
                                      
                                       

                                 

Representation of fractional powers of infinitesimal generators 
of cosine operator functions(1) 

RONALD H. W. HOPPE 

Abstract. By elementary means from the calculus of integral transforms we give a representation of 
fractional powers of the infinitesimal generator A of an equibounded Co-cosine operator function C 
on a Banach space A. The result can be used in the theory of interpolation spaces concerning the 
characterization of the domains D«-A)"'), O<a<r, rEN, as intermediate spaces of A and D(A'). 

1. Introduction 

Let A be a real or complex Banach space with norm II·IIA, cg(A) the class of all 
densely defined closed linear operators A with both domain and range in A and 
91J(A) the Banach algebra of all bounded linear operators on A. 

A transformation C :IR+ ~  91J (A), IR+: = [0,00), is called a Co-cosine operator 
function if C(O) = I, C(·) satisfies d'Alembert's functional equation 

C(t + s) + C(t- s) = 2C(t)C(s), t>s (1.1) 

and C(')a is continuous on IR+ for each a E A. CO is said to be equibounded if 
I I C ( t ) I I ~ M ,  tEIR+, for some MEIR+. The infinitesimal generator A of C(·) is the 
linear operator 

Aa : = 2 s-lim t- 2 [ C(t)a - a], 
t---+O + 

aED(A) (1.2) 

where D(A) is the set of all a E A for which the strong limit in (1.2) does exist. 
For a systematic treatment of cosine operator theory we refer to [5], [6], [7] and 
[12]. 

In this paper we will give a representation of fractional powers (-A)''', 
O<a<r, rEN, in terms of the r-th Riemann differences [C(t) .,... I]'. For 
equibounded Co-semigroups T(t), tEIR+, with generator A E cg(A) such represen
tations have been given in [2], [13] while in case A generates an equibounded 
Co-group T(t), t E IR, the fractional powers (-A 2)n can be characterized by means 

1 This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG). 
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of the central differences [T(t/2) - T( -t/2)]2r (cf. [14]). In interpolation theory 
these representations are a useful tool in the study of the spaces D«-A)"') as 
intermediate spaces of A and D(A r) (cf. e.g. [4]). The results thus obtained can 
be applied not only in general approximation theory but also in the numerical 
solution of the Cauchy problem for first order evolution equations (cf. [3]). We 
remark that if T(·) is an equibounded Co-group with generator U E ~ ( A )  then 
C(t)=[T(t)+T(-t)]/2, tEIR+, defines an equibounded Co-cosine operator func
tion with generator A = U 2 and representations of (-A)'" in terms of Riemann 
differences will follow from the results in [14] taking into account that C(t) - 1 = 

[T(t/2) - T( -t/2)y/2. However, not every Co-cosine operator function can be 
related to a Co-group in the above manner (for examples see [10; pp. 111-114]). 

2. Representation results 

In case a E D(A k) and k - 1 < 0 < k, kEN, the desired representation of (-A)'" 

can be derived from Balakrishnan's formula (cf. [1]) 

(-A)"'a = -1T - 1 sin a7T f" A ", - k(AI - A)- lA kadA 

and from the fact that A(A 21 - A)- l is the operational Laplace transform of C(·) (cf. 
[6]) by mimicking the proof of [14; Lemma 10.1]: 

LEMMA 2.1. Let kEN and k -1 < 0 < k. Then there holds 

aED(Ak) (2.1) 

where 

C = t - 2a.(cos t-1)k -. 100 dt 

""k t 

In the sequel we will make use of the fact that C""k = e: qa.,dt) dt where q""k (t) is 
the inverse cosine transform of the function !.Is' t- 2", - 1(COS t -l)k dt. Explicit 
representations of q""k (t) resp. C""k may be found in [14; pp. 114-117]. 

LEMMA 2.2. Let k, rEN, 0<0 <min (k, r) and £, 7J >0. Then, for each a EA 

100 dt roo (S) ds 
T] t- 2"'[C(t)-1]k t .lo q""r -; C(s)a-; 

foo dt r oo ( S) ds 
= € t- 2"'[C(t)-U t .lo q""k ~  C ( s ) a ~ .  (2.2) 
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Proof. Evaluating the first integral on the right-hand side of (2.2) by means of 

which can be easily derived via induction, using (1.1) and the fact that a Co-cosine 
operator function can be continuously extended to the whole real line by 
C(t) = C(-t), t<O, we obtain 

f"" dt 1"" ( s ) ds 
e t-2"'[C(t)- U t q""k -:;J C(s)a; 

where 

O<t<e 

t 2: e. 

