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[lo]) has also proved that 

(1.2) 

the convergence being uniform in C(a). Using methods not based on accretiveness, that result 
has been established first by Nisio [21] (in the sense of pointwise convergence) and therefore, 
(1.2) is usually referred to as the Nisio formula. 

In the case E = L”(Q) a generalized version of the parabolic HJB-equation involving 
nonlinear operators d2” has been studied by CattC [8], (cf. also [5]). Employing an idea due 
to Belbas [2, 31 she has also used a nonlinear semigroup approach by characterizing the 
generator implicitly via its resolvent which can be defined as the maximum solution of an 
associated system of variational inequalities. 

As far as constructive methods are concerned, in case of the elliptic HJB-equation some 
numerical schemes have been investigated by Lions and Mercier [20] while in the parabolic 
case a Trotter-like algorithm based on the Nisio formula (1.2) has been proposed by Lions 
in [19]. 

The purpose of this paper is to give an approximate solution of the abstract HJB-equation 
(1. la), (1. lb) in the framework of discrete approximations of ordered Banach spaces which 
will be developed in the next section. Using this concept and adopting techniques from [S] 
we will consider a sequence of approximating HJB-equations and we will establish the 
convergence of the associated Bellman semigroups as well as a discrete analogue of the Nisio 
formula. 

2. DISCRETE APPROXIMATIONS OF ORDERED BANACH SPACES 

Let X and X,, n E N, be real Banach spaces with norms I/ * I/X and II& respectively and let 
(Rx = (Rf)n be a sequence of (not necessarily linear) restriction operators R:: X* X,,. Then 
the triple (X, IIXn, RX) is called a discrete cn-approximation (approximation with convergent 
norms) if there holds: 

(i) jIRf(au + pu) - LYR~U - pRfullx, + 0, u, u E X, IX, BE [w; 

(4 lIR fd l~ , - IIu IIx  T  u  E  X i (2 .1 ) 

(iii) ;~ig j(RfuIj,, < =, u E X. 

Based upon this definition, the discrete strong convergence of a sequence (u,)~, of elements 
u, E X,, n E N’ CFV, to an element u E X is defined by 

s - limxu, = u G ]lu, - RfuIjx, --, 0. 

In the following we will also require an additional condition, namely 

(iv) ifu(“)EX,nEN’CN,anduEXsuchthatu(”)+uinX 

then s-lim, Rfu(“) = u. (2.1) 

The concept of discrete strong convergence in discrete cn-approximations is well-known and 
has proven to be a useful tool in developing constructive methods for solving operator 
equations (cf., e.g., [14, 25, 261). In particular, conditions (2.1) (i), (ii) and (iii) ensure the 



                                                      

uniqueness of the limit of a discretely strongly convergent sequence as well as the linearity 
of discrete strong convergence while (2.1) (iv) exhibits a certain uniformity of that convergence 
(for further properties see the papers cited above). 

Denoting by X,X;, n E N, the duals of X, X,, the triple ((X,X). II(XL,X,), 
(Rx’, RX)) is called a discrete dual cn-approximation if there holds (cf. [14]): 

(i) (X,ILK,RX), (X’,DXL,RX’) are discrete cn-approximations; 
(ii) if u, E X, , fn E XL , n E fV’ C N, and u E X, fE X’ such that s - limxu,, = u. s - 

limxff, = f then (f,, , u,) -+ (f, u). 

For sequences (fn)sS ,f,, E XL, n E fV’ C N, we may also introduce a discrete weak convergence 
as follows. 

The sequence (fn)aP is said to converge discretely weakly to anfE X’ (w-limxPf,, = f) if for 
all sequences (u,)h, , u, E X, , such that s-limxu, = u for some u E X there holds ( fn , u,) + 
(f, u). 

Moreover, in case of reflexive Banach spaces we can analogously define a discrete weak 
convergence of sequences (u,)h’ , u,EX,. nEh’CN. to an element uEX. It is easy to 
verify the uniqueness of the limit of discretely weakly convergent sequences as well as the fact 
that discretely weakly convergent sequences are bounded and that discrete strong implies 
discrete weak convergence. If we additionally assume X to be separable we have the following 
approximation property, compactness result and equivalent characterization of discrete strong 
convergence (cf. [14, 2.51). 

THEOREM 2.1. Let ((X,X), (XA ,X,), (Rx’, RX)) b e a discrete dual cn-approximation of 
reflexive Banach spaces X, P, n E N, which X being separable. Then the following hold. 

(i) For each u E X (resp. f E X’) there exists a sequence of elements u, E X,, (resp. f, lE 
XA), n E N, such that w-limxu, = u (resp. w-limx,f,, = f). 

(ii) If (u,)h, (rev. (fn)k,> 1s a bounded sequence of elements u, E X, (resp. fn EXL), 
II E N’ C N, then there exist a subsequence N” C N’ and an element u E X (resp. f E X’) such 
that w-lim,u, = u (n E N”) (resp. w-limxf, = f(n E hi’)). 

(iii) Let u, E X,, (resp. f,i EXA). n E N’ C K. and u E X (resp. f E X’). Then s-lim,yu,, = 
u (resp. s-limxSf, = f) if and only if for all sequences of elements f,! EX:, (resp. u,, E X,,). 
n E N’, and f E X’ (resp. u E X) the discrete weak convergence w-lim,y,f,, = f (resp. w- 
limxu, = u) yields (f,,, u,,)* (f. u). 

For subsets G, C X,, . n E N. we introduce the following discrete limit sets: 

s-Lim supXGn = {u E X13. (u,)h,, u,EX,,nEN’CN:s-limxu,=u}. 

