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1. Introduction

Braided tensor categories are the great unifying machine of braid and link theory. This
paper introduces similar notions for braids in the cylinder and links in the solid torus.
Algebraically, the group of braids in the cylinder appears to be the braid group related

to the Coxeter series B as has first been noted by Lambropoulou [15,16]. The generators
τ0, τ1, . . . , τn−1 obey

τiτj = τj τi if |i − j |> 1, (1)
τiτj τi = τiτj τi if i, j � 1, |i − j | = 1, (2)
τ0τi = τiτ0 if i � 2, (3)
τ0τ1τ0τ1 = τ1τ0τ1τ0. (4)

We denote this group by ZBn. It may be graphically interpreted (cf. Fig. 1) as symmetric
braids (interpretation due to tom Dieck [3,4]) or cylinder braids: The symmetric picture
shows it as the group of braids with 2n strands (numbered −n, . . . ,−1,1, . . . , n) which
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Fig. 1. The graphical interpretation of the generators as symmetric tangles (on the left) and as cylinder
tangles (on the right).

Fig. 2. The cylinder interpretation of relation (4).

are fixed under a 180 degree rotation about the middle axis. In the cylinder picture one
adds a single fixed line (indexed 0) on the left and obtains ZBn as the group of braids with
n strands that may surround this fixed line. The generators τi , i � 0, are mapped to the
corresponding diagrams given in Fig. 1.
More generally, there are tangles (indicated in Fig. 1 by the TLJ tangles ei ) of B-type.

They are used in the study of B-type Temperley–Lieb [3] and Birman–Wenzl [11] algebras.
The need for an extended theory of braided tensor categories arises because the braid

generator τ0 cannot be represented by a morphism in an ordinary braided tensor category.
It does not satisfy the naturality condition with the A-type braiding τ1. We account for this
fact by separating ordinary morphisms which live in a braided tensor category from B-type
morphisms which live in a non-tensor category that is a module over the braided tensor
category. Graphically, the module action is given by putting the ordinary tangle to the right
of a cylinder tangle. This setup has been suggested by tom Dieck [3,5,6]. Similar concepts
have also been introduced by Yetter [20].



                                                                

The generality of our categorial construction is prompted by the desire to handle
morphisms of the kind of e0 in Fig. 1. Restricting to tangles that have only braidings around
the cylinder one may do with a somewhat simpler concept introduced in [8]. Physical
applications that lurk in the background of this work may be found in [7,9,8].
Tammo tom Dieck deserves thanks for discussions which stimulated much of the work

of this paper.

Preliminaries. We use the notation of [13] for tensor categories. Especially we denote by
aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) the associator and by cX,Y :X ⊗ Y → Y ⊗ X the
braiding of a tensor category (respectively braided tensor category). A duality on a tensor
category is defined by a functor ∗ and natural morphisms dX :X∗ ⊗ X → 1, bX : 1 →
X⊗X∗. A twist is a family of morphisms θX :X→X that obeys the axioms of the twist
of ribbon tangles [13, p. 349].

2. Actions of tensor categories

We formalize the notion of a tensor category acting on another category in the following
way:

Definition 1. Let B be a category and A be a tensor category. We say that A acts on B
(from the right) if there is a functor ∗ :B ×A → B such that the following axioms hold:
(1) The following equation holds whenever both sides are defined:

(f ∗ g)(f ′ ∗ g′)= (ff ′) ∗ (gg′). (5)

(2) There is a natural isomorphism λ ∈ Nat(∗(Id × ⊗),∗(∗ × Id)), i.e., λY,X1,X2 :Y ∗
X1 ⊗ X2 → Y ∗X1 ∗X2 such that the following pentagon diagram commutes for
all objects Y ∈ Obj(B),Xi ∈ Obj(A):

Y ∗ (X1 ⊗X2)⊗X3
idY ∗aX1,X2,X3

λY,X1⊗X2,X3

Y ∗X1 ⊗ (X2 ⊗X3)

λY,X1,X2⊗X3

Y ∗X1 ∗X2 ⊗X3

λY∗X1,X2 ,X3

Y ∗ (X1 ⊗X2) ∗X3
λY,X1,X2∗idX3

Y ∗X1 ∗X2 ∗X3

(6)

(3) There is a natural isomorphism ρY :Y ∗ 1 → Y such that

Y ∗ 1 ⊗X λY,1,X

idY ∗lX
Y ∗ 1 ∗X

ρY ∗idX

Y ∗X idY∗X
Y ∗X

(7)

Here (1) denotes the unit object of A and lX : 1 ⊗ X → X is its compatibility
morphism in A.

The pair (B,A) (together with the functor ∗) is called an action pair.



                                                                

Example 2.
(1) If F :A → B is a tensor functor between tensor categories then A acts on B by

setting X ∗ Y :=X⊗ F(Y ),λX,Y1,Y2 := a−1
X,F (Y1),F (Y2)

. As a special case any tensor
category acts on itself.

