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Tensor categories of Coxeter type B and QFT
on the half plane

Reinhard Haring-Oldenburg®
Mathematisches Institut, Bunsenstr. 3-5, 37073tiBgen, Germany

(Received 31 December 1996; accepted for publication 30 June 1997

We introduce braided tensor categories which are associated to the braid group of
Coxeter type B. Connected by a reconstruction theorem there is the notion of
B-braided Hopf algebras. These structures show up in quantum field theories de-
fined on the half plane or on the cylinder. ®97 American Institute of Physics.
[S0022-24887)01010-4

I. INTRODUCTION

Every Coxeter graph defines a braid group that is an infinite covering of its Coxeter group. T.
tom Dieck initiated in Refs. 1 and 2 the systematic algebraic study of these braid groups and their
quotient algebras for all root systems.

The Coxeter group of A-type is the permutation group and its braid groyp<Artin’s braid
group. For typeB,, the Coxeter group is a semidirect product of the permutation groupAith

Definition 1: The braid groupZB,, of Coxeter type B is generated by,7q,...,7,_1 With
relations

nr=n7 if [i—j|>1, (1)
nrn=777 if i,j=1, li—jl=1, ?)
ToTi=TiTg If I=2, 3)
ToT1ToT1= T1ToT170- (4)

Generatorsr;, i=1 satisfy the relations of Artin’s braid group.

ZB, may be graphically interprete@f. Fig. 1) as symmetric braids or cylinder braids: The
symmetric picture shows it as the group of braids with2rands(numbered-n,...,—1,1,...n)
which are fixed under a 180 degree rotation about the middle axis. In the cylinder picture one adds
a single fixed lingindexed 0 on the left and obtains ZBas the group of braids with strands that
may surround this fixed line. The generaters i=0 are mapped to the diagram$G) given in
Fig. 1. More generally there are tangl@sdicated in Fig. 1 by the TLJ tangléG)) of B-type that
live naturally in a cylinder.

The cylinder interpretation of relatiof#) shown in Fig. 2 is the interface to physical appli-
cations. One should think of each side of this picture as showing two particles which are reflected
on a wall. The equality of both sides expresses the independency of these reflections. The inte-
grability condition for quantum field theories in two dimension is given by the Yang—Baxter
equation(YBE) which is a spectral parameter dependend forn@2pf If the QFT lives on a half
plane with reflecting boundary it is known from the work of Cherednik, Sklyanin, Goshal, and
Zamolodchikov(see Ref. Bthat the YBE gets augmented by the reflection equatoroundary
YBE) which is a spectral parameter dependend forng4df Solutions of the reflection equation
can be obtained from tensor representations of quotients of the group algebra of the braid group
ZB, by a Baxterization procedufeThis example inspires our general hypothesis: Whenever
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FIG. 1. The graphical interpretation of the generators as symmetric tafgiebe lefj and as cylinder tangle®n the
right).

Artin’s braid group ZA, occurs in a low dimensional physical model on a space without boundary
then the B-type braid group ZBoccurs if the model is placed on a space with a reflecting
boundary. Another illustration of this hypothesis is the fact that the Markov trace on the B-type
Temperley—Lieb algebra can be used to express the partition function of a Potts model with
boundary interaction.

This paper studies the categorical structure underlying these cylinder tangle diagrams. The
ultimate goal is to extend the rich theory around ordinary braided tensor categories including
guantum groups and knot invariants to the braid group of B type. Some results have already been
obtained. Generalizations of Temperley—Lieb algebrafecke algebra$,and Birman—Wenzl
algebra$ have been studied along with their associated invariants of torus (wikish are ob-
tained by closing cylinder braigls

The central observation in the search for the categorial structure of the new type of braiding
is the following: The braid generatay (later onby in the categorydoes not satisfy the naturality
condition with the A-type braidingr;. Thus, it cannot be a morphisms in a braided tensor
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FIG. 2. The cylinder interpretation of relatiqd).
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category. We account for this fact by introducing two morphism spaces for every pair of objects
in the category. Local morphism that are natural with respect to A-type braidings and global
morphisms which need not.

