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Abstract

In this paper we are concerned with the numerical solution of stationary

variational inequalities of obstacle type associated with second order elliptic

di�erential operators in two or three space dimensions. In particular, we pre-

sent adaptive �nite element techniques featuring multilevel iterative solvers

and a posteriori error estimators for local re�nement of the triangulations.

The algorithms rely on an outer-inner iterative scheme with an outer active

set strategy and inner multilevel preconditioned cg-iterations involving vari-

ants of the hierarchical and the BPX-preconditioner which are derivded in the

framework of multilevel additive Schwarz iterations. For the a posteriori er-

ror estimation in the energy norm three error estimators are presented which

are based on the approximate solution of a quasivariational inequality satis-

�ed by a piecewise quadratic approximation of the global discretization error.

Finally, the performance of the preconditioners and the error estimators is

illustrated by numerical results for a wide variety of stationary free boundary

problems.

MSC subject classi�cations. Primary 65N30, 65N50, 65N55; secondary

35J85, 49J40.

Key words. adaptive �nite element methods, multilevel preconditioned

cg-iterations, a posteriori error estimators, variational inequalities, obstacle

problems.

1



1 Introduction

We consider stationary variational inequalities associated with second order

elliptic di�erential operators: Given a bounded polygonal resp. polyhedral domain


 in IR

2

resp. IR

3

with piecewise smooth boundary � = @
, a closed subspace

V � H

1

(
) and a closed, convex set K � V , �nd u 2 K such that

a(u; v� u) � l(v � u); v 2 K (1.1)

where l is a bounded linear functional on V and a(�; �) is a symmetric, V -elliptic

bilinear form

a(v; w) =

d

X

i;j=1

a

ij

@

i

v @

j

w; v; w 2 V; d 2 f2; 3g

with coe�cients a

ij

2 L

1

(
) satisfying for almost all x 2 


a

ij

(x) = a

ji

(x); 1 � i; j � d;

�

0

j�j

2

�

P

d

i;j=1

a

ij

(x)�

i

�

j

� �

1

j�j

2

; � 2 IR

d

; 0 � �

0

� �

1

:

(1.2)

In particular, we con�ne ourselves to obstacle type problems where the cons-

traint set K is given by means of an obstacle function  2 H

1

(
)

K := fv 2 V jv �  a.e. in 
g: (1.3)

Instead of an upper obstacle we may likewise consider a lower obstacle in which

case the inequality sign in (1.3) has to be reversed. However, for notational conve-

nience and simplicity, in the theoretical part of this paper we will only treat upper

obstacle problems and stick to the case of homogenous Dirichlet boundary conditi-

ons, i.e., we assume V = H

1

0

(
). Note that variational inequalities of obstacle type

can be encountered in numerous applications oriented problems. We refer to Baio-

cchi/Capelo (1984), Crank (1987), Duvaut/Lions (1976), Elliot/Ockendon (1982),

Friedmann (1988), Kikuchi/Oden (1988), Rodrigues (1987) for problems in engi-

neering and to Bensoussan (1982), Bensoussan/Lions (1982, 1984), Cottle et al.

(1992) for applications in operations research.

While the existence and uniqueness of a solution to (1.1) is a classical result

in convex analysis (cf. e.g. Ekeland/Temam (1976), Kinderlehrer/Stampacchia

(1980)), for the numerical solution based on the discretization by either �nite dif-

ference or �nite element methods there is a wide variety of techniques such as

projected SOR, gradient projection, penalization, duality methods and augmen-

ted Lagrangians (for an overview see e.g. Glowinski et al. (1981)). With regard to

the numerical e�ciency these iterative schemes su�er from rapidly deteriorating

convergence rates for decreasing step sizes which motivated the use of multigrid

techniques in order to overcome this de�ciency (cf. e.g. Boyer/Martinet (1986),

Brandt/Cryer (1983), Hackbusch/Mittelmann (1983), Hoppe (1987a, 1987b, 1988,

19990), Mandel (1984a, 1984b), Smoch (1990)). However, all these multigrid me-

thods are based on a hierarchy of grids generated by successive uniform re�nement

of an initial coarse grid and have not incorporated adaptive concepts (except for
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the adaptively chosen grid transfers in Hoppe (loc. cit.)).

On the other hand, in the unconstrained case, i.e., for linear elliptic boun-

dary value problems, adaptive multilevel �nite element techniques are well esta-

blished (cf. e.g. Bank (1990), Deuhard et al. (1989), Johnson (1987), Meszte-

nyi/Rheinboldt (1987), Szab�o/Babuska (1991)). In particular, the techniques pro-

posed in Deuhard et al. (1989) and its recent extensions feature multilevel pre-

conditioned cg-iterations with preconditioners of hierarchical or BPX-type (cf.

