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Tensor categories of Coxeter type B and QFT
on the half plane

Reinhard Häring-Oldenburga)

Mathematisches Institut, Bunsenstr. 3-5, 37073 Go¨ttingen, Germany

~Received 31 December 1996; accepted for publication 30 June 1997!

We introduce braided tensor categories which are associated to the braid group of
Coxeter type B. Connected by a reconstruction theorem there is the notion of
B-braided Hopf algebras. These structures show up in quantum field theories de-
fined on the half plane or on the cylinder. ©1997 American Institute of Physics.
@S0022-2488~97!01010-4#

I. INTRODUCTION

Every Coxeter graph defines a braid group that is an infinite covering of its Coxeter group. T.
tom Dieck initiated in Refs. 1 and 2 the systematic algebraic study of these braid groups and their
quotient algebras for all root systems.

The Coxeter group of A-type is the permutation group and its braid group ZAn is Artin’s braid
group. For typeBn the Coxeter group is a semidirect product of the permutation group withZ2

n .
Definition 1: The braid groupZBn of Coxeter type B is generated byt0 ,t1 ,...,tn21 with

relations

t it j5t jt i if u i 2 j u.1, ~1!

t it jt i5t it jt i if i , j >1, u i 2 j u51, ~2!

t0t i5t it0 if i>2, ~3!

t0t1t0t15t1t0t1t0 . ~4!

Generatorst i , i>1 satisfy the relations of Artin’s braid group.
ZBn may be graphically interpreted~cf. Fig. 1! as symmetric braids or cylinder braids: The

symmetric picture shows it as the group of braids with 2n strands~numbered2n,...,21,1,...,n!
which are fixed under a 180 degree rotation about the middle axis. In the cylinder picture one adds
a single fixed line~indexed 0! on the left and obtains ZBn as the group of braids withn strands that
may surround this fixed line. The generatorst i , i>0 are mapped to the diagramsXi

(G) given in
Fig. 1. More generally there are tangles~indicated in Fig. 1 by the TLJ tanglesei

(G)! of B-type that
live naturally in a cylinder.

The cylinder interpretation of relation~4! shown in Fig. 2 is the interface to physical appli-
cations. One should think of each side of this picture as showing two particles which are reflected
on a wall. The equality of both sides expresses the independency of these reflections. The inte-
grability condition for quantum field theories in two dimension is given by the Yang–Baxter
equation~YBE! which is a spectral parameter dependend form of~2!. If the QFT lives on a half
plane with reflecting boundary it is known from the work of Cherednik, Sklyanin, Goshal, and
Zamolodchikov~see Ref. 3! that the YBE gets augmented by the reflection equation~or boundary
YBE! which is a spectral parameter dependend form of~4!. Solutions of the reflection equation
can be obtained from tensor representations of quotients of the group algebra of the braid group
ZBn by a Baxterization procedure.4 This example inspires our general hypothesis: Whenever
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Artin’s braid group ZAn occurs in a low dimensional physical model on a space without boundary
then the B-type braid group ZBn occurs if the model is placed on a space with a reflecting
boundary. Another illustration of this hypothesis is the fact that the Markov trace on the B-type
Temperley–Lieb algebra can be used to express the partition function of a Potts model with
boundary interaction.5

This paper studies the categorical structure underlying these cylinder tangle diagrams. The
ultimate goal is to extend the rich theory around ordinary braided tensor categories including
quantum groups and knot invariants to the braid group of B type. Some results have already been
obtained. Generalizations of Temperley–Lieb algebras,1 Hecke algebras,6 and Birman–Wenzl
algebras7 have been studied along with their associated invariants of torus links~which are ob-
tained by closing cylinder braids!.

The central observation in the search for the categorial structure of the new type of braiding
is the following: The braid generatort0 ~later onbX in the category! does not satisfy the naturality
condition with the A-type braidingt1 . Thus, it cannot be a morphisms in a braided tensor

FIG. 1. The graphical interpretation of the generators as symmetric tangles~on the left! and as cylinder tangles~on the
right!.

FIG. 2. The cylinder interpretation of relation~4!.
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category. We account for this fact by introducing two morphism spaces for every pair of objects
in the category. Local morphism that are natural with respect to A-type braidings and global
morphisms which need not.

