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Abstract. In this paper we establish that every quantum field theory satisfying some basic
axioms posseses a weak quasi Hopf algebra as gauge symmetry. We use a reconstruction
theorem to find this symmetry algebra and show how it is used to build a gauge covariant field
algebra. We investigate the question of why this generality is necessary. The non-uniqueness
of the reconstruction process is interpreted and a cohomological classification of possible global
gauge symmetries is given.

1. Introduction

The structure of quantum field theories depends sensitively on the dimension of spacetime.
In four and more dimensions only permutation group statistics (i.e. Bose and Fermi statistics)
are possible. In two spacetime dimensions, braid group statistics rule the exchange
of operators. Between this antipodes fall three-dimensional models which may have
permutation or braid group statistics depending on the localization of charges. ‘Dual’
to statistics is the notion of global gauge symmetry. It was shown by Doplicher and
Roberts [2] that all field theories with permutation group statistics possess a (uniquely
determined) compact global gauge group. Until now a comparable result for braid group
statistics has been lacking. Quantum groups (quasitriangular Hopf algebras) were supposed
to replace the compact gauge groups. However, it was soon realized that they have more
representations than needed to serve as a gauge algebra. In one way or another one had to
abandon these unphysical (indecomposable) representations and keep only the physical (fully
decomposable) ones. The majority of researchers decided to accomplish this truncation
simply by forgetting about them. While studying the Ising model Mack and Schomerus
[11] noticed that this leads to contradictions. They introduced weak quasi Hopf algebras in
[12] which are not plagued by unphysical representations (because truncation is build into
their coproduct) and showed how they can be used to build a gauge covariant field algebra
for the Ising model [13].

The situation remains, however, unsatisfactory because the Ising model is the only
example where the gauge algebra is explicitly known. A systematic procedure for
constructing the gauge algebra is needed. The gauge algebra (we use this general term
to take the place of the usual gauge group) and the observable algebra should commute
and centralize each other. Therefore, their representation theories have to match. Put more
mathematically, the representation categories of both algebras should be equivalent. For
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braided categories Majid has proven the following reconstruction theorem. Given a (quasi)
tensor functor from the category to the vector spaces this theorem reconstructs a (quasi) Hopf
algebra. In the physical relevant cases such functors cannot exist because of the need for
truncation. Kerler [9] has attempted to generalize the reconstruction theorem to the case of
weak quasitensor functors (to allow truncation). He supposes that the reconstructed algebra
would be a weak quasi Hopf algebra in the sense of Mack and Schomerus. However, [9]
does not contain a proof of this, nor does it contain a construction of the supposed weak
quasitensor functor. Indeed, it would appear that requirements for the functor assumed in
[9] are not the appropriate ones. In this paper we use our own generalized reconstruction
theory given in [8], where the construction of a weak quasitensor functor and a quasi Hopf
algebra is carried out. We recall these results in the preliminaries.

In contrast to the classical situation, we find that the global gauge algebra is not uniquely
determined. In this paper we construct a gauge covariant field algebra. Section 2 proves the
vertex SOS transformation as a relation of the structural data of two algebras with the same
representation category. The braiding relations of field operators rest on this transformation.
A first field algebra is introduced in section 3. The fields form an involutive algebra which
acts on a Hilbert space with positive definite scalar product. The construction is symmetric
between the gauge and the observable algebra. We prove braid and fusion relations in
this field algebra. The field operators obey braid relations with the R matrix of the gauge
algebra. This shows the deep interplay between symmetry and statistics.

We then go on in section 4 to modify this first version of the field algebra slightly such
that some assumptions made in the construction can be seen to be fulfilled.

The point of non-uniqueness of the solution (arising from the non-uniqueness of the
weak quasitensor functor) deserves attention and is commented in the last section.

1.1. Preliminaries

We use the language of braided tensor categories extensively. Our basic notation
follows that of Majid [20]. In particular, the functorial isomorphism of associativity is
denoted by 8X,Y,Z:X ⊗̃ (Y ⊗̃ Z)

∼−→ (X ⊗̃ Y ) ⊗̃ Z and the functorial braiding is denoted
9X,Y :X ⊗̃ Y

∼−→ Y ⊗̃ X X, Y ∈ Obj(C). Let ∇ ⊂ Obj(C) denote a set containing one
object out of every equivalence class of irreducible objects. We speak of a quasirational
category if every object is isomorphic to a finite sum of indecomposable objects and of
a rational category if, in addition, there are only finitely many equivalence classes of
indecomposable objects. In the application which we have in mind, the categories are
representation categories Rep(A) of algebras.