Yserentant (1986), Bramble et al. (1990)) combined with an edge-oriented a po-

steriori error estimator for the global discretization error whose local contributions

serve as an indicator for local re�nement of the triangulations. For obstacle type

problems such an approach has been recently undertaken by Hoppe and Kornhuber

(1993) based on an outer-inner iterative scheme. Speci�cally, the outer iteration

consists in an active set strategy requiring the solution of a linear algebraic system

with a symmetric, positive de�nite coe�cient matrix whose structure changes at

each iteration step. These systems are taken care of by hierarchically preconditio-

ned cg-iterations constituting the inner iterations. Note that Yserentant's original

hierarchical preconditioner has to be modi�ed appropriately by a truncation of

the hierarchical basis functions in order to cope with the special structure of the

linear systems caused by the active constraints. Moreover, the a posteriori error

estimation is not as simple as in the unconstrained case due to the fact that the

piecewise quadratic approximation of the global discretization error satis�es a qua-

sivariational inequality. In particular, a semi-local and a local error estimator have

been investigated in Hoppe and Kornhuber (1993).

The purpose of this paper is threefold: Firstly, we extend the results in

Hoppe and Kornhuber (1993) in so far as we include two variants of the BPX-

preconditioner. Note that both the hierarchical and the BPX-preconditioner are

closely related to multilevel additive Schwarz methods which allows to derive con-

dition number estimates by taking advantage of the well developed theory of do-

main decomposition techniques (cf. Bornemann (1991), Xu (1992), Zhang (1992)).

It should also be emphasized that the BPX-preconditioner is the only alternative

for problems in higher than two dimensions with regard to the poor performance

of the hierarchical preconditioner in such cases (cf. Go Ong (1989)). Secondly, we

present a further a posteriori error estimator based on a two-sided approximation

of the quasivariational inequality satis�ed by the piecewise quadratic approxima-

tion of the global discretization error. Finally, we will illustrate the performance

of the preconditioners and the error estimators for a wide variety of obstacle type

problems including lubrication in in�nite journal bearings, elastic-plastic torsion of

cylinders with simply and multiply connected cross sections and stationary porous

media ow as in the dam problem and the axialsymmetric water cone problem in

oil reservoir simulation.
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2 Finite Element Discretization and Basic Iterative

Strategy

Using continuous, piecewise linear �nite elements with respect to a regular

triangulation T

h

of the given domain 
 we denote by S

h

the associated �nite

element space spanned by the nodal basis functions  

h

p

with supporting point

p 2 N

h

where N

h

stands for the set of interior nodal points. We further assume

that '

h

2 S

h

is a suitable approximation of the given obstacle ', e.g. the S

h

-

interpolate �

h

' if ' 2 C(

�


), and we refer to K

h

as the constraint set

K

h

:= fv

h

2 S

h

j v

h

(p) � '

h

(p); p 2 N

h

g: (2.1)

We then consider the following �nite element approximation of the variational

inequality (1.1):

Find u

h

2 K

h

satisfying

a(u

h

; v

h

� u

h

) � l(v

h

� u

h

); v

h

2 K

h

; (2.2)

or equivalently

J(u

h

) = inf

v

h

2K

h

J(v

h

) (2.3)

where J(v

h

) :=

1

2

a(v

h

; v

h

)� l(v

h

); v

h

2 S

h

.

For the numerical solution of the �nite dimensional constrained minimiza-

tion problem (2.3) we will use a special active set strategy originally proposed

by P.L. Lions and Mercier (1980). In particular, each iteration step requires the

unconstrained minimization of the energy functional J with respect to a subspace

of S

h

speci�ed by active constraints. Given an iterate u

(�)

h

2 S

h

, � � 0, the speci�-

cation of the set of active nodal points is motivated by the fact that if we proceed

in descent direction �rJ(u

(�)

h

) then

u

(�)

h

�rJ(u

(�)

h

) 2 intK

h

holds true if and only if

(u

(�)

h

� '

h

)(p) < a(u

(�)

h

;  

h

p

)� l( 

h

p

); p 2 N

h

: (2.4)

Consequently, a constraint is said to be active in p 2 N

h

if (2.4) is violated and

we refer to

N

2

h

:= fp 2 N

h

j (u

(�)

h

� '

h

)(p) � a(u

(�)

h

;  

h

p

)� l( 

h

p

)g

as the set of active nodal points and to its complement N

1

h

:= N

h

n N

2

h

as the set

of inactive nodal points. We set

~

S

h

:= fv

h

2 S

h

j v

h

(p) = '

h

(p); p 2 N

2

h

g

and compute a new iterate u

(�+1)

h

2

~

S

h

as the solution of the unconstrained mini-

mization problem

u

(�+1)

h

= inf

v

h

2

~

S

h

J(v

h

): (2.5)
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Setting

S

i

h

:= span f 

h

p

j p 2 N

i

h

g; 1 � i � 2;

and denoting by �

i

h

; 1 � i � 2; the S

i

h

-interpolation operators, we have u

(�+1)

h

=

�

1

h

u

(�+1)

h

+ �

2

h

'

h

and it is easy to see that (2.5) reduces to the computation of

~u

(�+1)

h

:= �

1

h

u

(�+1)

h

as the solution of the variational equation

a(~u

(�+1)

h

; v

h

) = l(v

h

)� a(�

2

h

'

h

; v

h

); v

h

2 S

1

h

: (2.6)

Assuming that (2.6) is solved exactly, it has been shown in Hoppe (1987a, 1987b)

that for any startiterate u

(0)

h

2 S

h

the sequence (u

(�)

h

)

��1

of iterates is a monotoni-

cally decreasing sequence converging after a �nite number of steps to the unique

solution of (2.2). Of course, this result is merely of theoretical interest, since we

do not use exact solvers. With regard to the iterative solution we note that al-

gebraically (2.6) represents a linear algebraic system with a coe�cient matrix

~

A

h

being a principal submatrix of the sti�ness matrix A

h

associated with aj

S

h

�S

h

.