We now outline the structure of the paper. After giving the precise definition the paper
introduces the category of amplimorphisms of a Hopf algebra as a first example. The next section
introduces Coxeter-B braided Hopf algebras which are related to Coxeter-B categories by a
Tannaka–Krein style duality. In the sequel the construction of Coxeter-B braided categories from
semi-simple quotients of the group algebra of ZBn is discussed. The last section is devoted to a
physical application. We show that the localized morphisms of an algebraic quantum field theory
on the half plane with reflecting boundary form a Coxeter-B braided category.

It is important to observe that the central equation~4! appears also in other contexts. Most
important is its fundamental role in Majid’s elaborated theory of braided mathematics.8 There it
appears a commutativity relation between distinct copies of objects that obey braided commutative
statistics. Furthermore, the defining relations of Majid’s quantum Lie algebras are of the same
form. Naturally one should explore the deeper meaning of these connections in further studies.
Further topics that have been deferred are the categorial definition of invariants of links in the
solid torus~compare Ref. 6!, the generalization of evaluation and coevaluation morphisms and the
question of invariants of 3-manifolds with boundary.

Preliminaries.We use the language of braided tensor categories~BTC! extensively. Our basic
notation follow that of Majid8 and was used already in Ref. 9. The functorial braid isomorphism
is denotedCX,Y :X^ Y→̃Y^ XX,Y*Obj(C ). Dual objects are denoted byX* and we use ev and
coev for the morphisms of rigidity. We use them to defineq̃X :5(evX^ idX** )+(idX* ^ CX** ,X)
+(coevX* ^ idX)PMor(X,X** ). There exists a unique morphismt(X)PMor(X,X) such that
(t(X) ^ idX* )+coevX5CX* ,XCX,X* coevX and evXCX,X* CX* ,X5evX(id^ t(X)). It can be defined
by t(X* )21:5q̃ X* +q̃ X* . A ribbon category has a natural isomorphisms(X)PMor(X,X) such
that s(X)25t(X), s(X) ^ s(Y)5CY,XCX,Ys(X^ Y), s(X* )5s(X)* , f s(X)5s(Y) f ; f
PMor(X,Y).

We now give a short review of the reconstruction theorem from Refs. 8, 9. LetC be a rigid
BTC and F:C→Vec a @~weak! quasi# tensor functor. Then the setH5Nat(F,F) of natural
transformations fromF to F carries the structure of a@~weak! quasi# Hopf algebra and there is a

functor G:C→Rep(H) such thatC→
G

Rep(H)→
V

Vec composes toF. In the case of a faithful
functor and a semisimple category,C and Rep(H) are equivalent BTCs.

H:5Nat~F,F !5$h:Obj~C !→EndVecuhXPEnd~F~X!!,

F~ f !+hX5hY+F~ f !;X,YPObj~C !; f PMor~X,Y!%.

H is a vector space by pointwise addition. The multiplication is also defined pointwise: (hg)X :
5hX+gX XPObj(C ),h,gPH. The unit isX°1X5 idF(X) . The coproductD:H→H ^ H is defined
by: D(h)X,Y :5cX,Y

21 +hX^ Y+cX,Y and the counit ise:H→K, e(h):5h1 . The antipode isS(h)X :
5dX* (hX* )* dX*

21, where the isomorphismsdX :F(X)*→F(X* ) with the property
dX+F( f )* 5F( f * )+dY; f PMor(X,Y) exists by definition of a@~weak! quasi# tensor functor.~See
Ref. 9 for more details and the construction of such functors.! If C is a ribbon category then there
is a ribbon elementvX :5F(s(X)) in H. The vector spacesF(X) are representation spaces ofH.
The representations are%X(h).v:5hX(v) hPH, vPF(X). This induces a functor
G:C→Rep(H).

II. COXETER-B BRAIDED CATEGORIES

As mentioned in Sec. I, the surrounding of the cylinder axis~generatort0 in the braid group
ZBn! does not behave natural with respect to the braidingt1 . Therefore, it can not be represented
by a morphism in a BTC. Nevertheless, we can incorporate it by defining a bigger space of
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morphisms that are not bound to satisfy naturality with the ordinary braiding. This seems natural
from the physical considerations that we undertake in the last section. From a purely mathematical
point of view one should probably prefer to view B-type tangles as a kind of module for an
ordinary tangle category.10

Definition 2: LetC be a rigid BTC. A Coxeter-B braided category overC is an embedding of
C in a rigid monoidal category Cˆ such that the following list of axioms holds. Morphisms
Mor(X,Y):5MorC (X,Y) are said to be local and morphismsMor(G)(X,Y):5MorĈ (X,Y) are
said to be global.