We now outline the structure of the paper. After giving the precise definition the paper
introduces the category of amplimorphisms of a Hopf algebra as a first example. The next section
introduces Coxeter-B braided Hopf algebras which are related to Coxeter-B categories by a
Tannaka—Krein style duality. In the sequel the construction of Coxeter-B braided categories from
semi-simple quotients of the group algebra of,4B discussed. The last section is devoted to a
physical application. We show that the localized morphisms of an algebraic quantum field theory
on the half plane with reflecting boundary form a Coxeter-B braided category.

It is important to observe that the central equatidnhappears also in other contexts. Most
important is its fundamental role in Majid’'s elaborated theory of braided matherfiaftste it
appears a commutativity relation between distinct copies of objects that obey braided commutative
statistics. Furthermore, the defining relations of Majid’s quantum Lie algebras are of the same
form. Naturally one should explore the deeper meaning of these connections in further studies.
Further topics that have been deferred are the categorial definition of invariants of links in the
solid torus(compare Ref.  the generalization of evaluation and coevaluation morphisms and the
question of invariants of 3-manifolds with boundary.

Preliminaries.We use the language of braided tensor categdB&€) extensively. Our basic
notation follow that of Majif and was used already in Ref. 9. The functorial braid isomorphism
is denoted¥ y v : X® Y= Y®XX,Y=0bj(#). Dual objects are denoted B and we use ev and
coev for the morphisms of rigidity. We use them to deffie = (ew®idysx )o(idyx @ Wysx x)
o(coews ®idy) e Mor(X,X**). There exists a unique morphisa(X) e Mor(X,X) such that
(7(X) ®@idyx)ocoey =Wy x ¥y xxcoe and ey Wy x« ¥y x=ew(id® 7(X)). It can be defined
by 7(X*)~1:=7q ¥°q X*. A ribbon category has a natural isomorphistfX) € Mor(X,X) such
that o(X)?=7(X), o(X)®@a(Y)=Vy ¥y ya(X®Y), a(X*)=a(X)*, fo(X)=o(Y)fVf
e Mor(X,Y).

We now give a short review of the reconstruction theorem from Refs. 8, 97 s a rigid
BTC and F:#—Vec a[(weak quasi tensor functor. Then the séi=Nat(F,F) of natural
transformations fronk to F carries '(tahe structl{/re of [dweak quasi Hopf algebra and there is a

functor G: Z—RepH) such thatZz—RepH)—Vec composes td. In the case of a faithful
functor and a semisimple category, and RepH) are equivalent BTCs.

H: =Nat(F,F)={h:Obj( #)— End,e]hy e End F(X)),
F(f )ohy=hyeF(f )¥X,Y e Obj(£)Vf e Mor(X,Y)}.

H is a vector space by pointwise addition. The multiplication is also defined pointwiggy (
=hyegx Xe Obj(%),h,ge H. The unitisX—1x=idg ). The coproduch:H—H®H is defined
by: A(h)ny:=c;§th®YocX'Y and the counit is:H—K, e(h):=h;. The antipode iS(h):
=d%(hy«)*d% "%, where the isomorphismsdy:F(X)*—F(X*) with the property
dyoF(f )*=F(f*)od,VfeMor(X,Y) exists by definition of 4(weak quasij tensor functor(See
Ref. 9 for more details and the construction of such functdirsZ” is a ribbon category then there
is a ribbon elementy : =F (o (X)) in H. The vector spacds(X) are representation spaceshof
The representations areyx(h).v:=hy(v) heH, veF(X). This induces a functor
G:Z—RepH).

Il. COXETER-B BRAIDED CATEGORIES

As mentioned in Sec. |, the surrounding of the cylinder dgmneratorr, in the braid group
ZB,,) does not behave natural with respect to the braidingTherefore, it can not be represented
by a morphism in a BTC. Nevertheless, we can incorporate it by defining a bigger space of
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morphisms that are not bound to satisfy naturality with the ordinary braiding. This seems natural
from the physical considerations that we undertake in the last section. From a purely mathematical
point of view one should probably prefer to view B-type tangles as a kind of module for an
ordinary tangle category.

