:X :Y:Y−1:X−1:bi−1 = Y:X :X−1:bi−1
Hi=Y:bi−1 = bi ;

X :Y:X :Y:bi
(70)
= X :Y:Y−1:X−1:bi = X :X−1:bi = bi :

Lemma 26. Assume R to be potentially admissible and de5ne Um := spanR1
{Y ieYm|i=

0; : : : ; k − 1}. Each Um is a B(R)-module isomorphic to V = V (R). If R is admissible;
then this is a direct sum decomposition and I2 is thus a free R-module.

Proof. We show that the map % : V (R) → B(R); bi �→ Y ie deBnes a module iso-
morphism of V and U0. It is a surjection of R-modules, and, by the above lemma,
a morphism of B(R)-modules. It remains to check injectivity. Suppose we had 0 =∑

i �iY
ie; �i ∈ R. Applying this to b0 we obtain 0= x

∑
i �ibi. Now, x is invertible, and

hence all the �i have to vanish. Thus we have shown that spanR1
{Y ie1} is a free R

module. The same is true for the isomorphic B(R1) modules Um.
We prove the last statement by showing that the ideal I2 := span{Y ie1Y j} is R-free

with the given basis. Suppose that there were a linear dependency 0 =
∑

i; j �i; jY
ie1Y j.

Multiply this with Y re1 from the right to obtain 0 =
∑

i; j �i; jY
ie1Aj+r . The Y ie1 are

linearly independent and hence we have for every i, 0=
∑

j �i; jAj+r . Sine R is supposed
to be an integral domain, this means that the determinant of the matrix A is zero. But
this contradicts Lemma 23.



                                                                     

Proposition 27. The annihilator ideal of En := e1e3 · · · e2n−1 ∈ Bk
2n(R) vanishes if R is

potentially admissible.

Proof. We use the map �2n : Bk
2n → GBk

2n to pass to the graphical situation. Assume
 En = 0 with some 0 �=  ∈ R. Then 0 =  �2n(En) as well.

Let V ∈ Kk
2n;2(R) be the image of the tangle that contains n − 1 minimae between

two vertical strings and similarly V ′ ∈ Kk
2;2n(R) with maximae (cf. Fig. 6). From

0 =  V�2n(En)V ′ =  e(G)
1 ∈ GBk

2(R);

we conclude that it suOces to show that e(G)
1 ⊂GBk

2(R) has vanishing annihilator ideal.
Denote by J k the ideal generated by

∏k−1
i=0 (Y−pi) in B∞

2 (R) and by GJ k :=�2(J k)
the corresponding ideal in GB∞

2 (R).

B∞
2 (R)

�2−−−−−→ GB∞
2 (R)� 1

� 1′

B∞
2 (R)=J k

�̂2−−−−−→ GB∞
2 (R)=GJ k :

In this diagram 1; 1′ are the natural projections and �̂2 is the induced map. The
quotients B∞

2 (R)=J k and GB∞
2 (R)=GJ k are the algebras Bk

2(R) and GBk
2(R).

We know from Proposition 13 that �2 is an isomorphism. Now, e1 ∈ U0 ⊂B∞
2 (R)=J k

has vanishing annihilator ideal. Hence, we are done if we can show that �̂2 is injec-
tive. Suppose, we have a + J k ∈ B∞

2 (R)=J k such that 0 = �̂2(a + J k) = 1′(�2(a)) =
�2(a) +GJ k . Then �2(a) ∈ GJ k . Since �2 is bijective this implies a ∈ J k and hence
a + J k ∈ B∞

2 (R)=J k is zero.

The above proof shows furthermore

Corollary 28. GBk
2(R) and Bk

2(R) are isomorphic if the ground ring is potentially
admissible.

Proposition 29. Let R be admissible. Then Bk
2(R) is R-free of dimension k2 +k2 ·2!=

k2 · (2 · 2 − 1)!! = 3k2 with basis

Sk := {Y ie1Y j} ∪ {Y iX1Y jX1} ∪ {Y iX1Y j}; i; j ∈ {0; : : : ; k − 1}

Fig. 6. Some auxiliary morphisms.



                                                                     

Proof. The set {Y ie1Y j} is a basis of I2 according to Lemma 26. The quotient is the
Ariki–Koike algebra AK2 and the quotient map sends generators to generators. The
union of the second and third subset of Sk is mapped to a basis of the Ariki–Koike
algebra and hence must be free. Therefore, the following exact sequence of R-modules
splits 0 → I2 → Bk

2(R) → AK2(R) → 0.