Obj~C !5Obj~ Ĉ !, ~5!

' i :Mor~X,Y!→Mor~G!~X,Y! monomorphism, ~6!

;X'bXPMor~G!~X,X! invertible, ~7!

bYf 5 f bX ; f PMor~X,Y!, ~8!

p~bX!5 idX b15 id1 , ~9!

idX^ bY5CY,X~bY^ idX!CX,Y , ~10!

bX^ bY5bX^ YVY,XCX,Y5CY,XCX,YbX^ Y , ~11!

bX* 5s~X* !2bX*
21. ~12!

We say thatĈ has a projection if we have in addition:

'p:Mor~G!~X,Y!→Mor~X,Y! epimorphism, ~13!

p+ i 5 id, ~14!

p~ f ^ g!5p~ f ! ^ g if gPMor~X,Y!. ~15!

The axioms ensure that the two categories are almost equal. They differ only by the existence
of some global morphisms. If needed, one may restrict this extension to a minimum by postulating

Mor~G!~X,Y!5$bY
n unPZ%+Mor~X,Y!P$bX

n unPZ%. ~16!

Note thatC is a braiding ofC , not of Ĉ . This makes~10! possible which otherwise would
give a contradiction to naturality ofC.

The graphical idea behind the projection is to simply forget about the cylinder axis.
In some applications it may be more natural to work withbX8 :5s(X)21bX which ful-

fills bX^ Y8 5(s(X)21
^ s(Y)21)C2(bX^ bY)C225bX8 ^ bY8 and bX8* 5bX* s(X)21* 5s(X* )2

3bX*
21s(X* )215(bX* s(X* )21)215(bX*

8 )21.
Lemma 1:

p~ idX^ bY!5CY,XCX,Y , ~17!

CY,X~bY^ idX!CX,Y~bX^ idY!5~bX^ idY!CY,X~bY^ idX!CX,Y , ~18!

evX~bX* ^ idX!CX,X* ~bX^ idX* !5evXCX,X* . ~19!
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Proof: ~18! is trivial and ~19! is simply commutativity ofbX^ idY and idX^ bY . We now
prove ~20!

evX~bX* ^ idX!CX,X* ~bX^ idX* !5evX~bX* ^ idX!CX,X* ~bX^ idX* !CX* ,XCX* ,X
21

5evX~bX* ^ bX!CX* ,X
21

5evXbX* ^ XCX,X* CX* ,XCX* ,X
21

5b1evXCX,X*

5evXCX,X* .
h

This structure can be incorporated into the graphical calculus for tensor categories~see, e.g.,
Ref. 8! by extending every diagram by a fixed line on the left and representingb by surrounding
this line as indicated in Fig. 3. The tensor productf ^ g of two global morphisms is obtained by
replacing the fixed line ofg by the whole graph off . The graphical interpretation makes~10!
obvious. To understand the graphical origin of~12! note that bX* 5(evX^ id)(id^ bX^ id)
3(id^coevX). It is shown in the last line of Fig. 3 that this is graphically equivalent to
(evX^ id)(CX,X* CX* ,X^ id)(id^coevX)bX*

21
5(evX^ id)(id^ t(X) ^ id)(id^coevX)bX*

21

5t(X)* bX*
21

5 t(X* )bX*
21

5 s(X* )2bX*
21

Note that the whole construction of Coxeter-B braided BTC was guided by the wish to have
for every XPObj(Ĉ ) a morphism ZBn→End(X^ n) mapping t0°bX^ idX

^ (n21) and
t i° idX

^ ( i 21)
^ CX,X^ idX

^ (n112 i ) .
In this paper we use the above definition but we note that there are applications where it is

convenient to relax some of the axioms or add new ones. One way to relax the axioms is to usebX8
as the fundamental global morphism and replace~11! and ~10! by bX^ Y8 5CY,X(bY8
^ idX)CX,Y(bX8 ^ idY)5(bX8 ^ idY)CY,X(bY8 ^ idX)CX,Y . This defines what we call a restricted
Coxeter-B braided category.