Definition 2: Let” be a rigid BTC. A Coxeter-B braided category oveiis an embedding of
% in a rigid monoidal category Csuch that the following list of axioms holds. Morphisms
Mor(X,Y):=Mor,(X,Y) are said to be local and morphismdor(®)(X,Y):=Mor;(X,Y) are
said to be global

Obj(#)=0bj(¥), (5)
3i:Mor(X,Y)—Mor®(X,Y) monomorphism (6)
VX3by e Mor®(X,X) invertible, (7)
byf=fby VfeMor(X,Y), 8
m(by)=idyx b;=idy, 9

idx®by ="y x(by®idy)¥x v, (10
bx®bY=bX®YQY,x\I’x,Y=‘I’Y,xq’x,vbmvv (11
% =0(X*) %Dy, (12)

We say that”” has a projection if we have in addition:

3m:Mor®(X,Y)—Mor(X,Y) epimorphism (13
el =id, (14
m(feg)==n(f )®g if geMor(X,Y). (15

The axioms ensure that the two categories are almost equal. They differ only by the existence
of some global morphisms. If needed, one may restrict this extension to a minimum by postulating

Mor(®)(X,Y)={b}|ne ZsMor(X,Y) e {bi|n e Z}. (16)

Note thatW¥ is a braiding of%", not of Z. This makeq10) possible which otherwise would
give a contradiction to naturality ob.

The graphical idea behind the projection is to simply forget about the cylinder axis.

In some applications it may be more natural to work with:=o(X) by which ful-
fills by,y=(c(X) @0 (Y) ) W2(by®by)¥ 2=bi®b! and bi*=b¥o(X) *=0(X*)?2
X Doy 0 (X*) 7= (byw o(X*) 71 “1=(by,) L.

Lemma 1:
m(idx®by) =Ty xVx v, (17)
Py x(by®@idy) Py y(bx®@idy) = (bx®idy) ¥y x(by®idy) ¥y v, (18
V(D Dichy) Wy o (D@ ity ) = WPy o (19

J. Math. Phys., Vol. 38, No. 10, October 1997
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FIG. 3. Graphical calculus for Coxeter-B braided categories.

Proof: (18) is trivial and (19) is simply commutativity ofby®idy and id®by. We now
prove (20)

v (e @ith) W e (b iy ) = € (bys Dich) Wy e (D @ithe )W o W el
= V(b @by ) Wi
= eVybyr o x W xr W x ,X‘I’;*l,x
=bew Wy x»

= er\I,xyx* .
O

This structure can be incorporated into the graphical calculus for tensor cate@gede®.g.,
Ref. 8 by extending every diagram by a fixed line on the left and represehtimg surrounding
this line as indicated in Fig. 3. The tensor prodéigtg of two global morphisms is obtained by
replacing the fixed line ofj by the whole graph of. The graphical interpretation makés0)
obvious. To understand the graphical origin (2) note that b} =(ew®id)(id®byx®id)
X (idecoew). It is shown in the last line of Fig. 3 that this is graphically equivalent to
(evx®id)(WX,X*\PX*,X®id)(id®coe\&)b;*l=(evx®id)(id® T(X)®id)(id<§9coe\4<)b;*1
= 7(X)*bys = 7(X*)byi = o (X*)%0ys

Note that the whole construction of Coxeter-B braided BTC was guided by the wish to have
for every XeObj(%¥) a morphism ZB—End(X®") mapping 70'—>bx®id;8g(“_1) and
mim>idg oWy w@idy "D

