Representation of fractional powers of infinitesimal generators
of cosine operator functions®
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Abstract. By elementary means from the calculus of integral transforms we give a representation of
fractional powers of the infinitesimal generator A of an equibounded C,-cosine operator function C
on a Banach space A. The result can be used in the theory of interpolation spaces concerning the
characterization of the domains D((—A)*), 0<a <r, reN, as intermediate spaces of A and D(A").

1. Introduction

Let A be a real or complex Banach space with norm ||| 5, €(A) the class of all
densely defined closed linear operators A with both domain and range in A and
B(A) the Banach algebra of all bounded linear operators on A.

A transformation C:R*— B(A), R*:=[0, ), is called a C,-cosine operator
function if C(0)=1I, C(-) satisfies d’Alembert’s functional equation

C(t+s)+C(t—s)=2C(1)C(s), tseR*, t>s (1.1)

and C(-)a is continuous on R* for each ae€ A. C(:) is said to be equibounded if
IC@I=M, teR*, for some MeR"*. The infinitesimal generator A of C(:) is the
linear operator

Aa:=2 st-liorp t2[C(t)a—al], aeD(A) (1.2)

where D(A) is the set of all a € A for which the strong limit in (1.2) does exist.
For a systematic treatment of cosine operator theory we refer to [5], [6], [7] and
[12].

In this paper we will give a representation of fractional powers (—A)%,
0<a<r, reN, in terms of the r-th Riemann differences [C(t)—I]. For
equibounded C,-semigroups T (t), teR", with generator A € €(A) such represen-
tations have been given in [2], [13] while in case A generates an equibounded
Co-group T(t), teR, the fractional powers (—A?)* can be characterized by means
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of the central differences [T(t/2)— T(—t/2)" (cf. [14]). In interpolation theory
these representations are a useful tool in the study of the spaces D((—A)*) as
intermediate spaces of A and D(A") (cf. e.g. [4]). The results thus obtained can
be applied not only in general approximation theory but also in the numerical
solution of the Cauchy problem for first order evolution equations (cf. [3]). We
remark that if T(-) is an equibounded C,-group with generator U e 6(A) then
C(t)=[T(t)+ T(-1)]/2, teR*, defines an equibounded C,-cosine operator func-
tion with generator A = U? and representations of (—A)* in terms of Riemann
differences will follow from the results in [14] taking into account that C(t)—I=
[T(t/2)— T(—t/2)F/2. However, not every C,y-cosine operator function can be
related to a C,-group in the above manner (for examples see [10; pp. 111-114]).

2. Representation results

In case a € D(A*) and k—1<a <k, k €N, the desired representation of (—A)*
can be derived from Balakrishnan’s formula (cf. [1])

(=A)*a =—=""sin a'n'L A K= A) *ARadA

and from the fact that A\(A2I — A) " is the operational Laplace transform of C(:) (cf.
[6]) by mimicking the proof of [14; Lemma 10.1]:

LEMMA 2.1. Let keN and k—1<a <k. Then there holds

(—A)a=Ck Lw t722[C(t)— I]"a% , aeD(A¥) 2.1
where

Cor = J:ot‘z"‘ (cos t— 1)"d7t.

In the sequel we will make use of the fact that C,; = [ g, (t) dt where q, (1) is
the inverse cosine transform of the function 37t 2* (cos t—1)* dt. Explicit
representations of g, (t) resp. C,, may be found in [14; pp. 114-117].

LEMMA 2.2. Letk,reN, 0<a <min (k, r) and &, n>0. Then, for each ac A

[[rco-ng [ auS)owats

n

= j t-22[C(1)— 1]"’{ Lmqa,k(ﬁ)C(s)a‘—if. 2.2)
€ n n
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Proof. Evaluating the first integral on the right-hand side of (2.2) by means of
. {2 2
[C(t)—1IT = 2—*[2 Y (—1)'—'(r rj>C(jt)+ (—1)'( r’)I]
i=1 -

which can be easily derived via induction, using (1.1) and the fact that a Cy-cosine
operator function can be continuously extended to the whole real line by
C(t)=C(-t), t<0, we obtain

