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1. INTRODUCTION

IN THIS paper we are concerned with a constructive method for solving the parabolic
Hamilton-Jacobi-Bellman (HJB-)equation in the following abstract setting.

Let H be a separable order complete real Hilbert lattice and let V be a separable reflexive
Banach space with dual V' such that V< H & V' each space being dense and continuously
embedded in the following one. Let us further assume that V is a sublattice of H and let us
denote by V* the order dual of V. Finally, let E by an M-normed Banach lattice with order
unit e such that E is a closed subspace and sublattice of H with continuous injection £ & H.
Then, given linear operators #*:V— V' v=1, ..., m, and elements f* € int E*, Wwevn
E*, a function u: [0, T]— V is sought satisfying u() € VN E™, u(r) V', 'u(r) -
freve e, T),v=1,..., m, and the nonlinear evolution equation

U, + y\=/1 (d*u —f) =0, t€(0,7) (1.1a)

u(0) = u°. (1.1b)

In case H = L*Q), Q being a bounded domain in Euclidean space R?, V = H}(Q), V' =
H™Y(Q), E=C(Q) resp. E=L*Q) and «" being linear second order uniformly elliptic
operators, (1.1a), (1.1b) reduces to the parabolic HIB-equation of dynamic programming
characterizing the infimum of the cost function associated to an optimally controlled diffusion
process (cf. [6, 12]). The parabolic HIB-equation has been intensively studied in recent years
(cf., e.g. [11, 17, 18]) mainly applying techniques previously used in the time-independent
case. A semigroup approach using accretive operator methods has been given by Pliska [22].
Under suitable assumptions on the data of the problem, the Bellman operator

Bu =\ ('u 7
v=1

can be shown to be accretive. Hence, if additionally R(I + A%) = C(Q), A € R*, the operator
—~% generates a nonlinear contraction semigroup S(), t € R* = [0, %), on C(Q) which is
called the Bellman semigroup. Moreover, denoting by T*(f), t € R*, v =1, . . ., m, the linear
semigroups generated by —®B* where B*u = A"u — f*, Pliska [23] (using an idea due to Evans



[10]) has also proved that

S() = lim (/\1 T”(t/n)u“) (1.2)
the convergence being uniform in C(L2). Using methods not based on accretiveness, that result
has been established first by Nisio [21] (in the sense of pointwise convergence) and therefore,
(1.2) is usually referred to as the Nisio formula.

In the case E = L*(2) a generalized version of the parabolic HIB-equation involving
nonlinear operators &” has been studied by Catté [8], (cf. also [5]). Employing an idea due
to Belbas [2, 3] she has also used a nonlinear semigroup approach by characterizing the
generator implicitly via its resolvent which can be defined as the maximum solution of an
associated system of variational inequalities.

As far as constructive methods are concerned, in case of the elliptic HIB-equation some
numerical schemes have been investigated by Lions and Mercier [20] while in the parabolic
case a Trotter-like algorithm based on the Nisio formula (1.2) has been proposed by Lions
in [19].

The purpose of this paper is to give an approximate solution of the abstract HIB-equation
(1.1a), (1.1b) in the framework of discrete approximations of ordered Banach spaces which
will be developed in the next section. Using this concept and adopting techniques from [8]
we will consider a sequence of approximating HJIB-equations and we will establish the
convergence of the associated Bellman semigroups as well as a discrete analogue of the Nisio
formula.

2. DISCRETE APPROXIMATIONS OF ORDERED BANACH SPACES

Let X and X, n €N, be real Banach spaces with norms | - |x and ||| x, respectively and let
(R¥ = (R¥)n be a sequence of (not necessarily linear) restriction operators R;: X — X,. Then
the triple (X, ILX,, R¥) is called a discrete cn-approximation (approximation with convergent
norms) if there holds:

(i) [[R¥(au + Bv) — aR¥u - BR¥v|x, >0, u,vEX, a PER,;
(i) IRYullx, — llulx, u€ X; 2.1
(iii) sup [R¥ulx, <=, u€X.
Based upon this definition. the discrete strong convergence of a sequence (u,)n, of elements
u, € X,, n € N’ CN, to an element u € X is defined by
s — limyu, = u < |u, — R¥ullx,— 0.
In the following we will also require an additional condition, namely
(iv) if u” € X,n € N’ C N, and u € X such that u™ — yin X
then s-limy R¥u™ = u. (2.1)

The concept of discrete strong convergence in discrete cn-approximations is well-known and
has proven to be a useful tool in developing constructive methods for solving operator
equations (cf., e.g., [14, 25, 26]). In particular, conditions (2.1) (i), (ii) and (iii) ensure the



uniqueness of the limit of a discretely strongly convergent sequence as well as the linearity
of discrete strong convergence while (2.1) (iv) exhibits a certain uniformity of that convergence
(for further properties see the papers cited above).

Denoting by X', X,, n€N, the duals of X, X,, the triple ((X',X), II(X,.X,).
(RX', RY)) is called a discrete dual cn-approximation if there holds (cf. [14]):

(i) (X,I1X,, RY), (X', T1X,, RY) are discrete cn-approximations;
(ii) if u,€X,, fr€X,, n€N'CN, and u€ X, f€ X' such that s — limyu, =u, s -
limX’fn =fthen (fn’ url>_) <f’ u>'

For sequences (f,)n', [« € X5, n € N’ C N, we may also introduce a discrete weak convergence
as follows.

The sequence (f,)n- is said to converge discretely weakly to an f € X' (w-limy f, = f) if for
all sequences (u,)n', U, € X,, such that s-limyu, = u for some u € X there holds (f,. u.)—
(f, w).

Moreover, in case of reflexive Banach spaces we can analogously define a discrete weak
convergence of sequences (u,)n', U, € X,. n €N’ CN, to an element u € X. It is easy to
verify the uniqueness of the limit of discretely weakly convergent sequences as well as the fact
that discretely weakly convergent sequences are bounded and that discrete strong implies
discrete weak convergence. If we additionally assume X to be separable we have the following
approximation property, compactness result and equivalent characterization of discrete strong
convergence (cf. [14, 25]).

