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APPROXIMATE SOLUTION OF SYSTEMS
OF EVOLUTIONARY QUASI-VARIATIONAL INEQUALITIES

Ronald H.W. Hoppe

Dedicated Zo Prof. Dr. E. Mohi on cccaddion of his #5th binthday.

Abstract. We will construct approximations to the
maximum solution of systems of evolutionary quasi-
~variational inequalities based on a nonlinear
semigroup approach using the concept of order
preserving convergence in discrete approximations

of ordered Banach spaces.

1. Introduction

Let H be a separable order complete real Hilbert lattice and
let V be a separable reflexive Banach space with dual V' such
that V¢, Hecy V' each space being dense and compactly embedded
in the following one. We assume V to be a vector lattice with
respect to the ordering induced by that on H and E to be an
M-normed Banach lattice with order unit e, E a closed subspace
and sublattice of H with continuous embedding Ec¢, H. Given m €N

m
we denote by H", v™ and E® the product spaces H'= I H etc. with

canonically defined norms and orderings. For v = 1,?:3,m let

Av : V+V' be linear monotone operators, let Mv : H' + H be order
preserving concave operators satisfying MV((Vr\E)m)<:VI1E,

MY(0) 20 and let £Y: [0,T] »intE’ be given functions with bounded

variation. Then, for u°€:(vr1E+)m we are looking for a function



u:[0,T] +V", u =(u1,...,um), satisfying u(t) € (vne")®,
u, (t) € (v1)™, t€(0,T), u(0) =u® such that for all v=1,...,m

and t€ (0,T)
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wv(e) s MV (u(t)), (1.1a)

<uz(t)+AVuv(t),vv—uv(t)> 2 (fv(t),vv-u\’(t))H (1.1b)

for all v’ = M (u(t)),

where <-,+> denotes the dual pairing between V', V and (-,-)H
is the inner product on HxH,

The system (1.1a),(1,1b) constitutes a system of variational
inequalities with implicitly given upper obstacles, so-called
quasi-variational inequalities which typically arise in optimal
switching control of stochastic processes (cf.[3]). Consider e.g.

a stochastic system operating in m different regimes that can

be described by the diffusion processes
dy, (t) = by, (£))dt + o (y, (€))aw, v, (0) = x

where x€Q, @ is a bounded domain in Euclidean space Rd, deN, and

w is a standard d-dimensional Wiener process, the drift
v )d
ij’ij=1"'

sufficiently smooth functions on Rd. Then, given continuous

bY =(b¥,...,b;) and the diffusion ¢" = (o 15v<m, being
running costs fv = f\’(x,t) s XEQR, t20, 1sv<sm and nonnegative,
subadditive switching costs k(v,u,x), x€Q, 1<v, p<m, the
control objective is to find an optimal switching control policy
=(T1,v1;12,v2,...) of random stopping times T and

Yv,x,t
regimes vy such that the total cost
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TAT
X

Jv,x,t = Ev,x,t[ { exp(-c(s)s)f\’(s)(yx(s),s)ds

2

TA'rx
+ _21 exp(-c {1 )T ) k(Vy_1sv;0y, (1;))]
l=

is minimized, where v(t) =vi, TiS t < Ti+1, with given Vo =V

v,
c(t) =c¢ J‘, TigtéTiﬂ' cv=cv(x), x€2, 1£v<im, being nonnegative

discount factors, Ty is the first exit time of Yy from @,

N the total number of switchings and E, - denotes the
’

TATX ’

expectation.

1t zv(x,t)=,vinf J and uv(x,t) =zv(x,T-t), then a formal
v,X,t

application of the dynamic programming principle shows that

V,X,t

u-= (u1,...,um) satisfies a system like (1.1a),(1.1b) with

H=12(0), V=H(1)(SZ) and E =C(R), the operators A’ and M¥, 1<vsm,

given by
v % v % v v
A'v = - a;.(x)v - b;(x)v., + c (X)v,
951 17 XXy g0 TRy
AY : H
M'v = min (k(v,u,x)+v" (x)]
=1,...,m
u#v
v_,.v,d vV_1 Vv, v*
where a --(aij)ij=1 » @ =30 (67)", 15vEm.