In this paper we use the above definition but we note that there are applications where it is
convenient to relax some of the axioms or add new ones. One way to relax the axioms i§jo use
as the fundamental global morphism and replag) and (10) by by,v=Yy x(by
®idy) Ty y(byx®idy) = (by®idy) ¥y x(by®idy) ¥y y. This defines what we call a restricted
Coxeter-B braided category.
_Itis possible to define a B-type analog of rigidity. We say that a Coxeter-B braided category
¢ is B-rigid if there are global morphisms & Mor(®)(X,1), coey e Mor(®(1,X) such that
m(eW)=m(coeP)=0. One may also wish to postulate ﬁ@/idx*)coe\&:coe\&* and
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ew(coew, ®idy) =ev}. Furthermore, one may wish to demandeve\=id;. A graphical rep-
resentation of these global morphisms are given in Fig. 3. However, there is no obvious way to
draw a picture for iQe\ﬂ. One would need an analog df0). Therefore, one may have to give up

the assumption that is a monoidal category in situations where the graphical calculus®%isev
essential. Such a situation is studied in detail in Ref. 10.

lll. AMPLIMORPHISMS

As a first example we study amplimorphisms. Eet H(m,1A,€,S,R,v) be a quasitriangular
ribbon Hopf algebra. An amplimorphism dfi is a monomorphismy:H—H®End,(V,),
whereV, is some vector space. The category Aidjp(of amplimorphisms ofH has as ob-
jects the amplimorphisms ofA and as morphisms the sets Mg@p(x1,x2):={TeH
®MorVec(VX1,VX2)|TX1(a)=X2T(a)Vae H}. The monoidal structure is given on objects by
X19x2:=(x1®id) o, and on morphisms by, ®T,:=(T,®id)(x,®id)(T,), where y; is the
source ofT;.

The counit of H gives rise to a functorD:Amp(H)—RepH) with D(x)(a):=(e
®id)x(a), D(T):=(e®id)(T) and the coproduct induces RepH)—Amp(H) given by A(e)
X(a):=(id®pe)(A(a)), A(T):=1®T. Obviously one hadDA=Id and A(e,)®A(e,)=(id
®0120,)((A®id)A)=A(01®05).

Define RAmMpH) to be the full closure oA(RepH)).

Proposition 2:RAmp(H) is a Coxeter-B braided category with projection o\RepH).

Proof: Inclusion and projection morphisms 7 are induced byA, D. The global braid
morphismsb on an objecty=A(g) is given by

b,:=(id® 0)(Ry1R). (20)

This is a morphism of RAmp becausg(a)b,=(id®)(A(a))(id®0)(R,,R)=(id®p)
X(A(a)R,R)=(id® 0)(R,1RA(a)) =b,x(a). Note thatD(b,)=id and thusm(b,)=id.
We show(10) for amplimorphismsy;=A(g;) in the following calculation

\PszXl(bX2®id)\PX11X2
=(id® (¥ 0,®01)(R)))(id® 0,®id)(R, R®1)(id® (¥V*( 0,0 0,)(R)))
=(id®e1®05)(R3R31R1 Rz 9)

=(id®e;©02)((A®id)(Rz1R))

—(id® 01 ®id)(A®id)(id® 0,)(Ry 1R)

=(x1®id)(b, ) =id, ®b,..
Using this we prove1l)
b,,®b,, =(b, ®id)(idob, )

=(id®01®02)((R21R)(R3 Rz 1R1 3R> 3))
=(id®21®05)(R21R31R3 R Ry 3R 3)
=(id®21©02)(R21R31R1 3R1R32R73)
=(id®e1©0,)(Id®A) (R R)(id®01©0,) (18R 1R)
=b v v

X19X2 * 02,017 01.05°

J. Math. Phys., Vol. 38, No. 10, October 1997
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Equation(12) may also be verified directly. The proof consists of simply repeating the argu-
ments given above in justifying axiod2) from its graphical interpretation. O

A similar use of the quantum group elemé® R is made in Ref. 11compare also its role
in the theory of quantum Lie algebfaswvhere generalized tensor representations of the braid
group ZB, are constructed.

IV. COXETER-B BRAIDED HOPF ALGEBRAS

In this section we define generalizations of Hopf algebras that are conected to B-type BTCs by
a Tannaka—Krein style duality.