Obviously, in general s-Lim infriG, C s-Lim supX.Gn , but if equality holds we will denote that 
limit set by s-LimxG,, . We can analogously define the limit sets w-Lim infxGn, w- 
Lim SUPXG,, and w-LimxG,. It is clear that s-Lim infxG, C w-Lim supxGn. If both limit sets 
coincide, we will denote the common limit set by Lim,G,. 

Now, if (X, ILXn, Rx) is a discrete cn-approximation of Banach spaces and vector lattices 
X, X, , n E N, the discrete strong convergence will be called order preserving if for all sequences 



                    

(u,,)~, , U, E X,,, it E N’ C N, and elements u E X there holds 

s-limxuII = u ~s-limxu,’ = K-. (2.2) 

Remark 2.2. It follows from the linearity of discrete strong convergence and the relations 
u- = u+ - U, (u( = U* + U-, u v u = u + (U - u)+. u A u = u - (U - u)- that if (2.2) issatisfied 
we have discrete strong convergence of all basic lattice operations. 

We can give a necessary condition for the discrete strong convergence to be order preserving 
in terms of the restriction operators Rf which in case of Banach lattices is also a sufficient 
one. 

LEMMA 2.3. If the discrete strong convergence in a discrete cn-approximation (X, KY,, . R”) 
is order preserving then 

IIR $u+ - (Rjru)+]/x, * 0, U E x. (2.3) 

If X,, , n E N, are Banach lattices then also the converse holds true. 

Proof. Taking u, = R$u in (2.2) we immediately get the necessity of (2.3). Conversely. if 
(2.3) is satisfied and s-lim,+, = u we have 

]iu,’ - Rfu-ll,y, 5 11~; - (R,Xu)-/IX, + l/Rfu’ - (R:u)+l~,. (2.4) 

But(u,’ -(RJu)‘l 5 ju, -R:uJ whencellu,’ -(R~u)‘l~, 5 Iju,, -R$u(jx, where we have used 
the assumption that ]I.]ly, is a lattice norm. It follows that the right-hand side in (2.4) converges 
to zero which implies s-limxu; =u+ . 

It is easy to show that in case of order preserving discrete strong convergence we have 
strong convergence of the positive cones and of order intervals. 

LEMMA 2.4. Let (X, IIX,, . R”) be a discrete cn-approximation with order preserving discrete 
strong convergence. Then there holds: 

(i) s-LimxX,; =X-. 
(ii) if u,, E X,. u, E X,, with cd,, < u,~. II E N’ C N, and u E X, u E X such that s-limxun = 

U, s-limxv,, = u then 

s-Limx[u,l, u,] = [u. u]. 

Proof. (i) If u E X’ set cl,, = (Rfu)‘. Then U, EX,: and it follows from (2.3) that S- 
limxc+, = U. Conversely, suppose that u,, E X,7, n E N’ C N. and u E X such that s-limxu, = 
u. Then by (2.2) we get 0 = s-lim,yu, = U- whence u E X-. 

(ii) If w, E [u, , u,], n E N’ C hd, and w E X such that s-limxw, = w then w, -u, EX,’ , 
on - w, E X,‘ and we may apply part (i) of the proof to conclude w E [u, u]. Conversely, if 
wE[u,u] choose u’,= (R~wvu,)Au,, nEN. Then obviously ~~E[u,.u,,] and 
s-limxw, = w. 

In the case of a discrete dual cn-approximation of reflexive Banach spaces and vector lattices 



                                                      

X, X, , we can introduce the concept of order preserving discrete weak convergence (replace 
s-limx by w-limx in (2.2)). In view of theorem 2.1(i) it is easy to see that, if X is separable, 
the analogue of lemma 2.4 holds true. 

Theorem 2.l(iii) indicates that there is a duality between discrete strong and discrete weak 
convergence. The following result shows that there is also a duality relation concerning the 
notation of order preserving discrete convergence. 

THEOREM 2.5. Let ((X’X), II(X:, , X,,), (Rx’, RX)) b e a discrete dual cn-approximation of 
reflexive Banach spaces and vector lattices X, X,, . n E N, with X being separable. Then there 
holds: 

(i) if the discrete strong (resp. weak) convergence of sequences (u,)~, u, E X,,. n E 
N’ C N, is order preserving then so is the discrete weak (resp. strong) convergence of sequences 
(fn)la,,f?l EX,* 9 n E N’; 

(ii) if X, X,, are Banach lattices then also the converse of the statements in (i) hold true. 

Proof. Let fn EX,* , n E N’ C N, and f E X* such that w-limxff,, = f (resp. s-lirnx,f, = f). 
According to theorem 2.l(iii) we have to show that for any sequence (~,)a,, u, E X,, n E 
N’, such that s-limxu, = u (resp. w-limxu, = u) for some u EXwe have (fi, u,,)+ (f+. u). 
Since, by assumption, the discrete strong (resp. weak) convergence of (u,)R, is order preserving, 
we may assume u, E Xc and u E X’. But 

(fnt, 4) = sup{(fn, un)/O 2 un s&l), u,EX,’ 

and s-Limx[O, u,] = [0, u] (resp. w-Limx[O, u,] = [0, u]) because of lemma 2.4 (resp. its 
analogue) which gives the assertion. If X, X,, are Banach lattices we have X* = X’, X,* = 
XA and we can deduce the converse of the statements following the same pattern of proof. 

As a by-product of the preceding results we get the following corollary. 

COROLLARY 2.6. Under the hypothesis of theorem 2.5 assume the discrete strong (resp. weak) 
convergence of sequences (u,,)n_, . u, E X, , n E N’ C N, being order preserving. Then, if 
uEX, UEX with u<u (resp. fEX’. gEX’ with f<g) and if unEX,, u,,EX, (resp. 
f,, EX: , g, EXA ), n E N. such that s-limxu, = u. s-limxu, = u (resp. s-limx,f,, = f, s- 
limx,g, = g) we also have u,, < u,, (resp. f,, < glI) for at least a final piece N, = {II E N 112 > Q 
for some no E N}. 