Next, we display the relations hi =0 explicitly for k ≤ 3. In the case k=2 they read

0 = h0q2
0 = q−1�−2(−qq0q1 + �(q2 − 1)A1q0 − qq1);

0 = h1q2
0 = �−2 + �−1q0q−1 − �−1qq0 − q2

0:

The second equation factorizes

q0 = ±�−1q∓1:

The Brst equation may then be solved uniquely

A1 = q1�−1�−1(1 ∓ �q∓1):

Hence we set

L±2 :=R0=(h0;±�−1q∓1 − q0): (71)

Both rings are integral domains and its easy to check by Ariki’s criterion that AK2
n(L

±
2 )

is semi-simple. Hence they are admissible.
In the case k=3 we use the basis {Y−1e1; e1; Ye1} to obtain equivalent but somewhat

simpler formulas. The relations read

0 = h0q2
0 = −(q0q1 + �−2q2) − �−1�q0(1 − A2 + xq1 + A1q2));

0 = h−1q2
0 = −�−1(�q0(q0 − A1) + �−1(q1 + q0q2));

0 = h1 = �−2q−2
0 − 1:

Again, the last equation factorizes

q0 = ±�−1:

We set

L±3 :=R0=(h0; h−1;±�−1 − q0): (72)

L±3 are integral domains. The deBning relations can be solved uniquely:

A1 = q2�−1�−1 ± �−1 ± q1�−1;

A2 = �−1(q2 − 1)−1( −�q� + �q1 − qq1 − �q2q1

±q2 ∓ �qq2 ∓ q2q2 ∓ �qq1q2 − qq2
2):

L±3 are admissible.



                                                                     

We now return to the general case of Bnite k. Using (51) we can rewrite the deBning
relation from DeBnition 20 in the following way:

k−1∑
i=0

hiY ie = Ye + ��−1Y−1e − �−1�
∑
m

RqmAme1

− �−1
∑
m

Rqm

(
�−1Y−me +

m−1∑
s=1

�(Am−sY−se − Ym−2se)

)
: (73)

This suggests to switch to the basis Y−(k−2)e1; Y−(k−2)+1e1; : : : ; Ye1,

1∑
i=−(k−2)

h′iY
ie = Ye + ��−1Y−1e − �−1�

∑
m

RqmAme1

− �−2
k−2∑
m=0

RqmY
−me − �−2 Rqk−1

k−1∑
i=0

RqiY
i−(k−2)e

− �−1�
k−1∑
m=0

Rqm

m−1∑
s=1

Am−sY−se + �−1�
k−1∑
m=0

Rqm

m−1∑
s=1

Ym−2se: (74)

Of course, the coeOcients of the deBning relation with respect to these two bases
generate the same ideal (h0; : : : ; hk−1) = (h′−(k−2); : : : ; h

′
1). Only the last term in (74) is

not yet fully converted to the new basis. We take a closer look at the coeOcient of
Ye1,

h′1 = 1 − �−2 Rq2
k−1 + ��−1

k−1∑
m=0

Rqm

m−1∑
s=1

q̃m−2s;1:

Let B denote the sum on the right (without the factor ��−1) and split it into B=B1 +B2

such that B1 contains the terms with m−2s=1. Now, distinguish between even k=2 
and odd k = 2 + 1 values of k. In the odd case we have

B1 =
k−2∑

m=3;5;:::

Rqm =
 −1∑
s=1

Rq2s+1 = −q−1
0

 ∑
s=2

q2s:

In the even case similarly

B1 =
k−1∑

m=3;5;:::

Rqm =
 −1∑
s=1

Rq2s+1 = −q−1
0

 −2∑
s=1

q2+2s + q−1
0 = −q−1

0

 −1∑
s=2

q2s + q−1
0 :

Now, let us calculate B2 using (64).

B2 =
k−1∑
m=4


(m−2)=2�∑
s=1

Rqmq̃m−2s;1



                                                                     

= −q−1
0

k−2∑
m=4


(m−2)=2�∑
s=1

qm+1

m−2s−1∑
t=1

∑
i1+···it=m−2s−1

qk−i1 · · · qk−it

+ q−1
0


(k−3)=2�∑
s=1

k−2s−2∑
t=1

∑
i1+···it=k−2s−2

qk−i1 · · · qk−it :

Both lines cancel almost completely. Only the summands with only one term qk−ij

survive.

B2 = q−1
0


(k−3)=2�∑
s=1

qk−(k−2−2s) = q−1
0

 −2+3∑
s=1

q2+2s = q−1
0

 −1+3∑
s=2

q2s:

Here 3 = 0 for k even and 3 = 1 otherwise. Upon adding B1 and B2 a lot of terms
cancel: B = 0 for k odd and B = q−1

0 for k even. Put together,

h′1 = 1 − �−2q−2
0 = (1 − �−1q−1

0 )(1 + �−1q−1
0 ); k odd;

h′1 = 1 − �−2q−2
0 + ��−1q−1

0 = �−2q−2
0 (q + �q0)(�q0 − q−1); k even:

At this point we notice that h′−(k−2) = 0; : : : ; h′−1 = 0; h′0 = 0 is a triangular system
of equations for Ak−2; : : : ; A1; Ak−1. The denominator is up to units always �. The
numerators are irreducible. Using this information one can easily prove that the ideals
given in the next deBnition are prime. Moreover, the classical limit exists as a quotient
because the relations h′j = 0 are fulBlled trivially for q = q0 = 1; qi = 0.