Definition 3: A [(weak) quasi] Coxeter-B braided Hopf algebra H is a [(weak) quasi] quasi-
triangular ribbon Hopf algebra with an elemente H such that

1®v=R,1(1®v)R, (2D

e(v)=1, (22
A(v)=(v®v)(Rz1R) "*=(RxR) ‘(v ®v), (23
S(v)=v% L. (24)

Definition 4: A restricted Coxeter-B braided [(weak) quasi] Hopf algebra H is a [(weak)
quasi] quasitriangular ribbon Hopf algebra with an elemen¢é H such that

R, 10,Rv1=01R; 105R, (25)
e(v)=1, (26)

A(v)=R }(1®0v)R(v®1), (27)
S<v_)*1=8<u)*12 a;vS(B;). (28)

Here, we have useR=X;a;® B;, u:=%;S(Bj) = «; .

The restricted case is really a restrictioi26) is obvious and(28) is A(v)=(R,:R) *
(v®v)=R 'R;1R,1(1®v)R(v®1)=R *v,Rv;. Equation(29) follows from the coproduct
and counit formulas

1=e<_>=m<8®id>A<v_>=iEj m<5®id>(8<ai>a,-v_®ﬂiv_/sj>=i2j S(v)S(a;)S?(a) Biv B,
S<v_>*1=; S<aj>8<u*1>v_ﬁj=; C*ls<a,-)uv_/a,-=§ C1S%(a))uvs(B))

=C Y uS(B)).
]

The calculations use the facts thRf '=(S®id)(R), R=(S®S)(R), u '=3;,S%(q;), C:
=uS(u) central. In the nonrestricted cai®) can be further simplified to obtaii25) by using the
relation obtained from the application of(S®id) to (22).

We have the following Tannaka—Krein style duality between Coxeter B-braided Hopf alge-
bras and B-type tensor categories.

J. Math. Phys., Vol. 38, No. 10, October 1997



5378 Reinhard Haring-Oldenburg: B-type tensor categories and QFT

Proposition 3: The representation categdRepH) of a Coxeter-B braided [(weak) quasi]
Hopf algebra algebra is a B-braided tensor category.

Proof: Let # be the standard representation categorfddds a[ (weak quasi Hopf algebra
(Ref. 9. For an objectX which is a representatiogy :H—End(Vy) one setsby:=gy(v).
Equation(8) is then trivial. The second equation frof®) follows from (23). Global morphism
spaces are defined K§7).

Applying a tensor product representatiog® ¢v to (22) implies (10): idy®by=(ox® Qv)
(Rz,)(idx ® by)(ex ® ev)(R) = ¥y o (by ® idx)W,, o, . Inasimilar way one proved)
from  (24):  byx®by=DbyxsyVy x¥x yex(v)®2yv(v)=(2x®0y)(A(v)R2,1R) =(2x® 0v)
(A(v))(ex® QY)(RZ,I)Wxic,VX\PgiC,VY(Qx@ 2v)(R)=Dbxey Wy x¥x .

Equation (12 is implied by (25): by«=0x(S())*=0ox(vZ Y)*=ox(v?)*b% !
=g (X*)%b ? O

Restricted Coxeter-B braided Hopf algebras lead only to restricted Coxeter-B braided catego-
ries.

Proposition 4: If " is a Coxeter-B braided tensor category and E—Vec is a [(weak)
quasi] tensor functor, then the set of natural transformations frogt6 itself

H:={h:0bj(#)— End,.d hx € End F(X)),
F(f )ohy=hyeF(f )V X,Y € Obj(£)Vf e Mor(X,Y)},

carries the structure of a Coxeter-B braided [(weak) quasi] Hopf algebra. If F is a tensor functor
on Z only in the restricted sense that the naturality equatign - (f )®F(9))=F(f®g)cx y
holds only if g is a local morphism then H is a restricted Coxeter-B braided [(weak) quasi] Hopf
algebra

Proof: This proposition is a corollary to the reconstruction theorem given in Ref. 9. The only
thing we have to check here is that we have a suitable elemeht. We setvy: =F(by). We
havev e H becausev f e Mor(X,Y)F(f Jux=vyF(f )oF(fby)=F(byf ) and this is true be-
cause of naturality ob with respect to local morphisms. In generak will not be central.
Equation(23) is equivalent ta9): e(v)=v,=F(b;)=F(id,)=1.