(2) Let A be a group considered as a tensor category, i.e., the objects are the group
elements, tensor product is group multiplication. The endomorphism space of an
object is some unital ring R while only onemorphism 0 ∈R exists between different
objects. Assume that this group acts on a space B which we consider as a category
in a similar way. Then A acts on B in the sense of the above definition. This action
is strict according to the definition given below.

Further examples will be given later on.

Definition 3. The action pair (B,A) is called strict if A is a strict tensor category and one
has Y ∗X1 ∗X2 = Y ∗X1 ⊗X2, λY,X1,X2 = idY∗X1∗X2 and ρY = idY .

Definition 4. Let (B,A) and (B′,A′) be two action pairs. A functor between (B,A) and
(B′,A′) consists of:
(1) A functor FB :B → B′.
(2) A tensor functor FA :A → A′ with functorial morphisms ϕ0, ϕ2 defined as in [13,

XI.4.1].
(3) Natural isomorphisms ωX,Y :FB(X ∗Y )→ FB(X) ∗FA(Y ) such that the following

diagram commutes

FB(Y ∗X1 ⊗X2)
λY,X1,X2

ωY,X1⊗X2

FB(Y ∗X1 ∗X2)

ωY∗X1,X2

FB(Y ) ∗ FA(X1 ⊗X2)

id∗ϕ2(X1,X2)
−1

FB(Y ∗X1) ∗ FA(X2)

ωY,X1∗idFA(X2)

FB(Y ) ∗ FA(X1)⊗ FA(X2)
λ′
FB(Y ),FA(X1),FA(X2)

FB(Y ) ∗ FA(X1) ∗ FA(X2)

(8)

(4) The following diagram commutes

FB(Y ∗ 1) FB(ρY )

ωY,1

FB(Y )

FB(Y ) ∗ FA(1) id∗ϕ−1
0

FB(Y ) ∗ 1

ρ′
FB (Y )

(9)

Tensor categories can always be turned into strict ones by a procedure due to MacLane.
A similar result holds in our situation:

Proposition 5. Every action pair (B,A) is equivalent to a strict action pair (Bstr,Astr).

Proof. The proof is a variation of the proof of MacLanes’s theorem. Hence we restrict
ourselves to a sketchy description.



                                                                

The objects of Bstr are sequences of one object of B and arbitrary many objects fromA,
i.e.,

Obj(Bstr) := {
(Y,X1, . . . ,Xk) | Y ∈ Obj(B), Xi ∈ Obj(A), k ∈ N0

}
,

Obj(Astr) := {
(X1, . . . ,Xk) |Xi ∈ Obj(A), k ∈ N0

}
.

The equivalence functor is defined on objects by

FA : Astr → A, (X1, . . . ,Xk) �→X1 ⊗ (
X2 ⊗ (· · ·)),

FB : Bstr → B, (Y,X1, . . . ,Xk) �→ Y ∗X1 ∗ · · · ∗Xk.
Morphism spaces are defined by

MorstrA (S1, S2) := MorA
(
FA(S1),FA(S2)

)
,

MorstrB (S1, S2) := MorB
(
FB(S1),FB(S2)

)
.

The functorsFB,FA are essentially faithful and fully faithful. Hence, they are equivalences
of categories. Their right inverses are defined by Y �→ (Y ).
Tensor product and action are defined by joining sequences. It remains to exhibit the

natural isomorphism ωS,S ′ :FB(S ∗ S′)→ FB(S) ∗ FA(S′). Its definition is recursive on
the length of S′. One sets

ωS,() := ρ−1
FB(S)

, ωS,(X) := id, ωS,(X)⊗S ′ := λ−1
FB(S),X,FA(S ′)ωS∗(X),S ′.

The key lemma to establish (8) is

Lemma 6. λFB(S),FA(S ′),FA(S ′′)(idFB(S) ∗ ϕ2(S′, S′′)−1)ωS,S ′⊗S ′′ = (ωS,S ′ ∗ idFA(S ′′)) ·
ωS∗S ′,S ′′ .

Proof. It is shown by induction on the length of S′. ✷
The strictification of action pairs simplifies considerably the task of specifying them