De�nition and Proposition 30. For odd k de5ne

L±k :=Rk0=(±�−1 − q0; h′0; : : : ; h
′
−(k−2)) (75)

and for even k de5ne

L±k :=Rk0=(±�−1q∓1 − q0; h′0; : : : ; h
′
−(k−2)): (76)

Then L+
k and L−k are admissible rings for Bk

n.

8. Normal forms of words problem in Bk
n

In this section we single out a set of words in standard form that linearly generate
Bk

n. This is fundamental to the following analysis. However, it does not yet lead to
a linear basis of Bk

n. Only in the classical limit it will be possible to strengthen the
results to obtain a tight upper bound for the dimension.

Proposition 31. Every element in Bk
n is a linear combination of words of the form

w15w2 where wi ∈ Bk
n−1 and 5 ∈ 6n := {1; en−1; Xn−1; Y

j
n ; j = 1; : : : ; k − 1} The same is

true if in 6n the generators Xn−1 or Yn or both are replaced by their inverses.

Proof. We prove the proposition by induction. The case n= 1 is trivial and n= 2 can
also be veriBed easily.



                                                                     

Let w050w151 · · ·wm5mwm+1 ∈ Bk
n ; wi ∈ Bk

n−1; 5i ∈ 6n be an arbitrary word. It suOces
to show that any two neighboring 5i can be combined together. Hence the situation
we have to investigate is w = 51w152; w1 ∈ Bk

n−1; 51; 52 ∈ 6n. By induction hypothesis
we have w1 = u1�u2; ui ∈ Bk

n−2; � ∈ 6n−1 and hence w = 51u1�u252 = u151�52u2. Thus
it suOces to investigate w′ = 51�52. The cases 51 = 1 or 52 = 1 are trivial. We now
investigate in turn the four possible values of �.
Case 1. �=1. The following table gives the relation that allows to reduce the product

5152 to the standard form of the proposition.

51 \ 52 Y j
n en−1 Xn−1

Y l
n trivial (77) (48)

en−1 (78) (7) (5)

Xn−1 (79) (5) (12)

Y l
nen−1 = Xn−1Y l

n−1X
−1
n−1en−1 = �−1Xn−1Y l

n−1en−1 apply (50) recursively (77)

en−1Y j
n = �en−1Y

j
n−1X

−1
n−1

= �en−1Y
j
n−1Xn−1 − ��en−1Y

j
n−1 + ��Ajen−1: (78)

The Brst term is reduced by applying (49) recursively:

Xn−1Y j
n = X 2

n−1Y
j
n−1X

−1
n−1

= Y j
n−1X

−1
n−1 − ��en−1Y

j
n−1X

−1
n−1 + �Xn−1Y

j
n−1X

−1
n−1 (79)

= Y j
n−1Xn−1 − �Y j

n−1 + �Y j
n−1en−1

−��(en−1Y
j
n−1Xn−1 − �en−1Y

j
n−1 + �Ajen−1) + �Y j

n : (80)

Again, one needs (49) for recursive reduction:
Case 2: � = Xn−2:

51 \ 52 Y j
n en−1 Xn−1

Y l
n =Xn−2Y

j+l
n =Xn−2Y l

nen−1 (77) =Xn−2Y l
nXn−1 (48)

en−1 =en−1Y
j
n Xn−2 (78) (6) (16)

Xn−1 =Xn−1Y
j
n Xn−2 (79) (17) (4)



                                                                     

Case 3: � = en−2:

51 \ 52 Y j
n en−1 Xn−1

Y l
n =en−2Y

l+j
n =en−2Y l

nen−1 (77) =en−2Y l
nXn−1 (48)

en−1 =en−1Y
j
n en−2 (78) (11) (15)

Xn−1 Xn−1Y
j
n en−2 (79) (14) (19)

Case 4: � = Ym
n−1:

51 \ 52 Y j
n en−1 Xn−1

Y l
n ∗ like (81) ∗

en−1 (81) (40) (49)

Xn−1 ∗ (50) (83)

en−1Ym
n−1Y

j
n = en−1Ym

n−1Xn−1Y
j
n−1X

−1
n−1

(49)∈ span{en−1Y s
n−1 | 0 ≤ s¡k}Y j

n−1X
−1
n−1 (81)

(49)
⊆ span{en−1Y s

n−1|0 ≤ s¡k}; (82)

Xn−1Ym
n−1Xn−1 = Ym

n X
2
n−1 = Ym

n + �Ym
n Xn−1 − ��Ym

n en−1

= Ym
n + �Xn−1Ym

n−1 − ��Ym
n en−1: (83)

The last term can be reduced using (77).
The remaining cases (marked by ∗ in the table) are

Y l
nY

m
n−1Y

j
n = Xn−1Yn−1X−1

n−1Y
m
n−1Xn−1Y

j
n−1X

−1
n−1;

Xn−1Ym
n−1Y

j
n = Xn−1Ym

n−1Xn−1Y
j
n−1X

−1
n−1;

Y l
nY

m
n−1Xn−1 = Xn−1Yn−1X−1

n−1Y
m
n−1Xn−1:

We note that we are dealing with sequences of generators where all indices are equal.
Hence we will suppress the index in further calculations. Eqs. (49) and (50) imply
that every such sequence containing e is reducible to Y teY s and thus is of the standard
form. This motivates the following notation: We write a ∼ b if ∃c; 8 a= b+ 8c, where
c contains e and 8 is some parameter. As a consequence the substitutions X −� ↔ X−1

preserve this equivalence relation.
To complete the proof it suOces to show that any Bnite sequence of the kind

· · ·XY i1XY i2X · · · is equivalent under ∼ to a sequence that contains at most two X



                                                                     

because if the sequence contains none or only one X it is in the standard form and if it
contains exactly two X it is either XY lXYm ∼ XY lX−1Ym+�XY l+m=Y l

·+1Y
m+�XY l+m

or Y lXYmX ∼ Y lXYmX−1 + �Y lXYm = Y lYm
·+1 + �Y lXYm.

The reducibility to sequences with at most two X follows by induction from the
following lemma: There exists families of scalars �; 9 such that

XY sXY tX ∼
∑
i; j

�s; ts; tXY
iXY j +

∑
i; j

9s; ti; jY
iXY j : (84)

We prove (84) by induction on s. For s= 1 we have XYXY tX = Y tXYX 2 ∼ Y tXY −
�Y tXYX = Y tXY − �XYXY t . Assume that (84) holds for s. We show it for s + 1:

XY s+1XY tX = XYX−1XY sXY t

∼
∑
i; j

�s; ti; jXYX
−1XY iXY j +

∑
i; j

9s; ti; jXYX
−1Y iXY j

∼
∑
i; j

�s; ti; jXY
i+1XY j +

∑
i; j

9s; ti; jXYXY
iXY j − �

∑
i; j

9s; ti; jXY
i+1XY j :

The Brst and third summands are already in a form in which their contribution to �s+1; t
i+1; j

can be read oL. In the second summand we apply the induction hypothesis once again∑
i; j

9s; ti; jXYXY
iXY j ∼

∑
i; j

9s; ti; j
∑
p;q

(�1; i
p;qXY

pXY q+j + 91; i
p;qY

pXY q+j):

We now establish the last statement of the proposition. Using the involution from
Remark 15 we see that we may replace X and Y in 6n by their inverses. Since Y−1

n

is just a linear combination of powers of Yn we also may replace Yn by Y−1
n alone.

Combining both operations replaces just Xn−1 by its inverse.

The proposition implies that Bk
n is Bnite dimensional.

Lemma 32. There exist elements Ri;m ∈ Bk
i−1 such that eiY ′m

i ei = Ri;mei ;

eiY ′l
i Xi = eiY ′l−1

i XiY ′−1
i − �eiY ′l−2

i + �Ri; l−1eiY ′−1
i : (85)

Proof. To prove the Brst statement one writes Y ′m
i =

∑
j ajbjcj according to Proposition

31 with aj ; cj ∈ Bk
i−1; bj ∈ 6i. The claim is then obvious:

eiY ′l
i Xi = eiY ′l

i XiY
′
i XiX

−1
i Y ′−1

i = eiXiY ′
i XiY

′l
i X

−1
i Y ′−1

i

= eiY ′l−1
i X−1

i Y ′−1
i

= eiY ′l−1
i XiY ′−1

i − �eiY ′l−1
i Y ′−1

i + �eiY ′l−1
i eiY ′−1

i

= eiY ′l−1
i XiY ′−1

i − �eiY ′l−2
i + �Ri; l−1eiY ′−1

i : (86)

This lemma implies that In = Bk
n−1en−1B

k
n−1.



                                                                     

Proposition 33. In Proposition 31 one may replace 6n by 6′
n := {1; en−1; Xn−1; Y

′ j
n ; j=

1; : : : ; k − 1}.

Proof. We express an arbitrary element a in Bk
n as a =

∑
j fjhjgj with fj ; gj ∈

Bk
n−1; hj ∈ 6n. We are Bnished if we can show that Y i

n =
∑

s l
(n)
s 5(n)

s r(n)
s with 5(n)

s ∈
6′
n ; l

(n)
s ; r(n)

s ∈ Bk
n−1 since in this case we can simply substitute this expressions for the

Y n
i which appear among the hj.
We show Y i

n =
∑

s l
(n)
s 5(n)

s r(n)
s by induction. The case n = 1 is trivial. Now assume

that the formula holds for n− 1.

Y i
n = Xn−1Y i

n−1X
−1
n−1 =

∑
s

Xn−1l(n−1)
s 5(n−1)

s r(n−1)
s X−1

n−1

=
∑
s

l(n−1)
s Xn−15(n−1)

s X−1
n−1r

(n−1)
s :

The cases 5(n−1)
s ∈ {1; en−2; Xn−2} are easily reduced using Lemma 7. It remains to

investigate the case 5(n−1)
s = Y ′ j

n−1.