When H=1%(R), V=H)(2), E=L7(), A=-A and M:L7(2) " >L7 ()"

a T-contraction, a single gquasi-variational inequality has been
studied by Barthélemy and Catté in [1] associating with this
inequalitiy a nonlinear semigroup in L7 () whose generator is
given implicitly via its resolvent which is shown to be the
maximum solution of an appropriately defined elliptic quasi-
~variational inequality. Moreover, in case of vanishing switching

costs when (1.1a),(1.1b) reduces to the parabolic Hamilton-
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-Jacobi-Bellman equation the same techniques have been used by
Bénilan and Catté in [2],[4], while, adopting their ideas, in
{9] an approximation to the Bellman semigroup associated with
an abstract Hamilton-Jacobi-Bellman equation has been given
within the framework of order preserving discrete convergence
in discrete approximations of ordered Banach spaces. In the
subsequent sections we will use the same concept to generate
approximations to the maximum solution of the system (1.1a),

{1.1b).

2. Order preserving discrete convergence

In this section we will give a short introduction to the concept
of order preserving discrete convergence in discrete approxima-
tions of ordered Banach spaces. Since most of the material is
taken from [9], proofs will be omitted.

Let X,X , n €N, be real Banach spaces with norms Il-l]x,l-lX
n

and let Rx==(R§)N be a sequence of restriction operators
X . .
Rn :x-+Xn satisfying
(i) IRX(au+Bv)-aqu—BRXVII =0 u,vex, o,B€ER
n n n xn r ’ ’ 1 ’
. X
(i1) |Rnuﬂxn > |u|X r UEX, (2.1)

(iii) suleﬁuﬂX <o , u€eX.
newN n

Then the triple (X,Hxn,RX) is called a discrete cn-approximation
(approximation with convergent norms) and the discrete strong
convergence of a sequence (un)N., u, €X, neEN'cN, to an u€Xx

is defined by






s-Lim inf, G = {u€x Ia(un)N,unexn,nGN : s=lim u_ =u},

X 'n

-T.4 = ] « o4 =
s-Lim sup, G, {uex |3(un)N,,un€Xn,n€N cN: s limy u, ul.

Obviously, s-Lim Supy Gn < s-Lim infX Gn. If equality holds, the

common limit set will be denoted by s-Lim Gn' In discrete dual

X
cn-approximations of reflexive Banach spaces we can analogously
define the sets w~L1msuprn, W—lelanGn and w—lex Gn’ It is
clear that in general s-Lim infX Gngw-Lim supy Gy - If both sets

coincide we will denote the common limit by LimX Gp -

So far we have not taken carxe of a possible lattice structure
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on X resp. Xn, n EN. Now, if (X,Hxn,Rx) is a discrete cn-approxi-

mation of Banach spaces and vector lattices X, X0 n €N, the
discrete strong convergence will be called order preserving if
for all u €X and all sequences (un)N., unexn, n€N' cN, there

holds

+

s-lim, u_ = u = s-limx u; =u . (2.3)

X 'n

It follows immediately from the linearity of discrete strong
convergence that, if (2.3) is satisfied, then we have discrete
strong convergence of all basic lattice operations.

A necessary condition for order preserving discrete strong
convergence can be given in terms of the restriction operators

R'ff (c£.09; Lemma 2.31):

LEMMA 2.1. If the discrete strong convergence in a discrete

cn-approximation (X,Hxn,RX) is order preserving then

IR (R "], >0, wuex. (2.4)
n

If Xn' n €N, are Banach lattices then also the converse holds

true.
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For discrete cn-approximations satisfying (2.4) we have the

following approximation property for the positive cone x* resp.
L}

closedness result for the positive cones (Xn)+ which generate

the order duals X; {cf.[9; Lemma 2.4]):

LEMMA 2.2. Let (X,Hxn,Rx) be a discrete cn-approximation with

(R¥)) satisfying (2.4). Then there holds
. N . +

(i) x* [ s-lelanXn ’

P : +

(ii) w-LlnxsupX, (Xr'l)+ < (X*) .