THEOREM 2.1. Let ((X', X), (X, X,). (R¥, R¥)) be a discrete dual cn-approximation of
reflexive Banach spaces X, X", n € N, which X being separable. Then the following hold.

(i) For each u € X (resp. f€ X') there exists a sequence of elements u, € X, (resp. f, €
X.), n € N, such that w-limyu, = u (resp. w-limy- f, = f).

(i) If (un)n (resp. (fa)n-) is a bounded sequence of elements u, € X, (resp. f, €X;),
n € N" C N, then there exist a subsequence N C N’ and an element u € X (resp. f € X') such
that w-lim,u, = u (n € N") (resp. w-limy f, = f(n € N")).

(iii) Let u, € X,, (resp. f, €X,). n€EN'CN. and u € X (resp. f€ X’). Then s-limyu, =
u (resp. s-limy f, = f) if and only if for all sequences of elements f, € X, (resp. u, € X,).
n€N', and f€ X' (resp. u € X) the discrete weak convergence w-limy f, = f (resp. w-
limyu, = u) yields (f,, u,,)— (f. u).

For subsets G, C X,,. n € N. we introduce the following discrete limit sets:

s-Liminfx G, = {u € X|I(u)n . un € X, n € N s-limyu, =u},
s-LimsupxG, =t € X|3. (u)n . U, €EX,.n EN' CN:s-limyu, =u}

Obviously, in general s-Lim infy G, C s-Lim supy G, , but if equality holds we will denote that
limit set by s-LimyG,. We can analogously define the limit sets w-LiminfyG,, w-
Lim supxy G, and w-LimyG, . It is clear that s-Lim infxG,, C w-Lim supx G, . If both limit sets
coincide, we will denote the common limit set by LimyG,,.

Now, if (X, ILX,, R¥) is a discrete cn-approximation of Banach spaces and vector lattices
X, X,,n € N, the discrete strong convergence will be called order preserving if for all sequences



(undn> U, € X,,, n €N’ CN, and elements u € X there holds

s-limyu, = u = s-limyu, =u". (2.2)

Remark 2.2. It follows from the linearity of discrete strong convergence and the relations

uw=ut—uful=ut +uTuNv=u+ (v —-uw) . uNv=u— (u- ) thatif (2.2) s satisfied
we have discrete strong convergence of all basic lattice operations.

We can give a necessary condition for the discrete strong convergence to be order preserving
in terms of the restriction operators Ry which in case of Banach lattices is also a sufficient
one.

LEMMA 2.3. If the discrete strong convergence in a discrete cn-approximation (X, ILX, . RY)
is order preserving then
IRXu* = (R¥u)*|x, >0, u€EX. (2.3)
If X,,, n € N, are Banach lattices then also the converse holds true.
Proof. Taking u, = R¥u in (2.2) we immediately get the necessity of (2.3). Conversely. if
(2.3) is satisfied and s-limyu, = u we have

lun = Ry u” |, = lluy = (Riu)”

x, + [RYu™ = (Ryu) "|x, (2.4)

But|u; —(RXu)"| = |u, —RXu| whence |u; —(RXu)"|x, = |lu, —RYullx, where we have used
the assumption that |- |ly, is a lattice norm. It follows that the right-hand side in (2.4) converges
to zero which implies s-limyu, =u”

It is easy to show that in case of order preserving discrete strong convergence we have
strong convergence of the positive cones and of order intervals.

LEMMA 2.4. Let (X, T1X, . RY) be a discrete cn-approximation with order preserving discrete
strong convergence. Then there holds:

(i) s-Limy X, =X".
(i) if u, € X,,. v, € X, with u, <v,, n€N' CN, and u € X, v € X such that s-limyu, =
u, s-limyv, = v then

s-Limy[u,.v,] = [u, v].

Proof. (i) If u€ X* set u, =(RXu)”. Then u, € X, and it follows from (2.3) that s-
limyu, = u. Conversely, suppose that u, € X, ., n € N’ CN, and « € X such that s-limyu, =
u. Then by (2.2) we get 0 = s-limyu, = u~ whence u € X"

(i) If w, € [u,, v,], n€ N CN. and w € X such that s-limyw, = w then w, —u, €X, ,
v. — W, € X, and we may apply part (i) of the proof to conclude w € [u, v]. Conversely, if
w € [u,v] choose w,=(R¥w\/u,)/\v,, n€N. Then obviously w,€E [u,,v,] and
s-limyw, = w.

In the case of a discrete dual cn-approximation of reflexive Banach spaces and vector lattices



X, X,, we can introduce the concept of order preserving discrete weak convergence (replace
s-limy by w-limy in (2.2)). In view of theorem 2.1(i) it is easy to see that, if X is separable,
the analogue of lemma 2.4 holds true.

Theorem 2.1(iii) indicates that there is a duality between discrete strong and discrete weak
convergence. The following result shows that there is also a duality relation concerning the
notation of order preserving discrete convergence.

THEOREM 2.5. Let ((X'X), TI(X,, X,,), (R¥, R¥)) be a discrete dual cn-approximation of
reflexive Banach spaces and vector lattices X, X,,. n € N, with X being separable. Then there
holds:

(i) if the discrete strong (resp. weak) convergence of sequences (u,)n, U € Xn, nE
N’ C N, is order preserving then so is the discrete weak (resp. strong) convergence of sequences
(o, HEXS . nEN;

(ii) if X, X, are Banach lattices then also the converse of the statements in (i) hold true.