It is possible to define a B-type analog of rigidity. We say that a Coxeter-B braided category
Ĉ is B-rigid if there are global morphisms evX

0PMor(G)(X,1), coevX
0PMor(G)(1,X) such that

p(ev0)5p(coev0)50. One may also wish to postulate (evX
0

^ idX* )coevX5coevX*
0 and

FIG. 3. Graphical calculus for Coxeter-B braided categories.
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evX(coevX*
0

^ idX)5evX
0. Furthermore, one may wish to demand evX

0coevX
05 id1. A graphical rep-

resentation of these global morphisms are given in Fig. 3. However, there is no obvious way to
draw a picture for idXevY

0. One would need an analog of~10!. Therefore, one may have to give up
the assumption thatĈ is a monoidal category in situations where the graphical calculus of ev0 is
essential. Such a situation is studied in detail in Ref. 10.

III. AMPLIMORPHISMS

As a first example we study amplimorphisms. LetH5H(m,1,D,e,S,R,v) be a quasitriangular
ribbon Hopf algebra. An amplimorphism ofH is a monomorphismx:H→H ^ EndVec(Vx),
where Vx is some vector space. The category Amp(H) of amplimorphisms ofH has as ob-
jects the amplimorphisms ofA and as morphisms the sets MorAmp(x1 ,x2):5$TPH
^ MorVec(Vx1

,Vx2
)uTx1(a)5x2T(a);aPH%. The monoidal structure is given on objects by

x1^ x2 :5(x1^ id)x2 and on morphisms byT1^ T2 :5(T1^ id)(x1^ id)(T2), wherex1 is the
source ofT1 .

The counit of H gives rise to a functorD:Amp(H)→Rep(H) with D(x)(a):5(e
^ id)x(a), D(T):5(e ^ id)(T) and the coproduct inducesA:Rep(H)→Amp(H) given byA(%)
3(a):5(id^ %)(D(a)), A(T):51^ T. Obviously one hasDA5Id and A(%1) ^ A(%2)5(id
^ %1^ %2)((D ^ id)D)5A(%1^ %2).

Define RAmp(H) to be the full closure ofA(Rep(H)).
Proposition 2:RAmp(H) is a Coxeter-B braided category with projection overRep(H).
Proof: Inclusion and projection morphismsi , p are induced byA, D. The global braid

morphismsb on an objectx5A(%) is given by

bx :5~ id^ % !~R2,1R!. ~20!

This is a morphism of RAmp becausex(a)bx5(id^ %)(D(a))(id^ %)(R2,1R)5(id^ %)
3(D(a)R2,1R)5(id^ %)(R2,1RD(a))5bxx(a). Note thatD(bx)5 id and thusp(bx)5 id.

We show~10! for amplimorphismsx i5A(% i) in the following calculation

Cx2 ,x1
~bx2

^ id!Cx1 ,x2

5~ id^ ~CVec~%2^ %1!~R!!!~ id^ %2^ id!~R2,1R^ 1!~ id^ ~CVec~%1^ %2!~R!!!

5~ id^ %1^ %2!~R3,2R3,1R1,3R2,3!

5~ id^ %1^ %2!~~D ^ id!~R2,1R!!

5~ id^ %1^ id!~D ^ id!~ id^ %2!~R2,1R!

5~x1^ id!~bx2
!5 idx1

^ bx2
.

Using this we prove~11!

bx1
^ bx2

5~bx1
^ id!~ id^ bx2

!

5~ id^ %1^ %2!~~R2,1R!~R3,2R3,1R1,3R2,3!!

5~ id^ %1^ %2!~R2,1R3,1R3,2R1,2R1,3R2,3!

5~ id^ %1^ %2!~R2,1R3,1R1,3R1,2R3,2R2,3!

5~ id^ %1^ %2!~ id^ D!~R2,1R!~ id^ %1^ %2!~1^ R2,1R!

5bx1^ x2
C%2 ,%1

C%1 ,%2
.
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Equation~12! may also be verified directly. The proof consists of simply repeating the argu-
ments given above in justifying axiom~12! from its graphical interpretation. h

A similar use of the quantum group elementR2,1R is made in Ref. 11~compare also its role
in the theory of quantum Lie algebras8! where generalized tensor representations of the braid
group ZBn are constructed.

IV. COXETER-B BRAIDED HOPF ALGEBRAS

In this section we define generalizations of Hopf algebras that are conected to B-type BTCs by
a Tannaka–Krein style duality.

Definition 3: A [(weak) quasi] Coxeter-B braided Hopf algebra H is a [(weak) quasi] quasi-
triangular ribbon Hopf algebra with an elementv̄PH such that

1^ v̄5R2,1~1^ v̄ !R, ~21!

e~ v̄ !51, ~22!