Hence,

~

A

h

is symmetric, positive de�nite and (2.6) can be solved by a precondi-

tioned conjugate gradient iteration. The following section exclusively deals with

the construction of e�cient multilevel preconditioners.
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3 The Multilevel Preconditioners

We specify an initial coarse simplicial triangulation T

0

of the given compu-

tational domain 
 and generate a sequence of triangulations (T

k

)

j

k=0

; j > 0, by

successive local re�nement based on a posteriori error estimators that will be de-

scribed in the next section. We use the meanwhile standard re�nement process

due to Bank et al. in the 2-D case (see e.g. Bank et al. (1983), Bank (1990)) and

its extension for 3-D domains as developed by Bey (1991) and Go Ong (1989)

(cf. also B�ansch (1991) and Zhang (1988) for related concepts). Note that these

re�nement strategies have been implemented in adaptive �nite element codes, na-

mely in the 2-D codes PLTMG (cf. Bank (1990)) and KASKADE (cf. Deuhard

et al. (1989)) and in the 3-D code 3-D ELLKASK (see Bornemann et al. (1993);

cf. also Erdmann/Roitzsch (1993), Leinen (1990), Roitzsch (1989a, 1989b) for a

comprehensive description of the underlying data structures). Since the re�nement

processes have been extensively described in the references cited above, for details

the reader is referred to these sources.

As a consequence of the re�nement rules the spaces S

k

; 0 � k � j, of con-

tinous, piecewise linear �nite element functions associated with T

k

, constitute a

nested sequence of subspaces of H

1

0

(
), i.e., S

0

� S

1

� : : :� S

j

. Nodal points and

edges of elements � 2 T

k

are called interior, if they are situated in 
 and not on

@
. For 0 � k � j we denote by N

k

the set of interior nodal points, by E

k

the set

of interior edges and by M

k

the set of midpoints of interior edges e 2 E

k

. Further,

we refer to  

k

p

2 S

k

as the nodal basis function with supporting point p 2 N

k

, i.e.,

 

k

p

(q) = �

pq

; q 2 N

k

.

Having provided the nested hierarchy (S

k

)

j

k=0

, we now consider the solution

of the discretized obstacle problem on level j by the active set strategy described

in the previous section. In particular, given an iterate u

(�)

j

; � � 0, the sets N

1

j

; N

2

j

of inactive and active nodal points and the associated �nite element spaces S

1

j

; S

2

j

,

we have to compute ~u

(�+1)

j

2 S

1

j

as the solution of the variational equation (cf.

(2.6))

a(~u

(�+1)

j

; v

j

) = l(v

j

)� a(�

2

j

'

j

:v

j

); v

j

2 S

1

j

: (3.1)

If we attempt to solve (3.1) iteratively by a multilevel preconditioned cg-iteration,

we �rst have to mimic the level j decomposition N

j

= N

1

j

[N

2

j

on the lower levels

0 � k < j and to specify the corresponding spaces S

i

k

; 1 � i � 2. This can be

easily achieved by means of

N

i

k

:= N

k

\ N

i

j

; S

i

k

:= span f 

k

p

j p 2 N

i

k

g; 1 � i � 2: (3.2)

With regard to the construction of multilevel preconditioners of hierarchical and

BPX-type we are faced with the problem that in contrast to the unconstrained

case the sequence (S

1

k

)

j

k=0

does not constitute a nested hierarchy of subspaces of

S

1

j

. The reason is that a level k nodal basis function  

k

p

with supporting point

p 2 N

1

k

does not vanish in active level l > k nodal points q 2 N

2

l

within the

interior of the support of  

k

p

. For ease of visualization such a situation is depicted

in Figure 3.1(a) below.

In particular, an inactive nodal point p 2 N

1

k

will be called regular, if

int supp 

k

p

\ N

2

j

= ;, and irregular, otherwise. We denote by N

1;reg

k

and N

1;irr

k
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(a) (c)(b)

pq q q pp

ψk
p Π 1

jψk
p ψp

k+1

Fig. 3.1 Truncation of nodal basis functions

the set of regular and irregular inactive level k nodal points, respectively. A con-

venient remedy to get rid of the nonnestedness of S

1

k

; 0 � k � j, consists in an

appropriate modi�cation of basis functions  

k

p

; p 2 N

1;irr

k

by truncation. We con-

sider two di�erent truncation processes. The �rst one is that we replace  

k

p

by its

S

1

j

-interpolate �

1

j

 

k

p

which in general corresponds to a \nonsymmetric" truncation

(cf. Figure 3.1(b)). The second approach is to replace  

k

p

by the higher level nodal

basis function  

l

p

p

where l

p

:= minfl � kj int supp  

l

p

\ N

2

j

= ;g which can be

interpreted as a \symmetric" truncation (cf. Figure 3.1(c)). Correspondingly, for