Xn−1Y
′ j
n−1X

−1
n−1 = Xn−1Y ′

n−1Xn−1X−1
n−1Y

′ j−1
n−1 X−1

n−1

= Y ′
n(Xn−1 − � + �en−1)Y ′ j−1

n−1 X−1
n−1

= Y ′
nXn−1Y

′ j−1
n−1 X−1

n−1 − �Y ′
nY

′ j−1
n−1 X−1

n−1 + �Y ′
nen−1Y

′ j−1
n−1 X−1

n−1: (87)

The second summand is −�Y ′ j−1
n−1 Xn−1Y ′

n−1 which is already of the standard form. The
third summand is

�Y ′
nen−1Y

′ j−1
n−1 X−1

n−1 = ��Xn−1Y ′
n−1en−1Y

′ j−1
n−1 (Xn−1 − � + �en−1)

= �Y ′−1
n−1en−1Y

′ j−1
n−1 Xn−1 − �2Y ′−1

n−1en−1Y
′ j−1
n−1

+�2Y ′−1
n−1en−1Y

′ j−1
n−1 en−1:

Here the last summand is reduced using the formula for eiY ′m
i ei from Lemma 32 while

the Brst summand needs (85). The middle summand is already of the standard form.
The Brst summand of (87) is reduced by iteration.

We continue our study of words in Bk
n by cutting down the size of sets that linearly

generate the algebra.

Lemma 34. Bk
n is linearly spanned by the set Sn which is recursively de5ned;

S1 := {Y i | i = 0; : : : ; k − 1};
Sn := 61 · · ·6nSn−1:

It su<ces to take out of 61 · · ·6n those elements that are of the following form:

Ym1
l1 · · ·Yms

ls Xi · · ·Xjej+1 · · · en; mt ∈ {0; : : : ; k − 1}; l1 ¡ · · ·¡ls = i:

Here we have 1 ≤ i ≤ n and i − 1 ≤ j ≤ n − 1 so that the chains of X and e may
be empty.



                                                                     

Proof. Proposition 31 yields the following representation of Bk
n:

Bk
n = spanBk

n−16nB
k
n−1 = spanBk

n−26n−1B
k
n−26nB

k
n−1

= spanBk
n−26n−16nBk

n−1

= span61 · · ·6nBk
n−1: (88)

To establish the second statement we consider the Ym
j that appears at the leftmost posi-

tion in a chain Zi · · ·Zj−1Ym
j Zj+1 · · ·Zn of generators Zs ∈ 6s. Then Zi · · ·Zj−1 consists

only of e and X and hence it can be commuted to the right and be absorbed in Bk
n−1.

Similarly, e and X that appear between two Y· can be commuted to the right. Iterating
this argument, we obtain only chains of the form Ym1

i1 · · ·Yms
is Zj+1 · · ·Zn; i1 ¡ · · ·¡is.

If eiXi+1 appears in such a chain it may be converted to eiXi+1 = eiei+1X−1
i . The

X−1
i can the be absorbed in Bk

n−1. Hence all X have to appear to the left of all e.

A similar proof establishes a related lemma using the Y ′
i instead.

9. The classical limit

The classical limit of tangle algebra is a specialization in which braidings degenerate
to permutations. We deBne BPk

n(R) in its own right as algebra of Brauer graphs [15]
where each arc carries an element of Zk . We visualize this as dotted Brauer graphs,
i.e., BPk

n(R) is the free R module of dimension kn(2n − 1)!! that has as basis the
set of Brauer graphs where each arc carries at most k − 1 points. We require that
vertical arcs have no extrema with respect to the height function and that horizontal
arcs have exactly one extremum. Furthermore, we demand that the dots of vertical arcs
are concentrated at the left endpoint.

Multiplication is given as for Brauer graphs. Dots may Now along an arc and may
cross another arc. If a dot traverses an extremum it gets replaced by k − 1 dots. Dot
numbers are reduced modulo k. Using this we may isolate cycles and concentrate
dots on their leftmost position. Such a cycle with i dots on it may be deleted at the
expense of a factor Ai. Dots on vertical arcs may be brought to the lower endpoint
and thereafter the arc may be straightened. Similarly, dots on horizontal arcs may be
concentrated according to our convention. Just as in the case of ordinary Brauer graphs
we see that BPk

n(R) is generated by X (G)
i; n ; e(G)

i; n ; Y
(G)
1; n (where X (G)

i; n is to be understood
as a permutation two-cycle).

Let us compare BPk
n with the classical limit of Bk

n.

De�nition 35. The classical limit of Bk
n is deBned to be the algebra

CBk
n :=Bk

n(R
k
1) ⊗Rk1

Rkc (89)

In CBk
n we have Xi = X−1

i and hence Y j
i = Y ( j)

i = Y ′ j
i . An important consequence

is that Yi behaves natural with respect to the braidings Xi. This gives the next lemma.



                                                                     

Lemma 36. CBk
n is spanned by a set of elements of the form �95; where � is a

product of Yi ; 5 is a product of Y−1 and 9 is an element of a basis of the A-type
BMW algebra BAn.
For k ¡∞ we have moreover: Each word of this basis contains at most kn factors

Y; Y−1 in � and 5 combined. The number kn(2n − 1)!! is therefore an upper bound
for the dimension of CBk

n.