D~ v̄ !5~ v̄ ^ v̄ !~R21R!215~R21R!21~ v̄ ^ v̄ !, ~23!

S~ v̄ !5v2v̄21. ~24!

Definition 4: A restricted Coxeter-B braided [(weak) quasi] Hopf algebra H is a [(weak)
quasi] quasitriangular ribbon Hopf algebra with an elementv̄PH such that

R2,1v̄2Rv̄15 v̄1R2,1v̄2R, ~25!

e~ v̄ !51, ~26!

D~ v̄ !5R21~1^ v̄ !R~ v̄ ^ 1!, ~27!

S~ v̄ !215S~u!21(
j

a j v̄S~b j !. ~28!

Here, we have usedR5( ja j ^ b j , u:5( jS(b j )5a j .
The restricted case is really a restriction:~26! is obvious and~28! is D( v̄)5(R2,1R)21

( v̄ ^ v̄)5R21R2,1
21R2,1(1^ v̄)R( v̄ ^ 1)5R21v̄2Rv̄1 . Equation ~29! follows from the coproduct

and counit formulas

15e~ v̄ !5m~S^ id!D~ v̄ !5(
i , j

m~S^ id!~S~a i !a j v̄ ^ b i v̄b j !5(
i , j

S~ v̄ !S~a j !S
2~a i !b i v̄b j ,

S~ v̄ !215(
j

S~a j !S~u21!v̄b j5(
j

C21S~a j !uv̄b j5(
j

C21S2~a j !uv̄S~b j !

5C21u(
j

a j v̄S~b j !.

The calculations use the facts thatR215(S^ id)(R), R5(S^ S)(R), u215( jb jS
2(a j ), C:

5uS(u) central. In the nonrestricted case~29! can be further simplified to obtain~25! by using the
relation obtained from the application ofm(S^ id) to ~22!.

We have the following Tannaka–Krein style duality between Coxeter B-braided Hopf alge-
bras and B-type tensor categories.
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Proposition 3: The representation categoryRep(H) of a Coxeter-B braided [(weak) quasi]
Hopf algebra algebra is a B-braided tensor category.

Proof: Let C be the standard representation category ofH as a@~weak! quasi# Hopf algebra
~Ref. 9!. For an objectX which is a representation%X :H→End(VX) one setsbX :5%X( v̄).
Equation~8! is then trivial. The second equation from~9! follows from ~23!. Global morphism
spaces are defined by~17!.

Applying a tensor product representation%X^ %Y to ~22! implies ~10!: idX^ bY5(%X^ %Y)
(R2,1)(idX ^ bY)(%X ^ %Y)(R) 5 C%Y ,%X

(bY ^ idX)C%X ,%Y
. In a similar way one proves~11!

from ~24!: bX^ bY5bX^ YCY,XCX,Y⇔%X( v̄) ^ %Y( v̄)5(%X^ %Y)(D( v̄)R2,1R)5(%X^ %Y)
(D( v̄))(%X^ %Y)(R2,1)CVY ,VX

Vec CVX ,VY

Vec (%X^ %Y)(R)5bX^ YCY,XCX,Y .

Equation ~12! is implied by ~25!: bX* 5%X(S( v̄))* 5%X(v2v̄21)* 5%X(v2)* bX*
21

5s(X* )2bX*
21 h

Restricted Coxeter-B braided Hopf algebras lead only to restricted Coxeter-B braided catego-
ries.

Proposition 4: If Ĉ is a Coxeter-B braided tensor category and F: Ĉ→Vec is a [(weak)
quasi] tensor functor, then the set of natural transformations from FuC to itself

H:5$h:Obj~C !→EndVecuhXPEnd~F~X!!,

F~ f !+hX5hY+F~ f !;X,YPObj~C !; f PMor~X,Y!%,

carries the structure of a Coxeter-B braided [(weak) quasi] Hopf algebra. If F is a tensor functor
on Ĉ only in the restricted sense that the naturality equation cX,Y(F( f ) ^ F(g))5F( f ^ g)cX,Y

holds only if g is a local morphism then H is a restricted Coxeter-B braided [(weak) quasi] Hopf
algebra.

Proof: This proposition is a corollary to the reconstruction theorem given in Ref. 9. The only
thing we have to check here is that we have a suitable elementv̄PH. We setv̄X :5F(bX). We
have v̄PH because; f PMor(X,Y)F( f ) v̄X5 v̄YF( f )⇔F( f bX)5F(bYf ) and this is true be-
cause of naturality ofb with respect to local morphisms. In general,v̄X will not be central.
Equation~23! is equivalent to~9!: e( v̄)5 v̄15F(b1)5F(id1)51.