0 � k � j we de�ne

S

1;NS

k

:= spanf�

1

j

 

k

p

j p 2 N

1

k

g; (3.3)

S

1;S

k

:= spanf 

k

p

j p 2 N

1;reg

k

g (3.4)

where the upper indices \NS " and \S " refer to the \nonsymmetric" and \sym-

metric" truncation process, respectively. Note that by construction both se-

quences (S

1;NS

k

)

j

k=0

and (S

1;S

k

)

j

k=0

represent a hierarchy of nested subspaces of

S

1;NS

j

= S

1;S

j

= S

1

j

.

Collecting the level k nodal basis functions associated with new, inactive no-

dal points, we obtain the hierarchical basis of S

1;NS

j

and S

1;S

j

, respectively. In

particular we set

	

NS

H

:=

j

[

k=1

	

k

H;NS

; 	

k

H;NS

:= f�

1

j

 

k

p

j p 2 N

1

k

n N

1

k�1

g; (3.5)

	

S

H

:=

j

[

k=1

	

k

H;S

; 	

k

H;S

:= f 

k

p

j p 2 N

1;reg

k

nN

1;reg

k�1

g: (3.6)

Likewise we sample the new level k nodal basis functions of depth k according to

	

NS

B

:=

j

[

k=1

	

k

B;NS

; 	

k

B;NS

:= f�

1

j

 

k

p

2 S

1;NS

k

n S

1;NS

k�1

g; (3.7)

	

S

B

:=

j

[

k=1

	

k

BS

; 	

k

B;S

:= f 

k

p

2 S

1;S

k

n S

1;S

k�1

g (3.8)

to provide the underlying structure of the BPX-preconditioner (cf. Bornemann

(1991) and Bornemann et al. (1993)).
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As has been shown by Bornemann (1991) and Zhang (1992) in the uncons-

trained case, the hierarchical and the BPX preconditioner can be derived within

the framework of multilevel additive Schwarz iterations. In case of the hierarchical

preconditioner we start from the decomposition of S

1;D

j

; D 2 fNS; Sg into the

direct sum

S

1;D

j

= V

D

0

�

M

 2	

D

H

V

D

 

(3.9)

of the subspaces V

D

0

:= S

1;D

0

and V

D

 

:= span f g;  2 	

D

H

. On the other hand,

for the BPX preconditioner the underlying subspace decomposition is given by

S

1;D

j

:= V

D

0

+

X

 2	

D

B

V

D

 

(3.10)

where V

D

 

:= span f g;  2 	

D

B

. Both (3.9) and (3.10) induce an associated

additive Schwarz iteration with iteration operator

M

D

C

:= I � (P

0

+

X

 2	

D

C

P

 

); C 2 fB;Hg; D 2 fNS; Sg

where P

0

and P

 

are the elliptic projections onto V

D

0

and V

D

 

, respectively. Deno-

ting byA

j

the representation operator of aj

S

1

j

�S

1

j

, the operatorN

D

C

:= (I�M

D

C

)A

�1

j

of the so-called second normal form of the additive Schwarz iteration is a natural

candidate for the inverse of the wanted preconditioner H

D

C

, i.e., N

D

C

= (H

D

C

)

�1

.

Referring to Q

D

0

and Q

D

 

;  2 	

D

C

, as the L

2

-projections Q

D

0

: S

1

j

! V

D

0

; Q

D

 

:

S

1

j

! V

D

 

and to A

D

0

: V

D

0

! V

D

0

; A

D

 

: V

D

 

! V

D

 

as the representation

operators of aj

V

D

0

�V

D

0

and aj

V

D

 

�V

D

 

, respectively, we obtain

(H

D

C

)

�1

= (A

D

0

)

�1

Q

D

0

+

X

 2	

D

C

(A

D

 

)

�1

Q

D

 

:

Evaluation of (A

D

 

)

�1

Q

D

 

�nally results in

(H

D

C

)

�1

u = (A

D

0

)

�1

Q

D

0

u+

X

 2	

D

C

(u;  )

0

a( ; )

 ; u 2 S

1

j

; (3.11)

where (�; �)

0

stands for the usual L

2

inner product.