Proof. Assume u, - 
Ilfnllx, = 1, n E W’, 

u, E int E,’ for a subsequence N’ C N. Then we can find f,, E(XA)+. 
such that ( fn , u, - u,) 5 0. Theorem 2.l(ii) gives us the existence of 

N” C N’ and f E X’ such that w-limx,f,, = f (n E N”) whence fE (X’)’ in view of theorem 
2.5(i). On the other hand. we have (fn, u,, - u,) --, (f, u - u) and thus (f, u - u) 5 0 contra- 
dicting u - u E int E’. The statement in parentheses can be proved analogously. 

3. DISCRETE APPROXIMATION OF THE HJB-EQUATION 

With regard to the situation considered in the introduction let us assume that (H, TV!,, , RH) 
is a discrete cn-approximation of separable order complete real Hilbert lattices with order 
preserving discrete strong convergence and let ((V’, V), II( VA, Vn), (R”‘, R”)) be a discrete 



                    

dual cn-approximation of reflexive. separable real Banach spaces such that 
V LH 4 V’, V, 4 H, 4 Vi, each space being dense and compactly embedded in the following 
one. Moreover, we assume the embeddings Vn4 H,, being discretely compact in the sense 
that given a bounded sequence (u,)h , u,, E V, , n E N, for each subsequence (u,)%, , N’ C 
CN, there exist another subsequence N” C N’ and an u E H such that s-limHu, = u (n E 
N”). In particular, by the discrete compactness of the embeddings we have that w-limvu, = 
r.4 implies s-limHu, = U. We further suppose that V, V,, are sublattices of H. H,, . the positive 
cones V+, V,+ having nonvoid interior, the norms on V,, satisfying 

Il4X~” 5 lI~nlli~,~ 4 E vn (3.1) 

and the restriction operators Rr fulfilling (2.3). Finally. let (E. HE,. RE) be a discrete cn- 
approximation of M-normed Banach lattices E. E,, with order units e, e, (the order relations 
induced by those on H, H,,) such that the discrete strong convergence is order preserving with 
S-limEen = e. We suppose E, E, being continuously embedded in H, H, with discrete continuous 
embeddings E,, L H,, , i.e. s-limEu, = u gives s-limHu, = ~1. and we assume RL(Vn E) C 
V, n E,, RF( V fl E) C V, TI E, . n Eh, V n E’ and V, n E,; having nonvoid interior. We 
further suppose (u, - e,)’ E V, for each u,, E V,, the mapping u,+ (u, - e,)- being bounded 
on bounded sets of V,. Since the norms //. I/Ij, are not assumed to be lattice norms we cannot 
apply lemma 2.2 to deduce that the discrete strong convergence in (V. IIV,, . R”) is order 
preserving. Nevertheless. we have: 

THEOREM 3.1. Let V, H and V,. H,. n E N, be given as above. Then the discrete weak 
convergence of sequences (u,,)h,. u,, E V,,. n E N’ C N, is order preserving and there holds 
LimvV,’ =V+ . 

Proof. Suppose that w-limyu, = u for some u E V. Then (u,,),~ is bounded and so is 
(ui )nf because of (3.1). Hence, by theorem 2.l(ii) there exists w E V such that w-limi7~c,i = 
w for at least a subsequence B” C h I’. But then the discrete compactness of the embeddings 
V, 4 H, implies s-limH u,’ = M’. On the other hand. we also have s-lim,u,, = u and thus 
s-limHu,+ = U+ whence w = u+. It follows from the above that w-Lim sup, Vi C Vi. Since 
V’ C s-Lim inf, V,i by (2.3). we get Lim,. VT = V+. 

The following result will be needed later on. 

LEMMA 3.2. For u E V and u,, E V,,. n E h. let K(U) = {U E V/u 5 u}, K,,(u,,) = {u,] E 
VnIun 5 u,} and suppose that M,-limr,rt,, = U. Then Limi,K,,(u,,) = K(u). 

Proof. The preceding theorem immediately gives w-Lim supi,K,,(rl,,) C K(u). In order to 
show K(u) C s-Lim inf\,K,, (u,,) let us first assume that u E int K(u). Setting u,, = R!‘v we have 
s-lim”u, = u and thus s-limHu,, = U. Since also s-limH1*,, = U, corollary 2.6 tells us that u,, < 
u, for at least a final piece h, C N. If u is not an interior point of K(u) we can find a 
sequence 0 cm’ E int K(u), m Eh. such that u(“‘) + ~1 in V. For each m E N there exists 
(&Q u,“’ ( ) E K,,(u,) such that s-liml~c$“’ = P(“‘) and the uniformity of discrete strong con- 
vergence implies s-limvuj:” = U. 

We will now construct a discrete approximation of the abstract HJB-equation (1. la), (1. lb). 



                                                      

For this purpose let @i: V,-*V,‘,, nE N. v= 1,. . . , m. be linear monotone operators 
satisfying 

(d; u,. (u, - ce,)+) 2 0. ufl E V, (3.2) 

for all c E R’ and being coercive in the sense that there exists yn E W’ such that for all v 7 
1 1 . . . , m and all u” E V,, there holds 

//u’“‘//;;((s2,“u(“), u(m) - u”) + ynllu(m)l/;“) * = (3.3) 

for all sequences (u(~))\, ucm) E V, , m E h, with \Iu(“‘)]/v, 9 3~ (m E N). We further assume 
that the sequences (.L&;)F~ are stable, i.e. 

sup ll~sl,“ll < 5, v= 1,. ,m (3.4) n E Se 

and discretely uniformly coercive in the sense that there is a yE RB’ such that for all v = 
l,..., m, and all bounded sequences (usI)%, uf EV,, , n E N. the analogue of (3.3) holds true 
for all sequences (u,)h, u, E V,, n E N, with I/u,I/~,+ =. 