by generators and relations in a fashion similar to the presentation of braided tensor
categories given in [13, XII.1]. One starts with a strict action pair (B,A) and singles out a
set FB of morphisms from B. They are used to build formal words defined recursively
by their length: Words of length 1 are [f ] where f ∈ FB and [idY ], Y ∈ Obj(B). If
a, b are words of length � n and g is a morphism [f ] from A then a ∗ g and ab are
words of length n + 1. To every word [f ] a morphism of B is associated by the rules
[f ] := f , a ∗ g := a ∗ g, ab := a ◦ b. The set of sub-words of a word is also defined
recursively by sub([f ]) := {[f ]}, sub(a ∗ b) := {b} ∪ sub(a), sub(ab) := sub(a)∪ sub(b).
Two words a, b are said to be equivalent a ∼ b iff there exists a sequence of words ai
with a0 = a, ak = b and ai+1 is obtained from ai by one of the following transformations
applied to a sub-word: (ab)c∼ a(bc), [id]a ∼ a, a[id] ∼ a, a ∗ id1 ∼ a, [idY∗X] ∼ [idY ] ∗
idX, a ∗ gg′ ∼ a ∗ g ∗ g′, (a ∗ g)(a′ ∗ g′) ∼ (aa′) ∗ (gg′). From this one concludes that
(a ∗ idb(g))([ids(a)]∗g)∼ ([idb(a)]∗g)(a ∗ ids(g)) and (a1∗ id) · · · (ak ∗ id)∼ (a1 · · ·ak)∗ id.
A simple inductive proof shows that any word is equivalent to one of the form h1 · · ·hm
where each hi is of the form [f ] ∗ idX with f ∈ FB or of the form [idX] ∗ g.



                                                                

The free action pair generated by FB is the pair (M(FB),A) where M(FB) has the
same objects as B but its morphism space is the set of equivalence classes of words.
Further relations R = {(ri, r ′

i) | i = 1, . . . , k} can be used to define another equivalence
relation a ∼R b on words where one may also replace a sub-word ri by r ′

i or vice versa.
One then says that the action pair (B,A) is generated by FB with relations R if every
morphism of B can be obtained as a from a word and one has a ∼R b⇔ a = b.

3. Cylinder twists

This section introduces the cylinder braid morphism.

Definition 7. A strict action pair (B,A) is said to be cylinder braided if:
(1) Obj(B)= Obj(A) and 1 ∗X =X.
(2) A is a braided tensor category with braid isomorphisms cX,Y ∈ MorA(X ⊗ Y,Y ⊗

X).
(3) For every object there exists an isomorphism tX ∈ MorB(X,X) such that

cY,X(tY ⊗ idX)cX,Y (tX ⊗ idY )
= (tX ⊗ idY )cY,X(tY ⊗ idX)cX,Y = tX⊗Y , (10)

f tX = tYf ∀f ∈ MorA(X,Y ). (11)

(4) The following equations should hold if A is equipped with a duality:

(tX ⊗ idX∗)bX = c−1
X,X∗(t−1

X∗ ⊗ idX)c−1
X∗,XbX, (12)

dX(t
∗−1
X ⊗ idX)= dXcX,X∗(tX ⊗ idX∗)cX∗,X, (13)

t is called the cylinder twist. For the sake of brevity we call (B,A) (or even B) a
cylinder braided tensor category CBTC.

The requirements of strictness and those of point (1) of the definition imply that
X ∗ Y = 1 ∗ X ∗ Y = 1 ∗ X ⊗ Y = X ⊗ Y . Note also that in the light of (10) relations
(12), (13) may be rewritten as tX⊗X∗bX = bX and dXtX∗⊗X = dX.

Remark 8.
(1) The space EndB(X⊗n) carries a representation of the braid group ZBn.
(2) Our action pairs are defined by a right action of A. Similarly one can consider left

actions. Suppose thatA acts on B1 from the right and on B2 from the left. If both of
these actions are cylinder braided then one has a tensor representation of the braid
group of the affine Coxeter diagram • = • − • − · · · − • − • = •.

The fundamental geometric example of tangles in the cylinder will be described in the
next section. Here we restrict ourselves to some simple examples.



                                                                

Example 9.
(1) A ribbon category A acting on itself is trivially a cylinder braided pair where the

cylinder twist is given by the ribbon twist tX = θX.
(2) An Abelian group G together with bilinear pairing c :G×G→K∗ with values in

the group of units of a commutative unital ringK may be viewed as a braided tensor
category A as in [19, p. 29]. The pair (A,A) is then cylinder braided if there is a
map t :G→K∗ such that t (gg′)= c(g, g′)c(g′, g)t (g)t (g′). In the symmetric case
t is simply a group character.

(3) Let A be a tensor category and X ∈ Obj(A) any object. This category acts on B
which has the same objects and morphisms MorB(X1,X2) := MorA(X⊗X1,X⊗
X2). The action is given by the monoidal product and cylinder twist is tY :=
cY,XcX,Y .

Further examples are provided by the Coxeter-B braided tensor categories studied
in [8]. That paper contains a discussion of cylinder braid structures on Hopf algebras and
Tannaka–Krein duality.

