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1. INTRODUCTION

Semisimple braided tensor categories are the structure underlying the
quantum invariants of links and 3-manifolds [19]. The most useful exam-
ples are derived from the (non-semisimple) representation categories of

quantum groups by elimination of not fully decomposable objects and
nilpotent morphisms.
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These cleaned up versions are no longer representation categories of
usual quantum groups. It is the purpose of this paper to show that they
nevertheless arise as representation categories of appropriate algebras. It
is always possible to reconstruct a weak quasi Hopf algebras, as introduced
by Mack and Schomerus [8], that has the given category as its representa-
tion category.

Semisimple braided tensor categories arise also as representation cate-
gories of the net of observable algebras in low dimensional quantum field
theory. The weak quasi Hopf algebra we construct in this paper may
therefore be considered to be a candidate to replace the gauge group in
such systems [3].

This result is established in two steps. First we define the notion of a
weak quasi tensor functor and show by construction that for any rational
braided semisimple tensor category ¢ ’such a functor F to the category of
finite dimensional vector spaces exists.

If this functor was a tensor functor in the usual sense then Majid's
reconstruction theorem [11, 12] would be applicable and would assert the
existence of an associated quasi Hopf algebra. It is fairly easy to show [5,
16] that such tensor functors don’t exist for large classes of rational
semisimple braided tensor categories.

However, Majid’s lines of thought can be applied even to the case of a
weak quasi tensor functor F: ¢'— Vec. This generalized reconstruction
theorem (Section 3) shows that the set Nat(F, F) of natural transforma-
tions from F to itself can be equipped with the structure of a weak quasi
Hopf algebra H = H( , F) such that F factors over Rep(H), i.e., there is
a tensor functor G: = Rep(H) such that F = Vo G where V: Rep(H)
— Vec is the forgetful functor which assigns to any representation its
underlying vector space.

Combining this reconstruction theorem with the construction of weak
quasi tensor functors we conclude that every rational semisimple rigid
braided tensor category is the representation category of some weak quasi
Hopf algebra.

2. BRAIDED TENSOR CATEGORIES

2.1. Definitions

The objects of a category ¢ are denoted by X € Obj( £), the morphisms

between X,Y € Obj( ©) with Mor(X,Y). We use the shorthand End(X)
= Mor(X, X). The identity functor of a category well be denoted by Id
and the set of natural transformations between two functors by Nat(F, G).



A category ('is called monoidal if there is a functor ®: X C'— C°
together with a functorial isomorphism ®y , ,: X ® (Y ® Z) > (X ® Y)
® Z satisfying the pentagon identity ®P = (® @ 1)P(1 ® ®) and an iden-
tity object 1 € Ojb( ©), such that ry: X -1 ® X and [,: X - X ® 1 are
equivalences of categories compatible with ®: ®, , , olyoy =1y ® idy.
It is called strict if 1@ X=X®1=X, (X®Y)®Z=X(Y®Z),
® = id, r = [ = id. Thanks to MacLane’s coherence theorem all equiva-
lence classes of monoidal categories include strict ones. A monoidal
category is called a braided tensor category if there is a functorial isomor-
phism ¥y ,: X® Y > Y ® XX,Y € Obj( ) satisfying the two hexagon
identities PV¥® = (¥ @ DP(1 ® ¥) and ¢'Vd ! = (1 @ ¥)O(¥ ® 1)
aswellas ®(r ® 1) = (1 ® VX1 ® r)and [, = YV or,. In a tensor category
or (in contrast to braided tensor categories) symmetric tensor category the
identity Wy WV, y = idy4y should hold.

We assume all categories to be abelian (and all functors to be additive)
with direct sum @ and zero element 0. Then End(1) is a ring and we
assume it in addition to be a field which we denote by K.

An object X € Obj( &) is called indecomposable if End(X) = span
id, ® // where // consists only of nilpotent elements, and X is called
irreducible, if //= 0. The set of irreducible objects is denoted by Obj,,,. In
a fully reducible category all X € Obj( £) are isomorphic to sums of
irreducible objects.

Let V < Obj( ©) denote a set containing one object out of every equiva-
lence class of irreducible objects.

In a quasi rational category every object is isomorphic to a finite sum of
indecomposable objects. A rational category is a quasi rational category
with only finitely many equivalence classes of indecomposable objects. C'is
called irredundant, if X =Y = X =Y and it is called locally finite if all
Mor(X,Y) are finite dimensional vector spaces. (Note that quasi rational
categories are locally finite.) A locally finite abelian braided tensor cate-
gory is called semisimple if all End(X) are semisimple algebras. By
Wedderburn’s theorem we get for locally finite categories the equivalence
of semisimplicity and full reducibility.

In a C*-category C all Mor(X,Y) are Banach spaces with an anti-linear
involution : Mor(X,Y) — Mor(Y, X) such that (fg)' =g'f", lIf'fll =
| f I1? (this implies that End(X) is a unital C*-algebra) and ¥’ = ¥~!
o' =L,

A functor F: & — & is called faithful if F: Mor(X,Y) —
Mor(F(X), F(Y)) is injective for all X,Y  Obj( ).