Then, given elements f,” Eint E,; , v = 1. . . . . m, and ut EV, fl E,’ , we are looking for 
functions u n: [0, T]-, V, satisfying u,(t) E V, nE;, (un)((t) E VA, dP,Y~4,(t) -fLEVn* , tE 
(0, T), v= 1,. . . , m. and the HJB-equations 

(u,), + ,, (&R&l -fnY) = 0, t E (0, T) (3.5a) 

u,(O) = ufl. (3Sb) 

In order to guarantee that (3Sa). (3.5b) defines an approximation of (l.la), (l.lb) we will 
assume 

s-limEf;; = f”. v=l.....m, s-1imEuz = u9 (3.6) 

Moreover, denoting by A”. A,” the restrictions of the graphs of Sp”, Sa,V to E resp. E, (i.e. 
uED(A”)and~,=A”uifuEVnEandw~E),weassumethatforeachv=l,....rnthe 
operators 02”. ~2: as well as Al’:rrnE-, AZ 1 I,,,- E, are consistent in the following sense. 

For each u E V (resp. u E V 17 E-) there exists a sequence (u,)h of elements u, E V,, (resp. 
u, E V,, f~ E,’ ) such that s-limlpu,, = u and s-lim~,,&‘u,, = d”u (resp. s-limEu, = u and 
s-limEA;u, = A”u). The consistency of _d’. ~2; and the stability of (&;)k implies Sa;+Oa”, i.e. 
for any sequence (u,)-*, , un E V,, . II E h,’ C la. and u E V such that s-lim”u, = u we have 
s-lirnv,de,“u, =d”u (cf. [25]). F rom that convergence we may also deduce the boundedness 
of d”. Moreover, it follows from [ 161 that the pair L&L’, & is a-pseudomonotone in the following 
sense : 
for any sequence (u,)~, . u, E V,, n E N’ C h, and u E V with w-limvu,, = u such that 

lix;up (.sfl,“u,, u, - w,) 5 0 

for all sequences ( w,,)~, . MI,, E V,, . with s-limv w,, = u there holds 

(d”u, u - 21) 5 linrnEEf (&a,Yu,, u, - u,) 

for all v E V and all sequences (un)h,, u, E V,, with s-limyun = u. Using these results we will 



                    

now show that we can assign to (l.la). (l.lb) and (3Sa), (3.5b) nonlinear contraction 
semigroups S(t): E'-+ E', t E R-, resp. S,,(f): E,'+E,' , t E rr81-, n E N, which are in a 
generalized sense the solution operators of the HJB-equations and therefore will be called 
Bellman semigroups. Moreover, we will prove convergence of these semigroups. i.e. 
s-limES, (t)ui = S(t)uO, C E lR+. To this end, given elements g E E', g, E E,+ , n E N, and 
A E R+ we consider the time-independent equations 

u + A(A"u -f")=g, UEVnE', v=l,...,m (3.7) 
and their discrete counterparts 

u, + W,Vu, -fnY) = g,, u,EV,nE;, v=l,...,m. (3.8) 

THEOREM 3.3. For each v = 1, . . , m the operators B" = A" -f" and Bl =A; - f; are m- 
T-accretive. Moreover, if s-limEg, = g then s-limE(Z, +,iB,Y)-'g, = (I + AB")-'g. 

Proof. Using the assumptions on SQ,” it follows from [ 1, lemma 11 that the operators A; are 
m-T-accretive and then so are the operators B," In particular, if u,” EV, n E,' is the unique 
solution of (3.8) we have 

0 5 u,” s (Ilf~llE, + lI&,)G. (3.9) 

To prove R((Z +LB")lvrE-) = E- 
A”1 

we note that due to (3.4) and the consistency of 
VnE+, AnYIV,nE,- we have 

R((Z + ~B")~v~E-) C s-LiminfER((Z, + hBL)lbj,n~;) = s-Liminf EE; = E: 

Conversely, let g E E+. Then there exists a sequence (g,,)&, g, E E,' , n E N, such that s- 
IimEg, = g. Let us denote by u; the corresponding solutions of (3.8). Using the discrete 
uniform coerciveness of (Sony)% it is easy to show that (ui)k is bounded, and hence, there 
exists an u” E V such that w-limvul =u” for at least a subsequence N’ c N. Now. let 12’~ E
V,,, n E N', such that s-limyw, = u”. Since s-limHu,” =u” it follows that lim ($;u;. u;; - M’,) 

=0 . Then in view of the a-pseudomonotonicity of d”. & we get 

( dUuY, K” - 0) I li,mt,“f (d;u;, u,” - u,) = (fV + X’(g - u), 24 - u) H 

for each u E V and any sequence (u,,)hs , u, E V,, . with s-limvu, = u whence u” + &%“u” = g. 
Using again s-lim& = ~4” and the discrete strong convergence of order intervals in 
(Z-Z, IIH,, RH) (cf. lemma 2.3(ii)). it follows from (3.9) that 0 5 u” s (Ilf”]iE + ligllE)e. Hence 
u” E V n E+, 93"~" E E and thus g ER((Z + AB") iv,-,~-) Taking into account the consistency 
of AYIVnp, AY,/VnnE-. and the m-T-accretiveness of BR, we are now in a position to apply 
[25, theorem 1.3(3)] which g’ Ives us the unique solvability of (3.7). the discrete strong 
convergence of the resolvents (I, + AB,V)-' + (I + AB")-' and the T-accretiveness of B". 