Proof. The proof is by induction on n. Assume it to be already established for n− 1.
We represent CBk

n similarly to (88). It suOces to show that we can move all Yi which
appear on the left of the basis words of CBk

n−1 either through the outer chain to the
left or, negated, to the right. We investigate the various cases that arise. First, assume
that en−1Yn−1 occurs. We rewrite it as

en−1Yn−1 = en−1Yn−1Xn−1Yn−1Y−1
n−1X

−1
n−1 = �−1en−1Y−1

n−1X
−1
n−1

= en−1X−1
n−1Y

−1
n−1X

−1
n−1 = en−1Y−1

n = en−1Y−1
n :

If eiei+1Yi = eiYiei+1 occurs, the same calculation applied twice yields that Yi+2 can be
moved to the left. The only remaining case is resolved in the following way:

XiYi = Yi+1X−1
i = Yi+1Xi − �Yi+1 + �Yi+1ei = Yi+1Xi :

None of these rewritings did change the combined number of Y and Y−1. Hence,
there can be at most (k − 1)n of them: Every chain from the recursive construction of
the set Sn (Lemma 34) contributes at most k − 1 of them. By induction assumption,
the dimension of CBk

n−1 is less than kn−1(2n − 3)!! The theory of the standard BW
algebra BAn shows that 2n − 1 chains Zi · · ·Zn; Zj ∈ {ei−1; Xi−1} suOce to obtain a
basis. Each of these can start with Ym

i . Hence, the dimension of CBk
n exceeds that of

Bk
n−1 by at most a factor k(2n− 1). The claim follows.

Lemma 37. The algebras CBk
n and BPk

n(Rc) are isomorphic.

Proof. We deBne the morphism 8n :CBk
n → BPk

n(Rc) that maps ei �→ e(G)
i ; Xi �→ X (G)

i

and Y to a dot on the Brst string. It is easy to see that this is a morphism (it is relation
(23) that requires the somewhat strange minimum=maximum rule). It is surjective.
Injectivity may be seen by looking at the dimension of these algebras.

10. The Markov trace

The graphical calculus as well as the relationship with the A-type BMW algebra
suggest that there should exist a Markov trace on Bk

n.

De�nition and Proposition 38. Let an⊂R denote the annihilator ideal of En=E(1; 2n−
1) = e1e3 · · · e2n−1 in Bk

2n(R). Then the equation

xntr(a)E(1; 2n− 1) = RH naHn ∀a ∈ Bk
n

(Hn is to be de5ned in (94)) de5nes a Markov trace tr : Bk
n(R)⊗R(R=an)=Bk

n(R=an) →
R=an. Here k may be 5nite or in5nite.



                                                                     

For potentially admissible rings an vanishes and the theorem yields the existence of
a Markov trace (see Fig. 7).

The proof is split up into a sequence of lemmata. As a basic tool we need elements
that model the concentric half-circles used in closing braids:

X (i; j) :=XiXi+1 · · ·Xj ; (90)

X−1(i; j) :=X−1
i X−1

i+1 · · ·X−1
j ; (91)

E(i; j) := eiei+2 · · · ej ; (92)

H1 := e1; (93)

Hn+1 := en+1X (n + 2; 2n + 1)X (n + 1; 2n)Hn: (94)

Lemma 39.

Hn = E(n; n)E(n− 1; n + 1) · · ·E(1; 2n− 1); (95)

Hn+1 = en+1X−1(n + 2; 2n + 1)X−1(n + 1; 2n)Hn; (96)

X±
i Hn = X±

2n−iHn; eiHn = e2n−iHn; (97)

e2n−1 = X (n; 2n− 2)−1X (n + 1; 2n− 1)−1enX (n + 1; 2n− 1)X (n; 2n− 2); (98)

enX (n + 1; n + m)X (n; n + m− 1) = X (n + 1; n + m)X (n; n + m− 1)en+m; (99)

Hn+1 = en+1X (n + 2; 2n)X (n + 1; 2n− 1)X−1
2n+1X

−1
2n Hn; (100)

Y±1Hn = Y ′∓1
2n Hn: (101)

Proof. All these relations become pretty obvious upon drawing pictures but, of course,
we are not yet in a position to take graphs for proofs. The algebraic proofs are all
done by induction and we restrict ourselves to last one. Here, induction starts from

YH1 = Ye1 = X−1
1 Y−1YX1Ye1 = (X1YX1)−1e1:

Fig. 7. The graphical interpretation of H3 (on the left), of X (1; 3) and E(1; 5) (in the middle) and of the
Markov trace.