Under the stronger assumption of order preserving discrete strong
convergence we can prove strong convergence of positive cones and

order intervals (cf£.[9; Lemma 2.4]):

LEMMA 2.3. Let (X,Hxn,RX) be a discrete cn-approximation with

order preserving discrete strong convergence. Then there holds

. . +
(i) s-Limy, Xn. = X ,
(ii) If u,v€X, usv and un,vnexn, n€N' <N, such that

s-limx u, = u, s-limX Vp =V then
s-LimX [un,vn] = [u,v].

Using the concept of prder preserving discrete convergence
developed so far, in the remaining part of this section we will
construct suitable discrete approximations of the spaces involved
in the definition of the system (1.1a),(1.1b) of quasi-variational
inequalities. We will assume that (H,HHn,RH) is a discrete c¢n-
-approximation of separable order complete real Hilbert lattices

with order preserving discrete strong convergence and that
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sets of Vn'
Although, in general we cannot expect order preserving discrete
strong convergence in (V,an,Rv), since I-ﬂv are not lattice
n

norms, we have (cf.[(9;Thm.3.1]):

H . . v Vv
THEOREM 2.4. Let (H,IIH_,R7) and ((V V), IV, V). (R ,RT)) be
given as above. Then the discrete weak convergence of sequences

(un)N,, unevn’ ne€N'<cN, is order preserving and LimV V; = V+.

3. Discrete strong convergence of maximum solutions
We will now construct approximating systems of quasi-variational
inequalities. To do so let AX H Vn+vr'1' neElN, 1£vsm, be linear

monotone operators satisfying

AY) +
<Anun,(un-cen) > 2 0, un»EVn (3.1)

for all c €R'. We assume A;i to be uniformly coercive in the

sense that there exists y ER+ such that for all A €R+

2

v
<ApUpsup> * Anunl}{n

2
n zYlunlvn, u €V, tsvsm, (3.2)

and we require stability of the sequences (AX)N, i.e.

sup |AaY] <=, 1svsm. (3.3)

neN
Moreover, we suppose MI\:, neEN, 1sv<m, to be order preserving
v ; R v m
concave operators M : H;!-» Hn satisfying Mn((vn n En) ) cv,n E s

v
Mn(O) 20 and

v m, _ .,V m
Mn(unﬂ:en) = Mn(un)+ren, u, € (Vn n En) (3.4)

. co s m
for all r€R+, where Ex;= (en,...,en) is the order unit in En'
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Then, given functions fl\_)l : (0,T] -»E;, neEN, 1svsm, with
bounded variation and initial data uge ﬂG}nE;)m,IIEN, functions
u, :[O,T]-*VE, un==(u;,...,u§) are sought satisfying
+.m Wy _ .0
un(t) E(VthEn) ’ (un)t(t) E(Vh) , € (0,T), un(O) =u, and the

system of quasi-variational inequalities

u) (t) S MY (u (t)) (3.5a)
v V.V v v AY] Vv v

<(up) () +AJu(£) ,vo-ul (t) > 2 (fn(t),vn—un(t))Hn (3.5b)

for all vr‘: éM;(un(t)), t€ (0,T), 1svsm.

Clearly, we want the system (3.5a),(3.5b) to approximate (1.1a),
(1.1b). To assure this we require discrete convergence of the

data, i.e.

s-lim f:(t) = £Y(t) uniformly in t€ [0,T], 1Svsm (3.6a)
s-lim _ uv? = u°. (3.6b)
Em n

: VoLV .
Concerning the operators A",A , 1<v<m, we assume consistency

of the pairs AY, (A;;)N and AY where D(aY) =

v
s (A )
D(AY) "lp(a’) N
= {fuevne* | aYuevnE}, D(A;:) defined correspondingly: For
each uev (resp.t1€D(Av)) there exists a sequence (un)N'
unevn, neEN (resp. un€D(A:), n € N} such that s-limV u =u

. Y _ aV 1 _ s v - aV
and s llmv. Anun A'u (resp. s 11mE u, u and s 11mE Anun A'u).