As an immediate consequence of the preceding results we have: 

COROLLARY 3.4. The operators -B”, - Bi generate strongly continuous linear contraction 
semigroups T”(t): ET+= E', tER+, and T,(t): E,'+E,' , t E R', such that 
s-limET,“(t)& = 7’“(f)~, tE k’. for any sequence (u,)h,, u, E E,' and any u E E' with s- 
-limEu, = u, the convergence being uniform on bounded subintervals of n+. 



                                                      

With equations (3.7), (3.8) we associate the closed. convex sets 

K”(A;g) = {U E v n E*!(~u, u - II) s P(g - U. u - +, u E v, u 5~4) (3.10) 

K;(A; gn) = {u, E v, n E; I(%u,, U, - 0,) 

SAP(g,-u,.u,- UR)H,? ufl E v,, 0,s u,>. (3.11) 

It is easy to show that K,“(A;g,) is the set of positive subsolutions of (3.8). 

LEMMA 3.5. Let u,” E V,, n EC be the unique solution of (3.8). Thenu; is the maximum element 
of the set K;(A;g,,). 

Proof. Obviously, u,” EK,“(A; g,,) . Then, if w, EK;(A;~,,) and c E iw- we have 

(d;u;-f;,(w, -u,V-ce,)+)=A-‘(g, -u,V.(w, -u,V-ce,,)+)H, (3.12) 

(.d;u,“-f,“,(bv, -u; -ce,)+)SA-‘(g, -w,,(w, -u;-ce,)+)H, (3.13) 

where we have chosen u, = u; -(up, - u; - ce,)+ in (3.11). Subtracting (3.12) from (3.13) 
and using (3.2) we get 

(wn - u,“, (w, - u; - ce,)+)H,, 50. (3.14) 

Since (3.14) holds true for all c E R’ it follows that w, I u; . 
In view of &“O = 0, ti;O = 0 we have 0 E K”(A;g). 0 E K,“(A; g,). Moreover. due to the 

continuity of tip”, Sa,Y and since f”, f ,” are assumed to be interior points of E+ resp. E,+ . it 
follows that K”(A; g) and K,” (A; gn) have nonvoid interior. We can then show: 

THEOREM 3.6. Let K”(lb;g), K;(A;g,) be the sets given by (3.10). (3.11). Then, if s- 
limEg, = g there holds 

LimvK,‘i(A:g,) = K”(A;g). 

Proof. First, let us assume that u E int K”(A; g). In view of R; (V n E) C V,, n E,, and (2.3) 
there exists a sequence (~1,~)~. u,, EV,, n E,; . such that s-limvu,, = u. Setting zrl = 
u n l tA9JVLl the convergence 93;; -+ 93” gives s-lim,, . z, = u f A93”u and consequently. 
corollari 2[16 implies z, < gn . i.e. u, E K; (A; g, ), for at least a final piece Nf C N. On the 
other hand, if u E K”(A; g) is not an interior point there exists a sequence (u(~))~, u(“‘) E int 
K”(A; g), m E N, such that u(“) ---, u in V, and we may proceed as in the proof of lemma 3.2. 
Conversely, let u, E K,“(A; g,), TI E N’ C N. and u E V such that w-lim”u,, = u. In order to 
prove u E K”(A; g) we remark that. given u E V. u 5 u, by lemma 3.2 we can find sequences 
(w,),,, (U,)R’, w, 5 u,, u, 5 u,. n E N’, such that s-lim”w,, = u and s-limVu, = u. Then we 
have 

limsup(.AsB1;u,,,u,, - w,)50 
nE\’ 

and hence, the a-pseudomonotonicity of Sp”, Oz; implies 

(~P”u,u-u)~liminf(~~u,,u,-u,). 
nEP&’ 



                    

On the other hand 

liFE;up (% u, , u, - v,) 5 (f” + A-‘(g - u), u - V)H 

whence (%“u, u - v) s A-‘(g - u, u - v)~. Finally, by lemma 3.4 0 5 u, 5 (]]f;]iE. + 
((g,](r,)e,, and as in the proof of theorem 3.3 this gives us 0 5 ~1 5 (]/f”]lE + ]lg]Jr)e, i.e. u E 
V fl E+ and thus u E K”(A; g). 

If (u;)~ is a sequence of elements u,” E K,“(A; gn) we may again use the discrete uniform 
coerciveness of (sQ;)k to deduce that (u,Y)~ is bounded and hence, there is an u” E V such that 
w-lirn”r.4,” =zP for at least a subsequence N’ C N. Theorem 3.6 tells us then that r.?’ E K”(A; g). 
Denoting by P%“(g), .Zi,“(g,) the maximum elements of K”(h; g), K:(A; gn) let us consider the 
case u,” =Z$“(g,) . Since the discrete weak convergence is order preserving, we must have 
u” = .ZA*“(g). On the other hand, by lemma 3.5 we already know that .Zi,“(gn) = (I,, + A 
&Yg, while theorem 3.3 says s-limE (I, + LB,“)-‘g, = (If AB”)-lg. Since then 
s-lim&$“(g,) = P”(g) and s-limH.Zf;,“(g,) = (Z + LB”)-‘g, it follows that Z”.“(g) = (I + 
AB”)-‘g, i.e. we may also consider K”(h;g) as the set of positive subsolutions of (3.7). We 
now introduce the sets 

K(A;g) = ii K”(A;g), K,(&g,) = ii K,“(A;g,). 
Y= 1 I'=I 

Obviously, these sets are closed and convex. Since K”(A; g) and K;i(A;g,) have zero as a 
common element and have nonvoid interior. the same holds true for K(A;g) and 
K,(A; g,). Hence, we may use the preceding theorem to show: 

COROLLARY 3.7. Under the hypotheses of theorem 3.6 there holds 

LimVK,,(A;g,) = K(il;g). 