Proof. Let f, €X;; , n€N'CN, and f&€ X* such that w-limy f, = f (resp. s-limy f, = f).
According to theorem 2.1(iii) we have to show that for any sequence (u,)~ ., u, € X,,, n €
N’, such that s-limyu, = u (resp. w-limyu, = u) for some u € X we have {f;,u,)— {(f . u).
Since, by assumption, the discrete strong (resp. weak) convergence of (u, ) is order preserving,
we may assume u, € X; and u € X”. But

(frnsun) =sup{{fn,v)|0 =S v, = u,}, u, € X7

and s-Limx[0, u,] = [0, u] (resp. w-Limx[0. u,] = [0, u]) because of lemma 2.4 (resp. its
analogue) which gives the assertion. If X, X, are Banach lattices we have X* = X', X* =
X, and we can deduce the converse of the statements following the same pattern of proof.

As a by-product of the preceding results we get the following corollary.

COROLLARY 2.6. Under the hypothesis of theorem 2.5 assume the discrete strong (resp. weak)
convergence of sequences (u,)~. u, € X,, n €N’ CN, being order preserving. Then, if
uEX, vEX with u<v (resp. fEX', g€ X' with f<g) and if u, € X,, v, € X, (resp.
fmE€X,, 8. €X,), nEN, such that s-limyw, = u. s-imyv,=v (resp. s-limyf, = f. s-
limy g, = g) we also have u, <uv, (resp. f, <g,) for at least a final piece Ny ={n € N|n > n,
for some ng € N}.

Proof. Assume v, — u, € int £, for a subsequence N’ C N. Then we can find f, €(X;)".
[ fellx, =1, n €N, such that (f,, v, — u,) =0. Theorem 2.1(ii) gives us the existence of
N"CN" and f€ X’ such that w-limy f, = f (n €N") whence f€ (X')* in view of theorem
2.5(i). On the other hand, we have (f,. v, — u,)— (f, v — u) and thus (f, v — u) = 0 contra-
dicting v — u € int E”. The statement in parentheses can be proved analogously.

3. DISCRETE APPROXIMATION OF THE HJB-EQUATION

With regard to the situation considered in the introduction let us assume that (H, IT1H,, RY)
is a discrete cn-approximation of separable order complete real Hilbert lattices with order
preserving discrete strong convergence and let ((V', V), I1(V,, V,)), (R", RY)) be a discrete



dual cn-approximation of reflexive, separable real Banach spaces such that
VuaHOS V', V, > H, < V,, each space being dense and compactly embedded in the following
one. Moreover, we assume the embeddings V, < H, being discretely compact in the sense
that given a bounded sequence (u,)n, u. € V,, n €N, for each subsequence (u,)~ ., N' C
CN, there exist another subsequence N”" C N’ and an u € H such that s-limpu, = u (n €
N"). In particular, by the discrete compactness of the embeddings we have that w-limyu, =
u implies s-limyu, = u. We further suppose that V. V, are sublattices of H, H,. the positive
cones V™, V; having nonvoid interior, the norms on V,, satisfying

IVnw Uy € Vn (31)

ezt = e

and the restriction operators R}, fulfilling (2.3). Finally. let (E.IIE,, RE) be a discrete cn-
approximation of M-normed Banach lattices E. E, with order units e, e, (the order relations
induced by those on H, H,) such that the discrete strong convergence is order preserving with
s-limge, = e. We suppose E, E, being continuously embedded in H., H, with discrete continuous
embeddings E,— H,, i.e. s-limgu, = u gives s-limyu, = u. and we assume R} (VN E)C
V.NE, RECVNE)CV,NE,. neEN, VNE" and V,NE, having nonvoid interior. We
further suppose (4, — e,)” € V, for each u, € V,,, the mapping u,— (1, — e,)” being bounded
on bounded sets of V,. Since the norms |||y, are not assumed to be lattice norms we cannot
apply lemma 2.2 to deduce that the discrete strong convergence in (V,IIV,.R") is order
preserving. Nevertheless, we have:

THEOREM 3.1. Let V, H and V,. H,. n €N, be given as above. Then the discrete weak
convergence of sequences (u,)n . U, € V,, n € N' C N, is order preserving and there holds
LimyV,; =V™.

Proof. Suppose that w-limyu, = u for some u € V. Then (u,)s is bounded and so is
(v} )n because of (3.1). Hence, by theorem 2.1(ii) there exists w € V such that w-limyu; =
w for at least a subsequence N” C N'. But then the discrete compactness of the embeddings
V,< H, implies s-limyu; = w. On the other hand. we also have s-limyu, =« and thus
s-limyu} = u” whence w=u". It follows from the above that w-Limsup, V; C V*. Since
V*+ C s-Liminf, V; by (2.3). we get Lim; V; = V™.

The following result will be needed later on.

LEmMMA 3.2. For u€V and u,€V,. n€N. let K(u)={vE€ Vv =u}, K,(u,)={v, E
V.|v. = u,} and suppose that w-limyu, = . Then Limy K, (u,) = K(u).

Proof. The preceding theorem immediately gives w-Lim supy K, (11,) C K(u). In order to
show K(u) C s-Lim infy-K,, (1,) let us first assume that v € int K(u). Setting v, = R) v we have
s-limy v, = v and thus s-limgyv, = v. Since also s-limyu, = u, corollary 2.6 tells us that v, <
u, for at least a final piece N,C N. If v is not an interior point of K(u) we can find a
sequence v\ € int K(u). m € N. such that v — v in V. For each m €N there exists
(08w, 0™ € K, (u,) such that s-limyo!™ = v and the uniformity of discrete strong con-
vergence implies s-limy o) = v.

We will now construct a discrete approximation of the abstract HIB-equation (1.1a), (1.1b).



For this purpose let A;:V,—V,, n€N, v=1,...,m, be linear monotone operators
satisfying

(A uy, (up — ce,) V20,  u, €V, (3.2)

for all c € R™ and being coercive in the sense that there exists ¥, € R™ such that for all v =
1,...,m and all ¥’ € V, there holds

Ol (™, w™ = u) + ™) = o (3.3)

for all sequences (1™ ), u™ € V,,, m €N, with [u™lly, — > (m € N). We further assume
that the sequences (})n are stable, i.e.

sup ||l < =, v=1,...,.m (3.4)
n€N

and discretely uniformly coercive in the sense that there is a y € R™ such that for all v =
1,...,m, and all bounded sequences (u), ) €V, ,nEN, the analogue of (3.3) holds true
for all sequences (u,)n, U, € V,,, n €N, with [u,ly, > <.

