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In this paper we deal with the numerical solution of moving boundary problems
of two-phase Stefan type. Based on an implicit discretization in time and the use
of continuous, piecewise linear finite elements in the space variables with respect
to the weak formulation of the problem, a globally convergent multi-grid
algorithm is developed. That algorithm strongly relies on the variational
characterization of the fully discretized problem as the unconstrained minimiza-
tion of a subdifferentiable convex objective functional. Numerical results indicate
a significant improvement in efficiency compared with previous multi-grid
approaches.

1. Introduction

We shall be concerned with the efficient numerical solution of a moving boundary
problem of two-phase Stefan type described by its fixed-domain formulation as
the following degenerate parabolic initial-boundary value problem

de/dt-Au=f, eeH(u) in Q := Q x (0, T), (1.1a)
e(0) = e°eH(«°) in Q, (1.1b)
u = 0 on 3Qx(0 ,T) , (1.1c)

holding in the distributional sense.
Here, Q stands for a bounded domain in Euclidean space R2 with piecewise

smooth boundary dQ and //(•) is assumed to be a strongly maximal monotone
graph in U2 of the form

a,A-$i if A<0
[sus2] if A = 0 (1.2)
a2A + s2 if A > 0

with positive constants a, and nonnegative constants s,, 1 =e / =s 2, such that
Sx + s2 > 0.

An intrinsic feature of the above initial-boundary value problem (l.la-c) is the
occurrence of moving boundaries

Za=d(£T)n~Qi, U a « 2 (1.3)
where

Qa= {(*, /) e Q | (-l)M*, 0>0}, 1***2,

                            

 
  

            
               

          
   

                                 
                                            

       



                      

The set int i?3 is referred to as the mushy region which may occur due to
superheating or supercooling effects.

Such moving boundary problems model physical processes with a change of
phase. A well known example is the determination of the temporal and spatial
temperature distribution 8(x, t), (x, t) eQ, of a heat conducting substance
undergoing a change of phase at the nominal change phase temperature 6C = 0. In
this case, denoting by p the density, by L the latent heat and by ch Kh l « / s£2 ,
the heat capacities and heat conductivities in both phases, respectively, the
function u appears to be a generalized temperature obtained by the standard
Kirchhoff transformation u = JC, 6 for 6 «£ 0 and u = K26 for 6 3= 0 while H(u) may
be viewed as a generalized enthalpy with ah sh 1 =s i =£ 2, given by a, = pc^K,,
s ,=0 and s2 = pL (cf. e.g. Elliott & Ockendon (1982), Friedman (1982) and
Jerome (1983)).

Another example is the electromagnetic induction in ferromagnetic media at a
constant temperature below the Curie point when modelling the magnetization
characteristics by the so called simplified Frohlich's model (see e.g. Bossavit
(1985) and Hoppe & Kornhuber (1989,1990) for the treatment of a more general
coupled system of two-phase Stefan problems arising in induction heating of large
steel slabs).

A solution to (l.la-c) has to be understood in a suitable weak sense. For weak
solution concepts and existence, uniqueness and regularity results we refer to
Jerome (1983) and the earlier work of Oleinik (1960), Kamenomostskaya (1961)
and Friedman (1968).

It should be noted that the existence of a weak solution can be shown in a
constructive way as has been done by Kamenomostskaya (1961) using a forward
Euler scheme in time and finite difference discretizations in the space variables
and by Jerome (1983) whose existence proof is based on an implicit time
discretization and a suitable regularization of the enthalpy function H. The above
constructive methods also lay the foundations for a numerical solution of
(l.la-c). Meyer (1973) has considered the backward Euler scheme in time and
finite difference methods in the space variables applied to (l.la-c) with a
smoothed enthalpy function. Elliott (1981) has also used an implicit time
discretization but continuous, piecewise linear finite elements in space directly
applied to (l.la-c) without resorting to regularization techniques. His arguments
strongly rely on the close relationship between the semi-discretized problem,
elliptic variational inequalities of the second kind and the unconstrained
minimization of subdifferentiable convex functionals.

Other numerical approaches are based on an alternative formulation of
(l.la-c) by introducing the enthalpy v = H(u) as a new dependent variable. We
refer to Berger, Br6zis & Rogers (1970) and Nochetto & Verdi (1987-88,1988a)
for linearization techniques based on nonlinear semigroup theory, to Ciavaldini
(1975) for explicit and implicit finite element discretizations and to Nochetto &
Verdi (1988b) who treat a more general problem with an additional nonlinear flux
term by a semi-implicit time discretization in conjunction with continuous,
piecewise linear finite elements and regularization techniques (see Paolini, Sacchi
& Verdi (1988) for a comparison of the numerical performance of nonlinear

 
  

            
               

          
   

                                 
                                            

       



                                              

algorithms and linearization methods). Energy error estimates have been derived
by Jerome & Rose (1982), Elliott (1987) and Nochetto & Verdi (1988b). Finally,
the practical aspect of solving the algebraic system arising from a full discretiza-
tion of the enthalpy formulation has been dealt with in White (1982,1986).

In all the papers on numerical methods cited above, for the solution of the
nonlinear algebraic system obtained by implicit finite difference or finite element
discretizations some nonlinear SOR-type techniques have been used. As is well
known these methods suffer from rapidly deteriorating convergence rates for
decreasing mesh sizes but can be used as appropriate smoothing procedures
within a multi-grid framework. Hoppe & Kornhuber (1988) have developed a
multi-grid algorithm based on a finite difference discretization of the backward in
time discretized system (l.la-c) with respect to a hierarchy of grids. The
characteristic features of that algorithm are the use of nonlinear Gauss-Seidel
iteration as a smoother, a modified FAS-type coarse grid correction, derived by
means of duality arguments from convex analysis, and an adaptive local choice of
restrictions and prolongations in the fine-to-coarse and coarse-to-fine transfers of
the multi-grid cycles. Meshsize independent local convergence of IV-cycles has
been established using nonlinear multi-grid convergence theory and
subdifferentiable calculus in the spirit of Hackbusch (1981,1985) and Clarke
(1983).