For each triple X, Y, Z ∈ ∇ let NZ
X,Y denote the dimension of Mor(X ⊗̃ Y, Z) and

choose a basis φ(e) ∈ Mor(X ⊗̃ Y, Z) (e =i
(

Z

XY

)
is a multi-index with i ∈ {1, . . . , NZ

X,Y }).
The composite morphisms φi

(
Z

XY
◦9Y,X ∈ Mor(Y ⊗̃ X, Z) and φi

(
R

XM

)◦
(
idX ⊗̃ φj

(
M

YZ

)) ∈
Mor(X ⊗̃ (Y ⊗̃ Z)) can then be expanded in the basis via matrices

φ(e) ◦ 9 =
∑
f

�e,f φ(f ) (1)

φ(e2)(id⊗ φ(e1)) =
∑
e,f

Fe1,e2;f,eφ(e)(φ(f ) ⊗ id). (2)

It follows straightforwardly from the axioms of braided tensor categories that these matrices
satisfy the Moore–Seiberg polynomial equations [22].



                              

Two semisimple rigid braided tensor categories are equivalent if they are equivalent as
ordinary categories and they share the same structural data �, F . Moore and Seiberg have
shown [22] that every solution to their equations yields such a category.

A functor F : C1 → C2 between two monoidal categories is called monoidal (respectively
weak monoidal) if there is a functorial isomorphism (respespectively epimorphism) cX,Y

cX,Y :F(X) ⊗̃ 2F(Y )
∼→ F(X ⊗̃ 1Y ) (3)

such that F becomes compatible with the associator and the unit. If compatibility with
associativity is not required F is called a quasitensor functor and if cX,Y is only an
epimorphism (but with cX,1 and c1,X remaining isomorphisms) with right inverse c−1

X,Y then
F is only a weak quasitensor functor. If C1 and C2 are rigid then we demand, in addition,
the existence of functorial isomorphisms dX:F(X)∗ → F(X∗). Two categories C1 and C2
are equivalent as braided tensor categories if they are equivalent as usual categories with
symmetric tensor functors.

A function defined on the irreducible objects of a semisimple, rigid braided tensor
category D: Objirr(C) → N0 which is constant on equivalence classes is called a weak
dimension function, if

D(1) = 1, D(X) = D(X∗), D(X)D(Y ) >
∑
Z∈∇

D(Z)dim(Mor(X ⊗̃ Y, Z)). (4)

D is called strong dimension function if equality holds.
We are now in the position to formulate the two main results of [8] that we use as a

starting point in the present paper.

Theorem 1. Let C be a quasirational semisimple, rigid, braided tensor category and
D: Obj(C) → N a weak dimension function. Then there is a faithful weak quasitensor
functor F : C → Vec into the category of finite-dimensional vector spaces.

Proposition 1 reduces the problem of finding a functor to finding a dimension function.
For rational, semisimple, rigid braided tensor categories there always exist weak dimension
functions:

D(1):= 1 D(X):= dim
⊕

Y,Z∈∇
Mor(Y ⊗̃ X, Z) =

∑
i,j

N
j

X,i . (5)

Usually many weak dimension functions exist on a given tensor category. We will give
further comments on this point later.

Theorem 2. (The generalized Majid’s reconstruction theorem.) Let C be a rigid braided
tensor category and F : C → Vec a weak quasitensor functor. Then the set H = Nat(F, F )

of natural transformations from F to F carries the structure of a weak quasi Hopf algebra
and there is a functor G: C → Rep(H) such that C G→ Rep(H)

V→ Vec (here V

denotes the forgetful functor) composes to F . G maps inequivalent objects to inequivalent
representations if F is faithful. G is full. G is faithful iff F is faithful. Hence in the
case of a faithful functor and a semisimple category, C and Rep(H) are equivalent braided
tensor categories. Rep(H) is rigid if F is faithful. The structure matrices of C and Rep(H)

coincide. The structure of H is determined by F :

F is (quasi) tensor functor H⇒ H is (quasi) quasitriangular Hopf algebra
F is weak quasitensor functor H⇒ H is quasitr. weak quasi Hopf algebra.



                      

This theorem extends results of Majid [16, 17]. In the present context the most important
point is the treatment of the weak case. A full account of theorems 1 and 2 is given in [8].

The algebras reconstructed from two functors which induce the same weak dimension
function are twist equivalent (in the sense of Drinfeld). As explained in [8] this
observation enables one to classify the solutions of the reconstruction problem by non-
Abelian cohomology [20].

In this paper we apply this reconstruction process to the representation category of some
observable algebra A. The reconstructed weak quasi Hopf algebra will then be denoted
by G. We choose bases eI

i , i = 1 . . . dim(V I ), in the representation spaces V I of the G
representation %I and in the morphism spaces: χ

(
R

CS
:= G φ

(
R

CS
∈ Mor(%C ⊗ %S, %R).