Denoting by JA(g) and.Zi(g,) the maximum elements of K(A; g) resp. K,,(A; g,,) it follows by 
the same arguments as above that w-Limv.ZA(g,) = JA(g) at least for a subsequence b’ C 
N. Moreover, if u, ED(A,“) , v = 1. . . m, is a solution of 

u,i + A ., (A;u, - f;) = g, (3.15) 

we can prove as in lemma 3.5 that K,, (;i; gn) is the set of positive subsolutions of (3.15) with 
u, = Zi(g,,) which shows that K,,(A; g,,) is closely related to the HJB-equations (3.5a), (3Sb). 
By combining techniques used in [l, 8, 201 we will now show: 

THEOREM 3.8. Let .Z’ resp. .Z: be the operators which assign to g E E+ resp. g,, EE,T the 
maximum elements of K(A;g) resp. K,,(L;g,). Then (.Z*)AEw+ resp. (.Zi)AEa- are families of 
T-contractive resolvent operators J’ : E’ + E’ resp. Z,” : E,’ -+Ei . Moreover. if s-limrg,, = 
g then s-limEJ~(g,) = J’(g). 

Proof. Using a well-known penalization technique. for each II E N we will first approximate 
m 

.Zi (g, ) by a family of T-contractive resolvent operators acting on Em = n E and then we 
IJ=l 



                                                      

will identify the discrete strong limit of the sequence of these families as J’(g). For this purpose 
we define an operator B: (V fl E)” ---f E” by u E D(B) and w = Bu iff u” E D(B”) and w” = 
B’u”EE, v=l,..., m. Since the operators B” are m-T-accretive, the same holds true 
for B. We further introduce penalization operators PE: Em+ E”, EE W, by P’u = 
(&-‘(u~ - L4 “+1)+)16vCm where r.P+i = ul. The operators P’ can be shown to be T-accretive 
and Lipschitzian with Lipschitz constant 2~1 (cf. [8, lemma 21). Consequently, as the sum of 
an m-T-accretive and a T-accretive Lipschitzian operator C’ = B + P’is m-T-accretive. Finally, 
for each v = 1, . . . , m we assume (g”.‘) EER+ to be a monotone decreasing family of elements 
gK’ E E’ such that g”,’ + g (E* 0) in E. Then, for each n E N we can define operators B, , 
PF, and C; in the same way. Moreover, since E+ C s-Lim supE E,+ and due to the fact that the 
discrete strong convergence in (E, IIE, , RE) is order preserving, we can construct monotone 
decreasing families (g:E)EEW+ of elements g;’ E E,+ such that g;’ *g, (E+ 0) in E, and 
s-lim,g;’ = g”vE for each EE R+. Denoting by J$’ the resolvent of CF, and setting ui = 
JkE(gi) where gZ = (gF)tSycm, it follows from the coerciveness assumption (3.3) and the 
pseudomonotonicity of the operators Sa,Y that there exists an element u, = (z~,Y)i~~~~ , 
u,” E K,(A;g,), II= 1,. . . ,m, such that uFE- u,” (E-, 0) in V, (cf. [8, proposition 11). In 
order to show u,” = 1: (g, ) for all v = 1, . . . , m we first prove w, 5 u;~ for an arbitrarily given 
w,EK,,(A;g,). To do this, let (u,“~~)~~~~, No = N U {0}, be recursively defined by (cf. [20]) 

uny.0 + AB,” u;o = g;E (3.16~) 

UnY,k + A(BiU:k + c-1 (u,Yk _ U;+i.k-l)+) = g;~, keN. (3.16b) 

Note that equations (3.16a), (3.16b) are uniquely solvable, since the operators & resp. 
B; +E-*(+ - z,) , z, EL’,, n E; , are both m-T-accretive. Moreover, it is easily shown that 
(“;k >kEho converges monotonely decreasingly to ~2~. Now, choosing c E R’ arbitrarily and 
un =w, A (unY.k - ce,) .in (3.8) we have 

(93iWn, (wn - U,“.k - ce,)+) 5 A-‘(g, - w,, (w, - uIIy. k - ce) +) H,. 

On the other hand, in view of gZE E g, 

(%;L@, (w, - U;.k - ce,) +) 2 A-‘(8, - u,“.~ - 6!, (w, - u:k - ce,) +) H, 

where bjl= 0, b,k =e-l(u,Yk - u,Y+‘,~-‘)+ , k E N. Using (3.2) we get 

(w,, - u:“, (u’, - u,“.~ - ce,)‘)H, % (bi, (w, -uzk -ce,,)+),,,. (3.17) 

Since (3.17) holds true for all c E R’ and k E hi,, we may deduce by induction on k that w, 5 
u;~, k E No, which gives w, 5 u;~ and thus also w, Z u,Y . Finally, using this result and the 
monotonicity of &4,” we get the desired result u,” = 1: (g, ), v = 1,. . . , m. Since obviously 
Pi + P’ for each E E R’ with respect to the discrete strong convergence in (E, HE,,, RE), the 
consistency of A” 1 VnE-, A,” / v,nE,t implies that of C’ IcVnE+)” , C; \(VnnE,+jm, and we may again 
apply [22, theorem 1.3(3)] to deduce that s-limE u;~ = u”,~ where uYvE = J*,‘(g) = (I + ACE)-’ 
g . But the discrete strong convergence is order preserving and thus (~“9~) EER + is a monotone 
decreasing family of elements u”.~ E E+. Since E is an M-normed Banach lattice with order 
unit, there exists u” E E+ such that u”.~+ u”( e--t 0) in E. Then, choosing a null sequence 
(%)N of positive real numbers, the uniformity of discrete strong convergence 
implies s-limE 2~2 En = u” and hence, we also have s-lim,u; En = u’. On the other hand, we already 



                    

know that u~V.~ - Jt (8, ) (c--t 0) in V, and dim vJ~ (g,, ) = J’(g). Consequently, 
s-lim, u; En = J”(g)andthusu”=JA(g), v=l,...,m. 