(2.3) 

The left-hand side in (2.2) can be transformed in the same way gIVmg an 
analogous formula (2.3) with e, r mutually exchanged by 1/, k. Therefore, (2.2) is 
verified if we can show that the bracketed term in (2.3) is symmetric in the pairs 
(k, r) and (e,1/). This can be done by proving (2.2) in the special case C(t) = 
cos (At), A E ~ ,  and a EC, since then the desired result follows from the unique
ness of the inverse cosine transform. • 

LEMMA 2.3. Let rEN and O<a<r. Then, 
SO q""r(t)C(t)adt belongs to D«-A)"') and 

[1"" (t) dt] 1 f"" dt (-A)'" q""r -; C(t)a t =2: e t-2"'[C(t)- Ua t , 

for a E A the integral 

(e > 0). (2.4) 

Proof. It is easy to show that SO q""r(t)C(t)adt does exist in Bochner's sense. 
~ o r e o v e r ,  we have 

aEA, 

and thus it follows from (2.2) that 

1"" dt 1"" (S) ds 1 1"" dt s-lim c ~ l  t-2"'[C(t)- I]ka- q",r - C(s)a-=-2 t-2"'[C(t)-Ua-. 
T ) ~ O +  • T) t· e e e t 
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If a E D(A k) then Lemma 2.1 gives the conclusion. Since D(A k) is dense in A 
and (-A)'" E C€(A), it follows that (2.4) holds true for all a EA.. 

The main result characterizing the domain of the fractional power (-A)'" can now 
be easily deduced from Lemma 2.3: 

THEOREM 2.4. Let r EN and 0 < a < r. An element a E A belongs to 
D«-A)"') if and only if the strong limit 

100 dt 
s-lim c:::1 t- 2"'[C(t)- I)'a-
£-+0+ a .T E t 

exists in which case it is equal to (-A)'" a. 

The Phillips adjoint operatorA <*) is the maximal restriction of A * with both 
domain and range in A ~  = cl D(A *). It is well known that A <*) generates an 
equibounded Co-cosine operator function C<*) :!R+ ~  @ ( A ~ )  (cf. [8], [11]). 
Hence, we may also define fractional powers of -A <*), and we obtain the 
following dual counterpart of Theorem 2.4: 

THEOREM 2.5. Let rEN and O<a<r. An element a*EA* belongs to 
D«-A <*»)"') if and only if a* E A ~  and the weak* limit 

~ ' : . : l i ; n  c ~ . ~  100 

t - 2"'[C(*)(t)- I*]'a* ~ t  
€ 

exists in which case the limit is equal to (-A <*»)"'a *. 

3. Applications 

Denoting by w,(·, a), a E A, the r-th modulus of continuity of C(')a (cf. [4; 
p.229]) we define Aa.,;oo, O ~ a  ~ r ,  as the set of all a EA for which 

lIalL..,;oo:= lIaliA + sup (t-2"'W,(t', a))<oo. 
leR+ 

The thus defined space Aa.,;oo is a Banach space which is norm-equivalent to the 
intermediate space (A,D(A'))a.eo, O=a/r (for details see [9]). If A = LP(n), 
n c IRd , 1 < P < 00, and S (-) denotes the strong integral of C(·), then S (t )Aa.l;oo C 

D« -A)",+1/2), 0 ~  a ~  1/2, and (-A)",+l/2S(t)a, a E Aa.l;oo, is strongly continuous 
in t (cf. [7] for the special case a = 0). In particular, i(_A)1I2 generates a Co-group 



                                              69 

given by T(t) = C(t) + i( - A)1/2S(t), t EIR. These results can be used in the reduc
tion of well-posed second order evolution equations to equivalent first order 
systems (d. [9]. 

Finally, as a simple example let us consider the case where A is the space of 
all complex, continuous, 2'7T-periodic and odd functions on IR equipped with the 
sup-norm 1I·!!00. Then (C(t)a)(x)=[a(x+t)+a(x-t)]J2, x,tEIR, aEA, defines an 
equibounded Co-cosine operator function with generator (Aa)(x) = (d2Jdx2)a(x). 
We remark that CO cannot be related to an equibounded Co-group (d. [10; 
p. 111]). In lights of the preceding results and since 

Wr(tr, a) = sup 1I.1;r a ! ~ ,  
Isl::;;t 

+r .( 2r ) ( . 1 ; r a ) ( x ) = j ~ r ( - 1 ) ' - J  r-j a(x+jt) 

we can identify D« - A)",), 0 < a < r, with a closed subspace of the generalized 
Lipschitz space Lip (2a, 2r, 00; A) (d. [4; p. 228]). Note that in case A = LP(IR), 
1 < p < 00, we thus obtain the well-known characterization of the Besov spaces 
B ~ ~  by means of the 2r-th central differences .1;r. 
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