A tensor category is rigid if it has dual objects, i.e., there is a map of
objects X — X* and morphisms ev, € Mor(X* ® X, 1) (evaluation) and



coevy, € Mor(1, X ® X*) (coevaluation) with the properties

(id ® evy)o(coevy ® id) = idy, (evy ® id) o (id ® coevy ) = id ..

(1)

The object mapping * extends naturally to an involutive (in the sense that
% o ¥ is equivalent to Id) contravariant functor by the definition f* = (evy
® id)e(id ® f ® id)(id ® coev,) € Mor(Y*, X*) for f € Mor(X,Y).
Evaluation and coevaluation are unique up to a unique isomorphism. It
is always assumed that coev is an isometry if C'is a C*-category. The

duality map * induces an involution X — X of V such that X* = X for
all X € V.

A ribbon category is a braided category with the additional structure of a
twist, i.e., natural isomorphisms o € Nat(Id, Id) obeying o (X)* = o(X*)
and ¥y yoWy,c0(X®Y)=0(X)® o(Y). Note that these axioms
imply (0(X)? ® id)ocoevy = Wy. y oWy y.ocoevy which shows that in
symmetric tensor categories one has o(X)* = id,.

Every C* category carries a natural ribbon structure: Define the statisti-
cal parameter by M(X) = (idy ® coevy)e(idy ® Wi y.)o(coevy ® idy) €
End(X) and write its polar decomposition as A(X) = o(X)™! o P(X)
where the positive part is P(X) and the unitary part o(X)™' yields the
desired ribbon structure.

A ribbon structure allows the definition of a trace on End(X) by
try(f) = evy o(id ® (fo o (X)™'))o Wy y.ocoevy and a dimension d(X)
= tr(id, ). One has tr(feog) = tr(ge f), tr(f) = tr(f*), tr(f® g) =
tr( Htr(g), tr(f @ g) = tr(f) + tr(g), tr(f7) = tr(f)" and hence d(X & Y)
=d(X) +dY), dX®Y)=dX)d(Y), d(X*) =d(X). Related to the
trace is the conditional expectation E: End(A ® X) — End(A), f — (id,
® (evy o WUy y))o(f ® idy.)e(id, ® o(X)™' ® idy.)o(id ® coevy). Easy
calculations show that it obeys E,((g ® id)e ho(f ® id)) = g E,(h)- f,
Ex(f®idy) = d(X)f, Ex(f® ¥y ) =f® o(X)~'. On End(X®") the
iterated expectation E} coincides with tr.

In the application we have in mind, the categories are representation
categories of algebras.

For an algebra A4 we let Rep(A) denote its representation category. The
objects are the representations of A (it is common to consider only a
special class of representations) and the morphisms are the intertwiners.

Rep(A) is a braided tensor category if A4 permits products of represen-
tations which are symmetric up to isomorphisms.



Examples of monoidal categories are superselection categories in alge-
braic quantum field theory, the Moore—Seiberg categories in conformal
quantum field theory, and the representation categories of quantum groups.
For any quasi triangular Hopf algebra H the class of its representations is
a braided tensor category with braid isomorphism between two representa-
tions g,, 0, naturally given by

W, 001 ® 1) = T°(0, ® 0,)(R)(v, ®1y). (2)

Here 7 is the flip operator a ® b — b ® a and R is the usual R-matrix,
ie., 7oA(a) = RA(@)R'.

The subcategory Rep(H )’ of finite dimensional representations is rigid
thanks to the conjugate representation. Usually we will consider only this
subcategory and hence omit the superscript fd.

2.2. Description of Semisimple Categories via Polynomial Equations

Let (' denote a semisimple braided tensor category. For each triple
X,Y,Z €V let N} denote the dimension of Mor(X ® Y, Z) and choose

a basis ¢(e) € Mo(X ® Y,Z) (e = (%) is a multi-index with i€
1,..., N{ ). The composite morphisms ¢'( £)e ¥, , € Mor(Y ® X, Z)

and ¢'(R)e(idy ® ¢/(1)) € Mor(X ® (Y ® Z)) can then be expanded
in the basis via matrices

d(e)o W = ;Qe,f(b(f) (3)

¢(62)(ld ® (l)(el)) - %Fel,ez;f,e(b(e)(d)(f) ® ld) (4)

It follows straightforwardly from the axioms of braided tensor categories
that these matrices satisfy the Moore—Seiberg polynomial equations [15].

Two semisimple rigid braided tensor categories are equivalent if they
are equivalent as ordinary categories and they share the same structural
data Q, F.

Moore and Seiberg have shown [15] that in the opposite direction every
solution to their equations yields such a category. Their construction is
essentially the following: Take a set of irreducible objects X;, i € /and
set Mor(X;, X;) := K§; ;idy . Tensor products are formally introduced via
X, ® X, = &, Vll ® X, “where the V!, are N/, dimensional vector spaces
of morphlsms Mor(X ® X;, X)). The braid 1somorphlsm operates on this
tensor product via the operatlon of () on Vl



2.3. Weak Tensor Functors

A functor F: £ — (£, between two monoidal categories is called
monoidal (resp. weak monoidal) if there is a functorial isomorphism (resp.
epimorphism) ¢y

cxy: F(X)® F(Y) >F(X®Y) (5)

such that F becomes compatible with the associator and the unit:

1®c

F(X)® (FY)® F(Z) —S F(X)® F(Y® Z) — F(X ® (Y ® 2))
b, F(d)l)l

c®1

(F(X)®FY)®F(Z) =S F(X®Y)® F(Z) — F(X®Y) ® Z) ©
6

Llrobay = ¢ e F(l): F(X) = F(1) & F(X) =18, F(X). (7)

A functor between two (braided) tensor categories is called symmetric if it
is compatible with the braid isomorphism, i.e., for all X,Y € Obj( ©) the
diagram

F(X)® F(Y) — F(X®Y) (8)

lxpz lm'l)

F(Y)® F(X) — F(Y ® X)

is commutative. A monoidal functor between braided tensor categories is
called a tensor functor if

F(W(X®Y))=F(X®Y). (9)

(This property follows in all cases with exception of the ultra weak case
from the other axioms. One could therefore formulate most of the present
paper using only the term monoidal functor.)

If (6) is not required F is called a quasi tensor functor and if cy , is only
an epimorphism (but with ¢y, and ¢, y remaining isomorphisms) with
right inverse cy'y then F is only a weak quasi tensor functor. Finally F is
called an ultra weak quasi tensor functor if (7) and c, y,cy , are not
postulated to be isomorphisms but ¢, y = ¢y ;o ¥ .

If & and &, are rigid then we demand in addition the existence of
functorial isomorphisms d,: F(X)* — F(X*).

If both categories are C* then F is called isometric if F(f') = F(f)'.
Consistency with the tensor product requires then ¢~' to be an isometry
(This is implied by the following calculation: ¢ o(F(fT) ® F(g")oc™! =
(fTegh=F(feg)=F(feg) =(c(F(f)® F(g)ec ) =c"o
F(f") ® F(g")ech).

, and &, are equivalent as braided tensor categories if they are equiva-
lent as usual categories with symmetric tensor functors.



2.4. Construction of (Weak) Quasi Tensor Functors

DEFINITION 1. A function defined on the irreducible objects of a
semisimple, rigid braided tensor category D: Obj;, (&) = N, which is
constant on equivalence classes is called a weak dimension function, if

D(1) =1, D(X) =D(X™"),

D(X)D(Y) = Y, D(Z)dim(Mor(X ® Y, Z)). (10)
zeV

D is called a dimension function if equality holds.
Dimension functions allow the construction of monoidal functors:

PROPOSITION 1. Let (' be a quasi rational semisimple, rigid, braided
tensor category and D: Obj( &) = N a (weak) dimension function. Then
there is a faithful (weak) quasi tensor functor F: C— Vec into the category
of finite dimensional vector spaces.

The following lemma will be used in the proof of the proposition.

LEMMA 2. Let X € Obj( &) be an irreducible object in a semisimple
category. Then for all Y € Obj( ) we have Mor(Y, X) = Mor(X, Y)*Vec,

Proof. Let g € Mor(Y, X) and define A, € Mor(X,Y)*V*¢ by A,(f)
= go f e Mor(X, X). This pairing is non-degenerate: Assume g # 0.
Then, by semisimplicity, Y= X ® Y,. But this implies existence of a
f e Mor(Y, X) such that go f=1id # 0. |

Proof. For X € V let F(X) := K™ and for arbitrary objects Y €
Obj( ©) this is extended via F(Y) := &, ., Mor(X,Y) ® F(X). F has to
map morphisms f € Mor(Y},Y;) to morphisms F(f) € Mor(F(Y,), F(Y,)).
Because of linearity, F(f) needs only to be defined on the summands of
type Mor(X,Y;) ® F(X). Let F(fX(g ® x) =fog®x,x € F(X)for g
Mor( X, Y)).

Assume f, f, € Mor(Y},Y,), F(f,) = F(f,). By the definition of F this
implies that for all X € V and for all g € Mor(X,Y;) we have f,og =
f,°og. Since ('is assumed to be semisimple we have an isomorphism
b € Mor(X @ ®X,,Y) with X; €V. From this we get p, €
Mor(X; & - & X, X) q;, € Mor(X; ,Y}) such that ¢ = ¥,q; < p; . Now
¢ is epl and we have f1 q;, = f,°4q; by the above remark. Hence
fied =f,°¢ and by this f, = f2 F is faithful.

F satisfies F(Y*) = F(Y)*:

F(Y*) = XGEVMor(X,Y*) ® F(X) = XGEVMor(X*,Y*) ® F(X™)



[N

@ Mor(X,Y)* ® F(X*)
XevV

@ Mor(X,Y)*® F(X)* = F(Y)*.
XeV

[N

The lemma is used in the third step. The fourth step uses the fact that
F(X) and F(X*) are vector spaces of equal dimension.
For every pair of irreducible objects X, X, € V we choose an arbitrary
(epi/iso)morphism
Cx, x,s F(X)) ® F(X,) - F(X, ® X,)
= @ Mor(X, X, ®X,) ® F(X).

XeV

c is defined as an extension of C:
Cy,v, - F(Y)) ® F(Y,) > F(Y,®Y,)

Cyy, (XEBVMor(Xl,Yl) ®F(X1)) ® (XEBVMor(XZ,Yz) ® F(X,)

— @ Mor(X,Y,®Y,) ® F(X)
Xev

cy.y, = @ (I'®id)o(id®id® Cy y )o7y,
PP X Xx,ev hee ’

I': Mor(X,,Y;) ® Mor(X,,Y,) ® Mor( X, X; ® X,)
— Mor( X,Y, ® Y,)

I'(fi®of,®g) =(f19f;)°8.