Then, given elements f; €intE, , v=1,....m, and u} €V, N E, , we are looking for
functions u,: [0, T]— V, satisfying u, (1) € V. NE; ., (u,) (1) EV,, dhu,(t) ~frEVE, 1t E
(0,T7), v=1,...,m, and the HJB-equations

(un) + \? (dpu, — ) =0, te(0,7) (3.5a)

u, (0) = ul. (3.5b)

In order to guarantee that (3.5a). (3.5b) defines an approximation of {1.1a), (1.1b) we will
assume

s-limg £l = f*, v=1,....m, s-limgul = u® (3.6)

Moreover, denoting by A". A} the restrictions of the graphs of «*, o, to E resp. E, (i.e.
ue DAY and w=A'uifu€ VN E and w € E), we assume that foreach v=1,....m the
operators A*, o, as well as A"y ~g-, AlLlv ~E; are consistent in the following sense.

For each u € V (resp. u € VN E7) there exists a sequence (u,)x of elements u, € V, (resp.
u, € V, N E;) such that s-limyu,=u and s-limy-dyu, = A*u (resp. s-limgu, = u and
s-limgAju, = A'u). The consistency of «{*, o, and the stability of (4, )s implies &, > 4", i.e.
for any sequence (u,)~ ., u, € V,. n €N'CN, and u € V such that s-limyu, = u we have
s-limy slyu, =sd*u (cf. {25]). From that convergence we may also deduce the boundedness
of s*. Moreover, it follows from [16] that the pair s{*, &, is a-pseudomonotone in the following
sense:
for any sequence (u,). . u, € V,. n€N' CN, and u € V with w-limyu, = u such that

limsup(Aju,, u, —w,)=0
neN’

for all sequences (w, ). w, € V,,. with s-limyw, = u there holds

(A¥u,u—v)= liminf(&ﬁ:u,,, U, — v,)
nenN’

for all v € V and all sequences (v,)y'. v, € V,, with s-limyv, = v. Using these results we will



now show that we can assign to (1.1a), (1.1b) and (3.5a), (3.5b) nonlinear contraction
semigroups S(t): E*— E~, tER", resp. S,(t): E; —»E; , t€R™, n €N, which are in a
generalized sense the solution operators of the HIB-equations and therefore will be called
Bellman semigroups. Moreover, we will prove convergence of these semigroups, i.e.
s-limg S, (1)ul = S(1)u°, t € R*. To this end, given elements g € E*, g. € E!, neN, and
A € R* we consider the time-independent equations

u+iA(Au—-f")=g, ueVnE", v=1,....m (3.7)

and their discrete counterparts
u, + A(Aju, — 1) = ga, u, €V, NE,;, v=1,...,m. (3.8)
THEOREM 3.3. For each v=1,...,m the operators B" = A"~ f” and B}, =A) — f} are m-

T-accretive. Moreover, if s-limgg, = g then s-limg (I, +AB) 'g, = (I + AB") 'g.
g 8

Proof. Using the assumptions on &, it follows from [1, lemma 1] that the operators A} are
m-T-accretive and then so are the operators B;, . In particular, ifu), €V, N E, 1is the unique
solution of (3.8) we have

0=u;=(|f

|E,) €n (3.9)

To prove R(({ +AB”)|ly~g-) = E~ we note that due to (3.4) and the consistency of
A"lvng, AXlv,nE; We have

R((I + AB")|vrg-) Cs-LiminfzR((1, + AB?)

E, T ”gn

V,,ﬂE,T) =gs-Lim inf EE; =FE".

Conversely, let g € E*. Then there exists a sequence (g,)n, g€, € E;, n €N, such that s-
limgg, = g. Let us denote by u, the corresponding solutions of (3.8). Using the discrete
uniform coerciveness of (&4, )x it is easy to show that (u}) is bounded, and hence, there
exists an u” € V such that w-limyu;, =u” for at least a subsequence N’ C N. Now, let w, €

V., n € N', such that s-limyw, = u”. Since s-limyu} =u® it follows that lim (s u’. u) —w,)
neyN’

=0 . Then in view of the a-pseudomonotonicity of &”, %} we get

(A*u’, u* — v) = lim i\nf(sdi;u;'. uy—v)=(f"+A " (g-uwu-v)y
neN’
for each v € V and any sequence (v,)n . U, € V,,, With s-limyv, = v whence u” + AB'u"=g.
Using again s-limpu, = 1" and the discrete strong convergence of order intervals in
(H,TH,, R") (cf. lemma 2.3(ii)). it follows from (3.9) that 0 = u” = (|| f*|z + llgllc)e. Hence
uw€VNE", B'u”€ E and thus g ER((/ + AB")|yng-) . Taking into account the consistency
of A¥lyne-, A%slv,ne-, and the m-T-accretiveness of B, we are now in a position to apply
[25, theorem 1.3(3)] which gives us the unique solvability of (3.7), the discrete strong
convergence of the resolvents (/, + AB:)™! — (I + AB*)~! and the T-accretiveness of B”.
As an immediate consequence of the preceding results we have:

CoRrOLLARY 3.4. The operators —B”, — B}, generate strongly continuous linear contraction
semigroups T¥(t): E*—>E*, t€R", and T,(1): E;—E;, t€R*, such that
s-limg T2(H)u, = T*(t)u,t € R*. for any sequence (u,)n, u, € E; and any u € E* with s-
-imgu, = u, the convergence being uniform on bounded subintervals of R*.



With equations (3.7), (3.8) we associate the closed. convex sets
K'(hg)=ueVNE (Buu-v)sA(g-uu—-v)gv V.o =u} (3.10)
Kn(h;gn) ={u, €V, 0 E; Bty tty — 0y)
=ANgn = UnsUn— V), Un EV, 0 Suph (3.11)

It is easy to show that K} (4;g,) is the set of positive subsolutions of (3.8).