We first consider the case thitis a tensor functor for all morphisms. We apgiyto (10),
expressF(Vy y)=c¥ Ry y¢~ ! and multiply from the left withc™! and from the right
with ¢. Then we obtainc™ F(idy®by)c=¥VeRc F(by®id)c¥VeRe 10 F(by) =PVeR
X (F(by)®1)¥VeRe (22). We show(24):

A(U_)X,Y:C)z,:\L(OF(bX®Y)°CX,Y:C)Z,]\-(oF(\P)z,:\L()OCY,XOC\?,:)L(OF(\P\?,%()OCX,YOC)Z:\L(OF(bX® by)eCy v
:((Rz,lR)il)x,W(F(bx)@F(bv)):((Rz,lR)il(F@U_))x,Y-
We prove(25) by a simple calculation:
S(v)x = (Vs ) *ody ~t=d%oF (by, ) *ody " t=doF (b "o (X)* ) *ed}
=dXF(a(X)*)* XA F(o(X)*)* d Mk F(by ) dy
=S(0)xS(v)xF (b ") = (v%0 ™ )x.

Now, we consider the case thiatis only a tensor functor in the restricted sense. Then the above
proof of (22) and thus also the proof @24) break down. Equatio26) is shown by applyind-
to (19 and expressingF(¥yy)=cVYeR,yc 1. To show (28) we note that bygy
zqf*Z\IfY’X(bY®idx)\Ifx’Y(bx®idY)=\If§§(bY®idx)\Px’Y(bx®idY). We applyF and multiply
from the left withc™! and from the right withc to obtain at the left-hand side;ﬁF(bx@Y)
Xcxy=A(v)xy and at the right-hand sidey \F(¥xv)F(by®idy)F (¥ v)F(bx®idy)Cy v

J. Math. Phys., Vol. 38, No. 10, October 1997



Reinhard Haring-Oldenburg: B-type tensor categories and QFT 5379

=Ry YW Ve, JF (by@idy) F (W v) Cx,v(F (by) @id) = Ry y W V{(F (by) ®id) cy xF (¥x,v) Cx,v
X (F(by) ®id) = Ry y¥ Ve(F (by) ®id) ¥ Ve Ry v(F (by) ®id) = (R™}(1®v)R(v®1))x v - O
Despite the reconstruction theorem we do not yet have examples of Coxeter-B braided Hopf
algebras. The amplimorphisms form a Coxeter-B braided category. But we haweak tensor
functor that is also defined on thg morphism. The next section will present a Coxeter-B braided
category for which a restricted tensor functor is known. In this way we prove the existence of
restricted Coxeter-B braided Hopf algebras in an indirect manner. Moreover, one can derive an
explicit formula forv in the quantum Weyl groupwe use notation from 12
Proposition 5: The quantum Weyl Groupsif is a restricted Coxeter-B braided Hopf algebra

U—:Wq—HzlsrnZ:O ’qu—HmmYm, (29)

where 8yo=1, B is arbitrary and

Bar1=(BaBrt Ba-1(q7 = 1)q " ¥?)/[a+1]. (30

For a proof of this proposition see Ref. 13.

There is another approach that assigns an algebra to the category RAmp(Ref. 9 we
have introduced the notion of ultra weak Hopf algebras and shown that they can be constructed
from ultra weak tensor functors. Such functors need not dbgl)=1. Let y=A(p) be the
amplimorphism of aH representatiorp:H—End(V). Then we may seF(x):=H®V. This
defines an ultra weak tensor functerRAmp(H)— Vec. As required for ultra weak tensor func-
tors there are functorial epimorphism§1'X2:F(X1)®F(Xz)—>F(X1®X2). They are given by

ch,Xz:=(m®idvl®idvz)(idH®\If¥‘f‘fH®idV2). Herem:H®H—H is the multiplication map. The
reconstruction from this functor gives an ultra weak Coxeter-B braided Hopf algebra.