¢ behaves as a functorial, ie., for f, € Mor(Y,,Y,), i = 1,2, we have
F(f) ® fy)ocy vy, = ¢y v, °(F(f)) ® F(f,)). To see this we introduce v; €
F(Y),i=1,2,as

v, = @ g“ ex, x40 e F(A;), 8" € Mor(4,,Y)).
A;eV



Using the definitions and the shorthand C, ,(x“'V ® x(1?) =
®B€VqA A2®xA 4, We get

CYI,YZO(F(fl) ® F(f,))(v, ®vy)

= © (T'eid)fieg"Wef,-geC, ,(xex)
Ay, A,EV o

= ® (ficg""®f,08)eqh 4, ®x] 4
Ay, A, BEV Ao ’

_ A A B B
_F(f1®fz)°( D (g ®g 2))°QA1,A2®XA1,A2
A,, A, BEV

=F(f ®f2)°CY1,Y2(U1 ® ;). 1

Remark 1. The functorial isomorphisms dy: F(Y)* — F(Y*) can be
displayed explicitly. First note that

F(Y*) = Xg Mor(X,Y*) ® F(X) = Xg Mor( X,Y*) ® F(X).

We calculate d;' operating on one summand u* ® v € Mor(X,Y*) ®
F(X) c F(Y*). We have to choose (actually z, and d, are fixed by
demanding F(evy)e Cyey o(dy ® id) = evyy,) isomorphisms z, = 2% €
Mor(X*, X) and d: F(X)* - F(X) for all X € V. Now we map

W ® U > uFoz, @ v = (Z(ou)* ®ve @ Mor(Y, X)*“ ® F(X).

With the techniques of the preceding lemma this is A; . ® v E
Mor(X, Y)*Ve. Finally applying id ® d, " vyields Az ou ® d X ) e
@ Mor(X,Y)®Ve @ F(X)* = F(Y)*,

Using this description of dy one can show dy,  F(f)* = F(f*)od, for
f e Mor(W,Y).

Remark 2. With arbitrary choices of the C morphisms in the proof of
the theorem the constructed functor will in general not be compatible with
the associativity constraints in the sense of (6). For a strict (i.e., ® = id)
category (6) reads

Cxev,z O(CX,Y ® id) = Cx vyey o(id ® CY,Z)'

This equation can be interpreted as a non-abelian two-cocycle condition.
We will take up this point later on.

Proposition 1 reduces the problem of finding a functor to finding a
dimension function. This is possible:



PROPOSITION 3. Orn rational, semisimple, rigid, braided tensor categories
there exist always weak dimension functions,

D(1) =1, D(X)=dm @ Mor(Y®X,Z)= YN, (1)
ze i

Other possibilities are D(1) == 1, D(X) == max, ;. LN/, and in the
algebraic formulation of QFT [1], D( p) = dim(span{( p; p, p))| p;, p; € V).

Proof.

DOX)D(Y) = LN ZNES) = X NiLNES
S, r S,R s,r, S, R
> ) NJI((,NNIZ/V{K= 2 N)?YNKM,N=D(X®Y)- i

K, N, M K, N M

2.5. Weak and Ultra Weak Quasi Hopf Algebras

The structure of most rational semisimple tensor categories does not
allow non-weak dimension functions [5, 16]. This results from the fact that
ordinary quantum groups at roots of unity have indecomposable represen-
tations of zero (quantum) dimension d. They arise in the tensor product
decomposition of simple representations and spoil many of the intended
applications, e.g., the interpretation of ordinary quantum groups as gauge
symmetry algebras is impossible.

To discard the indecomposable representations one has to allow that the
coproduct of unity, A(1), is not 1 ® 1, but a projector on the fully
decomposable part. This is the idea of Mack and Schomerus encoded in
the definition of weak quasi Hopf algebras as modifications of Drinfeld’s
quasi Hopf algebras. As those they are unital algebras H together with a
comultiplication A: H - H ® H, counit e: H — K, and antipode §: H
— H. The coproduct is commutative up to conjugation by R € H ® H and
associative up to conjugation by ¢ € H ® H ® H, that is, for all h € H
one has ¢((id ® A)o A(h)) = (A ® id)> A(h))o.

7' = (id ® A)A(1) (12)
$¢ = (A @ id)A(1) (13)
RR™'=A'(1), A =r10A (14)
RIR = A(1) (15)

(deid®e€e)(¢p) =(id® e®id)(¢d) = (e ® id ® id)(¢p) = A(1).
(16)



For the sake of completeness we also recall Drinfeld’s form of the
antipode axiom for quasi Hopf algebras. It states the existence of two
invertible elements «, B € H such that the following relations hold:

e(a)a= ). S(a)ad® VaeH (17)

e(a)B= 2 a"BS(a¥) VaeH (18)

with
A(a) = Y. alV ® a?.
i

Is there some kind of algebra generalizing the ((weak) quasi) quantum
groups and observable algebras of algebraic quantum field theory? We
believe that ultra weak quasi quantum groups as introduced in [2] may
provide an answer.