Discretizing by continuous, piecewise linear finite elements in space and taking
advantage of the variational characterization of the fully discretized equation as
an unconstrained nonsmooth convex minimization problem, in this paper we will
improve on the above multi-grid algorithm by introducing a damping factor to the
prolongated coarse grid correction. Such a device has recently been proposed by
Hackbusch & Reusken (1989) for such nonlinear problems which are optimality
conditions for unconstrained minimization problems with differentiable objective
functional. As a result of that damping factor we will get global convergence
while retaining the meshsize independent local convergence.

The paper is organized as follows. The damped multi-grid two-phase Stefan
problem solver will be developed in full detail in Section 2 while its convergence
properties will be established in Section 3. Finally, in Section 4 we will report on
some numerical results displaying a significant improvement in asymptotic
efficiency rates.

2. The damped multi-grid solver

The implicit time discretization of the degenerate parabolic initial-boundary value
problem (l.la-c) with respect to a uniform partition {tm = mAt \ O^m =eM),
At = T/M, M e N , of the time interval [0, T] requires the successive solution of
elliptic differential inclusions

bm - Aum e H(um) in Q, (2.1a)
um = 0 on dQ (2.1b)

where A = -AtA and bm = Hm~l + Atfm with an appropriately chosen Hm~x e

 
  

            
               

          
   

                                 
                                            

       



                      

In the sequel, since we will mainly be concerned with the numerical solution of
(2.1a-b), for notational convenience the upper index m will be suppressed.

Due to the fact that the enthalpy function H is the subgradient of a piecewise
quadratic function 4>, i.e., H = d&, a weak solution to (2.1a-b) can be
characterized by the following elliptic variational inequality of the second kind.
Find u e tfj(fl) such that

a{u, v-u)-(b, v-u) + <p(v)-<p(u)»0, v e Hl
o(£2) (2.2)

where a(-, •): HX
O(Q) x //Q(£2)—» R is the bilinear form associated with the elliptic

operator A, <f>: //Q(£2)—*R is the subdifferentiable functional given by (p(v) =
fa <P(v(x))dx, v e Hl{Q), and (•, •) denotes the standard L2 inner product.

Concerning existence, uniqueness and regularity of a solution to (2.2) we have
that, if b e L2{Q), then there exists a unique solution u e HQ(£2) n H2(Q) (cf. e.g.
Barbu (1976)). Moreover, it is easily shown that (2.2) is the necessary and
sufficient optimality condition for the unconstrained subdifferentiable convex
minimization problem

J(u) + <p(u)= inf (J(v) + 4>(v)) (2.3)
rtJ(Cl)

where J(v) = a(v, v)/2 - (b, v).
We shall now consider a finite element approximation to (2.2) with respect to a

hierarchy of triangulations where for the ease of exposition we will assume Q to
have a polygonal boundary 9Q. Moreover, we will restrict ourselves to a
hierarchy generated by uniform refinement. Given an initial coarse triangulation
To with Q = Urcrn T, we create (7^)^=0, / e N, in such a way that Tk+l is obtained
from Tk by subdividing each triangle T eTk into four subtriangles such that the
midpoints of the edges of T are the additional vertices. We further assume that To
is such that the family (Tk)'k-0 is regular and quasi-uniform with all Tk, 0 «£&«£/,
sharing the property of acuteness.

We refer to Vk, 0 =e k«/, as the finite dimensional subspace of Hl(Q)
generated by continuous, piecewise linear finite elements, i.e. Vk = {vk e
C0(Q) \vk\T e P,(r), T e Tk) where P,(7) is the set of polynomials on Tof degree
less than or equal to 1. Denoting by aj, 1 =s / =s 3, the vertices of T e Tk, the set
Nk of interior nodal points is given by Nk = (Ur6r t {<*T, a\, af}) n ®> and w 
have dim Vk = nk, nk = card Nk. Ordering the nodal points lexicographically, we
may write Nk = {c*, . . . , c*t}, and a suitable basis {w,*}^, of Vk is given by
w?(cf) = djj, 1« i , j « nk. Then, for a function v e C(fi) its ^-interpolate will be
denoted by FIkv while for a function v e L2(£2) we will refer to Qkv as its
L2-projection onto Vk.

The standard finite element approach to (2.3) is to minimize (2.3) over Vk
which, however, is impractical under the present circumstances, since the
computation of (f> \T, TeTk, would require us to determine where vkeVk
changes sign on T. Therefore, following Elliott (1981) we approximate the
functional <p in such a way that we replace the integrand by its Kt-interpolate thus
giving

<t>k(v*) = f (nk<P{v))(x) dx = X * area ( 7 ) 2 *(i/k(fl7)). (2.4)

 
  

            
               

          
   

                                 
                                            

       



                                              

Then the fully discretized problem on level k is to minimize J + <pk over Vk, i.e.,
find uk e Vk such that

J{uk) + <pk(uk) = min (J(vk) + <pk(yk)). (2.5)
vteVt

As in the continuous case, setting

Qk
t={xeQ\(-l)auk(x)>0}, l^a^2,

Q*k={xe£2\uk(x) = 0},
the discrete free boundaries are given by

Ik = d(QT) D Qi, U u « 2 . (2.6)

We identify finite element functions in Vk with vectors in Wk via the bijective
mapping

:X«*,wf, i^eOr*, (2.7)

and we refer to (•, -)k as the discrete inner product on Rn* given by

<«*, "*>* = 2 yf«*./w*./. yf = s S area (r,.y) (2.8)
/-i ,=\

where Tltle Tk, l « / « m f are the triangles having cf e Nk as a common vertex.
The associated norm will be denoted by \-\k.