LEMMA 3.5. Letu;, €V, N E, be the unique solution of (3.8). Thenu,, is the maximum element
of the set K},(A;g,).

Proof. Obviously, uy €K} (4; g,) . Then, if w, €K} (A;g,) and c € R™ we have
(Apu, —f;’ (Wp —up = Cen)+>= At (gn — Uy, (W,, —u, - Cer1)+)H,, (3.12)
(Ayur ~fh (wy—up—ce, )" YEA (g —wp. (w, —uy —ce,) )y,  (3.13)

where we have chosen v, = u} —(w, — u; — ce,)” in (3.11). Subtracting (3.12) from (3.13)
and using (3.2) we get

(wo —uy, (wy —ujf —ce,) )y, =0. (3.14)

Since (3.14) holds true for all c € R* it follows that w, = u}.

In view of 4”0 =0, 4,0 =0 we have 0 € K"(A;g). 0&€ K¥(A: g, ). Moreover, due to the
continuity of &¢”, & and since f*, f are assumed to be interior points of E* resp. E; . it
follows that K”(4; g) and K} (4; g,) have nonvoid interior. We can then show:

THEOREM 3.6. Let K"(4:g), K}(A;g,) be the sets given by (3.10). (3.11). Then, if s-
limgg, = g there holds

LimyKj(A: g,) = K*(A; 8).

Proof. First, let us assume that u € int K"(4; g). Inviewof R, (VN E)C V, N E, and (2.3)
there exists a sequence (u,). u, €V, NE,; . such that s-limyu,=u. Setting z,=
u, + ARy u, the convergence B — B> gives s-limy'. z,=u+ A%B*u and consequently.
corollary 2.6 implies z, <g,. i.e. u, € K, (4:g,). for at least a final piece N;CN. On the
other hand, if u € K*(4; g) is not an interior point there exists a sequence (u'™)y, u" € int
K*(4; g), m € N, such that 4" — u in V, and we may proceed as in the proof of lemma 3.2.
Conversely, let u, € K} (4; g,). n € N' CN. and u € V such that w-limyu, = u. In order to
prove u € K"(4; g) we remark that, given v € V. v = u, by lemma 3.2 we can find sequences
Wanes (Vn s Wn =, v, = u,.n €N’ such that s-limyw, = u and s-limy, v, = v. Then we
have '

lim sup (Ayuy, 1y — wy) =0
nes’

and hence, the a-pseudomonotonicity of §”, «), implies

(A'u,u —v)=liminf{(AdLu,, u, — v,).
nenN’



On the other hand

limiup(&ﬁ;u,,,un ~v)=S(fr+ig-u,u-v)y
neN'’

whence (B'u,u—v)=A'(g—u,u—v)y. Finally, by lemma 3.4 0=u,=(|fle, +
llgxllz,) €n, and as in the proof of theorem 3.3 this gives us 0= u = ([f*| + llgle)e. i.e. u €
VN E" and thus u € K*(4;g).

If (u;)n is a sequence of elements u, € K;;(A; g,) we may again use the discrete uniform
coerciveness of (4} ) to deduce that (u, )n is bounded and hence, there is an 4" € V such that
w-limyu? =u” for at least a subsequence N’ C N. Theorem 3.6 tells us then that u* € K*(A: g).
Denoting by J**(g), J>*(g,) the maximum elements of K*(4:g). K%(A; g,) let us consider the
case u; =Ji"(g,) . Since the discrete weak convergence is order preserving, we must have
u*=J**(g). On the other hand, by lemma 3.5 we already know that J%"(g,) = (I, + A
B?) lg, while theorem 3.3 says s-limg(l, + AB.) 'g,=(+ AB")"'g. Since then
s-limyJi¥(g,) =J**(g) and s-limyJi¥(g,) = (I + AB*) 'g, it follows that J**(g) = (/+
AB*)"'g, i.e. we may also consider K”(4; g) as the set of positive subsolutions of (3.7). We
now introduce the sets

K(h:8)= (M K'(A:8),  K,(4:g.) = Ki(%:8,).
v=1 v=1
Obviously, these sets are closed and convex. Since K*(A;g) and K,/(4;g,) have zero as a
common element and have nonvoid interior, the same holds true for K(A;g) and
K, (A;g,). Hence, we may use the preceding theorem to show:

CoROLLARY 3.7. Under the hypotheses of theorem 3.6 there holds
Limy K, (4;8,) = K(4; 8).

Denoting by J*(g) and J%(g,) the maximum elements of K(4; g) resp. K,,(A: g,) it follows by
the same arguments as above that w-LimyJi(g,) = J*(g) at least for a subsequence N’ C
N. Moreover, if u, ED(A)) , v=1..... m, is a solution of

m

Uy, + AN (Asty — fr) = gn (3.15)
v=1

we can prove as in lemma 3.5 that K, (4; g,) is the set of positive subsolutions of (3.15) with
u, = Ji(g,) which shows that K, (4; g,) is closely related to the HIB-equations (3.5a), (3.5b).
By combining techniques used in [1, 8, 20] we will now show:

THEOREM 3.8. Let J* resp. J; be the operators which assign to g € E* resp. g, €E, the
maximum elements of K(A;g) resp. K, (A;g.). Then (J*),cr- resp. (J})ieg- are families of
T-contractive resolvent operators Jt: E*— E™ resp. Ji: E;-—E; . Moreover, if s-limgg, =
g then s-limgJA (g,) = J*(g).