DEFINITION 2 (Ultra Weak Quasi Hopf Algebra). Let A denote an
unital algebra. An A ultra weak quasi Hopf algebra H is an A-bialgebra H
(left and right multiplication are denoted by u;: A ® H > H, p,: H®
A — H) and algebra morphisms n: A - H, e: H—> A such that all
axioms of a weak quasi Hopf algebra are fulfilled with the exception of
unit /counit properties which are replaced by

w(e®id)A = u,(id ® €)A =id,, m(id ® ) = u,,
m(n ® id) = . (19)

3. RECONSTRUCTION THEOREMS

Historically the first reconstruction theorem was the famous
Tannaka—Krein theorem: Given a symmetric tensor category and a faithful
tensor functor to Vec there is a group with the given category as a
representation category. Majid proved reconstruction theorems for quasi-
triangular Hopf algebras and quasi Hopf algebras. A reconstruction theo-
rem for weak quasi Hopf algebras was suggested by Kerler without a proof.

The forgetful functor V: Rep(H) — Vec assigns to each representation
the underlying vector space.

We start in Lemma 4 by reviewing Majid’s reconstruction theorem for
quasi Hopf algebras. The starting point for his construction is the set



Nat(F, F) of natural transformations of F.
H=H(C F) == Nat(F,F)
= {h: Obj( €) = Endy,.lhy € End(F(X)),
F(f)ohy="hy°F(f) VX,Y € Obj( €) Vf € Mor(X,Y)}.
LEMMA 4. H is a quasitriangular (quasi) Hopf algebra if F is a (quasi)
tensor functor.

Proof. H is a vector space by pointwise addition. The multiplication is
also defined pointwise: (hg)y = hy° gy X € Obj( O), h, g € H. The unit
is X = 1y = idy,. (The ultra weak case is handled in Lemma 15.)

In Vec the following relation holds: End(F(X)) ® End(F(Y)) =
End(F(X) ® F(Y)) so that H ® H is given by functions in two variables
X,Y (i.e., we understand the tensor product algebraically), which map to
End(F(X) ® F(Y)). The coproduct A: H — H ® H is defined by

A(Ch)x .y = c)_(,lYth®Y°cX,Y' (20)
This is compatible with multiplication:
(ACh)A(8))xy =A(M)x vy A(g) xy
= C)_(,IY °hygy°Cxy?® C)_(,IY °8xsy °Cx,y
= C)_(,IY °hygy °&8xey °Cx.y = A(Chg) x v
The counit is e: H — K, e(h) == hy,
((id ® E)A(h))x =A(h)x, = CA_’,ll ohyg °Cx 1= hyg) = hy.
The associator ¢ € H ® H ® H is given by

bxy. z = (C)_(,ly ® id)oc)_(gay,z ° F((DX,Y,Z) °Cx vez °(id ® CY,Z)' (21)

For tensor functors this is trivial because of (6). For quasi tensor functors
it is invertible,

(¢(1® A)A(h)) x v 2
= dxyv.z °(CX,Y®Z °(id ® CY,Z))_I ° hX@(Y@Z) °Cx vez °(id ® CY,Z)
= (C)_(,IY ® id)O C)_(}@Y,Z © F(CI)X,Y,Z) ° hX@(Y@Z) °Cx vez °(id ® CY,Z)
((A® D)A(R)P)xy 2
= (C)_(,IY ® id) ° C)_(}ay,z ° h(X®Y)®Z °Cxsy,z O(CX,Y ® id) e bx v z

= (C)_(,IY ® l)c)_(}@Y,Zh(X®Y)®ZF((I)X,Y,Z)CX,Y®Z(1 ®cCy z)-



Both expressions are the same because of naturality: “F(®)h = hF(P)”.
This shows quasi coassociativity. For tensor functors this reduces to
coassociativity and for weak quasi tensor functors ¢ remains quasi invert-
ible.

For the proof of (id ® id ® A)¢) - (A ® id ® id)(¢) = (1 ® $)id ® A
® id)(p)(¢p ® 1), we refer to Majid’s original work [12].

F is a functor between rigid braided tensor categories. There are
isomorphisms d,: F(X)* = F(X*) and d%: F(X*)* = F(X). They are
used in the definition of the antipode:

(Sh)x = df o (hy:)*edy'. (22)

The proof of the antipode identity will be given in Lemma 12.
H is quasitriangular by means of R € H ® H:

— Ay Vec—1 -1
Ry y =Y ranocrx e F(Wyy)ecyy. (23)
R relates the coproduct and the opposite coproduct:

-1
(RA(M)R™ )y y
_ Ay Vec—1 —1 —1
= \PF(e)?),F(Y) °Cy x ° F(\PX,Y) °Cxy°Cxy°hyey°Cxy
Xcgly o F(Wy y) oy yo WY
XY XY Y. x © YF(X), F(Y)
_ Ay Vec—1 -1
= \PF(e)?),F(Y)OCY,X °F(\I’X,Y) °Nyoy
o F(Wy ) ocy yo WY
XY Y, X ° YF(X), F(Y)
— \I,Vec—l oc—l oh ocC ° \If\/ec — A/(h)
F(X),FY)°Cy, x °Nyex °Cy x ° ¥YF(x), F(Y) X,Y-

For the proof of the other two quasitriangularity equations we refer once
more to [11, 2]. |

LEMMA 5. If F is a weak quasi tensor functor then H is a weak quasi Hopf
algebra.