In particular, it follows from our assumptions and [13;1.2(6)]

that (A:)N converges discretely strongly to aY with respect to
1]

((v',v), (V' _,V ),(R' ,R'}), i.e. for u€V and sequences of

elements un€Vn, n €N, such that s-limV u, = uwe have

s—limv, A;un = aVu. Moreover, it follows from [11] that the
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pairs Av, (A;’l)N are a-pseudomonotone in the following sense:
For any sequence (un)N,, u, €V, neEN'cN, and u€V with

w—limV un
s--limV W, =u such that

"

u and all sequences (wn)N" w, €V, 1 €EN', with

. v
< -w > £
111;11€§L'1p Anun'un W 0

there holds

v c s v
<A u,u~-v> £ lim inf <Anun,un-vn>
néEN’

for all v€V and all sequences (Vn)N" vnEVn, n€&N', with
s—1imv Vp = V.

We further require the pairs (AX)N to converge discretely
weakly to 2V while the pairs Mv, (M:)N, 1s£vs$m, are supposed
to be both discretely weakly and strongly convergent with
respect to ((V',V) ’H(V;x’vn) R (RV' ,RV) as well as discretely

strongly convergent in (E,HEn,RE) satisfying additionally

M:(R;rmu) 2 RXMV(u), 1svsm (3.7)
v V.1 V. m

where Rn u= (Rnu ,...,Rnu ).

The main result of this paper is to prove the existence of
nonlinear contraction semigroups S(t) : (EH™ > E&HT,

Sn(t) : (E;)m-> (E;)m, neEN, t € R* = [0,2) which define in a
generalized sense the maximal sclutions to (1.1a),(1.1b) resp.
(3.5a),(3.5b) and to establish discrete strong convergence
Sn(t) +S{t) uniformly in t€ [0,T]. For this purpose let

gveintE+, gx\;EE;, neEN, 1$vem, }\€R+ and consider the

following system of stationary gquasi-variational inequalities
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WwWevnet, u¥ < M) (3.8a)

v

<aVu¥,vV-uV> 2 A-1(gv—uv,vv-uV)H, vV < MY(u) (3.8b)

resp. its discrete counterparts

v + v v
unEVnnEn, un < Mn(u.n) (3.9a)
V.YV vV Vv -1, v Vv _Vv v \Y v
»<Anun,vn u.,> 2 A (gn-un,vn-un)H , v, § Mn(pn). (3.9b)

n
We associate with (3.8a),(3.8b) resp. (3.%a),(3.9b) the
»2(V0E+)m

selection maps S : (vneH)® resp. S :(Vnr1E;)m->

+.m
+> 2 (Vn N Ep) which assign to ue€ (VN )™ resp. u € (Vn n E;)m
the set of solutions S(u) resp. Sn(un) of the system of

variational inequalities

w EVNE, w s M (u) (3.10a)

<Avwv,vv—uv> 2 A_1(gv—wv,vv-wv)H, AP Mv(u) (3.10Db)

resp. its discrete counterparts. Clearly, u€ uan+)m resp.
1ﬁ1€(Vhl1E;)m is a solution to (3.8a),(3.8b) resp. (3.%a),
(3.9b) iff u € s{u) resp. unesn(un).

It follows from the assumptions that (3.10a),(3.10b) and the
discrete counterparts are uniquely solvable, i.e. S and Sn are
single-valued.

The first step will be to prove that there exist maximal
solutions to (3.8a),(3.8b) resp. (3.9a),(3.9b). Based on our

assumptions on Ax there holds (cf.{1; Lemme 1])

LEMMA 3.1. For each v=1,...,m the operators A: V.’ neEN,

D(An)
are m-T-accretive.
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As an immediate consequence of Theorem 3.1 we have that the

equations
(I #AA))uy = g°, v=1,...,m (3.11)

admit unique solutions G;: €Ev, nE;, n€N. It follows from the
comparison theorem for variational inequalities that 1_1n =

= (ﬁ:l,...,ﬁf;) is a supersolution to (3.9a),(3.9b). On the

other hand, it is obvious that u, = (0,...,0) is a subsolution.
Since the selection map S, is increasing, the Knaster-
-Kantorovich-Birkhoff fixed point theorem (cf.[12},[15]) implies
that the solution set of (3.9a),(3.9b) is nonvoid and possesses

a minimum and a maximum element.