(Recall that G is the functor G: Rep(A) → Rep(G).) The χ are analogous to Clebsch–
Gordan coefficients:

χ
R

CS
(eC

c ⊗ eS
s ) =

∑
r

C S R

c s r
eR
r . (6)

Since the representation categories of G and A are equivalent, the braiding and fusion in A
carry over from the braiding and fusion of vertex operators φ(e) of A:

χ(e2)(id⊗ χ(e2)) =
∑
e′
1,e

′
2

B±
e1,e2;e′

2,e
′
1
χ(e′

1)(id⊗ χ(e′
2)) (7)

χ(e2)(id⊗ χ(e2)) =
∑
e,f

Fe1,e2;f,eχ(e)(χ(f ) ⊗ id) (8)

φ(e2)(id⊗ φ(e2)) =
∑
e′
1,e

′
2

B±
e1,e2;e′

2,e
′
1
φ(e′

1)(id⊗ φ(e′
2)) (9)

φ(e2)(id⊗ φ(e2)) =
∑
e,f

Fe1,e2;f,eφ(e)(φ(f ) ⊗ id). (10)

We frequently use multi-indices e =α
(

R

CS
and call c(e) = C the charge, s(e) = S the

source and r(e) = R the range of e or φ(e). α = 1 . . . dim(Mor(C ⊗ S, R)).
The same argument shows that the adjoint coefficients coincide:

φ(e)(hC ⊗ ·)∗ =
∑
e∗

η̃e,e∗φ(e∗)(h̃C ⊗ ·) (11)

χ(e)(vC ⊗ ·)∗ =
∑
e∗

η̃e,e∗χ(e∗)(ṽC ⊗ ·). (12)

The vectors h̃C ∈ HC∗ and ṽC ∈ V C∗ and the coefficients η̃ (they are rescalations of η

in [5]) are determined uniquely but they are irrelevant for our discussion.
Matrix elements of the R-matrix R ∈ G⊗G and the Drinfeld associator φ ∈ G⊗G⊗G are

written according to the following example: φ
C1,C2,C3,c

′
1,c

′
2,c

′
3

c1,c2,c3 = (%
C1,c

′
1

c1 ⊗ %
C2,c

′
2

c2 ⊗ %
C3,c

′
3

c3 )(φ).
The action on basis vectors is∑

c′
3,c

′
2,c

′
1

φ
C3,C2,C1;c′

3,c
′
2,c

′
1

c3,c2,c1 e
C3
c′
3

⊗ (e
C2
c′
2

⊗ e
C1
c′
1
) = (eC3

c3
⊗ eC2

c2
) ⊗ eC1

c1
. (13)

2. Vertex SOS transformation

In this section we prove an identity that follows from our categorial setting. It was first
postulated in [4] for Hopf algebras and resembles the form of the vertex SOS transformation.
We will need it later on in the proof of the braid relations.



                              

The following concatenation of vertex operators can be carried out in two ways:

χ
R

C2Q
id⊗ χ

Q

C1S
(eC2

c2
⊗ (eC1

c1
⊗ eS

s )) =
∑
q,r

C1 S Q

c1 s q

C2 Q R

c2 q r
eR
r (14)

χ
R

C2Q
id⊗ χ

Q

C1S
(eC2

c2
⊗ (eC1

c1
⊗ eS

s ))

=
∑

c̃1,c̃2 ,̃s

φ−1;C2,C1,S,c̃2,c̃1 ,̃s
c2,c1,s

χ
R

C2Q
id⊗ χ

Q

C1S
((e

C2
c̃2

⊗ e
C1
c̃1

) ⊗ eS
s̃ )

=
∑

c̃1,c̃2 ,̃s

φ−1;C2,C1,S,c̃2,c̃1 ,̃s
c2,c1,s

∑
c′
1,c

′
2

R−1C2,C1;c′
2,c

′
1

c̃2,c̃1

×
∑
P,p

B+χ
R

C1P
id⊗ χ

P

C2S
((e

C1
c′
1

⊗ e
C2
c′
2
) ⊗ eS

s̃ )

=
∑

c̃1,c̃2 ,̃s

φ−1;C2,C1,S,c̃2,c̃1 ,̃s
c2,c1,s

∑
c′
1,c

′
2

R−1C2,C1;c′
2,c

′
1

c̃2,c̃1

×
∑
P,p

B+χ
R

C1P
id⊗ χ

P

C2S

×
∑

c̃1
′,c̃2 ′ ,̃s ′

φ
C1,C2,S,c̃1

′,c̃2 ′ ,̃s ′
c′
1,c

′
2 ,̃s

(e
C1

c̃′
1

⊗ (e
C2

c̃′
2

⊗ eS
s̃ ′))