4. Cylinder ribbon tangles

The fundamental example of a cylinder braided action pair is the pair (CylRib,Rib).
Rib is Turaev’s category of ribbon tangles and CylRib is the category of cylinder ribbon
tangles which is defined just like Rib but with the restriction that the tangles extend only
in the space (R2 −(0,0))× [0,1]. The first and second factor in this product describe the
horizontal and vertical extension. The tangle shall intersect the upper and lower punctured
planes (i.e., (R2 −(0,0))× 0 and (R2 −(0,0))× 1) only in a standard set of points, say
{(1,0), (2,0), . . ., (n,0)} ⊂ R

2 −(0,0). This allows a product to be defined by putting
tangles on top of each other and shrinking back to unit size in the vertical dimension.
The action of a tangle f from Rib on a tangle g from CylRib is given by putting f to
the right of g. The category of A-colored cylinder ribbon tangles CylRibA parallels the
category RibA.
We use Turaev’s notation for the generators of Rib. The basic generators of CylRib

are τ↓±τ↑±. They are oriented versions of τ0 given in Fig. 1 and its inverse. The arrow
indicates the orientation. The lines are meant to represent ribbons. Their framing shall be
given by a vector field on the line that points always towards the axis of the cylinder.

Proposition 10. The following list of relations holds in CylRib:

τ↓+ = τ↓−−1
, (14)

τ↑+ = τ↑−−1
, (15)

τ↓− = (∩⊗ ↓)(ϕ′↑⊗ ↓ ⊗ ↓)(τ↑+ ⊗X−)(∪−⊗ ↓), (16)
τ↑− = (∩−⊗ ↑)(ϕ′ ⊗ ↑ ⊗ ↑)(τ↓+ ⊗ T −)(∪⊗ ↑), (17)

(τ↓+⊗ ↓)X+(τ↓+⊗ ↓)X+ = X+(τ↓+⊗ ↓)X+(τ↓+⊗ ↓), (18)



                                                                

(τ↑+⊗ ↑)T +(τ↑+⊗ ↑)T + = T +(τ↑+⊗ ↑)T +(τ↑+⊗ ↑), (19)
(τ↓+⊗ ↑)Y−(τ↑+⊗ ↓)Z− = Y−(τ↑+⊗ ↓)Z−(τ↓+⊗ ↑), (20)
(τ↑+⊗ ↓)Z−(τ↓+⊗ ↑)Y− = Z−(τ↓+⊗ ↑)Y−(τ↑+⊗ ↓), (21)

(τ↓+⊗ ↑)∪ = Y+(τ↑−ϕ↑⊗ ↓)∪−, (22)
∩(τ↑−⊗ ↓) = ∩−(τ↓+ϕ′⊗ ↓)Y−, (23)
(↑ ⊗ϕ)∪− = (τ↑+⊗ ↓)Z−(τ↓+⊗ ↑)∪, (24)

∩(↑ ⊗ϕ) = ∩−(τ↓+⊗ ↑)Y−(τ↑+⊗ ↓), (25)
(↓ ⊗ϕ↑)∪ = (τ↓+⊗ ↑)Y−(τ↑+⊗ ↓)∪−, (26)

∩−(↓ ⊗ϕ↑) = ∩(τ↑+⊗ ↓)Z−(τ↓+⊗ ↑). (27)

The proof is a simple verification. Some of the pictorial calculations are given in Fig. 3.
Because of (16) and (17) only τ↓+, τ↑+ are needed as generators. This reduces the numbers
of relations because (16) and (17) turn (22) and (23) into identities that involve only Rib
operations.

Proposition 11. The set F := {τ↓+, τ↑+} generates the action pair (CylRib,Rib) with
relations (18)−(21), (24)−(27).

Proof. Tangles in the cylinder may be interpreted as ordinary tangles with a fixed
additional strand. The question of equivalence of diagrams can thus be reduced to the
situation in R

3 [19]. However, ordinary Markov moves may easily produce diagrams that
are no longer products of our generators, e.g., if isotopy moves are applied on the fixed
string. We therefore need a method to produce a standard form (a product of generators)
from an arbitrary diagram. There are several such methods. We use the R-process. It is
based on horizontal diagrams, i.e., regular projections of cylinder links on a horizontal
plane. In contrast we call the diagrams used so far standard diagrams. In a horizontal
diagram the cylinder axis is projected to a point. To avoid upper and lower end points
from being projected on the same point we shift them in opposite directions parallel to the
second coordinate axis. Upon multiplication we have to join such endings with horizontal
ribbons. Fig. 4 displays an example.

Fig. 3. Two of the relations of CylRib. The small circle denotes a ribbon twist ϕ′.



                                                                

Fig. 4. A simple example of the correspondence of standard and horizontal diagrams.

Fig. 5. Deforming a horizontal diagram: On the left the original diagram with a radar beam and
arrows indicating the direction of deformation. The result is shown on the right.