Proof. Using a well-known penalization technique. for each n € N we will first approximate

J4(g,) by a family of T-contractive resolvent operators acting on E™ = Il E and then we

v=1



will identify the discrete strong limit of the sequence of these families as J*(g). For this purpose
we define an operator B: (VN EY"— E™ by u € D(B) and w = Buiff u*€ D(B") and w" =
B'uw e E, v=1,...,m. Since the operators B” are m-T-accretive, the same holds true
for B. We further introduce penalization operators P¢: E™— E™ &€ R™, by Pu =
(et (uw” = u*)*) ==, where u™*! = u'. The operators P can be shown to be T-accretive
and Lipschitzian with Lipschitz constant 2¢7! (cf. [8, lemma 2]). Consequently, as the sum of
an m-T-accretive and a T-accretive Lipschitzian operator C* = B + Pfis m-T-accretive. Finally,
foreach v=1,...,m we assume (g"¢) .cg+ t0 be a monotone decreasing family of elements
g”¢€ E* such that g"*— g (e—0) in E. Then, for each n € N we can define operators B,,,
P: and C¢ in the same way. Moreover, since E* C s-Lim supg E; and due to the fact that the
discrete strong convergence in (E, I1E,, RE) is order preserving, we can construct monotone
decreasing families (g)¢).cr+ of elements g4¢ € E; such that gz — g, (¢—0) in E, and

s-limg gh* = g»¢ for each ¢ € R*. Denoting by J4¢ the resolvent of C: and setting uf =
Jhe(gt) where g& = (g2%)1<,=m, it follows from the coerciveness assumption (3.3) and the
pseudomonotonicity of the operators &} that there exists an element u, = (4});<y<m -
ur€K,(A;8,), v=1,...,m, such that u}*—uy (¢—0) in V, (cf. [8, proposition 1]). In

order to show u} = Ji(g,)forall v=1, ..., m we first prove w, = u’¢ for an arbitrarily given
w,E K, (4;8,). To do this, let (u2*),en, . No =N U {0}, be recursively defined by (cf. [20])
up® + AByuy = gie (3.16a)
urk + ABruy* + e (upk —upt Yy =gre, kEN, (3.16b)

Note that equations (3.16a), (3.16b) are uniquely solvable, since the operators B resp.
B +e'(- —z,), 2, €V, N E; , are both m-T-accretive. Moreover, it is easily shown that
(ur*)ren, converges monotonely decreasingly to u} €. Now, choosing ¢ € R* arbitrarily and
vp =w, N\ (ul* — ce,) in (3.8) we have

<%:wnv (Wn - u:.k - Cen)*> = A-1(gn - Wy, (wn - url:'k - C€)+) Hp

On the other hand, in view of g, * 2 g,

(Brur®, (wo —up* —cen) ) Z A (gn —urk — bE, (wp —upk —ce,) m,

where b3 =0, bk =¢ 1 (up* —up* %~ 1)* | k € N. Using (3.2) we get

(Wo —up® (w, —ub* —ce)) )y, = (bh, (wn —ul* —cen) V. (3.17)

Since (3.17) holds true for all ¢ € R* and k € N, we may deduce by induction on k that w, =
uk k €Ny, which gives w, = u”¢ and thus also w, = u?. Finally, using this result and the
monotonicity of #% we get the desired result u? =J2(g,), v=1,...,m. Since obviously
P: — P¢ for each € € R* with respect to the discrete strong convergence in (E, I1E,, RE), the
consistency of A*|yng-. A} v, gz implies that of C*|ynp+ym , C&l(v, nEs)m, and we may again
apply [22, theorem 1.3(3)] to deduce that s-limg w2 ¢ = u*¢ where u* = J4¢(g) = (I + AC*)™!
g. But the discrete strong convergence is order preserving and thus (u**).cp+ is a monotone
decreasing family of elements u*¢ &€ E*. Since E is an M-normed Banach lattice with order
unit, there exists u” € E* such that u**— u*(¢— 0) in E. Then, choosing a null sequence
(&,)n of positive real numbers, the uniformity of discrete strong convergence
implies s-limzu} ® = u” and hence, we also have s-limyu} = = u”. On the other hand, we already



know that u;® — Ji(gs) (e>0) in V, and w-limyJ}(g,) = J*(g). Consequently,
s-limyukén = J*(g) and thus u” = J*(g), v=1,...,m.
Defining operators C and C,, by their graphs according to

C= U (), (g - JXe) g €E7)
Co= U {(Un(gn). A7'(8n = Ji(8n))) lgn € Ex'}

it follows from above that both C and C, are accretive operators with clD(C) = R(I + AC) =
E*, oAD(C,) = R(I,+ AC,) = E, and thus, —C and —C, generate nonlinear contraction
semigroups S(¢): E*— E*, t€ R*, resp. S,(): E; — E;, t€R", in the Crandall-Liggett
sense (cf. [9, theorem III]). Since theorem 3.8 exhibits the discrete strong convergence of the
generator resolvents, we get

COROLLARY 3.9. Suppose that u€ E*, u, € E;, n €N, such that s-limgu, = u. Then s-
limg S, (Hu, = S(H)u, t € R*, the convergence being uniform on bounded subintervals of R*.

It follows from [8, theorem 2] that S,(f)u) can be interpreted as an integral solution of the
HIB-equation (3.5a), (3.5b) in the sense of Bénilan [4]. Hence, due to this and the preceding
corollary we will refer to S(r) resp. S,(¢r) as Bellman semigroups associated to the HIB-
equations (1.1a), (1.1b) resp. (3.5a), (3.5b).

Finally, let us consider the operators T,(t): E; —E,, t€R", given by

T.(Hu, = /\1 T:(tu,, u, EE,.