=
∑

c̃1,c̃2 ,̃s

φ−1;C2,C1,S,c̃2,c̃1 ,̃s
c2,c1,s

∑
c′
1,c

′
2

R−1C2,C1;c′
2,c

′
1

c̃2,c̃1

∑
c̃1

′,c̃2 ′ ,̃s ′
φ

C1,C2,S,c̃1
′,c̃2 ′ ,̃s ′

c′
1,c

′
2 ,̃s

×
∑
P,p

B+
( Q

C1S),(
R

C2Q);( P

C2S),(
R

C1P)

∑
r

C2 S P

c̃′
2 s̃ ′ p

C1 P R

c̃′
1 p r

eR
r (15)

where B+:= B+
( Q

C1S),(
R

C2Q);( P

C2S),(
R

C1P)
.

The fact that (14) equals (15) implies

Proposition 3. (Vertex SOS transformation.)∑
q

C1 S Q

c1 s q

C2 Q R

c2 q R
=

∑
P,p,c′

1,c
′
2,c̃1,c̃2 ,̃s

R−1,C2,C1;c′
2,c

′
1

c̃2,c̃1
φ−1;C2,C1,S,c̃1,c̃2 ,̃s

c2,c1,s

×B+
( Q

C1S),(
R

C2Q);( P

C2S),(
R

C1P)

∑
c̃1

′,c̃2 ′ ,̃s ′
φ

C1,C2,S,c̃1
′,c̃2 ′ ,̃s ′

c′
1,c

′
2 ,̃s

C2 S P

c̃′
2 s̃ ′ p

C1 P R

c̃′
1 p r

.

(16)

If G is co-associative this reduces to∑
q

∑
c1,c2

C1 S Q

c1 s q

C2 Q R

c2 q r
RC2,C1;c2,c1

c′′
2 ,c

′′
1

=
∑
c1,c2

∑
P,p

B+ C2 S P

c′′
2 s p

C1 P R

c′′
1 p r

. (17)

This relation is called the vertex SOS transformation. Obviously one can transfer the
inversion from R to B.



                      

The vertex SOS transformation is seen from the point of G: it relates the braiding of G
representations (R) via G Clebsch–Gordan coefficients to the braiding of G vertex operators.
Since the representation categories of G and A are equivalent it is clear that there must also
exist a vertex SOS transformation for the A quantities. In algebraic quantum field theory
(AQFT) this relation is well known:∑

e1,e2

B±
e1,e2;e′

2,e
′
1
Te1Te2 = ρα(ε)Te′

2
Te′

1
. (18)

3. Field algebra Fu1

In this section we construct a covariant field algebra and proof braiding and fusion relations.
We will have to make some technical assumptions. The next section will present a modified
field algebra for which these assumptions are fulfilled.

The general aim of AQFT is to construct the symmetry algebra and the filed algebra
out of the algebra of observables since this is the only part which can be determined by
observation. The reduced field bundle Fr was introduced in [5] as a replacement for the
field algebra when the symmetry is not known. We take Fr as a building block because
vertex operators can be defined and obey the usual polynomial equations. It is widely
believed that two-dimensional conformal QFT is tractable in the framework of AQFT. In
both theories the vertex operators are intertwining operators between irreps and products
of irreps. They satisfy braid and fusion identities which encode the structure of the A
representation category and show it to be a braided tensor category. Hence we are in a
situation where our categorial framework applies.

Fu1 operates on: H = ⊕
I HI ⊗V I . P I :H → HI ⊗V I denotes the natural projection.

We have only sectors I ∈ ∇. However, sometimes we will write down formulae where
irreps πC 6∈ ∇ are to act on H. In these cases application of the equivalence morphisms is
assumed.

Fu1 is generated by G, A and special intertwiners. We have natural embeddings iA:A →
Fu1 and iG :G → Fu1 operating on hI ⊗ vI ∈ HI ⊗ V I by iA(A)(hI ⊗ vI ):= πI (A)hI ⊗ vI

and iG(g)(hI ⊗ vI ):= hI ⊗ %I (g)vI . iG and iA commute. Intertwiners between sectors are:

Definition 1. Fu1 is generated by iA(A), iG(G) and intertwiners (C ∈ Objirr(Rep(H)))

9C(hC ⊗ vC):H → H (19)

9C(hC ⊗ vC):=
∑

e,f,c(e)=c(f )=C

De,f φ(e)(hC ⊗ ·) ⊗ χ(f )(vC ⊗ ·)

vC ∈ V C hC ∈ HC . (20)

9C inherits its localization region from πC . χ(f ) is to be understood as G(φ(f )) and
in the summation s(e), s(f ), r(e), r(f ) ∈ ∇.