                                                                     

The induction step is

YHn+1 = Yen+1X−1(n + 2; 2n + 1)X−1(n + 1; 2n)Hn

= en+1X−1(n + 2; 2n + 1)X−1(n + 1; 2n)YHn

= en+1X−1(n + 2; 2n + 1)X−1(n + 1; 2n− 1)X−1
2n Y ′−1

2n Hn

= en+1X−1(n + 2; 2n)X−1
2n+1X

−1(n + 1; 2n− 1)Y ′−1
2n+1X2nHn

= en+1X−1(n + 2; 2n)X−1
2n+1Y

′−1
2n+1X

−1(n + 1; 2n− 1)X2nHn

= en+1X−1(n + 2; 2n)Y ′−1
2n+2X2n+1X−1(n + 1; 2n− 1)X2nHn

= Y ′−1
2n+2en+1X−1(n + 2; 2n)X−1(n + 1; 2n− 1)X2n+1X2nHn

= Y ′−1
2(n+1)Hn+1:

Using the involution from Remark 10 this yields

Lemma 40. HnX±
i =HnX±

2n−i ; Hnei=Hne2n−i ; HnY±1=HnY ′∓1
2n . Hence HnabHn=HnbaHn;

∀a; b ∈ Bk
n

Thus we have shown that tr is a trace.

Lemma 41. tr is a Markov trace; i.e., for a ∈ Bk
n the following relations hold:

tr(1) = 1; (102)

tr(aen) = x−1 tr(a); (103)

tr(aX±
n ) = x−1�∓ tr(a); (104)

tr(aYm
n+1) = Amx−1 tr(a): (105)

Proof. Let a ∈ Bk
n and 5 ∈ 6n+1. Then en+1a5en+1 = aen+15en+1 = s(5)aen+1 with a

factor s which assumes the values s(5)=x; 1; �−1; Am when 5=1; en; Xn; Ym
n+1. The proof

is by induction on n. The induction start is trivial and the step is

RH n+1a5Hn+1

= RH nX (n + 1; 2n)−1X (n + 2; 2n + 1)−1en+1

a5en+1X (n + 2; 2n + 1)X (n + 1; 2n)Hn

= RH nX (n + 1; 2n)−1X (n + 2; 2n + 1)−1

as(5)en+1X (n + 2; 2n + 1)X (n + 1; 2n)Hn

=s(5) RH naX (n + 1; 2n)−1X (n + 2; 2n + 1)−1

en+1X (n + 2; 2n + 1)X (n + 1; 2n)Hn

=s(5) RH nae2n+1Hn = s(5) RH naHne2n+1

=s(5)xntr(a)E(1; 2n− 1)e2n+1 = (s(5)=x)xn+1tr(a)E(1; 2n + 1):



                                                                     

This proof moreover shows that tr is indeed well-deBned independent of n. If we
had given an index n to the trace in DeBnition 38 then the case a ∈ Bk

n ; 5 = 1 in the
above proof yields xn+1 trn+1(a)E(1; 2n+1)= RH n+1a5Hn+1 =(x=x)xn+1 trn(a)E(1; 2n+1),
hence trn+1(a) = trn(a).

In the classical limit the trace is given as well by closing the strings from the right.
Hence, let a ∈ BPk

n be a dotted Brauer graph and denote by ni(a) the number of cycles
with i dots on its closure. Then we have

tr(a) = x−n
k−1∏
i=0

Ani(a)
i : (106)

Lemma 42. The trace is nondegenerate on CBk
n = BPk

n.

Proof. Let {vi | i = 1; : : : ; kn(2n − 1)!!} be a linear basis of dotted Brauer graphs. It
suOces to show det(tr(viv∗j )i; j) �= 0.

The involution a �→ a? maps graphs to their top-down mirror image and replaces
each dot by k − 1 dots. Hence the closure of aa∗ is free of dots. Now assume that a
has s upper (and hence s lower) horizontal arcs. Then there are s cycles in aa∗. Upon
closing another s cycles are produced from the remaining horizontal arcs. The vertical
arcs form a permutation and a∗ contains the inverse permutation. Upon closing these
n− 2s vertical arcs yield n− 2s cycles. The closure of aa∗ has therefore a total of n
cycles and tr(aa∗) = 1.

We now specialize the ground ring: A1 := : : : :=Ak−1 := x−1. The trace is then a
Laurent polynomial in x. The choice for the Ai implies that additional dots on an arc
decrease the degree (in x) of the trace. If 9 is an arc of a and b is any other graph
which does not contain an arc which is the mirror image of 9. By considering the
cases that 9 is vertical and horizontal individually one easily sees that the cycle in
the closure of ab which contains 9 consists of more than two arcs from a and b. The
closure of ab has therfore less cycles than the closure of aa∗. We conclude that b=a∗

is the unique graph with highest x degree of tr(ab). We now consider the determinant
of the trace

det(tr(viv∗j )i; j) = x−nkn(2n−1)!!det

(xn0(viv∗j )
k−1∏
s=1

xns(viv
∗
j )=2

)
i;j

 :

In each row the element at the diagonal is the unique element with highest degree in
x. Calculating the determinant thus yields a sum with a unique term of highest degree.
Thus the determinant does not vanish.

Up to now we know that there is a trace functional on our algebra, but its faithfulness
is only established in the classical limit. This should not come as a surprise since this
is the only specialization for which we know the dimension!



                                                                     

11. The structure theorem

In this section we determine the structure of Bk
n in the generic case. It will turn out

to be semi-simple and of dimension kn(2n − 1)!! We only need a few deBnitions on
the Young diagrams before we can state the structure theorem.