We will prove the following analogue of the Nisio formula (1.2):

THEOREM 3.10. Suppose that (3.15) is solvable for each g, €E,; and let u€ E™, u, €EE;.
n € N, such that s-limgu, = u. Then for any sequence (k,)n of positive integers such that
k,— o we have

s-img(T,(t/ kn)un)* = S(0u.
Proof. Since we already know that s-limgS,(t)u, = S(t)u, t € R*, we have only to verify

lim (T, (t/k)u,)* = S.(Du,, t € R™, which is exactly the nonlinear Chernoff formula (cf. [7,
k— x

corollary 4.3]). Since T,(s) is contractive, it only remains to be shown that
lim ¢ Y (Tu()u, —u,) = —Cuu, for each u, € D(C,). For this purpose letu, =J%(g,) for some
—0+

AER" and g, €E,;. In view of T,()J}(g.) = S.(£)JX(g.), t € R*, we have
lim lnft’l(Tn([)Jr}i(gn) —J:(gn)) = lim lnft_l(Sn(t)Jr};(gn) _Jr/}(gn)) = _anrlzl(gn)
t— 0+ 1— 0+

On the other hand, from the discussion of (3.15) we know that Ji(g,) ED(B}), v=1,...,
m, and \/ BXJ¥g.) = A '(g.—Jig.)) = CnJig.). Now, by definition T,(£)Ji(g.) =
v=1



TinJHg) tER . v=1,.... m, and thus
lim sup 1 (Tu(1)J2(g,) —J2(gx) = lim sup ™ (TH(0)Ja(8n) ~Ji(8n) = ~Bala(gn.
whence{_+ ) o
lim sup (T, /(&) ~ T5(&2) = A (~BiIign).
But o N
/\ (=BiJi(gn) = — \/ BTi(gn) = —CuJi(gn)

which gives the assertion.
4. APPROXIMATE SOLUTION OF THE PARABOLIC HIB-EQUATION

Since the approach as described in the preceding sections is a constructive one, it enables
us to develop various schemes to the approximate solution of the HIB-equation (1.1a), (1.1b).
As an example we consider the parabolic HIB-equation of dynamic programming

u, + QI(A”u—f”)=0inQ:=QX(O,T) (4.1a)
u=0onT x (0, 7), I'=0Q (4.1b)
u(0) =u’in Q (4.1¢c)

where Q is a bounded domain in Euclidean space R? and the operators A*, 1 = v = m, are
linear second order elliptic operators given by

:—qu +2wm—+ﬂn (4.2)

igj=1
with coefficients satisfying

d
—al.bl.c"ELX(Q), 1=i,j=d.

aj; ax;
1

To put this problem into the setting of Section 1 we choose H = L}(Q), V =W}§3(Q) and
E = L*(Q), the spaces L*(Q) and L*(Q) being equipped with the canonical ordering and the
standard norms such that in particular L*(Q) appears as an M-normed Banach lattice with
order unit e given by e(x) = 1. x € Q (cf. [24]). The operators A*: WH*(Q) » W™ 1-2(Q) are
defined via

(A'u, v) = a*(u, v). u,v EWH(Q) (4.3)

the bilinear forms a*(-,-) being given by
d d
ou 9 0
o) = 2 | ajx) = dx + Ef bI*(x) b dx
ij=tJg ox; dx; i=1Jg dax;
+ f c(uvdx,  u,v EWHAQ) (4.4)
Q

d
bt = biw) + 3 2D,

j=1 ax,‘



Let us now suppose that (Q,)x is a uniformly bounded sequence of domains Q, CRY. n €
N, such that

(i) for any compact subset S C € we have
M, ,(85\Q,)—=0neEN) (4.5)

where M, ,(5\Q,) denotes the (1,2)-capacity of the set $1Q,,
(i1) meas(Q\Q) — 0 (n € N),
(iii) the subset
F*=ﬂcl[U(QnﬂI‘)]. N; ={n € N|n>j}

j=0 nEN,
satisfies the segment property.
Moreover, let us assume that there are functionsa}”, b}" and ¢*", 1 =i,j=d, 1= v=Em,
n € N, satisfying
HW, €EL(R,), I¥ili=@, =C, (4.6)
(i1) ¥, - lI'”L"(Rd) -0 (neN)

where W, ¥, denote the extensions of W, W, by zero to all of RY and W, ¥, are given by

v

, d ,
Y = a,’j,;};—_aﬁ, bf,C
1
and

d
W, =af" —a}", bi"". c*"
ax,'

respectively,

d
(i) 2 a"(x) 52 yIEF x € Q. EERI(y>0),
Lj=
vy c""x) 2z 0,x € Q,.

We choose H,=L*Q,). V,=Wi¥(Q,) and E,=L*(Q,), and we define operators
AL WEHQ,) »W13(Q,) as in (4.3), (4.4) with af, b/, ¢” replaced by a}”, b}, c"". For
functions u € LP(Q), 1 = p = =, denoting again by & the extension to LP(R?) via & =0 in
RAQ, we introduce “‘restriction’ operators R,: LP(Q)— LP(Q,) by Ru =ilg,, n €N. It is
immediately clear that (L*(Q), ITL*Q,),R) and (L*(R), ITL*(R,), R), R= (R.)x. are
discrete cn-approximations satisfying (2.1)(i)~(iv) whereas under assumption (4.5)(i) the same
holds true for (WH3(Q), IIW{?(Q,), R) as has been shown in [13]. It is also evident that the
discrete strong convergence in (L*(Q2), [TL*(Q,), R) is order preserving in the sense of (2.2),
that

”Rn“+ = (R,u)” || w2,y = ”(LF) —@)" HW‘-z(Rd) -0 (neN) (4.7)

(cf. (2.3), llusllwrxg, Sluallwizay (cf. (3.1)) and (u, —e.)” € WH(RQ,) with [[(u, —
e,) "t l|wizg,) = Cllun|wixq,. Moreover, under conditions (4.5)(i), (i), (iii) the sequence of
embeddings W4(Q,) —~L%(Q,), n € N, is discretely compact (cf. [13]). In view of (4.6)(i) the
bilinear forms a*"( -, -) are uniformly bounded from which we may deduce the stability of the



sequence (4))r, and because of (4.6)(iii), (iv) it is easy to establish the existence of constants
K, > ko= 0suchthatforall I=v=mandn €N

a:(un s Uy = k) ”un HZWI'z(Q,.) — Ky Hun li%z(Qn)* Uy, € W(l)Z(Qn) (48)
which vields the discrete uniform coerciveness of (s{,)n. Moreover, for any ¢ € R™ it follows
from (4.6)(iv) and (4.8) that

(it (U — cen) ") = (Ap(u, = cen), (U, = cen) ")
+ c{c" e, (U, ~ ce,) ") 20, neN.