We first consider the case thatF is a tensor functor for all morphisms. We applyF to ~10!,
expressF(CX,Y)5cCVecRX,Yc21 and multiply from the left withc21 and from the right
with c. Then we obtainc21F(idX^ bY)c5CVecRc21F(bY^ id)cCVecR⇔1^ F(bY)5CVecR
3(F(bY) ^ 1)CVecR⇔ ~22!. We show~24!:

D~ v̄ !X,Y5cX,Y
21 +F~bX^ Y!+cX,Y5cX,Y

21 +F~CX,Y
21 !+cY,X+cY,X

21 +F~CY,X
21 !+cX,Y+cX,Y

21 +F~bX^ bY!+cX,Y

5~~R2,1R!21!X,Y+~F~bX! ^ F~bY!!5~~R2,1R!21~ v̄ ^ v̄ !!X,Y .

We prove~25! by a simple calculation:

S~ v̄ !X5dX* +~ v̄X* !* +dX*
215dX* +F~bX* !* +dX*

215dX* +F~bX*
21s~X!* 2!* +dX*

21

5dX* F~s~X!* !* dX*
21dX* F~s~X!* !* dX*

21dX* F~bX
21* !* dX*

21

5S~v !XS~v !XF~bX
21!5~v2v̄21!X .

Now, we consider the case thatF is only a tensor functor in the restricted sense. Then the above
proof of ~22! and thus also the proof of~24! break down. Equation~26! is shown by applyingF
to ~19! and expressingF(CX,Y)5cCVecRX,Yc21. To show ~28! we note that bX^ Y

5C22CY,X(bY^ idX)CX,Y(bX^ idY)5CX,Y
21 (bY^ idX)CX,Y(bX^ idY). We applyF and multiply

from the left with c21 and from the right withc to obtain at the left-hand sidecX,Y
21 F(bX^ Y)

3cX,Y5D( v̄)X,Y and at the right-hand sidecX,Y
21 F(CX,Y

21 )F(bY^ idX)F(CX,Y)F(bX^ idY)cX,Y
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5RX,Y
21 CVeccY,X

21 F(bY^ idX)F(CX,Y)cX,Y(F(bX) ^ id)5RX,Y
21 CVec(F(bY) ^ id)cY,X

21 F(CX,Y)cX,Y

3(F(bX) ^ id)5RX,Y
21 CVec(F(bY) ^ id)CVecRX,Y(F(bX) ^ id)5(R21(1^ v̄)R( v̄ ^ 1))X,Y . h

Despite the reconstruction theorem we do not yet have examples of Coxeter-B braided Hopf
algebras. The amplimorphisms form a Coxeter-B braided category. But we have no~weak! tensor
functor that is also defined on thebX morphism. The next section will present a Coxeter-B braided
category for which a restricted tensor functor is known. In this way we prove the existence of
restricted Coxeter-B braided Hopf algebras in an indirect manner. Moreover, one can derive an
explicit formula for v̄ in the quantum Weyl group~we use notation from 12!.

Proposition 5: The quantum Weyl Group ofsl2 is a restricted Coxeter-B braided Hopf algebra

v̄5wq2H2/8(
m50

`

bmq2Hm/4Ym, ~29!

whereb051, b1 is arbitrary and

ba115~bab11ba21~q2121!q~12a!/2!/@a11#. ~30!

For a proof of this proposition see Ref. 13.
There is another approach that assigns an algebra to the category RAmp(H). In Ref. 9 we

have introduced the notion of ultra weak Hopf algebras and shown that they can be constructed
from ultra weak tensor functors. Such functors need not obeyF(1)51. Let x5A(%) be the
amplimorphism of aH representation%:H→End(V). Then we may setF(x):5H ^ V. This
defines an ultra weak tensor functorF:RAmp(H)→Vec. As required for ultra weak tensor func-
tors there are functorial epimorphismscx1 ,x2

:F(x1) ^ F(x2)→F(x1^ x2). They are given by

cx1 ,x2
:5(m^ idV1

^ idV2
)(idH ^ CV1 ,H

Vec
^ idV2

). Herem:H ^ H→H is the multiplication map. The

reconstruction from this functor gives an ultra weak Coxeter-B braided Hopf algebra.
The existence of nonrestricted B-braided Hopf algebras remain an open question.