Next, we define the closed, convex sets

_ +.m V.V _V_ v
Kn(l,gn) = {unE (VnnEn) | <A u,v -u > 2 (3.12)
-1, V. Vv v Vv \)r
A (gn un,vn un)Hn' vnEVn,

V_ .V Vv v <
vnSun, unSMn(un), 1$vsm}

which can be considered as the sets of subsolutions to (3.9a),

{3.9b}. To be more precise, we have

THEOREM 3.2. The maximum solution u, € (Vn n E;)m of (3.9a),

(3.9b) is the maximum element Jg(gn) of the set Kn(l.'gn), neEN.

in (3.9b) it is clear that unexn(A:gn) .

On the other hand, if Yo € Kn()\;gn) then we may take v: =

Proof. Choosing Vn su,

= o V_ VYV + +
= uy (wn U, cen) , 1svsm, c€R in (3.12) and we get

v +
ncen) )H s 0

vV .V v
(wn un,(wn u a

whence W s L since c€ R+ can be chosen arbitrarily.
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We will now show that the system (3.7a),(3.7b) possesses a
maximum solution which is the maximum element J;\(g) of the
set K(A;g) defined in the same way as the sets Kn()\;gn) . For

this purpose we first prove

THEOREM 3.3. Suppose that s-lim g, =g, 1£vsm, and ue (vne")™,
+ . v v

u, € (Vn nEn)m, n €N, such that s—l:.mV u, =u, 1£vEm. Then the

sequence (Sn(un”N is discretely compact and s—l.1.mVl_n Sn(un) =

= S{u).

Proof. In view of (3.2) it follows that (wn)N, W

n=Sn(un), neEN,

is bounded and hence, by [11;1.(7}] there exist a w€V and a
subsequence N' clN such that w—limV W, =W (REN'). Let K(u) =

= {vev® | v¥ ng(u) , 1gv<m} and Kn(un) defined analogously. Since
s—limV M:(un) =Mv(u) ¢ 18vZm, we have Lim Kn(un) = K{u) and thus
w € K(u) because of wn€Kn(un) . On the other hand, for each

v € K(u) there exists (vn)IN’ vnEKn(un) , hEN, with s-1lim Vo T V.
Moreover, there exists (zn)lN' zneKn(un), n € N, such that
s-limv z: = wv, 1£v<Em. Then
lim <a¥wY,wv-2z¥Y> = 0,
neN’ nn’'n “n
and the a-pseudomonotonicity of AY, (A;I’)N gives
<AVwY,wV-vY> < lim inf <A;)’wx,w;’l—v;’l> (3.13)

neN!

s 27! (g¥V-w",wY~vV) gr  VEK{u).

Again, by the comparison theorem for variational inequalities Gn
is a supersolution to (3.10a),(3.10b} and hence, using the T-

=1 we conclude that 0 swxg

-contractiveness of (In+xA:)
£ ||9;;|]E e, 1 £vsm. Taking advantage of Lemma 2.3(ii) we then
n

get 0w’ g | gv”Ee whence w'evnE®. Since w EK(u) and w satisfies






there exists (vn)N’ vnEKn()\:gn), n €N, such that s-lim

Vm

v =
n
= Jx(g) and we may again use (3.2) to deduce that then

s-limVm Ji(gn) = Jx(g). Now, by Theorem 3.2 we have Sn(J;(gn)) =

= 3} (g) while Theorem 3.3 tells us s-lim @ig ) = st (@)

v Sn
whence Jk(g) =S(Jl(g)). Oviously, any solution to (3.8a},(3.8b)

is an element of K(A;g) and thus we have shown

COROLLARY 3.5. The maximum element Jl(g) of K(A;g) is the

maximum solution of the system of quasi-variational inequalities

(3.8a),(3.8b).

A and JI);, n €N, the operators

Now, for A €R' let us denote by J
which assign to g € (int E+)m resp. gn(E(E;)m the maximum elements

Jl(g) of K(A;g) resp. Jz(gn) of Kn(A;gn). Our first result is

THEOREM 3.6. For each n€N (JQ)AER+ is a family of T-contractive

resolvent operators JQ==(E;)m-+(E;)m.