Taking (4.6)(i). (ii) into account, for any sequence (v,)n, v, €V, = WH(Q,) and any v €
W§3(Q) such that w-limy v, = v (n € N) we have

(AR, u,v,)=a.(R,u,v,)—a"(u,v) = (d"u, v) (neN)

thus establishing the consistency of the pair &’ (d;)s. Also, (4.6)(i), (i) immediately give
the consistency of | w, (| w,)n, W=WEH(Q) N L¥(Q)", W, =W{3(Q,) N L*(RQ,)". since
it is sufficient to prove consistency on a dense subspace and thus we may take u €C5(Q) N
L*(Q)” and u, = R,u. So far we have verified all the hypotheses made in Section 3. What
remains to be clarified is how we can actually solve the approximating HJB-equations

(Up)  + V (Fpu, =) =0inQ,:=Q,%x(0,7) (4.92)
v=1

u,=00onT, % (0,T), T,=0oQ, (4.9b)

u,(0) = ulin Q,. (4.9¢)

For a discretization in space we may use either finite element methods or finite difference
techniques. In the finite element case, for each n € N we may choose a sequence (S, )mer
of approximating subspaces of W{*(Q,). e.g. piecewise linear elements with respect to given
triangulations of Q,, and we may consider the operators &, ,, =4 }|s,,, which share all the
properties of &, such that again the results of Section 3 do apply.

In the finite difference case let us for simplicity assume that Q, = Lim Q, ,, where Q, ...
m € N, are grid-point sets

Qumi={x,= (... cx)lv=(v,...,v) EAPCZY

with uniform step size A}’ >0 such that Ay’ —0 as m — =. We denote by C(Q,,.,,) the vector
space of grid functions u, , on &, ,, and by Co(R,..,,) the subspace of all u, ,, € C(Q,.,») with
un.m(x) = 0’ x€ rn.m = agmm- We take Hn.m = (C(Qn.m)’ ”'nLl(Q,,_,,,))v En.m = (C(Qn.m)~
I-li=um)s 1llixg, .y resp. |-llL=q, ., denoting the discrete L*-resp. L*-norm on Q, . and
Vim = (Co(Qum). |- Iwr2q, ) where {[-{lwixq, . is the discrete Sobolev norm

1/2
”un«m ” W‘<3(Q,,',,,) = ( 2( . hﬁ,’,’)uf,_m(x x») +z( ) h%’)(D+,(,7)un.nz(xv))2) B
vE AN vEA

Dji»denoting the forward difference quotient and A{’ the set of all vEAY’ such that x, +
hPe! €Q,m N Thpe jELL,....d}, ¢ denoting the jth unit vector in RY. We introduce



restriction operators Ry by

Rpu)@ =G [ undy. xeQ,,

{
If,,)(X)

where 1% (x) = {y € R max ly; = x;| = h{?/2}. and we define operators &} ,, by
1=/=
<‘ﬂ:.mun.m’ vn.m> = a:m(u’lm‘ Un.m)

d
@ s Onm) = 2 2 B & DI iy (2,))(DF 0y (x,))

ij=1 vEA,

Y

1

+ 1 2.(") h&?’;) b;/ln.* (D;[—:;) un,m(x V))UH.M(X l’) + 2(") hi’:ll)cl/." (x l’)un.ﬂl(x 1')Un.m (x 1 )'
vEA vEA
m

m

It can be shown in a similar way as above that the discrete cn-approximations (L*(£,).
[IH, » R™), (L*(Q,), TIE, .. R™), (WFH(Q,). IV, .. R™). R =(R{")nen. and the
operator sequence (&, m)mes satisfy all the hypotheses of Section 3.

Finally, we discretize in time by using the backward Euler scheme with respect to a uniform
partition #; = jk,, j = 0. 1.....1(n). k, = T/I(n) of the time interval [0. T]. i.e. we consider

un.m(tj‘l) + kn 2 (&qr’;.mu:zl.m([jdvl) —f'?m) = urerl([j) in Q,,_,,, (410‘3)
=1

Unm(t;)) =00nT,,, =32, . j=0.1,....l(n) (4.10b)

where up.,(0) =ul .

Let us denote by S(-) the nonlinear semigroup generated by the operator-# where B =
Vv (4 =f) and let B,,=\ (bym—Ffim). I f0 fi fin belong to int L*(Q)".
v=1

r=1
int L*(Q,)", intEy;,, and u° ul). u), are elements of W§3(Q)NL (Q)". Wi (Q,)N
L*(Q,)7, VamNE;,, respectively, such that s-lim.=q fy =f*(n €N), s —lim.~q,)fim =
fr(m €N) and s-lim; =gy u) = u" (n €N). s-lim =0, Uy, = u, (m €N). corollary 3.9 tells
us that s-lim =g, t, o(T) = s-im =g,/ + k, B, ) " "ubt, = S(THu' (nEN).

In order to solve the nonlinear boundary-value problems (4.10a). (4.10b) we may use the
algorithms proposed by Lions and Mercier in [20] or the recently developed multi-grid
techniques from [15].

An alternative way is to use the Trotter—Kato like formula given by theorem 3.10 which
means that instead of solving a nonlinear equation per time-step we solve the i linear problems

m

urll‘Ar?x([./ - l) + kn(&(llllv.m“rlxv.m(tj - l) —'flllv.m) = \v/l uI’l\.m(tj) in Qn.m (41 ld)

url;.rrl(tj) =0on I--n.m = 8Qn.m< j= 0,1.... . l(/l) (411b)

which are uniquely solvable by means of theorem 3.3. Under the same assumptions concerning
£ fu fy . and u®, ul. b, as above, theorem 3.10 asserts that s-lim=q)u,, (T) = S(T)u"
(neN).
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