Let such a horizontal diagram be given and choose a line (the radar beam) from the point
of the axis and extending into the left half plane such that it hits the ribbons transversal
and avoids crossings. The tangle is then deformed away from the beam until all of its
nontrivial part is located in the right half plane as indicated in Fig. 5. We may assign a
standard diagram to the result by drawing a sequence of τ morphisms for every circle
surrounding the axis such that the innermost circle corresponds to the lowest τ . Diagrams
that differ by some kind of Reidemeister move that takes place either above or below the
radar beam are transformed to standard diagrams that are related by precisely the same
move at a different position. It remains to discuss how the result depends on the choice
of the radar beam. Essentially, there are only two relevant possibilities that correspond to
Reidemeister moves of types II and III. We concentrate on the type III move. Consider
two situations differing only by the position of a single crossing with respect to the radar
beam. The beam may either be above or below the crossing. Fig. 6 shows diagrams of
these situations. We demand that the tangle in the right half space is concentrated in a
diagonal box (i.e., a thickening of the halfplane {(x, y, y) ∈ R

3 | x > 0, y ∈ [0,1]}) so
that the connection points with the axis surrounding circles are projected both horizontally
and vertically to the same order. Then it is easy to determine how the parts fit together.
Comparing diagrams on the right of Fig. 6 yields the four braid relation. A similar argument
using a minimum (maximum) lying above or below the radar beam yields the extremum
twist relation. Putting in orientations these relations are precisely (18)–(21), (24)–(27). ✷



                                                                

Fig. 6. The pictures in the upper and lower row differ only by the position of a single crossing relative
to the chosen radar beam. Irrelevant parts of the diagram are omitted. The second mapping associates
a standard diagram to the horizontal diagram.

Proposition 12. There is a unique tensor functor between strict action pairs F :
(CylRibA,RibA)→ (B,A) such that FA is Turaev’s functor, the functorial isomorphism
ω is trivial and one has

FB
(
τ

↓±
X

) = t±1
X , (28)

FB
(
τ

↑±
X

) = t±1
X∗ . (29)

Proof. Uniqueness is clear because FB is fixed on generators. To prove existence one
has to check compatibility with the relations given above. This is done by straightforward
graphical computations which are however too long to be displayed here. ✷

5. Cylinder braided action pairs with points

Until now we have no possibility to represent the diagram e0 of Fig. 1 which plays a
crucial role in the study of some B-type knot algebras. The point structure discussed in this
section fills the gap.

Definition 13. A point structure on a CBTC (B,A) (where A is rigid) consists of a point
morphism b0X ∈ MorB(1,X) and copoint morphisms d0X ∈ MorB(X,1) such that the
following axioms are fulfilled.

d0Yf = d0X, f b0X = b0Y ∀f ∈ MorA(X,Y ), (30)
dX(b

0
X∗ ⊗ idX) = d0X, (31)



                                                                

Fig. 7. Point and copoint of PCylRib.

(
d0X ⊗ idX∗

)
bX = b0X∗, (32)

b0X⊗Y = (
b0X ⊗ idY

)
b0Y , (33)

d0X⊗Y = d0Y
(
d0X ⊗ idY

)
, (34)

b0X = tXb
0
X, (35)

d0X = d0XtX, (36)
(tY ⊗ idX)cX,Y

(
b0X ⊗ idY

) = c−1
Y,X

(
b0X ⊗ idY

)
tY , (37)

tY
(
d0X ⊗ idY

) = d0XcY,X(tY ⊗ idX)cX,Y . (38)

Some simple consequences are:

d0X∗ = dXcX,X∗
(
θXb

0
X ⊗ idX∗

)
, (39)

b0X∗ = (
d0X∗ ⊗ idX

)(
idX∗ ⊗ θ−1

X

)
c−1
X∗,XbX. (40)

A point structure is the B-type analog of duality (rigidity).
(CylRib,Rib) has no point structure. We define (PCylRib,Rib) as an extension where

ribbons are allowed to end at the cylinder axis. Fig. 7 display the point and copoint
morphisms. Note that points (i.e., endings of ribbons on the axis) do not commute, i.e.,
there is no way to simplify the picture on the right of Fig. 7.

6. Skein relations and the Kauffman polynomial

In PCylRib one can impose skein relations that generalize those of the Kauffman
polynomial:

c− c−1 = δ(1 − bd), (41)
cb = λb, dc= λd, (42)
db = A0, (43)
t−1 = αt + β + γ b0d0, (44)
d0b0 = x0, (45)

db0d0b = x ′
0, (46)

d(t ⊗ id)b = A1, (47)
d(t−1 ⊗ id)b = A−1, (48)(

d0 ⊗ id
)
c
(
b0 ⊗ id

) = ε+µt + νb0d0. (49)



                                                                

The parameters are δ,A0, λ,α,β, γ,A1,A−1, x0, x ′
0, ε,µ, ν.

Assuming that the annihilator ideals of the generators vanish we can derive a set of
relations between these parameters. As in the case of the A-type category of the usual
Kauffman polynomial one has

A0δ− δ = λ− λ−1.