Further we denote by /* the adjoint of lk with respect to the inner products
(•,•) on V*and (., .)k o n R"*, i.e.,

ukeVk, vkeRnt, (2.9)

and we set Ak = IkAIk, bk = IkQkb and <Pk(vk) = <pk(lkvk), vkeU"k. Then, with
Jk :R"*^R n t given by

Mvk) = i{Akvk, vk)k - (bk, vk)k + <Pk{vk), (2.10)

the minimization problem (2.5) can be algebraically written in the form
Jk(uk) = min Jk(vk) (2.11)

u4eR"*

which obviously is equivalent to the algebraic inclusion

bk-Akuked4>(uk). (2.12)
The multi-grid algorithm for the solution of (2.12) on level / will now be

exemplarily described in the case of two levels / and / — 1. It will be designed in
such a way that, given an iterate u), vS^O, on level /, the result M/v+l of the
two-level cycle yields a decrease in the value of the functional J,. For this purpose
we require both ingredients of the multi-grid algorithm, namely the smoothing
procedure and the coarse grid correction, to provide a descent direction for J,.
According to the results in Elliott (1981), a natural candidate for the smoothing
process is nonlinear Gauss-Seidel iteration which will be used here in its

 
  

            
               

          
   

                                 
                                            

       



                      

symmetric variant. In particular, if we perform A:, smoothing steps, then, given
z° := uj, we first obtain zf+ia from zf, 0 =s \i =s K, — 1, by the successive solution
of the nt scalar inclusions

du ~ a'ltzf,rm e 90{zf,tm), 1 ^ i « n, (2.13)
where

and a'jj, 1 « i , y « n,, are the components of A,.
Secondly, we compute zf+l from zf1""2 in essentially the same way but with a

reversed ordering of the unknowns.
Note that in view of 90 = H and (1.2) the inclusions (2.13) can be easily solved

by means of

f(</,., + *,)/(«{,+ «i), if d,j<-Sl

z?,ra = <0, if due[-sus2] (2.14)
[(dl,l-s2)/(a'il + a2), if du>s2.

The above smoothing process will be formally described by

ur = SNul!;b,). (2.15)
Concerning the coarse grid correction, the difficulty to deal with inclusions can

be circumvented by the following well known equivalence from convex analysis
(cf. e.g. Ekeland & Temam (1976))

b, - A,u, e d&(u,) O u, e 90*(b, - A,u,) (2.16)
where 0* denotes the conjugate function to 0 given by

0*(X) = sup (A/i -

In particular, in our case the subgradient 90* turns out to be the continuous,
piecewise linear function

0, if A 6 [ - J , , 5 2 ] (2.17)

fl^'(A — J 2 ) . if
Consequently, the second inclusion in (2.16) reduces to the non-linear algebraic
system

Fl(ul) = ul-90*(bl-A,ul) = O. (2.18)

It is that system which will now be subjected to a variant of Brandt's FAS-scheme
(cf. e.g. Brandt (1977)) combined with the idea of introducing a damping factor
for the prolongated coarse grid correction. Denoting by r\~x and p{_i an
appropriately chosen restriction and prolongation, respectively (this point will be
discussed in more detail below), we determine an improved iterate by

u,v(ft>,) = uj - ©^{..(rj- 'ar-«,_,) (2.19)

 
  

            
               

          
   

                                 
                                            

       



                                              

where u,_x e R"'~l is the solution of the coarse grid correction problem
//_,(«,_,) = W,_, - d^*{B,_i - i41_,M,_I),
5,_1=i4/_,r{~lM/

v-^~Irf/, d,=A,u]f-b,
and oj/ € [0, 2] is chosen such that J,(uJ(a>,)) ^J,(uJ).
Remark. In view of (2.16) the coarse grid correction on level / — 1 is equivalent
to an algebraic inclusion of the same kind as that one initially given on level /.

Finally, we complete the two-grid cycle by performing a certain number K2 of
post-smoothing steps using again symmetric nonlinear Gauss-Seidel iteration as a
smoother

url = Sr%W!{(o,);b,). (2.21)
In case of more than two levels the solution of (2.21) is replaced by an additional
two-grid cycle involving the levels k = I — 1 and k = I — 2. This process will then
be repeated until the lowest level k = 0 is reached. Symmetric nonlinear
Gauss-Seidel iteration will also be used as an iterative solver of the correction
problem on the lowest level, since by Elliott's result it is known to yield a globally
convergent minimizing sequence for the associated nonsmooth minimization
problem.

Note that the coarse grid correction problems on levels 0^k<l are equivalent
to the unconstrained minimization of functional which are different from those
given by (2.10). Therefore, in the following we will refer to Jk, 0«&=£/, as the
functional given by /, = // while Jk, O^kml -1, is denned as in (2.10) with bk
replaced by bk=Akrk

k+iUv
k+l~ rk

k+x{Ak+iul+x — bk+l), bl = bl. We will further
refer to u*k e R"k, O^k^l, as the unique solutions to the associated minimization
problems.