Proof. The additional axioms (the statements already proven remain
true!) are easily verified using cc™' =1, ¢~ 'c # 1: For (16) we calculate

(deid®€)(d)xy
= (C)_(,lY ® id)"c)_(;w,l oF(®Pyy  )ocyyo(id®cy )

=cxly cxy = A x v



And for (15),

(R7'R)x.y

R | -1 Vec Vec—1 -1
_CX,YOF(\PX,Y)OCY,XO\P o ¥ ocy xo F(Wyy)ecyy
_ -1 _

=cxy°Ccxy=A1)xy.

Similarly one gets (13):

bx.v.z° ¢§,1Y,Z
= (C)_(,IY ® id)" C)_(éy,z cF(®yy z)oCxyezo(id ®cy 7)
X(id ® C;,lz)"c)_(,lmz OF((I)X,Y,Z)_I °Cxay,z °(Cx,y ®id)
= (C)_(,IY ® id) °Cxey,z°Cxay,z°(Cx y ® id)
= (cxly ® id)A(1) xgy,z °(cx.y ® id)

= ((A®id)A(1)) x,v.z-
Equation (12) is proven in the same way, just as (14). [

LEMMA 6. The vector spaces F(X) are representation spaces of H. The
functor G: C— Rep(H) is a full tensor functor.

Proof. The representations are o,(h).v == h,(v) h € H, v € F(X).
This induces a functor G: ¢ — Rep(H). Morphisms f € Mor(X,Y) are
mapped to intertwiners G(f) = F(f). G(f)eoy(h) = F(f)eh, =
hy o F(f) = 0y(h)° G(f). G is a tensor functor:

(G(X) ® G(Y))(h) = (ox ® 0y)(A(h)) = A(h)xy

-1 -1
=Cxy chygy °Cxy~— CX,YOG(X® Y)OCX,Y'

Here the cy , are as maps of vector spaces the same as the cy y of the
functor F, but because the tensor product on the left hand side of this
equation is in the representation category of H they are restricted to the
representation subspace and are therefore isomorphisms. The definitions
of R and ¢ are precisely the statements that G is compatible with
associativity and braid isomorphisms.

G is full, because every morphism 7 in Rep(H) (Toy = 04T) is a
constraint that can only exist if it is of the form T = F(f). |}

LEMMA 7. Let X, Y € Obj( &) and h € H. If X and Y are isomorphic
then h, is determined uniquely by h,. If C'is semisimple then h € H is
determined by its values on V where it may take arbitrary values.



Proof. 1If ¢ € Mor(X,Y) is iso then the naturality condition can be
expressed as hy = F(¢p)oh, o F(p~1).

Let /& be defined on V. Since we assume ¢ to be semisimple, every
object is isomorphic to a direct sum of objects in V. By the above remark #
is therefore uniquely defined on all objects if it is uniquely defined on
direct sums. Consider &,_, X;, X; € V. We have morphisms p; €
Mor( &, X;, X;) and q; € Mor(X;, ©, X;) such that idg x, = X,q; ° p;. Nat-
urality implies F(p;)ehgy =h x,°F (p;) and hence we have

heaX,. =F(quopj)°heaxi
J
= ZF(Qj)OF(pj)OhGBXi
J

= ZF(Qj)OhXjOF(pj)'

On different objects in V the function 4 may take arbitrary values because
there are no morphisms (and hence no naturality constraints) between
inequivalent irreducible objects in an abelian category. |

LEMMA 8. G is surjective in the sense that it hits every class of irreps of H.

Proof. We use Lemma 7. It shows that H is a direct sum of full matrix
algebras M, ([€). Each of them has only one irrep. And so H has no other
irreducible representations, because all representations have to reflect
commutativity of the summands and must therefore annihilate all sum-
mands but one. Therefore H has no more irreducible representation
classes than ¢ has irreducible object classes. |

LEMMA 9. Faithfulness of F implies that inequivalent objects yield in-
equivalent representations.

Proof. Assume X,Y to be inequivalent objects which are mapped to
equivalent representations, i.e., F(X) = F(Y),Vh € H, hy, = ¢ohy o ¢!
with an isomorphism ¢: F(X) — F(Y) = F(X). So the value of & on X
is determined uniquely by its value on Y. This can be done by naturality
only if 3f € Mor(X,Y)3g € Mor(Y, X) such that F(f) = ¢, F(g) = ¢~ .
But then (by faithfulness) f and g are iso (idj ., = F(f)F(g) = F(fg);
because of faithfulness only id, is mapped to idyy, and hence f = g
contracting our hypothesis. [

LEMMA 10.  F(¢'(£)) e ¢ form a basis of morphisms in Mor(F(X) ®
F(Y), F(Z2)) if F is faithful.



Proof. They are linearly independent: Assume 0 = X« F(¢'(£))° c.

By surjectivity of ¢ and linearity of F this implies 0 = F (¥, a;¢'( %)) and
faithfulness of F yields a contradiction. Further they span the whole space
since G is full. |

LEMMA 11. If F is faithful then  and Rep(H) have the same structural
constants and are therefore equivalent as braided tensor categories.