We have d0 = d0t−1 = αd0 + βd0 + γ d0b0d0 = (α + β + γ x0)d0 and hence:
1 = α + β + γ x0.

Similarly:

A−1 = αA1 + βA0 + γ x ′
0.

Multiplying λ−1(t−1 ⊗ id)b= c(t ⊗ id)b with d we obtain

A1λ
2 =A−1.

Next, we calculate γ x0b0d0 = γ b0d0b0d0 = b0d0(t−1 − αt − β)= b0d0(1 − α − β) and
obtain

γ x0 = 1 − α − β.
Similarly x ′

0 = db0d0b= γ−1(d(t−1 ⊗ 1)b− αd(t ⊗ 1)b− βdb):
γ x ′

0 =A−1 − αA1 − βA0.

Finally, tensor (44) with c and multiply with d ⊗ id from the left and with b⊗ id from the
right. The result may be brought to a form which resembles (49). Comparing coefficients
one obtains:

ν = −αλ,
µ = γ−1(αδ − α2λ+ λ−1),
ε = −γ−1(αβλ+ αδA1 + βλ−1).

Only 4 of 13 parameters survive. We may reduce this number even more, if we demand
that x0 = x ′

0. This is a natural choice because both factors account for eliminating a string
that emerges and ends at the axis. Algebraically, however, this choice is not necessary and
there are applications with x0 �= x ′

0.
Links in the solid torus are endomorphisms of the 0-object. Kauffman’s Theory [14]

can be used to eliminate ordinary braidings c. The remaining tangles can be simplified
using (49). Therefore the skein relations suffice to calculate a cylinder generalization of
Kauffman’s polynomial.

7. Birman–Murakami–Wenzl algebras

Like Kauffman’s original polynomial this link invariant may also be obtained as a writhe
normalization of aMarkov trace on a cylinder generalization of the Birman–Wenzl algebra.



                                                                

Fig. 8. Pictorial representations of some of the skein relations.

We recall the following special case of a result from [10].

Definition 14. Let A0, q, λ,p0,p1,p2 ∈ R be units and A1,A2 further elements in an
integral domain R such that with δ := q − q−1 the following relation holds:

(1−A0)δ = λ− λ−1. (50)

The cyclotomic Birman–Wenzl algebra of height 3 on n strings is defined to be the algebra
Bn(R) generated by Y,X1, . . . ,Xn−1, e1, . . . , en−1 with relations

XiXj = XjXi, |i − j |> 1, (51)
XiXjXi = XjXiXj , |i − j | = 1, (52)
Xiei = eiXi = λei , (53)

eiX
±1
j ei = λ∓1ei, |i − j | = 1, (54)

X−1
i = Xi − δ+ δei, (55)
eiej = ejei , |i − j |> 1, (56)

eiXjXi = X±
j X

±
i ej , |i − j | = 1, (57)

eiejei = ei , |i − j | = 1, (58)
X1YX1Y = YX1YX1, (59)

YXi = XiY, i > 1, (60)
YX1Ye1 = λ−1e1 = e1YX1Y, (61)
e1Y

ie1 = Aie1, i ∈ {0,1,2}, (62)
0 = (Y − p0)(Y − p1)(Y − p2). (63)



                                                                

With the help of the signed symmetric polynomials

q0 := p0p1p2, q1 := −p0p1 − p1p2 −p0p2, q2 := p0 +p1 + p2 (64)

the last defining relation can be written in the form Y 3 = ∑2
i=0 qiY

i .
The following two generic ground rings are of special importance:

L± := C
[
q±, λ±,p±

0 ,p
±
1 ,p

±
2 ,A0,A1,A2

]
/
(
h0, h−1,±λ−1 − q0

)
, (65)

0 = h0q20 = −(
q0q1 + λ−2q2

) − λ−1(δq0(1 −A2 +A0q1 +A1q2)
)
,

0 = h−1q
2
0 = −λ−1(δq0(q0 −A1)+ λ−1(q1 + q0q2)

)
.

In the following we use ordered triples of Young diagrams λ = (λ1, λ2, λ3) (cf. [1]). The
size of a tuple of Young diagrams is the sum of sizes of its components. Let Γ̂ 3

n be the set
of all 3 tuples of Young diagrams of sizes n,n− 2, . . . .

Proposition 15. Let K be the field of fractions of either L+ or L−. Then the algebra Bn =
Bn(K) is a semi-simple algebra of dimension 3n(2n− 1)!! (here n!! = n(n− 2)(n− 4) · · ·
denotes the double factorial) and the following statements hold:
(1) The simple components are indexed by Γ̂ 3

n .

Bn =
⊕
λ∈Γ̂ 3

n

Bn,λ. (66)

(2) The Bratteli rule for restrictions of modules: A simple Bn,ν module Vν,ν ∈ Γ̂ 3
n

decomposes into Bn−1 modules such that the Bn−1 module λ ∈ Γ̂ 3
n−1 occurs iff λ

may be obtained from ν by adding or removing a box.
(3) There exists a faithful Markov trace tr.