It should be noted that in the nonsymmetric case the preconditioner (3.11) is not

yet suited for actual computations. The reason is that due to the nonsymmetric

truncation process the entries of the level 0 sti�ness matrix A

NS

0

and the sca-

ling factors a( ;  );  2 	

NS

C

, in general change with each outer iteration which

may cause considerable computational e�orts. Therefore, we simply replace the

nonsymmetrically truncated basis functions by their nontruncated originals. In

particular, denoting by 	

C

; C 2 fB;Hg, the collection of basis functions as in

(3.6), (3.8) with �

1

j

 

k

p

replaced by  

k

p

, we thus end up with

(

~

H

NS

C

)

�1

u = �

1

j

A

�1

0

Q

0

u+

X

 2	

C

(u;�

1

j

 )

0

a( ;  )

�

1

j

 (3.12)
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where Q

0

stands for the L

2

-projection onto S

1

0

and A

0

is the representation ope-

rator of a(�; �)j

S

1

0

�S

1

0

. On the other hand, it should be emphasized that in the

symmetric case the preconditioner (3.11) can be implemented without modi�ca-

tion, since in view of (3.6), (3.8) the active set has no impact on the shape but

only on the selection of the basis functions.

The rest of this section will be devoted to condition number estimates for

(H

D

C

)

�1

A

j

. Throughout the following, for any measurable U � 
 we will refer

to (�; �)

0;U

and (�; �)

1;U

as the standard inner product and semi-inner product on

L

2

(U) and H

1

(U), respectively. Correspondingly, we refer to j � j

�;�;U

; �; � 2 f0; 1g,

as the associated operator norm, i.e., jAj

�;�;U

:= supfjAvj

�;U

j jvj

�;U

� 1g. In par-

ticular, if U = 
 the lower index U will be dropped. Further, we will denote by

c and C generic positive constants depending only on the ellipticity of a(�; �) and

the shape regularity of the initial triangulation T

0

.

The condition number estimates can be derived by means of the following

fundamental result from the theory of multilevel additive Schwarz methods (cf.

e.g. Bornemann (1991), Xu (1992), Zhang (1992) and Yserentant (1993)):

Lemma 3.1 Let 	 be a collection of level k � j basis functions and denote by

H

j

the preconditioner corresponding to the associated multilevel additive Schwarz

iteration. Then the following two assertions hold true:

1. If for all v 2 S

1

j

there is a splitting v = v

0

+

P

 2	

v

 

such that for some

c > 0

a(v

0

; v

0

) +

X

 2	

a(v

 

; v

 

) � c

�1

a(v; v); (3.13)

then c is a lower bound for the condition number of H

�1

j

A

j

, i.e.

ca(v; v) � a(H

�1

j

A

j

v; v); v 2 S

1

j

:

2. If for all splittings v = v

0

+

P

 2	

v

 

of v 2 S

1

j

there exists a constant C > 0

such that

a(v; v) � C[a(v

0

; v

0

) +

X

 2	

a(v

 

; v

 

)]; (3.14)

then C is an upper bound for the condition number of H

�1

j

A

j

, i.e.

a(H

�1

j

A

j

v; v) � Ca(v; v); v 2 S

1

j

:

Note that part (1) of the preceding result is commonly referred to as the

lemma of P.L. Lions (cf. P.L. Lions (1988)) while (3.14) can frequently be establis-

hed by means of a strengthened Cauchy-Schwarz inequality exhibiting an asym-

ptotic orthogonality of the subspaces V

0

and V

 

= spanf g;  2 	. In case of

the nonsymmetric preconditioners this asymptotic orthogonality can only be gua-

ranteed if the subsequent truncation of level k basis functions terminates after a

�nite number of steps being independent of the re�nement level. In particular, we

assume

(A

1

) There exists a constant integer k

0

� 0 independent of k such that

�

1

j

v = �

1

k+k

0

v; v 2 S

1

k

; k + k

0

� j: (3.15)

9



Remark 3.1 Since nonsymmetric truncation only takes place in a vicinity of the

discrete free boundary, from a heurestical point of view the condition (A

1

) can be

interpreted as a regularity assumption on the free boundary. A typical situation

which will be frequently encountered in the applications is that the free boundary

represents a smooth lower dimensional manifold that is approximated of su�cient

accuracy up to a certain level while then re�nement only occurs in a subregion of

the coincidence set and the free boundary (cf. section 5).

It is well known from the unconstrained case (cf. e.g. Yserentant (1986, 1990))

that for the hierarchical preconditioner the derivation of a lower bound for the

condition number along the lines of Lemma 3.1 (1) relies on theH

1

-stability and an

approximation-of-unity property of the interpolation operators I

k

: S

j

! S

k

; 0 �

k � j, given by (I

k

v)(p) = v(p); p 2 N

k

, that are used in the hierarchical splitting

v = I

0

v +

P

j

k=1

(I

k

v � I

k�1

v). Since jI

0

j

1;1

grows linearly in the re�nement level j

in the 2-D case but exponentially in j in 3-D, the practical use of the hierarchical

preconditioner is restricted to 2-D applications (cf. e.g. Go Ong (1989), Oswald

(1990) and Dahmen et al. (1993)). Therefore, the following result which has been

established by Hoppe and Kornhuber (1993) only holds true for 2-D problems:

Theorem 3.1 Let H

j

2 fH

S

H

; H

NS

H

;

~

H

NS

H

g denote the symmetric or nonsymme-

tric hierarchical preconditioner associated with the hierarchical multilevel splitting