For finite element discretizations of second order elliptic boundary value
problems restrictions r%~x and prolongationspk-i, l^k^l, are usually chosen in
a canonical way according to

r j" 1 /* = /*"', 4pJ_,=/*_, (2.22)
where Ik and /* are the maps defined by means of (2.7) and (2.9), respectively.
Remark. In case of triangulations Tk with triangles {(A;, y), (JC + hk, y), (x +
hk, y + />*)} and {(*» y)> (*> v + M> (* + hk,y + hk)}, (x, y) = (ihk, jhk), i, j e Z,
hk > 0, the restrictions and prolongations as given by (2.22) coincide with the
standard seven-point restrictions and seven-point prolongations (cf. e.g. Hack-
busch (1985)).

However, in the present situation we cannot use such weighted restrictions
globally due to the occurrence of discrete free boundaries. To make this point
more transparent, we subdivide the set Nk of interior nodal points ck

it 1 s£ i =s nk,
into three mutually disjoint subsets with respect to the actual values of
uh = (lkuZ){cl):

(2.23a)
(2.23b)

 
  

            
               

          
   

                                 
                                            

       



                      

We further denote by Nr
k{ck) c Nk the set consisting of ck and its maximal six

nearest neighbours in A .̂ Then, if we consider a nodal point ck~l e N"(u^,
ae {1, 2, 3}, with a neighbouring grid point representing a different phase, i.e.,
ck eNk{ck~x)f\N^{uk^, /3e {1, 2, 3}\{ar}, weighted restriction cannot be used,
since the defect dv

kl in c) is not a reliable indicator for the accuracy of the
approximation in ck~\ In other words, performing weighted restriction globally,
the solution u* to (2.11) on level / is no longer a fixed point of the multi-grid
iteration. This problem can be circumvented by using pointwise restriction in a
vicinity of the discrete free boundaries and weighted restriction elsewhere. To be
more precise, a nodal point ck will be called regular, if all nearest neighbours in
Nk represent the same phase, and irregular otherwise, i.e.,

N^\u^ = {cfeNk\N'k(cf)nNkc=Nt(uX), <re{l,2,3}}, (2.24a)
A^WO^-AA^TO. (2.24b)

Denoting by rk~l the weighted restriction as given by (2.22) and by r*~' the
j 1

y ( )
pointwise restriction, we define rj"1 , l^k^l, locally for 1 «;*£«*_! according
to

^ 1 ^ ) . , if c
W ' t f c ) , , if c f - J T ( o

As far as the prolongations are concerned we will use the strategy that a change
of the discrete free boundaries should not be caused by the prolongated coarse
grid correction. Therefore, we have to make sure that uk((ok) does not change
sign over the whole range of possible values of the damping parameter and we do
not prolongate, if the weighted prolongation involves nodal points on level k — 1
representing a different phase. In particular, we define Nk-^{uv

k1i\) and
N^(ul(a)k)), 1 =£ a-=£3, according to (2.23a-b) and we refer to N%^(ck) as the set
consisting either of the single element ck, if ck e Nk_t, or of the adjacent nodal
points in A4_i, if ck $ Nk_t. Then a nodal point ck e Nk will be called regular with
respect to uv

k((ok), if the following condition holds true:

cf e Nt(.uv
k(wk)) for all cok e [0, 2] and

A^-i(c,*) c A7_,K+i), a e {1, 2, 3}. (2.26)

Accordingly we set

A^«(fiJ(a>*)) = {cf* e Nk | (2.26) is satisfied}, (2.27a)
NFWM) = Nk\N^Hl((ok)). (2.27b)

Then, denoting by pk
k-\ the weighted prolongation as in (2.22), we specify /?£_,,

1 as k ^ /, locally for 1 =£ i« nk as follows

(228)

Although the algorithm is based on a fixed domain formulation of the problem,
due to the choice of restrictions and prolongations by (2.25) and (2.28) the
two-level iteration has the flavour of a combined approach of fixed domain and

 
  

            
               

          
   

                                 
                                            

       



                                              

front tracking techniques. The smoothing procedure obviously is a fixed domain
method which allows the a posteriori specification of the discrete free boundaries
while the coarse grid correction can be seen as an approximation to the respective
heat equations describing the temperature in the two different phases. Moreover,
in the next section we will see that with the above adaptive choice of
prolongations and restrictions the prolongated coarse grid correction
(0kPkk-i{r'k~*uv

k - ult\) yields a descent direction of the associated functional for
all 0 « a>k =s U)k. It will be further shown that an optimal w* e [0, cbk] can be
cheaply computed by means of easily accessible data.

Finally, it should be mentioned that a suitable startiterate u" on the highest
level can be efficiently determined by nested iteration taking into account the
values at the previous time /„,_, on all levels O=sJt=s/. Note that an appropriate
choice of Hm~x eH(u?~l) is given by HT~X = H(u?J]) for u £ r ' # 0 and
H?'1 = (bk - AkuJ?~l)i for u£7 '=0 , lssjssn*. Since the process of nested
iteration is fairly standard and has also been used in Hoppe & Kornhuber (1988),
the reader is referred to that paper for more details.

3. Convergence results

In this section we will first prove that a suitable choice of the damping parameter
ok on levels l ^ A : ^ / results in global convergence of the multi-grid algorithm,
provided that at least one pre-smoothing or post-smoothing step is performed on
each of these levels. It should be mentioned that the techniques used by
Hackbusch & Reusken (1989) do not apply here, since the design of the
multi-grid algorithm under consideration involves several non-standard features
that take into account the special nature of the moving boundary problem.

The basic step in the global convergence proof is to show that on each level
ls£jfc=£/ both components of the multi-grid cycle, namely the smoother and the
coarse grid correction, do provide a descent direction for the functional Jk to be
minimized. As far as the smoothing process is concerned, this result is well known
(cf. Elliott (1981)) but will be stated for the sake of completeness.