[[rcw-0g [ adS)ewad @3

5[ e an( ) @ aeran(E) Jowat
2), n Y m

where

r . 2
=271 3 1y ()b, 0
i=1 r=1

2r 0 0<t<e
o, ) ra—r -1_—2a _ ’
de”=(-1)"2 ( . )(Za) e, b.(t)= {t"z""l, e

The left-hand side in (2.2) can be transformed in the same way giving an
analogous formula (2.3) with &, r mutually exchanged by m, k. Therefore, (2.2) is
verified if we can show that the bracketed term in (2.3) is symmetric in the pairs
(k,r) and (g, m). This can be done by proving (2.2) in the special case C(t)=
cos (At), A €R, and a €C, since then the desired result follows from the unique-
ness of the inverse cosine transform. W

LEMMA 23. Let reN and O0<a<r. Then, for acA the integral
18 o, ()C(t)adt belongs to D((—A)*) and

(—A)“[f qa,,(;t>C(t)a th] = % f t2*[C(t)—ITa th ,  (e>0). (2.4)

Proof. It is easy to show that (3 q,,.(t)C(t)adt does exist in Bochner’s sense.
Moreover, we have

® t dt
s-lim L qa,k<—>C(t)a— =1C,.a, acA,
e—0" € €
and thus it follows from (2.2) that

- dt [~ ds 1(~ dt
s-lim CZL J' 2[C(1) - [Fa ™ L qa,,(f)C(s)a—L— j t22[C(t) - ITa™.
n—0t T ) t £ e 2 t
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If a e D(A¥) then Lemma 2.1 gives the conclusion. Since D(A¥) is dense in A
and (—A)* e €(A), it follows that (2.4) holds true for all ac A. W

The main result characterizing the domain of the fractional power (—A)® can now
be easily deduced from Lemma 2.3:

THEOREM 2.4. Let reN and 0<a<r. An element ac A belongs to
D((—A)*) if and only if the strong limit

® dt
: 1 —2a r
se-lup C;',, j t2*[C(t)—1I] a—t

€

exists in which case it is equal to (—A)*a.

The Phillips adjoint operatorA® is the maximal restriction of A* with both
domain and range in A¥=cl D(A*). It is well known that A® generates an
equibounded C,-cosine operator function C*:R*— B(A¥) (cf. [8], [11D.
Hence, we may also define fractional powers of —A®, and we obtain the
following dual counterpart of Theorem 2.4:

THEOREM 2.5. Let reN and 0<a<r. An element a*e A* belongs to
D((—A®)*) if and only if a*e A} and the weak* limit

dt

wetim o3 (e - P Tar S

e—0+

exists in which case the limit is equal to (—A®)*a*.

3. Applications

Denoting by ,(:, a), a€ A, the r-th modulus of continuity of C(-)a (cf. [4;
p. 229]) we define A, , ., 0=a =r, as the set of all ae A for which

lalle,ro:=llalla + sup (1w, (1", a)) <c.
teR*

The thus defined space A, .. is a Banach space which is norm-equivalent to the
intermediate space (A, D(A"))g., 8 =a/r (for details see [9]). f A =LP(Q),
QcR? 1<p<w, and S(-) denotes the strong integral of C(-), then S(t)A, 1,.<
D((-A)**?), 0=a=1/2, and (-A)*""?S(t)a, a€ A, 1., is strongly continuous
in t (cf. [7] for the special case « = 0). In particular, i(—A)"? generates a Cy-group
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given by T(t) = C(t)+i(—A)"?S(t), teR. These results can be used in the reduc-
tion of well-posed second order evolution equations to equivalent first order
systems (cf. [9]).

Finally, as a simple example let us consider the case where A is the space of
all complex, continuous, 27r-periodic and odd functions on R equipped with the
sup-norm ||‘|l.. Then (C(t)a)(x) =[a(x+t)+a(x—1)]/2, x, teR, ac A, defines an
equibounded C,-cosine operator function with generator (Aa)(x)=(d?*/dx?)a(x).
We remark that C(-) cannot be related to an equibounded Cy-group (cf. [10;
p. 111]). In lights of the preceding results and since

ot a)= sup laZall., (AZa)(x)= Y, (1)~ (f_’},)a(x +jt)

Isl=t j=—r

we can identify D((—A)*), 0<a <r, with a closed subspace of the generalized
Lipschitz space Lip (2a, 2r, ©; A) (cf. [4; p. 228]). Note that in case A =LP(R),
1<p<, we thus obtain the well-known characterization of the Besov spaces
B22 by means of the 2r-th central differences A2".
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