(3.9) of S

1

j

� H

1

0

(
) where 
 is a bounded polygonal domain in IR

2

. Assume that

in the nonsymmetric case condition (A

1

) is satis�ed. Then there exist positive

constants c

0

; c

1

depending only on the ellipticity of a(�; �), the shape regularity of

T

0

and in the nonsymmetric case on the integer k

0

from (3.15) such that

c

0

(j + 1)

�2

a(v; v) � a(H

�1

j

A

j

v; v) � c

1

a(v; v); v 2 S

1

j

: (3.16)

Proof. In the nonsymmetric case the proof of the upper bound follows from

Lemma 3.1 (2) by verifying (3.14) based on a strengthened Cauchy-Schwarz

inequality for truncated hierarchical basis functions v

k

2 span	

k

H;NS

; v

l

2

span	

l

H;NS

; jl � kj � k

0

(v

l

; v

k

)

1

� c(k

0

)2

�(jl�kj�k

0

)=2

jv

k

j

1

jv

l

j

1

(3.17)

and the elementary norm equivalence

c(k

0

)

X

p2N

k

\�

jv(p)j

2

� j�

1

l

vj

2

1;�

� c(k

0

)

X

p2N

k

\�

jv(p)j

2

; � 2 T

k

which holds true for all v 2 spanf 

k

p

j p 2 N

1

k

n N

1

k�1

g.

The lower bound is a consequence of (3.13) in Lemma 3.1 (1). In particular,

considering the unique splitting v = v

0

+

P

 2	

NS

H

v

 

for some �xed v 2 S

1

j

, we

construct auxiliary functions v̂

0

2 spanf 

0

p

j p 2 N

1

0

g; v̂

 

2 spanf 

k

p

j p 2 N

1

k

n

N

1

k�1

g satisfying v

0

= �

1

j

v̂

0

and v

 

= �

1

j

v̂

 

. Then we are able to establish (3.13)

for v̂

0

; v̂

 

essentially using the H

1

-stability jI

0

j

1;1

= O(j) and the approximation-

of-unity property jI � I

k

j

0;1

= O(4

�k

(j + k� 1)) of the interpolation operators in

much the same way as has been done by Yserentant (1986). Note that the case

N

1

k

�

6= ;; N

1

k

= ;; 0 � k < k

�

, for some k

�

> 0 deserves special attention (cf.

10



Theorem 3.2 below).

In the symmetric case, (3.17) can be shown to hold true with k

0

= 0 and

for the proof of (3.13) we do not have to resort to the auxiliary functions v̂

0

; v̂

 

.

(For details the reader is referred to Theorems 3.1, 3.2 in Hoppe and Kornhuber

(1993)). 2

Finally, we focus our attention on the BPX-type preconditioners and remind that

in the unconstrained case (cf. e.g. Yserentant (1990)) the lower bound for the

condition number can be again derived with regard to Lemma 3.1 (1). This time

the proof of (3.13) follows from a splitting v = Q

0

v+

P

j

k=1

(Q

k

v�Q

k�1

v); v 2 S

j

,

where the Q

k

: S

j

! S

k

are the L

2

-projections given by

(Q

k

v; w)

0

= (v; w)

0

; w 2 S

k

; 0 � k � j: (3.18)

The essential tools in the proof are a dimensionally independent H

1

-stability and

an approximation-of-unity property of the projections Q

k

. In particular, denoting

by U(�; k) =

S

f�

0

2 T

k

j �

0

\ � 6= ;g; � 2 T

k

, the union of all level k elements

intersecting � and by h(�) the diameter of � , these properties rely on the Poincar�e

inequality

jvj

0;U(�;k)

� C h(�)jvj

1;U(�;k)

; v 2 S

1

j

; � \ @
 6= ; (3.19)

(cf. Lemma 4.1 in Yserentant (1990)). Note that (3.19) can be established by local

transformations to a �nite number of reference con�gurations, since @
 consists

of faces of level 0 elements � 2 T

0

. However, for the obstacle problems under

consideration the reduced problems (3.1) constitute Dirichlet problems on the

computational domain 


1

j

:=

S

p2N

1

j

supp 

j

p

the boundary of which includes the

discrete free boundary @


1

j

n @
. Consequently, if we de�ne

U(�; k) := f�

0

2 T

k

j �

0

\ � 6= ;; �

0

\ N

1

j

6= ;g; � 2 T

k

; � \N

1

j

6= ; (3.20)

and if we do not have a priori information on the shape regularity of U(�; k)

intersecting the free boundary, we cannot deduce Poincar�e's inequality as in the

unconstrained case and hence, we make the following assumption:

(A

2

) There exists a constant p > 0 independent of j such that for all 0 � k � j

and all U(�; k) as given by (3.20) there holds

jvj

0;U(�;k)

� p h(�)jvj

1;U(�;k)

; v 2 S

1

j

: (3.21)

Remark 3.2 With regard to the above considerations the condition (A

2

) can be

interpreted as a regularity assumption on the free boundary.