LEMMA 3.1 For 1 «/:=£/ and vk e Unt let uk = Sk(vk;bk), K>0. Then, there
exists a positive constant ck

1} = ck
l\ic, Ak) such that

Jk(vk)-Jk(uk)&cP\vk-uk\2
k. (3.1)

Proof. It is sufficient to prove (3.1) for K = 1 and the first substep of symmetric
nonlinear Gauss-Seidel iteration, since the general result can be easily deduced
from that special case. We start by decomposing the left-hand side in (3.1) into a
telescoping sum according to

Jk(vk)-Jk(uk) =
/ - I

where dki is given as in (2.13) with /, b,, zf+\ z? replaced by k, bk, uk, vk,

 
  

            
               

          
   

                                 
                                            

       



                      

respectively. Using the pointwise relations

kJ) - <P(uki) + 3&(ukj)(vkj- ukJ)2= 0,

we find

which immediately yields the assertion.
In order to prove the descent property for the coarse grid correction, i.e.,

Jk(uk((ok))^Jk(uX), 1 =££=£/, we have to estimate <Pk(uZ) - «£*("*(a)k)) fro 
below and to evaluate tPk-t(rk~luk) - <Pk-t(ult\) in a proper way. This will be
done in the following technical lemma which is easy to prove but involves some
tedious computations due to the fact that the vectors rk

k~luv
k and ukt\ may have

components of different sign. For notational convenience, given vk e U"k, we
introduce vectors ak(vk) e R"* and sk(vk) e Wk by

ffau if vkJ<0 ( su if u*
la2, if vki^0 i-s2, if u*./>0

Further, we refer to uk*vk e R"k as the vector with components (uk * vk), =
Uk.iVk,h l«i=sn*. Then, denoting by wk_t = rj~'«* - uv

kt\ the coarse grid
correction and using the preceding notations, for 1 « k « / we define

k{W£i*ul-sk{uky), wk_,)k^x, (3.2)

i_,,«^!) t_1, 2^k^l, (3.3a)

u(r1-'?S, wo)o (3.3b)

where i,J_, = i(«*-i(«*-i) " «*-i(^"'S*)) and iji_, = ^ _ , ( M ^ J ) -^- . ( rJ- ' f iB,
1«A:«/. Note that itf.,., = !?'*_,.,- = 0, if cf"1 g A^_,K-!) n ^ . . ( rJ- 'QO, a e
{1,2,3}, 1 « /««*_, .

LEMMA 3.2 For 1 =s /t =s / there holds

**(«*)" **(5*(«*)) * e»*[<fl*-i(rj-'fia •rj-'fij

- i t - . ^ - 'SJO. w*-i>*-.-«iI2i]-ifi»J<«*-.(rJ-|fi»*wit_I> w*.,)*.,. (3.4)

Moreover, for 2 =s A: =£ /

-5*_,(rr ifi*), H',_1>,_1 + i<a,_1(r*-1S*v)*H't_1, H',_1),_1 + 6i221. (3.5)

Proof. Since by definition of the prolongations it is guaranteed that uv
k and

u£(a>*) are of the same sign, we find by elementary calculations

-i)*- (3-6)

 
  

            
               

          
   

                                 
                                            

       



                                              

In view of the fact that the restrictions are sign preserving, it follows that

sk(p$) = ^ - . ( r T V ) * r*-lu; - ^ . . ( i * " ' ^ . (3.7)
Moreover, denoting by ak

n(yk) the vector with components (ak,i(vk))i/2,
nk, we have

^\ak
n^{rk

k-xuk^*wk_l\l^={ak_i{rk
k-lu^*wk_u wk_x)k_x. (3.8)

Using (3.7) and (3.8) in (3.6) immediately gives (3.4). The second assertion (3.5)
can be derived by straightforward evaluation of the left-hand side.

Now we are in the position to establish the desired descent property for the
coarse grid correction:

THEOREM 3.3 For alll^k^l there exists cok e [0, 2] such that for all a>k e [0, a>k]
we can find a constant ck

2) = ck
2\u>k) 5= 0 such that

/*(S»-/*(5j;(<»*))3»cF> \pk
k-xwk_x\\. (3.9)

Proof. We may assume M>t_i^0, since otherwise (3.9) becomes trivial. Then a
straightforward evaluation of the left-hand side in (3.9) gives

/*(«*)-•/*(«*(<»*)) = o>k(dv
k, pk

k_xwk-x) k

-Wk{Akpk
k-xwk_uP

k
k_xwk_{)k + <Pk(uft- <Pk(n;(a)k)). (3.10)

In order to prove the assertion we now proceed by induction on k.
For A: = 1 we know that the solution UQ+1 to the coarse grid problem on level 0

satisfies

(3.11)
Then, using (3.2), (3.3b) and (3.11) in (3.10), we find

o, wo)o

* wo, "o>o (3-12)

where

4 ° = \((r°i-(phrW, wo)o\/(AoWo, wo)0,
o)mAiph-A0)w0, wo)o\/(Aowo, wo)o,

Consequently, choosing
S, = max {0, min {2(1 - 4'>)/(l + e^), 2(1 - £^3))}} (3.13)

the assertion holds true by observing the ellipticity of Ao and
Now, assuming (3.9) to hold true for some l « A : - l s £ / - l and observing
Lemma 3.1 we have

/t_1(ur-1)=A-,(rJ-1u*v)>A-.(«*-.)>A-.(«*v-i(w*-,))>/*-,K-!). (3.14)

 
  

            
               

          
   

                                 
                                            

       



                      

Using (3.14) and taking into account the symmetry of Ak_u by straightforward
calculations it follows that

,wt_i, »vt_i>t_,. (3.15)

Then, if we use (3.2), (3.3a), (3.4), (3.5) and (3.15) in (3.10) in the same way as
we did for k = 1, we get

l-ek
3ll)-cok](ak-l(rk

k-iuV*wk-l, **_,>*_, (3.16)

where

Hence, if we choose

<bk = max {0, min {(1 - ek%)l{\ + ek
2lx), 1 - ek

3l,}}, (3.17)

it follows from (3.16) that the assertion holds true on level k.