Proof. Using standard penalization techniques for quasi-variational
A

inequalities we will show that Jn is the limit of a sequence of
T-contractive resolvent operators (J;'E)€€R+. We define

. m m : v v <y < . e
An’ (VNE)" +E by unED(An) iff unED(An), 1€v<m, An is m-T
-accretive, since so are the operators A:. We further define

; : €., oM m + €. 4V =1 V_ v, i+

penalization operators Pn tE"+E, e€R , by (Pnun) =g (un Mn(un)) .
1 £v<m. Since the operators M: commute with translations by a
positive constant (cf.(3.4)) and are order preserving, it is easily
shown that they are T-contractive (cf. [6; Prop. 2]) and then we
may use [1; Lemme 2] to deduce that the penalization ocperators

1

€ are T-accretive and Lipschitzian with Lipschitz constant 2¢ '.

n

P

As a sum of an m-T-accretive and a T-accretive Lipschitzian






analogously choose gge (E;)m, n €[N, such that g;l)’e-»g;’l (e »0)
in E, and s-limE gX'E = gv,e' 1£v<m. Due to Ml\; +M" and the fact that

the discrete strong convergence in (E,HEn,RE) is order preserving

we have PE »p%, Consequently, the pair c® ,(C8 )
n . D‘Av)m D(Av)m N
is consistent and since C can be easily
p(a")™
shown to be m-T-accretive, we may apply [13;1.3(3)] to deduce
that s-1lim _ JA7¢ (gS) =u® where u® =3*"(g%) = (£+ac%) "¢, Then
E

(uE)€€R+ is a monotonely decreasing family of elements in an
M-normed Banach lattice with order unit and hence, there exists
11€(E+)m such that u®-u (e >0) in E". Using the uniformity of

discrete strong convergence, for a suitably chosen null sequence

€ €h A, € sn
(e )N' enER , N€N, we have s-l:.mEm u "t o=u, u -J (gn ’
while Theorem 3.4 yieids w—limVm uin = Jk(g) whence u =JA(g).

It follows from Theorems 3.6 and 3.7 that the operators C and Chr

n €N, defined by their graphs

u M AT g-aM g [ ge D™,
A€ER

0
il

cn

g AT g mah g,)) g€ BT
AR

+

are accretive and cl D(C)cR(I+AC) =E', cl D(C )SR(I +AC)) = E],

AEIR+. Then the Crandall-Liggett generation theorem [5; Thm.III]
implies that ~-C and ~C, generate nonlinear centraction semigroups

+ Hym

s(t) : (EN™= (H™ resp. Sn(t) : (E n (E+)m, t €R*, which are the

solution operators to the evolution equations

u_ +C 3£, ul(0) u® € c1D(C) (3.14a)

t
(un)t + cnafn. un(O)

o)
unech(Cn) . (3.14Db)

Following [1; Thm.2] it can be shown that the solution to



(3.14a) resp. (3.14b) represents the maximum integral solution

to (1.1a),(1.1b) resp. (3.5a),(3.5b). Since Theorem 3.7 assures
discrete strong convergence of the generator resolvents, we

have Sn(t)~>S(t) uniformly on bounded subintervals of ﬁ+ and

thus discrete strong convergence of the maximum integral solutions

for appropriately chosen initial data.

A final remark should be due to the solution of the approximating
systems (3.5a),(3.5b). Discretizing in time by the backward Eulex
scheme, at any time-step we have to sclve a stationary system

of the form (3.9a),(3.9b). Starting from the supersolution
u o)
Un

uéi) =Sn(u£1_1)), iz1 (c£.137,[8]1) to generate a sequence

(uél))iEN of iterates converging monotonely decreasingly to the

*un we can use Bensoussan-Goursat-Lions' iterative scheme

maximum solution of (3.9a),{(3.%9b). Thus, for each i €N we must

solve variational inequalities of type
max[ (I +A2Y) (a!P) Vg, )V )y 0, 15vsm

which in the concrete situation of stochastic switching control
and approximation by finite difference schemes of positive type

can be efficiently done using the multigrid technigues developed

in [10].
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