Proof. Describe C’as in Subsection 2.2. According to this presentation
we have for X,Y,Z €V matrices Q that satisfy ¢'(%)eW¥, , =
X,Q, ;¢/(%). We apply F, multiply ¢ from the right, introduce 1 = cc™',
and use linearity of F to get F(¢'(F))ecoc o F(Wy y)oc =

X,Q,; F(¢'(4))oc. Taking Lemma 10 into account and observing that

¢l o F(W)oc is (by (2) and (23)) nothing than WRePH) this shows that £
and Rep(H ) have the same structure constants. |

LEMMA 12. Rep(H) is rigid if F is faithful. The antipode (22) satisfies
7).

Proof. Rep(H) is rigid. The dual representation of o, is given by
(ox)*(h) == (04 (S(h)))* acting on F(X)*. Note that * on the left hand
side of this definition is the duality in Rep while on the right hand side it is
the duality in Vec.

Evaluation and coevaluation are given by

eVQI}ep = F(evy)ocy« yo(dy ® id)

coev,¥? = (id ® dx')o cx'y- o F(coevy).

We verify the intertwining property for ev™®? (the proofs for the coeval-
uation are identical up to duality symmetry and are not displayed):

evx" o (0% @ ox)(h)
= F(evy)ocy« yo(dy ®id)
o((d5 ®id)e(cx! x ohygy oy x)*® e (dy " @ id))*eH
= F(evy)ocys yo(dy ®id)o(dy' ® id)ocys x
°hy-gx o Cyxx x °(dy ®id)
= F(evy)ehyigyocxs x °(dy ®id)

= hyo F(evy)ecy- xo(dy ® id) = 0,(/1) oev,}P.



Because Rep is in general not strict (even if is strict (® “ = id) which we
will assume) we have to insert an associator into the fundamental ev /coev
property (1):

(id ® evyyP) o dRP~! o (coey P ® id)
= (id ® ev,¥*) e (0x ® 0% ® 0x)(¢7")e(coey,¥P ® id)
= (id ® F(evy))e(id ® cy- y)o(id ® dy ® id)
o(id ® dy' ® id)e(id ® cxt y)eocklxiox o F(P)
°Cxox+, x °(Cx x+ ® id)
o(id ® dy ® id) o (id ® dy' ® id)e(cx y+ ® id)
o(F(coevy) ® id)

= (id ® F(evy))e(cx x-ax)° Cxox+ x ° (F(coevy) ® id)

=cy' o(id ® F(evy))e(F(coevy) ® id)oc, y = id.

The antipode identities involve elements «, 8 € H( C, F),

ay = (id ® ey¥P) o (coev’y, ® id): F(X) — F(X) (24)

By = (id ® ev{5)) e (coev 5P ® id): F(X) —» F(X).  (25)

This gives well defined elements in H: F(f)o ay = ay o F(f) holds be-
cause d, ¢ are functorial.

Applying ev'** ® id yields ev,¥? = ev'* o (id ® ay). Obviously « = B~'

if Rep(H) is strict. The proof of the antipode identity is given in the
following calculation.

(e(h)a)x
= (id ® h;)o(id ® F(evy))e(id ® ¢y« x)o(id ® dy ® id)
o (coevy(y, ® id)
= (id ® F(evy))o(id ® hy.gx)o(id ® cy+ y)
® (d% ® id ® id) ° (coev¥®® ® id)

= (dy ®id ® id) o (id ® (F(evy)ecy« x))



o(id ® (dy °dy') ® id)
o). (id ® AV ® hP) o (coev'*® ® id)

1

= Y diohD*ody ! *o(id ® F(evy)ocy. x)o(id ® dy ® id)
> (coev¥*® ® h{¥)

- (25(h§1>)ah52>)

i X

The second antipode axiom (18) involving B is established similarly. [

LEMMA 13. If F is isometric then H is involutive and the representations
are unitary: o(h") = o(h)".

Proof. The involution is given by (4"), := (h,)". Applying Fot = to F
to the naturality condition implies that H is closed under this operation.
Multiplicativity carries over from vector space endomorphisms. A(h") =
A(h)" follows easily from the fact that ¢ = ¢ ' AW, =
(cxly e hygy © CX,Y)T =cyly© hyoy © Cx,vy-

The proof of the compatibility of the involution T and the antipode S
uses the fact that in the category of finite dimensional Hilbert spaces the
duality map is given by V* = 1V and ev/coev is given by the scalar product.
Using this one calculates

i f N
(8(7) )y = (S(h)x) = (di o hk-odi")
=diMontlody =dsonlf odi™ = S(h'). 1

LEMMA 14. If C is a ribbon category then H is a ribbon Hopf algebra in
the sense of [1T].

Proof. The ribbon element v € H is defined by vy == F(o(X)). It is
central because o is functorial. Further one calculates e(v) = F(o(1)) = 1
and

S(V)x = i o (vg-) o dy " =di o F(o (X¥)) e di !
= d} o F(o (X)) edi ' = F(o(X)) = vy



A(U)X,Y = C)_(’ly °F((T(X® Y)) OCX,Y
= C)_(,IY OF(\P);,IY)OCY,X oc;,lXoF(\P;,lX)OCX,Y °C)_(,1Y

cF(0(X) ®a(Y))ocyy
= ((Ry1R) ")y y o(F(0 (X)) ® F(a(Y)))

= (R, R) (v 8v)),, |

LEMMA 15. If F is an ultra weak quasi tensor functor then H is an
End(F(1)) ultra weak quasi Hopf algebra.