D:W ⊗ W → C, (e, f ) 7→ De,f ∈ C has to fulfill the following relations which are
needed to prove braid relations in Fu1:∑
r(e1),r(f1)

B+
e1,e2;e′

2,e
′
1
B−

f1,f2;f ′
2,f

′
1
De1,f1De2,f2 = De′

1,f
′
1
De′

2,f
′
2

(21)

c(e1) = c(f1) c(e2) = c(f2) s(e2) = r(e1)

s(e′
1) = r(e′

2) s(f2) = r(f1) s(f ′
1) = r(f ′

2). (22)



                              

Furthermore, for the proof of fusion rules we need∑
r(e1),r(f1)

Fe1,e2;f,eFf1,f2;f̃ ,̃eDe1,f1De2,f2 = De,̃eDf,f̃ (23)

c(e) = c(̃e) c(f ) = c(f̃ ) s(e2) = r(e1)

r(f ) = c(e) s(f2) = r(f1) c(̃e) = r(f̃ ). (24)

Fu1 will be involutive if we have, in addition,∑
e,f

D∗
e,f η̃e,e∗ η̃f,f ∗ = De∗,f ∗ . (25)

The commutator relations between these fields and the imbeddings are straightforward
(ϕ ∈ H, vC ∈ V C, hC ∈ HC, v ⊗ h ∈ HS ⊗ V S ⊂ H):

Definition 2.

iG(g)9C(hC, vC)(v ⊗ h)

:=
∑

e,f,C=c(e)=c(f )

De,f φ(e)(hC ⊗ h) ⊗ %r(f )(g)χ(f )(vC ⊗ v)

=
∑

e,f,C=c(e)=c(f )

De,f φ(e)(hC ⊗ h) ⊗ χ(f )(%C ⊗̃ %s(f ))(g)(vC ⊗ v) (26)

iA(A)9C(hC ⊗ vC)(v ⊗ h)

:=
∑

e,f,C=c(e)=c(f )

De,f πR(A)φ(e)(hC ⊗ h) ⊗ χ(f )(vC ⊗ v)

=
∑

e,f,C=c(e)=c(f )

De,f φ(e)(πC ⊗̃ πs(e))(A)(hC ⊗ h) ⊗ χ(f )(vC ⊗ v). (27)

The representations of A are usually localized. To every representation there is attached
a region of spacetime. The equivalence class of a representation includes equivalent
representations which have different localization regions. The B respective � structure
matrices depend of course not only on the equivalence class of an irrep. However, when
the regions of localization are disjoint they depend only on the ordering of the regions so
that in this case one has to deal only with two matrices usually denoted by B± and �±.
Most representations that occur in Fu1 are that in ∇ ⊂ C:= Rep(A) and we use uppercase
letters such as I, R and S both for πI ∈ ∇ as well as for %I := G(πI ). The field operators
9C , however, are localized objects because C stands for an arbitrary irreducible object
πC ∈ Objirr(C). The localization property stems from that of the A vertices φ(e) while the
gauge transformation is not localized.

It is usual (and possible without any modifications) to exclude iG from the field algebra
(they may be unwanted because they cannot be localized). We included them in order to
have a construction that is totally symmetric between the gauge and the observable algebra.
One can take, for example, G = A. In conformal QFT it is tempting to interpret the
antichiral algebra as the gauge algebra of the chiral algebra and vice versa.

The braid relations in Fu1 involve an R matrix which has non-numeric entries in the
general case of non-co-associative G.



                      

Proposition 4. (Braiding.) Assume that the fields 9C2(hC2 ⊗ eC2
c2

) and 9C1(hC1 ⊗ eC1
c1

) are
localized so that their φ vertices obey braid relations with B+.

For co-associative G the following braid relations hold:

9C2(hC2 ⊗ eC2
c2

)9C1(hC1 ⊗ eC1
c1

) =
∑
c′
2,c

′
1

RC2,C1;c′
2,c

′
1

c2,c1 9C1(hC1 ⊗ e
C1
c′
1
)9C2(hC2 ⊗ e

C2
c′
2
). (28)

In the general case this becomes

9C2(hC2 ⊗ eC2
c2

)9C1(hC1 ⊗ eC1
c1

) =
∑

l,l′,c̃1,c̃2

φ
−1;C2,C1,c̃2,c̃1
l,c2,c1

∑
c′
2,c

′
1

Rc(e2),c(e1);c′
2,c

′
1

c̃2,c̃1

∑
c̃′
1,c̃

′
2

φ
C1,C2,c̃

′
1,c̃

′
2

l′,c′
1,c

′
2

9C1(hC1 ⊗ e
C1

c̃′
1
)9C2(hC2 ⊗ e

C2

c̃′
2
)iG(φ

(3)
l φ

(3)
l′ ) (29)

=
∑
c′
1,c

′
2

9C1(hC1 ⊗ eC1c′
1)9

C2(hC2 ⊗ e
C2
c′
2
)(%

C2,c
′
2

c2 ⊗ %
C1,c

′
1

c1 ⊗ iG)

×(φ−1;2,1,3(R ⊗ 1)φ)

with φ = ∑
l φ

(1)
l ⊗ φ

(2)
l ⊗ φ

(3)
l and φ

C2,C1,c̃2,c̃1
l,c2,c1

= %C2(φ
(1)
l )c̃2c2%

C1(φ
(2)
l )c̃1c1 .