Defining operators C and C, by their graphs according to 

C = Ag* {(J*(g)> A-‘@ - JYg))) lg E E-1 

it follows from above that both C and C, are accretive operators with clD(C) = R(Z + AC) = 
E+, clD(C,) = Z?(Z, + AC,,) = E_,’ and thus, -C and -C, generate nonlinear contraction 
semigroups s(t): E’-+ E+, t E R+, resp. s,(t): E,+ + ET, t E [w+, in the Crandall-Liggett 
sense (cf. [9, theorem III]). Since theorem 3.8 exhibits the discrete strong convergence of the 
generator resolvents, we get 

COROLLARY 3.9. Suppose that u E E+, u, E Ez, n EN, such that s-limE u,, = U. Then s- 
limES,(t)u, = s(t)u, r E rW_, the convergence being uniform on bounded subintervals of R’. 

It follows from [8, theorem 21 that S,(t)ujl can be interpreted as an integral solution of the 
HJB-equation (3.5a), (3.5b) in the sense of Benilan [4]. Hence, due to this and the preceding 
corollary we will refer to s(t) resp. S,(t) as Bellman semigroups associated to the HJB- 
equations (l.la), (l.lb) resp. (3.5a), (3Sb). 

Finally, let us consider the operators T,(t): E,+ +E,‘. r E R’, given by 

Tn(t)u, = ,:: T;(t)u,, u, E E;. 
v= 1 

We will prove the following analogue of the Nisio formula (1.2): 

THEOREM 3.10. Suppose that (3.15) is solvable for each g, EE; 
n E N, such that s-limE U, = U. Then for any sequence (k,)ra of 
k,-+ 01 we have 

s-limE( T,,(r/k,)u,) kn = S(t)u. 

+ and let u E E . u,, EE, . 
positive integers such that 

Proof. Since we already know that s-limESn(t = S(t)u, t E RB’, we have only to verify 
lim (T,,(r/k)u,Jk = S,(r)u,, 
k+= 

t E l%il. which is exactly the nonlinear Chernoff formula (cf. [7, 

corollary 4.31). Since T,,(r) is contractive, it only remains to be shown that 
lim rcl(Tn(r)u, -u,) = -C,,u, for each u, E D(C,). For this purpose let U, =J$(g,) for some 
r-+0+ 
A E iw’ and g, EE,‘. In view of T,,(t)JL(gl) 2 S,,(r)Ji(g,J, r E R+, we have 

hmtnf t-*( T,(r)Ji(gJ - J$g,)) 2 1’ l~~,f,“ff-l(S,(r)J~(g~) -JXgn)) = -Cd$g,). 

On the other hand, from the discussion of (3.15) we know that JA(g,,) ED(B,Y), v = 1, . . , 

m, and v~lWi!(g,) = A-‘(g, -Je(g,>> = CJi(g,). Now, by definition T,(r)J;j(g,) S 



                                                      

T,‘;(r)JA(g,,), t E R-. v = 1, . . . . m. and thus 

liz;up t-l(T,(t)JA(g,) - Ji(gn)) 5 1’ 1;;;p t-l(T;(t)J~(gn) -Jh(g,,,> = -W$g,) 

whence 

But 

lnn;up t-‘(T,,(t).C(g,) -J%g,)) 5 ,_, (-BYXg,,)). 

,1;1 (-B,“J;(g,)) = -“;, XC(&) = -WLK&) 
L’=1 

which gives the assertion. 
4. APPROXIMATE SOLUTION OF THE PARABOLIC HJB-EQUATION 

Since the approach as described in the preceding sections is a constructive one, it enables 
us to develop various schemes to the approximate solution of the HJB-equation (1. la), (1.1 b). 
As an example we consider the parabolic HJB-equation of dynamic programming 

ut i “iI (A “u -f”) = 0 in Q : = S2 x (0, T) (4. la) 

u = OonT X (0, q?, 1-=aS2 (4.lb) 

u(0) = u” in Q (4. lc) 

where R is a bounded domain in Euclidean space lRd and the operators A”, 1 5 v 5 m. are 
linear second order elliptic operators given by 

(4.2) 

with coefficients satisfying 

a;, -$ a;. b,“, c” E L”(Q). 1 Si,j Sd. 
I 

To put this problem into the setting of Section 1 we choose H = L’(n). V = Wb.2(Q) and 
E = L”(S2), the spaces L’(R) and L”(R) being equipped with the canonical ordering and the 
standard norms such that in particular L”(R) appears as an M-normed Banach lattice with 
order unit e given by e(x) = 1, x E R (cf. (241). The operators Sp”: Wb.*( C2) ---, W-‘,2(S2) are 
defined via 

(&k, u) = &(U, u). U, U E Wi.‘(sz) (4.3) 

the bilinear forms a”(. , . ) being given by 
d d 

ayu. cl) = 2 I I.]=1 * 
a;(x) g: dx + 2 

I ’ I r=l Q 
b;,*(x) $ u dx 

I 

+ cy(x)uu dx, CL, U E Wb.2@) (4.4) 

d da”(x) 
by,* = b;(x) + x 4 

j=l dXi 



                    

Let us now suppose that (Q,), is a uniformly bounded sequence of domains Q,, C Rd. IZ E
N, such that 

(i) for any compact subset S C R we have 

M,.2(S\Q.)-+ 0 (n E N> (4.3 

where M,+2(S \Q,J denotes the (1,2)-capacity of the set S \R,, 
(ii) meas(Q,\Q) * 0 (n E N), 
(iii) the subset 

I-* = ,cO cl[ Uk (Q, fl I)]. Nii={nENln>j} 
I 

satisfies the segment property. 
Moreover, let us assume that there are functions a;“, b?” and cu.“, 1 5 i, j d d, 1 I v S m, 

n E N, satisfying 

(i) Yyn E L”(Q,), IIY?l II L=(Q,) 5 c, (4.6) 
(ii) I/Y, - YjIL=(ndj + 0 (n E ml 

where Y, Y,, denote the extensions of Y, Y,, by zero to all of Rd and Y, Y, are given by 

and 

respectively, 

(iii) +i a;“(x) Z g 2 yl El’. X E n,, : E Rd (y > O), 

(iv) P”(x) ZZ co 2 0, x E QR. 