Remark. If we assume convergence of the discrete free boundaries to the
continuous ones, we can expect the quantities ek

a\ l s a « 3 , in (3.13) and (3.17)
to become small such that a>, = 2 whereas mk — \, 2 «£*:«£/. Apparently, the
bound (bk, 2^k^l, is too pessimistic, since in the proof we have only used
h-\(.rk~xul)-/t-i(«*-!)^0. A more detailed analysis would have revealed

with positive c[a2u 3 « a r ^ 4 , thus yielding more realistic bounds a)* 3=1,
2 s£ k «/. Using the preceding result we can easily deduce global convergence of
the damped multi-grid algorithm:

THEOREM 3.4. Let us assume K = JC, + K2>0 and mk e [0, a>k], l^k^l, with ibk
given by (3.13), (3.17), respectively. Then, for any initial value H?eK"', the
sequence (uJ)N of multi-grid iterates converges to the unique solution u* of (2.11)
on level /.

Proof. In view of Lemma 3.1 and Theorem 3.3 there exists a positive constant c
such that for all v 5= 0

/,(«/") - J(uJ) ^ c \uj - anl (3.18a)
Mur) - //(«,"(«,)) s* c\uj - u,v(a>,)|?, (3.18b)

MuKofi)) -M«r+l) & c \ar(co,) - uri\i (3.1&)

 
  

            
               

          
   

                                 
                                            

       



                                              

Due to the fact that A, is positive definite and <P(A) & 0, A e R, the sequence
(uJ)N is bounded, and hence there exist a subsequence N' c N and a vector
u** e U"1 such that u,v->u,** (v e W). By (3.18a-c) it follows that

uj^ur, ur{a>,)->ur, u?+l^u?* (veN').
To fix the ideas let us suppose K = KX >0 . As in the proof of Lemma 3.1 it is
sufficient to consider the case jq = 1 and the first substep of symmetric nonlinear
Gauss-Seidel iteration. For 1 =£ i =s n, we then have

d<P*(du - a'ifil) = ah. veN' . . (3.19)

where du is as in (2.13) with zf+m, zf replaced by uj, u,v, respectively. Passing
to the limit v—>°° in (3.19) by using the continuity of 90* gives

Thus u** solves (2.11) on level / and hence, u** = u* and u,v->u'(v6W) by
uniqueness.

The computation of an optimal steplength u>* in the descent direction on level
1 s= k =s / requires the solution of the one-dimensional nonsmooth minimization
problem

h{ul{<o*k)) = min Jk{ul{wk))
co*€|0.o>*|

which is equivalent to

(bk -Ak{u\- o)tpk
k-iwk-i),pUi^k-t)k = (d<Pk(ul- i»*kpk

k_xwk_\), pk
k-\wk-\)k-

Due to the definition of the prolongations we have that uv
k and uv

k{a>t) are of the
same sign and (pk^iwk_i)i = 0 iff uv

k , = uv
k,,{u>t) = 0, 1 « / « nk. Consequently, we

do not have to resort to special nonsmooth minimization algorithms such as
bundle methods but can determine co* explicitly according to

co* = m i n (&>k, a>k) (3.20)

Z), pk
k_iwk-t)k

p k w ) p k w )

By arguments similar to those used in Hoppe & Kornhuber (1988) we will now
establish grid-size independent local convergence of W-cycles. This will be done
under some requirements concerning the regularity of the continuous free
boundaries (1.3) and the approximation by their discrete counterparts (2.6). In
particular, we assume the following.

The projections TIZa\lm of the continuous free boundaries .S"1^, l ^ a r ^ 2 ,
O^m'SM, onto the £2-plane admit Lipschitzian parametrizations. The discrete
free boundaries Zk\,m, ()=£&«/, approximate flEa\lm according to

sup dist (x, nZa\J = O(hk). (3.22)

 
  

            
               

          
   

                                 
                                            

       



                      

Furthermore, we assume the following discrete nondegeneracy condition with
respect to the solutions u* of the minimization problems on levels 0 « k *£ / within
a multi-grid cycle

uli = O&d<P(uii)e(-sl,s2), l^i^nk. (3.23)

Remarks, (i) Error estimates for finite element approximations of free bound-
aries based on If -error estimates for the solutions and a nondegeneracy condition
for the continuous solution have been derived by Nochetto (1986) and Nochetto
& Verdi (1988b). In particular, if there is an L2-error estimate of order O(/iĵ ) for
some /3>0, then (3.22) can be expected to hold true for the same order. In the
papers cited above the authors were only able to verify /3 = \ (see also Elliott
(1987)). However, there is numerical evidence that (3.22) is satisfied, i.e., /3 = 1
(cf. e.g. Hoppe & Kornhuber (1988)).

(ii) In view of uk = rk
k+xut+u ()=£&=£/ — 1, and the definition of the restriction

operators by (2.25) it is sufficient to require (3.23) on the highest level k = I,
because this implies nondegeneracy on all lower levels.