Proof.

9C2(hC2 ⊗ eC2
c2

)9C1(hC1 ⊗ eC1
c1

)(h ⊗ eS
s )

=
∑

e1,e2,f1,f2

De1,f1De2,f2φ(e2)(hC2 ⊗ φ(e1)(hC1 ⊗ h)) ⊗ χ(f2)

×(eC2
c2

⊗ χ(f1)(e
C1
c1

⊗ eS
s ))

=
∑

e′
1,e

′
2,e1,e2,f1,f2

De1,f1De2,f2B
+
e1,e2;e′

2,e
′
1
φ(e′

1)(hC1 ⊗ φ(e′
2)(hC2 ⊗ h))

⊗
∑
q,r

C1 S Q

c1 s q

C2 Q R

c2 q r
eR
r

=
∑

e′
1,e

′
2,r(e1),r(e2),r(f1),r(f2)

De1,f1De2,f2B
+
e1,e2;e′

2,e
′
1
φ(e′

1)(hC1 ⊗ φ(e′
2)(hC2 ⊗ h))

⊗
∑

P,p,c′
1,c

′
2,c̃1,c̃2 ,̃s

RC2,C1;c′
2,c

′
1

c̃2,c̃1
φ−1;C2,C1,S,c̃1,c̃2 ,̃s

c2,c1,s

∑
c̃′
1,c̃

′
2,s̃

′

φ
C1,C2,S,c̃′

1,c̃
′
2 ,̃s

′

c′
1,c

′
2 ,̃s

×B−
f1,f2;f ′

2,f
′
1

C2 S P

c̃′
2 s̃ ′ p

C1 P R

c̃′
1 p r

eR
r

=
∑
e′
1,e

′
2

De′
1,f

′
1
De′

2,f
′
2
φ(e′

1)(hC1 ⊗ φ(e′
2)(hC2 ⊗ h)) ⊗

∑
P,p,c′

1,c
′
2,c̃1,c̃2 ,̃s

RC2,C1;c′
2,c

′
1

c̃2,c̃1

×φ−1;C2,C1,S,c̃1,c̃2 ,̃s
c2,c1,s

∑
c̃′
1,c̃

′
2,s̃

′

φ
C1,C2,S,c̃′

1,c̃
′
2 ,̃s

′

c′
1,c

′
2 ,̃s

C2 S P

c̃′
2 s̃ ′ p

C1 P R

c̃′
1 p r

eR
r

=
∑

l,l′,c̃1,c̃2

φ
−1;C2,C1,c̃2,c̃1
l,c2,c1

∑
c′
2,c

′
1

Rc(e2),c(e1);c′
2,c

′
1

c̃2,c̃1

∑
c̃′
1,c̃

′
2

φ
C1,C2,c̃

′
1,c̃

′
2

l′,c′
1,c

′
2

×9C1(hC1 ⊗ e
C1
c̃′1

)9C2(hC2 ⊗ e
C2
c̃′2

)iG(φ
−1;(3)
l φ

(3)
l′ )(h ⊗ eS

s ).

With Q:= r(f1) and R:= r(f2). The third step used the vertex SOS transformation, the
fourth used equation (21).



                              

The operators in Fu1 form a representation of the quantum plane. They obey braid group
statistics. If C is symmetric (i.e. 9X,Y is a permutation rather than a braid isomorphism)
one recovers ordinary Bose–Fermi statistics.

Proposition 5. (Fusion.) The fusion reads

9C2(hC2 ⊗ eC2
c2

)9C1(hC1 ⊗ eC1
c1

)(h ⊗ eS
s )

=
∑
e,f

∑
c′
2,c

′
1,s

′
φ

−1;C2,C1,S,c′
2,c

′
1,s

′
c2,c1,s 9c(e)

×(P c(e)9c(f )(hC2 ⊗ e
C2
c′
2
)(hC1 ⊗ e

C1
c′
1
))(h ⊗ eS

s ′). (30)

Proof.