Proofs of this claims can be found in [10] where the general case where Y satisfies an
arbitrary cyclotomic polynomial has been studied.
Here, we are in search of a kind of Birman–Wenzl algebra such that the generators can

be topologically interpreted as the tangles τi, ei, i � 0, shown in Fig. 1. For each i there
should be a four-term skein relation. Hence we need a projector on one of the eigenvalues
of Y . We call it e0 and put in a normalization factor α0. Then the following relations hold:

e0 := α0 − α0
(
p−1
1 + p−1

2
)
Y + α0p−1

1 p
−1
2 Y

2, (67)

Y−1 = p−1
1 + p−1

2 − p−1
1 p

−1
2 Y + α−1

0 p
−1
0 e0, (68)

e0 = α0p0Y
−1 + α0p0p−1

1 p
−1
2 Y − p0α0

(
p−1
1 + p−1

2
)
, (69)

e20 = x0e0, x0 := α0
(
1 − p0

(
p−1
1 + p−1

2
) + p20p−1

1 p
−1
2

)
, (70)

e1e0e1 = x ′
0e1, x ′

0 = α0
(
x −A1

(
p−1
1 + p−1

2
) +A2p

−1
1 p

−1
2

)
. (71)

The generic ground rings L± may be specialized such that q = q0 = λ= 1, q1 = q2 = 0.
Then A0,A1,A2 remain free parameters. As explained in [10] the algebra Bn(Lc) of
this classical limit ring Lc is isomorphic to the algebra of Brauer graphs that carry Z3
decorations on it (dotted Brauer graphs).



                                                                

Fig. 9. The tangle associated to X−1
1 Y−1X−1

1 e0 can be deformed in such a way that relation (68)
can be applied. This motivates (72).

The symmetric picture for B-type braids together with the intended graphical interpre-
tation of e0 suggests that we are looking for an algebra Bn that has as its classical limit the
algebra of symmetric Brauer graphs [17]. For n= 2 there are 25 symmetric graphs but the
algebra B2(L±) has dimension 27. Hence, there must be further relations implied by the
topology of e0. Fig. 9 shows such a move that has no algebraic counterpart in B3.

Definition 16. The Birman–Wenzl algebra of the cylinder,Bn, is defined to be the quotient
of Bn(L−) by the ideal generated by

X−1
1 Y

−1X−1
1 e0 = (

p−1
1 + p−1

2
)
e0 + α−1

0 p−1
0 e0e1e0 − p−1

1 p
−1
2 e0X1YX1. (72)

The choice of the ground ring was motivated from the wish to have a classical limit
with Y 2 = 1. Note that the parameters x,λ,p0,p1,p2,A0,A1,A2, α0 are subject to three
relations. Moreover, the relation b0X = tXb

0
X from the categorial setting motivates to

choose

p0 = 1. (73)

However, we will keep p0 in the calculations to come. If (73) is postulated, we are left with
the four dimensional parameter variety that we met already at the end of the last section.

Proposition 17. Bn is semi-simple and has a faithful Markov trace. The Bratteli diagram
is obtained from the diagram of Bn by removing all triples of Young diagrams that have
more than one box in its first position.

Proof. As Bn is the quotient of a semi-simple algebra it is semi-simple itself. The existence
of the Markov trace is shown as in [10]. To show that the quotient consists precisely of the
described components one has to investigate the inductive proof of semi-simplicity given in
the cited paper. According to Jones–Wenzl theory, a subset of the triples of Young diagrams



                                                                

that index simple components of Bn+1 is reflected from the index set of Bn−1 and hence is
by induction of the described form. The remaining triples come from the quotient by the
ideal In+1 generated by e1. This quotient is the Ariki–Koike algebra AK3

n+1 [1]. Hence
we have to check, which of the Ariki–Koike modules are compatible with the image of
relation (72) in the quotient by I :

X−1
1 Y

−1X−1
1 e0 = (

p−1
1 + p−1

2
)
e0 − p−1

1 p
−1
2 X1YX1e0. (74)

We now recall from [1] the module theory of the Ariki–Koike algebra AK3
n and adopt

it to our slightly different normalization of generators. The module corresponding to
a triple of Young diagrams λ = (λ0, λ1, λ2) has a basis that is indexed by the set of
triples of Young tableaux t = (t0, t1, t2) of the given shape λ and filled with 1, . . . , n.
The generator Y acts by multiplication with pi if 1 is contained in tableau ti . Xi acts
as multiplication with q if i, i+1 are contained in the same row of the same Young tableau
and as multiplication with −q−1 if they are in the same column. The definition of the
action of Xi on the remaining diagrams needs some more notation: Let ct (i) :=m− l be
the difference of the column m and row l of the box containing i . Furthermore, define
rt (i, j) := ct (j)− ct (i),∆(w, z) := 1 − q2wz and let mt (i) denote the index of the Young
tableau that contains i . The action of Xi in the remaining cases is defined to be:

Xi t := (
q∆(rt(i + 1, i),P )

)−1((
q2 − 1

)
t + t ′∆(1 + rt (i + 1, i),P )

)
with P := pmt (i)p−1

mt (i+1). Here t
′ denotes the triple that results from t by interchanging i

and i + 1.
This description shows that e0 acts as the projector on those triples of Young tableau that

contain 1 in the first tableaux. Hence we have to check

X−1
1 Y

−1X−1
1 = p−1

1 + p−1
2 − p−1

1 p
−1
2 X1YX1

on such triples. The left-hand side of this condition can be expanded to yield (X1 −
δ)Y−1(X1 − δ) = X1Y

−1X1 − δ(X1Y
−1 + Y−1X1) + δ2Y−1. In this form the relation

can be tested on triples t . The relation contains only Y,X1 . Hence, the position of numbers
other than 1,2 doesn’t matter. Because 1 occupies position (1,1) of the first Young tableau
there are only three possible positions for 2: If 2 is contained in the first tableau as well,
it can occupy either position (1,2) (case A) or (2,1) (case B). Otherwise, it must be in
position (1,1) of one of the other two tableaux (case C). A lengthy, but straightforward
calculation shows that the relation is valid only in case C but violated in cases A and B.
Hence, 2 must never occupy positions (1,2) or (2,1) of the first diagram. The action of the
Xi generate arbitrary permutations and hence the only way to prevent 2 from occupying
these positions is to demand that there are no boxes at these positions at all. ✷
The Bratteli diagram of Bn can be written down in terms of pairs of Young diagrams:

The omitted first diagram can always be reconstructed by counting the total number of
boxes. A triple of diagrams for Bn has any number n,n− 2, . . . of boxes. A pair (λ1, λ2)
of Young diagrams with a total number ofm boxes must therefore correspond to (·, λ1, λ2)
if m− n= 0mod2 and to (✷, λ1, λ2) if m− n= 1mod2. The updated Bratteli rule allows
to take a pair from one row to the next without modification.



                                                                

In his diploma thesis [17] Reich has studied the algebra of symmetric Brauer graphs and
he found the same structure as a multi-matrix algebra.
We collect some useful relations in our algebra:

e1Y
−1X1 = e1Y

−1X−1
1 Y

−1YX2
1 = λe1YX2

1

= e1Y
(
λ− δp−1

1 p
−1
2

) + e1δ
(
p−1
1 + p−1

2 − λ2A1
) + e1e0δα−1

0 p−1
0 , (75)

e1e0X1 = α0p0e1
(
Y−1 + p−1

1 p
−1
2 Y − p−1

1 − p−1
2

)
X1

= e1Yα0p0
(
λ− δp−1

1 p
−1
2 − λ−1p−2

1 p
−2
2

) + e1e0
(
δ+ λ−1p−1

1 p
−1
2

)
+ e1α0p0

(
δp−1

1 + δp−1
2 − δλ2A1

+p−1
1 p

−1
2

(
p−1
1 + p−1

2
)
λ−1 − λp−1

1 − λp−1
2

)
. (76)

These relations allow to calculate e0X1e0 by multiplying (72) with X1 from the right. The
result is:

e0X1e0
α0p0

= e0e1Y
(
λ− λ−1p−2

1 p
−2
2

) + e0e1e0λ−1α−1
0 p

−1
0 p

−1
1 p

−1
2

− e0X1YX1p
−1
1 p

−1
2 δ+ e0

(
δ
(
p−1
1 + p−1

2
) + δx0α−1

0 p−1
0 − p−1

1 p
−1
2 δp0

)
+ e0e1

(−δλ2A1 + (
p−1
1 p

−2
2 + p−2

1 p
−1
2

)
λ−1 − λ(p−1

1 + p−1
2

)
+ p−1

0 p
−1
1 p

−1
2 δ

)
. (77)

Here, the choice p0 = 1 proves to be useful. It eliminates the coefficients of the
asymmetric terms e0e1, e0e1Y .
To obtain the classical limit, we set p0 = 1 and eliminate δ in terms of A0. Furthermore,

we use (70) to eliminate α0 in terms of x0. Finally, we take the limit λ→ 1. Note that x ′
0

is no longer fixed in the limit.
An interesting point is that the coefficient of e0e1e0 in (77) is −1 in the limit. This shows

that our limit is not precisely the algebra of symmetric Brauer graphs (though, as semi-
simple algebras they are of course isomorphic) but a variant where horizontal Reidemeister
type II moves generate a minus sign. This oddity also hints another classical limit: One may
drop the demand that e0 decouples from Y 2 in the limit. A limit in this sense is obtained
when specializing the tensor representation of Bn found in [12].
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