The existence of nonrestricted B-braided Hopf algebras remain an open question.

V. CONSTRUCTION OF COXETER-B BRAIDED TENSOR CATEGORIES

Coxeter-B braided categories can be obtained from suitable quotients of the braid grpup ZB
in the same way that BTCs can be obtained from quotients of Artin’s braid dfolipe objects
of the category are sequences of idempotents of the braid algebras. Morfhjsats, are given
by the images of the cabled versions of braids associated with them in the graphical calculus.

To give a precise description we introdugkﬁBO be the free moduléover some rinyg
generated by the B-type tangles betwé&anpper and lower points. They may surround the fixed
strand but are not allowed to touch it. We describe the construction in the cylinder picture only.
The categornEB has as objects the numbé¥g and as morphisms the séE@B Compositionfg
is given as usual by putting on top off. The tensor product®g is obtained by replacing the
fixed line ofg by f. The resulting category is a Coxeter-B braided category over the category of
A-type (ordinary) tangles. The morphisrh,, is given by the picture oby in Fig. 3 where the
single line is replaced by & cable. It is tempting to introduce a projectianas the map induced
by deleting the fixed string. However, this will in general only be a morphism up to some scalar
factors. The inclusiom is given by adding a fixed string at the left.

In a next step one may impose skein relations to cut down the morphism spaces to finite
dimension. A semi-simple category may then be obtained by taking as objects finite sequences of
idempotents in the endomorphism algebras. If these algebras posess tensor representations one
may also easily construct a functor to the vector spaces and hence reconstruct at least a restricted
Coxeter-B braided Hopf algebra.

We now specialize to the case of the Temperley—Lieb category.
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Definition 5: The TemperleyLieb AlgebraTB,, of Coxeter type B over a ring with parameters
c,d is generated by gey,...,6,_1 and relations

e16e0e1=cCeq, (31
eiejei:ei |i_j|:1,i,j>1, (32)
eiej:ejei ||—J|>1, (33)
es=cey, (34)

e’=de. (35)

This algebra has been introduced and studied by T. tom Dieck in Ref. 1. From this work we also
recall that TB, is semi-simple for generic parameters. It has dimensﬁﬂm &ndn+1 simple
components. The Bratteli diagram is given by Pascal’s triangle. There are two series of Jones—
Wenzl idempotents recursively defined Hy:=1+([3]—1) leg,g0:=1—Tfp, fm:=Ffm_1
+2m—1][2m+1] Y 1emfme1, Om:=Om_1+[2m—3][2m—1] '0,,_1€mOm_1. They sat-
isfy /f,=f&.=0=€,9,=9mei=0=f,g,Vi=m. Furthermore, there is a Markov trace on,TB
that gives rise to a Jones polynomial of B-type. Alternatively it may be calculated from a B-type
Kauffman bracket.

Using these facts we can divide the morphisms spac&Bolby the skein relations given by
the B-type Kauffman bracket to obtain a categor. It is a Coxeter-B braided category over
Turaev's .14 A semi-simple category’B is then obtained in just the same way as in Ref. 14. We
defer the investigation of the question of whether this category is quasimodular to a subsequent
paper.

We now construct tensor representations of TBet V be a vector space With.basjé andB
be any nondegenerate form &®V. We denote byB;; the matrix ofB and byB" its inverse.
Then the matrixE!‘j' i= BijBk' defines a ma¥@V—V®V. We obtain a tensor representation of
TB, on V®" by representing; asE acting on tensor product spaces+ 1. The parameter id
=3, ;B;;B*. The generatoe, acts aF ®id®--- , whereF:=c(B") "*B. The proof is a straight-
forward computation. Tensor representation of,T&sociated with the quantum group of sl
where investigated in Ref. 1.

It is obvious that any tensor representation of, Td&fines a restricted tensor functor on the
B-braided category in the sense of Proposition 4.