The nonlinear mappings Fk and Sk{-\bk), 0 «&=£/, as given by (2.20) and
(2.15), respectively, are not differentiable everywhere, but as locally Lipschitzian
maps admit generalized Jacobians in the sense of Clarke (1983). However, as an
immediate consequence of the nondegeneracy condition (3.23), both Fk and
Sk(',bk) are differentiable at least in a suitable neighbourhood Uk(uk) of the
solutions u*. In particular, denoting by Mkh l^i^nk, the i-th row of an
{ik, n*)-matrix Mk, the Jacobians Lk = (JFk)(uk), 0 « A: =£ /, are given by

{ Ik., + aTlAkJ, if (Bk-Akut),<-sl

h.i, if sx<(bk-Akut)l<s2 (3.24)

h.i + al ]AkJ, if (f>k-Akuk)j>s2

Concerning the Jacobians Gk = (JSk)(ul; bk), O^k^l, we obtain

Gk = lk-L:lLk (3.25)

where

Lk = (Dk-Bk)D;\Dk-Ck)
and Lk = Dk — Bk — Ck pertains to the decomposition of Lk into its diagonal,
subdiagonal and superdiagonal part, respectively.

As for all nonlinear iterative methods local convergence can be achieved, if the
Jacobian of the nonlinear iteration map can be bounded by a constant strictly less
than one with respect to a suitable matrix norm, we will now introduce some
appropriate norms. In view of the fact that the finite element discretizations Ak of
the elliptic operator A = —AtA are symmetric, positive definite, setting Ak = Ak,
for s e R we define discrete Sobolev norms ||-||, on Wk by ||u*||, = ||Aiu*||0 where
||-||o refers to the discrete L2-norm |-|* which has been defined following (2.8).
The corresponding matrix norms are then given by ||Af*||P<7 =
snr>{\\Mkvk\\ql\\vk\\p,vk*Q).

 
  

            
               

          
   

                                 
                                            

       



                                              

Since multi-grid convergence in case of more than two grids can be deduced
from the two-grid situation (cf. Hackbusch (1981,1983)), we analyze the two-grid
case and obtain:

LEMMA 3.5 Consider the damped multi-grid algorithm in case of two levels / and
/ - 1 with K — Ki > 0 and co* chosen according to (3.20) with cbt s= 1. Then there
holds

uri-ur = (M'r+z,)(ur-ur), v^o (3.26)
where

M'r1 = [L,-1 - pJ-.Lr-VJ-'p^Cn (3.27)
and \\Z,\\SS^C(K)T](V) for some s e (0, 1] with C(JC) > 0 and r/(v)->0 as
\\ur-ur\\,'-+o.
Proof. Using elementary subdifferential calculus, the assertion can be verified by
straightforward calculations following the lines of Lemma 3.4 and Lemma 3.5 in
Hoppe & Kornhuber (1988) and observing that

(o!->l as uj^-u*. (3.28)

The proof of (3.28) follows by taking into account that both the nominator and
denominator in (3.21) can be rewritten as

with x\i\ —* 0, 1 ̂  or =e 2, as uf—> u*. But the coarse grid solution satisfies
/4/_1»V/_1 — r{~'d/v6 d<Pt^i(u^i) and hence, (3.28) can be easily deduced.

Using the preceding result, two-grid convergence results by verifying an
appropriate approximation and smoothing property.

LEMMA 3.6 There exists a function C{K) satisfying C ( J C ) - » 0 as K—*°° such that
for some 5 e (|, 1)

\\M'r%.,*C{K). (3.29)

Proof. In view of the representation (3.27) of the two-grid iteration operator
the assertion holds true, if we can establish the approximation and the smoothing
property

WLr'-pi-iLr-Vr'Ws^chp, (3.30)
\\L,Gn\,,-,^C(K)hr\ 0^K^Kmax(ht) (3.31)

for some suitable or, > <x2 > 0 and a function Kmax{h) satisfying either JtmM(/i) = <»
or Kmaxt/i)-*00 as /i-»• 0. Now, setting V, = {v, e W1 \ vu = 0, c',€ A/,3(u*)}, we
have M',~1vie Vh V/eU"1, and hence, it is sufficient to prove (3.30), (3.31) for
M',~l = M',~l\vr But M',~l admits the decomposition M'r1 = diag(j6{,""j\ M',7?)
where the operators M\~^, \^\i^2, pertain to two-grid iterations involving
symmetric finite element discretizations L£, / - 1« k =£ /, of elliptic boundary
value problems with homogeneous Dirichlet boundary data for the operators

 
  

            
               

          
   

                                 
                                            

       



                      

A11 = I - a~x At A considered on the projections TlQll\tm of the domains Q"\tm
onto the £2-plane. Then, in view of the results established by Hackbusch (1985)
for the smoothing property of symmetric Gauss-Seidel iteration, for Lf and the
correspondingly defined Gf (3.30) can be shown to hold true with a2 = 0 and
*"max(^)= °°- On the other hand, since the free boundary of /7Q **!*„,, 1 =£ /* ^ 2, is
assumed to be Lipschitzian, in the standard case rli~x = fi~x and p\-x =p'l-u
where Lf_i = /^~lL//5{_1, the approximation property (3.30) holds true for some
s e (|, 1) and a-, = 2(1-5). But in view of (2.25) and (2.28) the restrictions r1,'1
and prolongations pf_, only differ from r'r1 and p{_) in irregular nodal points
which, by assumption (3.22), are located within an O(/it)-neighbourhood of
/ H ^ so that (3.31) can be shown to remain true by similar arguments as used in
Hackbusch (1980).

Remark. In Lemma 3.5 and Lemma 3.6 the case K2>0 can be treated
analogously involving only slight modifications.