We choose H, = L”(R,), V,, = WA,‘(S2,) and E, = L”(Q,), and we define operators 
s~,Y:~JV~,~(S&) +W-‘.‘(Q,,) as in (4.3). (4.4) with a$, bF,c” replaced by a;“, b>“, cl”‘. For 
functions u E LP(S2). 1 S p 5 x, denoting again by ti the extension to Lp(Rd) via U = 0 in 
R%2, we introduce “restriction” operators R,:LP(R) + LP(sZ,) by R,u = I&,,, n E N. It is 
immediately clear that (L’(Q), IlL’(R,), R) and (L”(R), IILX(S2,), R), R = (R,,)K,. are 
discrete cn-approximations satisfying (2.1)(i)-( ) h iv w ereas under assumption (4.5)(i) the same 
holds true for (WA,‘( $2)) n Wb.‘( 52,)) R) as has been shown in [13]. It is also evident that the 
discrete strong convergence in (L’(Q), IIL’(Q,), R) 1s order preserving in the sense of (2.2), 
that 

IIR++ - (R,u)’ It wl.+,j = Ii(uT) - (6) + 11 W’.*(Rd) + 0 (n E N) (4.7) 

(cf. (2.3)), I)u,+I(~u(~,) ~JJu,I/~~.~~~,,~ (cf. (3.1)) and (u, -e,)+ E W,f?(Q,) with Ij(u,, - 
e,) + II ~1.y~~) 5 CII tin II W-CIZ,~ Moreover, under conditions (4.5)(i), (ii), (iii) the sequence of 
embeddings W’.*( S&J L>L’(Q,,), n E N, is discretely compact (cf. [13]). In view of (4.6)(i) the 
bilinear forms u”,~( * , . ) are uniformly bounded from which we may deduce the stability of the 



                                                      

sequence (91,Y)~, and because of (4.6)(iii), (iv) it is easy to establish the existence of constants 
K, > K” 2 0 such that for all 1 5 v s m and n E N 

which yields the discrete uniform coerciveness of (.&)h. Moreover, for any c E W’ it follows 
from (4.6)(iv) and (4.8) that 

(d&l. (Kl - ce,) +) = (dQny(un - ce,), (u, - ce,) ‘) 

+ c(cY.‘en, (u, - ce,) ‘) 2 0, n EN. 

Taking (4.6)(i). (“) ’ t 11 m o account, for any sequence (v,)%, u, EV,, = Wh.‘(R,) and any v E 
W,$~‘(S2) such that w-lim,, u,, = u (n E N) we have 

(d;R,u, v,,) = a;(R,u, u,)+ a”(~, u) = (.d’u, u) (n E N 

thus establishing the consistency of the pair Se”, (sl,U)~. Also, (4.6)(i), (ii) immediately give 
the consistency of d”lw,(sB;lU.,)h. W=W,$.‘(S2) n L”(Q)‘, W,, =W6.‘(S2,,) fl L”(Q,,)‘. since 
it is sufficient to prove consistency on a dense subspace and thus we may take u EC;(Q) n 
L”(n)+ and U, = R,u. So far we haye verified all the hypotheses made in Section 3. What 
remains to be clarified is how we can actually solve the approximating HJB-equations 

(u,) , + s (d&, - fi) = 0 in Qn : = 51,, X (0, T) 
Y= 1

(4.9a) 

u, = 0 on In X (0, T), rn= as2,  (4.9b) 

u,(O) = 1~: in Q,. (4.9c) 

For a discretization in space we may use either finite element methods or finite difference 
techniques. In the finite element case, for each n E N we may choose a sequence (S,l.r,,)nlEh 
of approximating subspaces of W[,.‘(Q,,). e .g. piecewise linear elements with respect to given 
triangulations of 51,. and we may consider the operators Oel,,, =Sa,Y(,,“, which share all the 
properties of ti,” such that again the results of Section 3 do apply. 

In the finite difference case let us for simplicity assume that Qn = Lim Sz,,,,,, where R,,.,,. 
m E IV, are grid-point sets 

R ,,.m:=(X,.=(X ,‘,.... .x,.,)/v=(vr ,...) Vd) EfQ’CZd) 

with uniform step size h$’ >O such that hg’ +O as m -+ cc. We denote by C(S&,,,) the vector 
space of grid functions u,,“~ on R,,, and by CO(!&,.,) the subspace of all u,~.,, E C(sZ,.,) with 
u,,,(x) = 0, x EI,,,, = &2,,.,,. We take H,,., = (C(%.,,), l14LZcn,j.m,), Lz = (v~..,~. 

resp. 11. (IL=(Q,, ,,J denoting the discrete L’-resp. LX-norm on Q,,,,,, and 
n.m = (G(%,). (1. ~/u~R,,,,~) where /I. iI WI (Q,, ,J is the discrete Sobolev norm .I 

D&)denoting the forward difference quotient and A$’ the set of all Y EAZ’ such that x,. + 
h%‘ef ES&, n I,.,,. j E (1,. . . d}. ef denoting the jth unit vector in Rd. We introduce 
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