VI. QUANTUM FIELD THEORY ON THE HALF PLANE

Consider a quantum field thedRspecified by a net of local observableg(?) living on the
half plane{(x,,x,) € R?|x;=0}. We assume that boundary conditions are imposed in such a way
that we have reflection at the lin®,R) by letting the full translation grouft? act on the half
plane. This action is not free and this will lead to global morphisms and hence to the occurrence
of a Coxeter-B braided tensor category.

Fields shall be localized in double cones. Here, we extend the usual notion of a double cone
to include all translations of double cones. Thus we also have regions like those in the left of Fig.
4. This figure also shows the causal complenehbf a double cone. A double cone that does not
touch the boundary shall be called regular. Further we assume isotony and locality and the
existence of a vacuum representatimp which is translation invariant and faithful for all local
algebras Z(?) of regular double cone$. Note that in this setup the net() is directed so that
there exists the inductive limitZ.

Now, let@;, 7, be two causally disjoint double cones of equal size as shown in the right half
of Fig. 4. Further, lep, be a transportable morphism localized/in and letp,~ p, be localized
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FIG. 4. The half plane with various double cones the lefy and with the reflecting transportation that leads to global
intertwiners(on the righy.

in 7. Assume thatp; (and thusp,) is irreducible in the sense thatyep, is an irreducible
representation afZ. There are two translations that mép onto ¢,: A direct one and one that
passes the reflecting boundary. Thus we have two charge transportéesMor(®)(p;,p,):
={Te . #Tpi(A)=p,(A)TVAe . #}. (Later on, we will occasionally denote them by .V, to
make their dependence on the morphism cledlience we have a self-intertwinéf: = U~V
eMor®(p;,p;). However, since; is irreducible, we havéup to a phase which we absorb in
the definition ofV) my(Y)=1. We see that the vacuum representation may not be faithful in the
presence of a boundary.

The localized and transportable morphisms form a Coxeter-B braided tensor category with
projection. We have already given the set of global morphisms. Local morphisms are
Mor(py,p2):=
The localized transportable morphisms form a BTC as shown in Refs. 16, 17. The projection
m:Mor(®— Mor is given bym,. The inclusioni :Mor{® — Mor exists because we assumeglto
be faithful on local algebras of regular double cones. The global morplb\,;§ri$ Y given above.
(Note thatY is independent of the choice of, because an additional local charge transpditer
would cancel ouj. Equation(8) hOldS' LetT € Mor(g,p) be a local morphism. IT is an isomor-
phism one can sét,:=V,T, U,:=U,T if one chooseg”; to be casually disjoint to the local-
ization double cones qf andQ Then one hadY,=T(U,T)" 1(V m=u, 1V T=Y,T.If Tis
not an isomorphism then one may do an |mage/kernel sph(tmngse of seml S|mpI|C|ty of the
C* category p=pa®pp, 0=0a® 0y in such a way thap, andp, are isomorphic by means of
an isomorphisnT. It is then obvious that all charge transporters split like= U, eU,. Further
we denote byPQ P2 the projection endomorphisms of the indicated objects. Then one has
T=P/TP2=P?TP¢. Now we can calculate TY,= P”TPQ(U LOUL) MV, eaveb)
=PLTPEPS(U, TGBU )Y, Teev )= PETPS((U, T) l®0)(V, TeBO)PQ— P5(U, '®0)

X(V aTéBO)P@— (u alv aEBO)TPQ Y,T.

To show(10) we take another morphisr@ localised inc7; . Using our assumptions that; ,

@, are causally disjoint we may express the statistics operaetglri,:Q(U‘l)U,
=V~lo(V). Thuse(Y)=¢, ,
A full proof of (11) seems to be difficult in the general situation. However, we note(iHat

694’1
YeQrpl'
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is established if one can show that,y=L(byx®by) with some local morphisnh: Applying =
and using(18) one obtaind. =¥ ~2. Thus it suffices to argue that tii are unique up to local
morphisms.

Similar results are obtained for QFT on the cir&&® The most important common feature
of these two topologies is that the action of the translation group is not free. Fredenhagen, Rehren,
and Schroer already point out that the occurrence of global intertwiners is linked to the existence
of a forbidden direction; a fact that can most clearly be seen in our setup.
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