A Young diagram � of size n is a partition of the natural number n. �= (�1; : : : ; �k);∑
i �i = n; �i ≥ �i+1. In the following, we use ordered tuples of the Young diagrams

� = (�1; : : : ; �k) (cf. [1]). The (total) size of the a tuple of the Young diagrams is

the sum of sizes of its components. Let 6̂
k
n be the set of all k tuples of the Young

diagrams that have total size n; n− 2; : : : ; 1 or 0.

Proposition 43. Let R be an admissible ring and denote by K its 5eld of fractions.
For the algebra Bk

n = Bk
n(K) of 5nite height k the following statements hold:

1. Bk
n is semi-simple and its simple components are indexed by 6̂

k
n:

Bk
n =

⊕
�∈6̂k

n

Bk
n;�: (107)

2. The Bratteli rule for restrictions of modules: A simple Bk
n;' module V'; ' ∈ 6̂

k
n

decomposes into Bk
n−1 modules such that the Bk

n−1 module � ∈ 6̂
k
n−1 occurs i> �

may be obtained from ' by adding or removing a box.

3. tr is a faithful trace. To every tuple of Young diagrams � ∈ 6̂
k
n there is an

idempotent p� and a non vanishing, rational function Q� which does not depend
on n and satis5es tr(p�) = Q�=xn.

The proof uses the same techniques as [9,16].

Proof. Bk
0 is simply the ground ring. Thus the proposition is true with tr(p(·; :::; ·)) =

tr(1) = Q(·; :::; ·)=x0; Q(·; :::; ·) = 1. The algebra Bk
1 is of dimension k and has a basis

{1; Y; : : : ; Y k−1}. It is commutative and semi-simple (the minimal polynomial of Y is
separable). The simple blocks are given by the eigenspaces of Y . Existence of idempo-
tents is clear. The graphical version is isomorphic as a simple consequence of Turaev’s
result on the skein module of the solid torus [14]. Moreover, from tr(Y iY j) = Ai+j=A0

and Lemma 23 it follows that the trace on Bk
1 is non-degenerate.

Assume the proposition is shown by induction for Bk
n.

We apply Jones–Wenzl theory [15,16] to the following inclusion Bk
n−1 ⊂Bk

n ⊂Bk
n+1.

The idempotent is e=x−1en. This is possible because Bk
n−1;B

k
n are semi-simple algebras

with a faithful trace by induction assumption. All required properties needed for e
have already been established. Jones–Wenzl theory asserts the semi-simplicity of the
ideal generated by e. Thus In+1 is semi-simple. The quotient algebra Bk

n+1=In+1 is the
Ariki–Koike algebra AK(k)

n+1 and is semi-simple according to [1]. Since we work over
a Beld we can conclude (by looking at the radicals) that Bk

n+1 is semi-simple and
that it is isomorphic to the direct sum Bk

n+1 = In+1 ⊕Bk
n+1=In+1. Jones–Wenzl theory



                                                                     

further implies that the simple components of In+1 are indexed by 6̂
k
n−1. The simple

components of AK(k)
n+1 are indexed by tuples of the Young diagrams of size n+ 1 (see

[1]). This completes the proof of point 1 of the theorem.
The inclusion matrix for the part In+1 is the transpose of the inclusion matrix of

Bk
n−1 ⊂Bk

n. For the part AK(k)
n+1 the Bratteli rule follow from [1].

We have to show that tr is faithful, i.e., that the Q functions do not vanish. If
p� ∈ Bk

n−1 is a minimal idempotent in Bk
n−1; � then x−1p( ;�)en is a minimal idempo-

tent according to Jones–Wenzl theory. The trace of this idempotent is tr(x−1p�en) =
x−2tr(p�) = Q�=xn−1+2. Obviously, this is non vanishing (using the induction assump-
tion). The idempotents of this kind are those of In+1. For the other idempotents (which
are those of Bk

n+1=In+1) the function Q is deBned by tr(p�) = Q�=xn.
To establish faithfulness of the trace we use the classical limit. A minimal idempotent

p� of Bk
n yields an idempotent in the classical limit described in Section 9. We know

already that on the classical limit algebra the trace is non-degenerate. Hence the function
Q� has a non-vanishing classical limit and hence cannot be zero itself.

The cyclotomic Birman–Wenzl algebra with Y satisfying a quadratic relation is of
special interest and has been studied in [9].

Naturally, one would like to study the algebra not only over the generic Beld but also
with complex parameters. The classical limit is then a point in parameter space and we
know that at this point the algebra is semi-simple. The functions Q are apart from a
Bnite set of poles continuous and hence there is a neighborhood of the classical point
where the algebra is semi-simple. While some necessary conditions for semi-simplicity
may be derived easily from the knowledge of the Ariki–Koike algebra the determination
of suOcient conditions has to await further studies.

A natural application of the Markov trace is to deBne a KauLman polynomial of
links in the solid torus. This can be done exactly as described in [9], i.e., L(9̂; n) :=
xn−1�e(9)tr(9) 9 ∈ ZBn deBnes an invariant of the link obtained by closing the braid
9 (e : ZBn → Z is the exponential sum with e(Xi) = 1; e(Y ) = 0).
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