V. CONSTRUCTION OF COXETER-B BRAIDED TENSOR CATEGORIES

Coxeter-B braided categories can be obtained from suitable quotients of the braid group ZBn

in the same way that BTCs can be obtained from quotients of Artin’s braid group.14 The objects
of the category are sequences of idempotents of the braid algebras. MorphismsCX,Y,bX are given
by the images of the cabled versions of braids associated with them in the graphical calculus.

To give a precise description we introduce EB˜k,l to be the free module~over some ring!
generated by the B-type tangles betweenk upper andl lower points. They may surround the fixed
strand but are not allowed to touch it. We describe the construction in the cylinder picture only.
The categoryEB has as objects the numbersN0 and as morphisms the sets EB˜k,l . Compositionf g
is given as usual by puttingg on top of f . The tensor productf ^ g is obtained by replacing the
fixed line of g by f . The resulting category is a Coxeter-B braided category over the category of
A-type ~ordinary! tangles. The morphismbn is given by the picture ofbX in Fig. 3 where the
single line is replaced by an cable. It is tempting to introduce a projectionp as the map induced
by deleting the fixed string. However, this will in general only be a morphism up to some scalar
factors. The inclusioni is given by adding a fixed string at the left.

In a next step one may impose skein relations to cut down the morphism spaces to finite
dimension. A semi-simple category may then be obtained by taking as objects finite sequences of
idempotents in the endomorphism algebras. If these algebras posess tensor representations one
may also easily construct a functor to the vector spaces and hence reconstruct at least a restricted
Coxeter-B braided Hopf algebra.

We now specialize to the case of the Temperley–Lieb category.
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Definition 5: The Temperley–Lieb AlgebraTBn of Coxeter type B over a ring with parameters
c,d is generated by e0 ,e1 ,...,en21 and relations

e1e0e15ce1 , ~31!

eiejei5ei u i 2 j u51,i , j >1, ~32!

eiej5ejei u i 2 j u.1, ~33!

e0
25ce0 , ~34!

ei
25dei . ~35!

This algebra has been introduced and studied by T. tom Dieck in Ref. 1. From this work we also
recall that TBn is semi-simple for generic parameters. It has dimension (n

2n) and n11 simple
components. The Bratteli diagram is given by Pascal’s triangle. There are two series of Jones–
Wenzl idempotents recursively defined byf 0 :511(@3#21)21e0 ,g0 :512 f 0 , f m :5 f m21

1@2m21#@2m11#21f m21emf m21 , gm :5gm211@2m23#@2m21#21gm21emgm21 . They sat-
isfy ei f m5 f mei505eigm5gmei505 f mgm; i<m. Furthermore, there is a Markov trace on TBn

that gives rise to a Jones polynomial of B-type. Alternatively it may be calculated from a B-type
Kauffman bracket.1

Using these facts we can divide the morphisms spaces ofEB by the skein relations given by
the B-type Kauffman bracket to obtain a categoryS B. It is a Coxeter-B braided category over
Turaev’sS .14 A semi-simple categoryV B is then obtained in just the same way as in Ref. 14. We
defer the investigation of the question of whether this category is quasimodular to a subsequent
paper.

We now construct tensor representations of TBn . Let V be a vector space with basisv i andB
be any nondegenerate form onV^ V. We denote byBi j the matrix ofB and byBi j its inverse.
Then the matrixEi j

kl :5Bi j B
kl defines a mapV^ V→V^ V. We obtain a tensor representation of

TBn on V^ n by representingei asE acting on tensor product spacesi ,i 11. The parameter isd
5( i , jBi j B

kl. The generatore0 acts asF ^ id^ ••• , whereF:5c(Bt)21B. The proof is a straight-
forward computation. Tensor representation of TBn associated with the quantum group of sl2

where investigated in Ref. 1.
It is obvious that any tensor representation of TBn defines a restricted tensor functor on the

B-braided category in the sense of Proposition 4.

VI. QUANTUM FIELD THEORY ON THE HALF PLANE

Consider a quantum field theory15 specified by a net of local observablesA~O ! living on the
half plane$(x1 ,x2)PR2ux1>0%. We assume that boundary conditions are imposed in such a way
that we have reflection at the line~0,R! by letting the full translation groupR2 act on the half
plane. This action is not free and this will lead to global morphisms and hence to the occurrence
of a Coxeter-B braided tensor category.