Proof. The bimodule actions are defined to be
m(a®h)x=c, yo(a®h)ocy,
p,(h ®a)y=cy o(h®a)ocy',, a € End(F(1)). (26)

The definition of € doesn’t have to be changed but the unit is now defined
more generally to be

m(a) = w(a®1)=p(l®a). (27)

The counit property is fulfilled:

(m(e®id)A(h))y =c; xocrx hexociyocrx=hy. |

Collecting results together we have:

THEOREM 16 (Generalized Majid’s Reconstruction Theorem). Let
be a rigid braided tensor category and F:. C'— Vec a weak quasi tensor
functor. Then the set H = Nat(F, F) carries the structure of a weak quasi
Hopf algebra and there is a functor G: C— Rep(H) such that &%
Rep(H) % Vec composes to F. G maps inequivalent objects to inequivalent
representations if F is faithful. G is full. G is faithful iff F is faithful. Hence in
the case of a faithful functor and a semisimple category, C and Rep(H) are
equivalent braided tensor categories. Rep(H ) is rigid if F is faithful and it is
C* if C'is so. The structure matrices (see subsection 2.2) of ¢ and Rep(H)
coincide. A ribbon structure on ( induces a ribbon structure on H [17]. The
structure of H is determined by F:

F is a tensor functor
= H is a quasitriangular Hopf algebra
F is a quasi tensor functor

= H is a quasitriangular quasi Hopf algebra



F is a weak quasi tensor functor
= H is a quasitr. weak quasi Hopf algebra
F is an ultra weak quasi tensor functor

= H is a quasitr. ultra weak quasi Hopf algebra.

Combining this with the construction of weak quasi tensor functors we
conclude:

COROLLARY 17.  Every rational semisimple rigid braided tensor category is
the representation category of some weak quasi Hopf algebra.

3.1. Questions of Non-Uniqueness

The reconstruction of H from a given category ¢ presented in this
paper is not unique. It can be checked that in some typical examples there
is an infinite number of weak dimension functions. But there is even more
freedom because of the choice of epimorphisms C in the proof of
Proposition 1.

Remark 3. Let F,F: C— Vec denote two faithful (weak) quasi tensor
functors constructed as in Proposition 1 by the same dimension function.
Then the reconstructed (weak) quasi Hopf algebras H and H are equal up
to twice equivalence (in the sense of Drinfeld).

Proof. F and F differ only by different choices of C. However, because
they share the same dimension function there is a family of isomorphisms
¢ such that ¢y y = @y yocyy. H and H are then equal as algebras.
Their coalgebra structure however differs,

~

X _ o~

A(h))(,y_C)(,Y"h)(®1/°CX,Y

C_l o -1 ocC oc_l oh ocC oc_1 o ocC
xvy°Pxyvy°Cxy°Cxy xoy °Cx v °Cxy°Pxy°Cxy
_ -1

= TX,Y OA(h)X,Y OTX,Y

_ -1

= (TA(R)T ™) x y-

Here we have inserted 1 = c¢c™' twice and introduced the twist element
T € H® H, defined by Ty y = cx'y ° ¥y ° ¢y y. (In the weak case T is
not invertible, but one has TT~! = T~'T = A(1).) Note that T really is an
element of H ® H because the dependence of Ty, on X,Y obeys the
naturality condition as is easily seen from the definition of F and c.



Of course the R element gets twisted alike:

5 _ ypVec—1 ~— 1 ~
Ryy= qu(%/C),F(X)OCY,X o F(Wyy)oCxy

— Vec—1 -1 -1
= Ypy) Fx)°Cy,x ° Py x ° F(qfx,y) °@xy°Cxy

_ Vec—1 -1 -1 Vec Vec—1 -1
= \I’F(Y),F(X) °Cy x °Py x°Cy x° \IFF(X),F(Y) © \I’F(X),F(Y) °Cy x
—1
° F(qIX,Y) °Cxy°Cxy°®Pxy°Cxy
Vec—1

\% —1
F(X),F(Y)° Ty x-° q’F(eAE),F(Y) °Ry yelyy

= (TZ,IRTI_é)

X, Y

A similar calculation shows that
CE = Tl_,;(A ® id)(T_l)¢(id ® A)(T)Tz,3- i

The results of the previous remark can be nicely interpreted in the
language of non-abelian cohomology [9] where the n-cochains are given by

the invertible elements in H®”" and the coboundary operator is defined to
be

S(m= 1 M) Ip Aly) " eHM yeHY

with A(y) =1® vy, A, (y)=y® 1 A(y) =>(d® QAR - ®
id)(y). Then the pentagon identity for ¢ € H®? is the statement that ¢ is
a 3-cocycle, 8(¢p) =1 ® 1 ® 1 ® 1. Returning to the previous remark we
see that ¢ can be made trivial iff ¢ is a coboundary ¢ = 8(7).
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