The multi-grid iteration operator for more than two grids can be recursively
defined by means of the corresponding two-grid operators on levels 1 =£ k =£ / and
step size independent local convergence of W-cycles can be shown along the lines
of Hackbusch (1981,1985):

THEOREM 3.7 Under the assumptions (3.22) and (3.23) there exist a neighbour-
hood U6(u*), a positive integer Kmin and a positive real number £ < 1 ,
independent of hh such that for any u°e U6(u*) the iterates u,v, v ? l , obtained
by the execution of W-cycles of the damped multi-grid algorithm with K > *fmin
smoothing iterations satisfy

«/V-«/II ,«!I |H/V -K/T- (3-32)

4. Numerical results
We have compared the performance of the damped multi-grid Stefan solver
(DMGSTEF) with the (undamped) multi-grid algorithm MGSTEF2 from Hoppe
& Kornhuber (1988) and Elliott's single-grid SOR algorithm in its symmetric
version (cf. Elliott (1981)) for the following model two-phase Stefan problem
from Ciavaldini (1975).

The space-time domain Q = Q x (0, T) is specified by Q = (0, I)2 and T = 0-5,
while the physical data are c, = 2, JC, = 1, 5, = 0 and c2 = 6, K2 = 2 and s2 = 1. The
right-hand side/in (1.1a) is chosen according to

f(xux2,0 = 4 ^ - c M e x p ( - 4 r ) , (xl,x2,t)eQ>1, n = \,2

so that the explicit solution in terms of the temperature 6 = 6{xu x2, t) turns out
to be

0(x,,;r2,O = (*,-O-5)2 + (;t2-O.5)2-exp(-4/)/4, (xux2,t)eQ.

Initial and boundary conditions are taken from the exact solution. We have
discretized Q with respect to uniform time steps At > 0 and hierarchies (Tk)'k-0 of
triangulations obtained by regular refinements from an initial uniform triangula-

 
  

            
               

          
   

                                 
                                            

       



                                              

tion To with the center of Q as interior nodal point. Consequently, setting
Mk = 2*+1, 0 =£ k =s/, on level k we have nk = (Mk — I)2 interior nodal points and
2Mk+l triangles.

In the actual execution of a multi-grid cycle, starting from an iterate uj, v^O,
on level /, we may encounter a level l«Ar*ss/ with NI.c.8(u*(a>£)) = 0 which
means that, in view of definition (2.28) of the prolongations, the computations on
levels 0^k<k* do not provide an improved iterate on level k*. Therefore, we
skip all levels below k*, specify kmin = k* as lowest level and solve the coarse grid
correction problem on level A:min iteratively by repeated symmetric Gauss-Seidel
iterations.

In order to provide an adequate comparison between the single-grid SSOR
scheme and the multi-grid algorithms, the computational work is measured in
work units where one work unit (WU) corresponds to one symmetric Gauss-
Seidel iteration on the highest level /. We denote by A? = uJ — uj~l, v > l , the
difference of two subsequent multi-grid iterates and refer to Nwu(v) as the total
number of work units for the multi-grid cycle which computes u;

v from u/"1. Then
an asymptotic efficiency rate qt can be determined according to

q, = (\\A7'\\o/\\Al\\o)*

where v* indicates the iterate for which ||^/v||0< e, with respect to a prespecified
accuracy bound eh

Despite the theoretical convergence result in Theorem 3.7 (cf. also Theorem
3.6 in Hoppe & Kornhuber (1988)), referring only to W-cycles, we found step
size independent multi-grid convergence both for K-cycles and W-cycles.
Actually, for DMGSTEF and MGSTEF2 we got best asymptotic efficiency rates
for V-cycles with one pre-smoothing step (A^ = 1) and one post-smoothing step
(JC2 = 1), but post-smoothing only applied to irregular nodal points cf e
N""(ul(a)k)), 1 s= k as /. (Note that such a post-smoothing step only involves
n'kln, instead of the standard njn, WU's where nl" = #Nk™{ul{o)k)) and
n'"«nk, especially on higher levels in the chosen hierarchy). For the example
considered here we did achieve full multi-grid efficiency for a hierarchy (7^)1-0
with / = 5. Choosing At = 1-25E - 2 and e5 = 1-0E - 8, Table 1 below displays the
asymptotic efficiency rates q5 at tf=j- 0-05, 1^ /^10 , for DMGSTEF and
MGSTEF2 as well as the convergence rates for the symmetric version of Elliott's
single-grid SOR algorithm (SSOR) on level / = 5 with suboptimal relaxation
parameter co = 1-7. The results clearly demonstrate a considerable increase in

TABLE 1
Asymptotic efficiency rates

005 0-10 015 0-20 0-25 0-30 0-35 0-40 0-45 0-50

DMGSTEF 0-35 0-34 0-32 0-31 0-32 0-33 0-32 0-30 0-30 0-29
MGSTEF2 0-60 0-50 0-50 0-45 0-49 0-50 0-47 0-44 0-45 0-43
SSOR 0-79 0-77 0-77 0-76 0-75 0-74 0-74 0-73 0-71 0-70

 
  

            
               

          
   

                                 
                                            

       



                      

efficiency for the damped multi-grid Stefan solver DMGSTEF compared to
MGSTEF2. It can also be seen that DMGSTEF apparently is more robust than
MGSTEF2 in so far as for MGSTEF2 the asymptotic efficiency rate q, differs at
subsequent time steps within a margin up to 0 1 (depending on the actual shape
of the free boundary) which is not so for DMGSTEF.

Finally, we remark that we also applied DMGSTEF to more complicated
moving boundary problems such as the coupled system of Stefan type equations
arising in induction heating of steel slabs (cf. Hoppe & Kornhuber (1989,1990))
and observed the same increase in efficiency as in the test example reported here.
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