9C2(hC2 ⊗ eC2
c2

)9C1(hC1 ⊗ eC1
c1

)(h ⊗ eS
s )

=
∑

e1,e2,f1,f2

De1,f1De2,f2φ(e2)

×(hC2 ⊗ φ(e1)(hC1 ⊗ h)) ⊗ χ(f2)(e
C2
c2

⊗ χ(f1)(e
C1
c1

⊗ eS
s ))

=
∑

e1,e2,f1,f2

De1,f1De2,f2

∑
e,f,̃e,f̃

Fe1,e2;f,eFf1,f2;f̃ ,̃eφ(e)(φ(f )(hC2 ⊗ hC1) ⊗ h)

⊗
∑

c′
2,c

′
1,s

′
φ

−1;C2,C1,S,c′
2,c

′
1,s

′
c2,c1,s χ(̃e)(χ(f̃ )(e

C2
c′
2

⊗ e
C1
c′
1
) ⊗ eS

s ′)

=
∑
e,f

∑
c′
2,c

′
1,s

′
φ

−1;C2,C1,S,c′
2,c

′
1,s

′
c2,c1,s 9c(e)(P c(e)9c(f )(hC2 ⊗ e

C2
c′
2
)(hC1 ⊗ e

C1
c′
1
))(h ⊗ eS

s ′).

Proposition 6. Fu1 is closed under taking adjoints.

Proof. Using (26) and (12) we find

9C(hC ⊗ vC)∗ =
∑
e,f

∑
e∗,f ∗

D∗
e,f η̃e,e∗ η̃f,f ∗φ(e∗)(h̃C ⊗ ·) ⊗ χ(f ∗)(ṽC ⊗ ·)

=
∑
e∗,f ∗

De∗,f ∗φ(e∗)(h̃C ⊗ ·) ⊗ χ(f ∗)(ṽC ⊗ ·)

= 9C∗
(h̃C ⊗ ṽC).

The proof shows that adjoint field operators transform according to the conjugate
representation.

Remark 1. (Covariant operator products.) The fusion and braiding relations proved so far
involve non-numerical matrices. The idea of Mack and Schomerus [12] to absorb these
operators in the definition of a covariant operator product can also be applied in our field
algebra:

9C2(hC2 ⊗ vC2) × 9C1(hC1 ⊗ vC1)

:=
∑

l

9C2(hC2 ⊗ %C2(φ
(1)
l )vC2))9C1(hC1 ⊗ %C1(φ

(2)
l )vC1))iG(φ

(3)
l ). (31)



                      

This product is not associative. Altering the parentheses yields conjugation by iG(φ).
Fusion and braiding now look like

9C2(hC2 ⊗ eC2
c2

) × 9C1(hC1 ⊗ eC1
c1

)(h ⊗ eS
s )

=
∑
e,f

9c(e)(P c(e)9c(f )(hC2 ⊗ eC2
c2

)(hC1 ⊗ eC1
c1

))(h ⊗ eS
s ) (32)

9C2(hC2 ⊗ eC2
c2

) × 9C1(hC1 ⊗ eC1
c1

)

=
∑
c2,c1

Rc(e2),c(e1);c2,c1
c̃2,c̃1

9C1(hC1 ⊗ e
C1
c̃1

) × 9C2(hC2 ⊗ e
C2
c̃2

). (33)

Note our free use of φ−1, although φ does not give rise to problems though it need
not be invertible. However, φ always has a quasi-inverse φφ−1 = (id ⊗ 1)1(1), φ−1φ =
(1 ⊗ id)1(1). The resulting factors are harmless: 9I (h ⊗ v) = iG(1)9I (h ⊗ v) = 9I (h ⊗
%I (1(1)

l )v)iG(1(2)
l ) with 1(1) = ∑

l 1
(1)
l ⊗ 1(2)

l . This shows that 9I (hI ⊗ vI )9J (hJ ⊗ vJ ) =
iG(1)9I (hI ⊗ vI )9J (hJ ⊗ vJ ) = 9I (hI ⊗ %I (·)vI )9

I (hJ ⊗ %J (·)vJ )iG(·)((id⊗ 1)1(1)).
9 may be further specialized by setting

0I
i := 9I (hI ⊗ eI

i ) (34)

where hI is the highest weight vector in HI . Writing 1(g) = ∑
l g

(1)
l ⊗ g

(2)
l the

transformation rule becomes

iG(g)0I
i =

∑
l,k

0I
k%

I (g
(1)
l )i,kiG(g

(2)
l ). (35)

This is the form postulated by Mack and Schomerus.

Remark 2. Correlations 〈0|9Cn(hCn
⊗ vCn) ◦ · · · ◦ 9C1(hC1 ⊗ vC1)|0〉, hCi

∈ HCi
, vCi ∈ V Ci

transform covariantly under the gauge algebra. If the trivial representation occurs in the
reduction of %Cn ⊗̃ · · · ⊗̃ %C1 this correlation may be gauge invariant. This is the case iff
vCn ⊗ · · · ⊗ vC1 is mapped to a trivial representaion via the reduction isomorphism. Such
invariant correlations are called conformal blocks in CQFT. In this language our result is
the same as [6, (5.19)].