As an immediate consequence of (A

2

) we have:

Lemma 3.2 Under the assumption (A

2

) there exist positive constants C

1

; C

2

de-

pending only on the local geometry of T

0

and the constant p from (3.21) such that

for the L

2

-projections Q

k

; 0 � k � j, given by (3.18) there holds

jQ

k

j

1;1

� C

1

; (3.22)

jI � Q

k

j

0;1

� C

2

4

�k

: (3.23)

11



Proof. As already indicated in the discussion leading to (A

2

), the proof of the

H

1

-stability (3.23) and the approximation-of-unity property (3.23) follows directly

from Yserentant (1990), if the application of Poincar�e's inequality in Lemma 4.1

of Yserentant's paper is replaced by (3.21). 2

We emphasize that in contrast to the interpolation operators I

k

used for the

hierarchical splittings the H

1

-stability and approximation-of-unity property of Q

k

are not dimensionally dependent. Therefore, the following result which is partly

contained in Erdmann et al. (1993) holds true in any space dimension.

Theorem 3.2 LetH

j

2 fH

S

B

; H

NS

B

g denote the symmetric or nonsymmetric BPX

preconditioner based on the multilevel splitting (3.10) of S

1

j

� H

1

0

(
); 
 being a

bounded polygonal resp. polyhedral domain in IR

2

resp. IR

3

. Assume that condi-

tion (A

2

) is satis�ed and that additionally, in the nonsymmetric case assumption

(A

1

) holds true. Then there exist constants c

0

; c

1

depending only on the ellipti-

city of a(�; �), the shape regularity of T

0

, the constant p from (3.21) and in the

nonsymmetric case on the integer k

0

from (3.15) such that

c

0

(j + 1)

�1

a(v; v) � a(H

�1

j

A

j

v; v) � c

1

a(v; v); v 2 S

1

j

: (3.24)

Proof. The proof will only be given for the symmetric BPX preconditioner. The

modi�cations in the nonsymmetric case follow the same arguments as in Theorem

3.1.

The upper bound in (3.24) can be shown by means of Lemma 3.1 (2) in

exactly the same way as in the unconstrained case. The essential tools are a de-

composition 	

k

B;S

=

S

M

i=1

	

k;i

B;S

of 	

k

B;S

into a uniformly bounded number M of

subsets 	

k;i

B;S

; 1 � i � M , such that supp \ supp 

0

= ;;  ;  

0

2 	

k;i

B;S

, and a

strengthened Cauchy-Schwarz inequality

(v

k

; w

l

)

1

� C 2

�(l�k)=2

jv

k

j

1

jw

l

j

1

for v

k

2 S

1

k

and w

l

2 span	

l;i

B;S

; l > k (cf. Bornemann (1991) and Zhang (1992)).

On the other hand, assuming at �rst N

1;reg

0

6= ; the lower bound in (3.24) is

a consequence of Lemma 3.1 (1) as soon as we have veri�ed

a(v

0

; v

0

) +

X

 2	

S

B

a(v

 

; v

 

) � C(j + 1)jvj

2

1

(3.25)

for the particular splitting v = v

0

+

P

 2	

S

B

v

 

of some �xed v 2 S

1

j

where v

0

= Q

0

v

and the v

 

;  2 	

S

B

, are uniquely determined by Q

k

v�Q

k�1

v =

P

 2	

k

B;S

v

 

; 1 �

k � j. Using the H

1

-stability (3.23) of Q

0

, we have

a(v

0

; v

0

) � �

1

jQ

0

vj

2

1

� C jvj

2

1

: (3.26)

Further, by means of the inverse inequality jv

 

j

2

1;�

� C4

k

jv

 

j

2

0;�

; � 2 T

k

, and the

approximation-of-unity property (3.23) we get

X

 2	

S

B

a(v

 

; v

 

) � �

1

X

 2	

S

B

jv

 

j

2

1

�

� C

j

X

k=1

4

k

X

 2	

k

B;S

jv

 

j

2

0

� C

j

X

k=1

4

k

jQ

k

v � Q

k�1

vj

2

0

� C

j

jvj

2

1

(3.27)
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where we have additionally used the estimate

X

 2	

k

B;S

jv

 

j

2

0

� C

X

�2T

k

\


1

j

area(�)

X

p2�

j(Q

k

v � Q

k�1

v)(p)j

2

� CjQ

k

v � Q

k�1

vj

2

0

:

Clearly, (3.26) and (3.27) give the assertion.

We still have to consider the case N

1;reg

0

= ; or, more generally, N

1;reg

k

�

6=

;; N

1;reg

k

= ;; 0 � k � k

�

� 1, for some k

�

> 0 which may occur due to the

speci�cation of inactive nodal points at levels k < j prescribed by the outer active

set strategy. Then a(v

0

; v

0

) has to be replaced by

P

 2	

k

�

B;S

a(v

 

; v

 

) and (3.25)

follows if in lieu of (3.26) we use the inequality

X

 2	

k

�

B;S

a(v

 

; v

 

) � �

1

X

p2N

1;reg

k

�

jv

 

k

�

p

j

2

1

� C jQ

k

�
vj

2

1

:

which is an immediate consequence of Lemma 3.2 of Erdmann et al. (1993). 2
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4 A Posteriori Error Estimators

A posteriori error estimators for the global discretization error are an im-

portant tool for adaptive �nite element codes, since its local contributions are

used as indicators for local re�nement of the triangulations. In the unconstrained

case, i.e., for second order elliptic boundary value problems, element-oriented and

edge-oriented error estimators have been proposed by Bank and Weiser (1985) and

by Deuhard, Leinen and Yserentant (1989) and have been implemented in the

existing adaptive codes PLTMG and KASKADE, respectively (cf. also the KAS-

KADE extension 3-D ELLKASK by Bornemann et al. (1993) in the 3-D case).