Fields shall be localized in double cones. Here, we extend the usual notion of a double cone
to include all translations of double cones. Thus we also have regions like those in the left of Fig.
4. This figure also shows the causal complementO 8 of a double cone. A double cone that does not
touch the boundary shall be called regular. Further we assume isotony and locality and the
existence of a vacuum representationp0 which is translation invariant and faithful for all local
algebrasA~O ! of regular double conesO . Note that in this setup the netA~O ! is directed so that
there exists the inductive limitA.

Now, letO 1 , O 2 be two causally disjoint double cones of equal size as shown in the right half
of Fig. 4. Further, letr1 be a transportable morphism localized inO 1 and letr2;r1 be localized
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in O 2 . Assume thatr1 ~and thusr2! is irreducible in the sense thatp0+r1 is an irreducible
representation ofA. There are two translations that mapO 1 onto O 2 : A direct one and one that
passes the reflecting boundary. Thus we have two charge transportersU,VPMor(G)(r1 ,r2):
5$TPAuTr1(A)5r2(A)T;APA%. ~Later on, we will occasionally denote them byUr1

,Vr1
to

make their dependence on the morphism clear.! Hence we have a self-intertwinerY:5U21V
PMor(G)(r1 ,r1). However, sincer1 is irreducible, we have~up to a phase which we absorb in
the definition ofV! p0(Y)51. We see that the vacuum representation may not be faithful in the
presence of a boundary.

The localized and transportable morphisms form a Coxeter-B braided tensor category with
projection. We have already given the set of global morphisms. Local morphisms are
Mor(r1 ,r2):5$TPAu'O regular,TPA(O ),p0(T)p0(r1(A))5 p0(r2(A))p0(T);A P A%.
The localized transportable morphisms form a BTC as shown in Refs. 16, 17. The projection
p:Mor(G)→Mor is given byp0 . The inclusioni :Mor(G)→Mor exists because we assumedp0 to
be faithful on local algebras of regular double cones. The global morphismbr1

is Y given above.
~Note thatY is independent of the choice ofO 2 because an additional local charge transporterW
would cancel out.! Equation~8! holds: LetTPMor(%,r) be a local morphism. IfT is an isomor-
phism one can setV% :5VrT, U% :5UrT if one choosesO 2 to be casually disjoint to the local-
ization double cones ofr and%. Then one hasTY%5T(UrT)21(VrT)5Ur

21VrT5YrT. If T is
not an isomorphism then one may do an image/kernel splitting~by use of semi-simplicity of the
C* category! r5ra% rb , %5%a% %b in such a way that%a andra are isomorphic by means of
an isomorphismT̂. It is then obvious that all charge transporters split likeUr5Ura

% Urb
. Further

we denote byPa
% ,Pa

r the projection endomorphisms of the indicated objects. Then one has
T5Pa

rTPa
%5Pa

rT̂Pa
% . Now we can calculate TY%5Pa

rT̂Pa
%(U%a

% U%b
)21(V%a

% V%b
)

5Pa
rT̂Pa

%Pa
%(Ura

T̂% U%b
)21(Vra

T̂% V%b
)5Pa

rT̂Pa
%((Ura

T̂)21
% 0)(Vra

T̂% 0)Pa
%5Pa

r(Ura

21
% 0)

3(Vra
T̂% 0)Pa

%5Pa
r(Ura

21Vra
% 0)T̂Pa

%5YrT.

To show~10! we take another morphism% localised inO 1 . Using our assumptions thatO 1 ,
O 2 are causally disjoint we may express the statistics operatorser1 ,%5%(U21)U, e%,r1

5V21%(V). Thus%(Y)5er1 ,%Ye%,r1
.

A full proof of ~11! seems to be difficult in the general situation. However, we note that~11!

FIG. 4. The half plane with various double cones~on the left! and with the reflecting transportation that leads to global
intertwiners~on the right!.
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is established if one can show thatbX^ Y5L(bX^ bY) with some local morphismL: Applying p
and using~18! one obtainsL5C22. Thus it suffices to argue that thebX are unique up to local
morphisms.

Similar results are obtained for QFT on the circleS4.16 The most important common feature
of these two topologies is that the action of the translation group is not free. Fredenhagen, Rehren,
and Schroer already point out that the occurrence of global intertwiners is linked to the existence
of a forbidden direction; a fact that can most clearly be seen in our setup.
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