4. Field algebra Fu2

The construction of Fu1 depends on two technical axioms. It is possible to alter the
construction of Fu1 in such a way that these axioms are, at least in the case of AQFT,
always satisfied.

The starting point is the following observation. Rigid braided tensor categories are
involutive. To every isomorphism Rep(A) =̃Rep(G) there is a second one defined by an
additional involution (since we are mainly interested in AQFT we write Ī instead of I ∗).

Fu2 operates on H:= ⊕
I HI ⊗ V Ī . P A

I :H → HI , P
G
I :H → V Ī denote the natural

projections. Fu2 is generated by G, A and intertwiners. We have natural embeddings
iA:A → Fu2 and iG :G → Fu2 operating on hI ⊗ vĪ ∈ HI ⊗ V Ī as iA(A)(hI ⊗ vI ):=
πI (A)hI ⊗ vI and iG(g)(hI ⊗ vĪ ):= hI ⊗ %Ī (g)vĪ . iG and iA commute.

Definition 3. Fu2 is generated by iA(A), iG(G) and intertwiners:

9C(hC ⊗ vC̄):H → H (36)



                              

9C(hC ⊗ vC̄):=
∑

e,ē,c(e)=C,c(ē)=C̄

De,ēφ(e)(hC ⊗ ·) ⊗ χ(ē)(vC̄ ⊗ ·) (37)

vC̄ ∈ V C̄, hC ∈ HC . (38)

D:W ⊗ W → C, (e, f ) → De,f ∈ C must satisfy∑
r(e1),r(ē1)

B+
e1,e2;e′

2,e
′
1
B−

ē1,ē2;ē′
2,ē

′
1
De1,ē1De2,ē2 = De′

1,ē
′
1
De′

2,ē
′
2

(39)

c(e1) = c(ē1) c(e2) = c(ē2) s(e2) = r(e1) s(e′
1) = r(e′

2) s(ē2) = r(ē1)

s(ē′
1) = r(ē′

2) (40)∑
r(e1),r(ē1)

Fe1,e2;f,eFē1,ē2;f̄ ,ēDe1,ē1De2,ē2 = De,ēDf,f̄ (41)

c(e) = c(ē) c(f ) = c(f̄ ) s(e2) = r(e1) r(f ) = c(e) s(ē2) = r(ē1)

c(ē) = r(f̄ ) (42)

Fu2 will be involutive if∑
e,ē

D∗
e,ēη̃e,e∗ η̃ē,ē∗ = De∗,ē∗ . (43)

In algebraic QFT there are alway solutions: De,ē:= ζe,ē (see [26]). This setting
transforms (39) and (41) to well known identities in AQFT (see [24]). (43) can also
be reduced to a standard formula by bringing the second η to the right by means of
orthogonality. (I thank K-H Rehren for explaining this fact.)

5. Comments

Is the generality of weak quasi-quantum groups really needed or can one do with ordinary
quantum groups? First, note that in many field theories only weak dimension functions
can exist. For minimal models this was shown in [10]. It is no solution to simply
discard non-physical representations of ordinary quantum groups. Consider the fusion
(proposition 5) in the case of an ordinary quantum group (i.e. φ trivial) and assume truncation
of some unphysical representations to be carried out by hand. Apply the fusion formula
to 9C0(hC0 ⊗ vC0)|0〉, where vC0 and the quantum group vector v1 ∈ V C1 of the second
operator are chosen so that their tensor product is unphysical. Then the left-hand side of
the equation is zero because of truncation. However, the right-hand side will not always
vanish: we can set C2:= C∗

1 and by rigidity we can find a v2 ∈ V C2 such that its tensor
product with v1 will not vanish. Therefore the right-hand side gets a contribution in the C0
sector.

The non-uniqueness of our construction has two sources. The first source is the non-
uniqueness of the weak dimension function. The meaning of this diversity is not clear.
However, there are many situations in which a single weak dimension function is chosen a
priori. This is the case if it is known in advance that the symmetry should be related to a
simple Lie algebra. Rational conformal quantum field theories also give rise to distinguished
dimension functions. Their Hilbert space has the structure

H =
⊕

I

HI ⊗ HI .

It is natural to expect that the gauge symmetry in sector I acts on the multiplet of lowest
energy states of HI . That is, D(I) should be the dimension of the eigenspace of the lowest



                      

eigenvalue of L0. The non-uniqueness of the dimension function is then explained by the
possibility of having different antichiral partners for a given chiral algebra.

The second source of non-uniquenes arises from the weak associativity contraints. It
can be classified, as mentioned in the preliminaries, in cohomological terms.
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