Both estimators rely on a piecewise quadratic ansatz which is assumed to be of

higher accuracy, but they di�er by the localization technique for the defect pro-

blem. While the element-oriented estimator in PLTMG amounts to the solution

of local maximal 3�3 subproblems associated with the elements � 2 T

j

, the edge-

oriented estimator in KASKADE merely requires the solution of scalar equations

associated with the midpoints m 2 M

j

of interior edges. For obstacle type pro-

blems a semi-local and a local error estimator based on the edge-oriented approach

have been suggested in Kornhuber/Roitzsch (1991,1993), Erdmann et al. (1993)

and Hoppe/Kornhuber (1993). Both estimators are based on the approximation

of a quasivariational inequality constituting the defect problems. In the sequel we

will derive that quasivariational inequality, shortly review the basic results from

Hoppe/Kornhuber (1993) and also establish a further estimator resulting from

the application of �xed point techniques that are widely used for quasivariational

inequalities (cf. e.g. Glowinski et al. (1981)).

Denoting by ~u

j

the piecewise linear approximation obtained by the multilevel

iterative solution process, we are interested in an estimator " of the discretization

error u� ~u

j

yielding a lower and an upper bound in the sense that the two-sided

estimate



0

" � ku� ~u

j

k � 

1

" (4.1)

holds true with coe�cients 0 < 

0

� 

1

depending only moderately on the re�-

nement level j. In order to provide an easily accessible estimate " we proceed in

two steps. First, we replace the unknown exact solution u by an approximation û

j

of higher accuracy than u

j

and then we try to reduce the computational cost for

solving the defect problem satis�ed by û

j

� ~u

j

.

We refer to Q

j

� H

1

0

(
) as the subspace of Lagrangian �nite elements of

degree 2 with respect to T

j

and to

K

Q

j

:= fv

j

2 Q

j

j v

j

(q) � '

Q

j

(q); q 2 N

j

[M

j

g

as the associated constraint set where '

Q

j

2 Q

j

is a piecewise quadratic ap-

proximation of the obstacle ' (e.g. the Q

j

-interpolate if ' 2 C(
)). Note that

Q

j

= spanf 

Q

q

j q 2 N

j

[ M

j

g where  

Q

q

j

�

; � 2 T

j

, is a polynomial of degree 2

satisfying  

Q

q

(q

0

) = �

qq

0
; q

0

2 N

j

[M

j

. Then a natural candidate for û

j

is the con-

tinuous, piecewise quadratic approximation u

Q

j

2 K

Q

j

satisfying the variational

inequality

a(u

Q

j

; v

j

� u

Q

j

) � l(v

j

� u

Q

j

); v

j

2 K

Q

j

:
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Denoting by r : Q

j

! IR the residual

r(v

j

) := l(v

j

)� a(~u

j

; v

j

); v

j

2 Q

j

with respect to ~u

j

, it is easy to verify that the defect e

j

:= u

Q

j

� ~u

j

is the unique

solution of the variational inequality:

Find e

j

2 K

E

j

:= fv

j

2 Q

j

j v

j

+ ~u

j

2 K

Q

j

g such that

a(e

j

; v

j

� e

j

) � r(v

j

� e

j

); v

j

2 K

E

j

: (4.2)

Evidently, the computation of e

j

is as expensive as that of u

Q

j

and therefore,

following the approach in the unconstrained case (see e.g. Deuhard et al. (1989))

we use a decoupling based on the hierarchical splitting

Q

j

= S

L

j

�

M

 2S

Q

j

V

 

; V

 

:= span f g (4.3)

where S

L

j

:= S

j

and S

Q

j

stands for the hierarchical surplus, i.e., S

Q

j

=

spanf 

Q

m

jm 2 M

j

g. Splitting v

j

2 Q

j

accordingly, i.e., v

j

= (v

L

j

; v

Q

j

); v

L

j

2

S

L

j

; v

Q

j

2 S

Q

j

, and setting a

L

:= aj

S

L

j

�S

L

j

; d

Q

=

P

 2S

Q

j

aj

V

 

�V

 

, we denote by

~a the bilinear form

~a(v

j

; w

j

) := a

L

(v

L

j

; w

L

j

) + d

Q

(v

Q

j

; w

Q

j

) (4.4)

associated with the two-level additive Schwarz iteration induced by the direct

sum decomposition (4.3). Note that algebraically (4.4) amounts to a block diagonal

splitting of the sti�ness matrix representing aj

Q

j

�Q

j

followed by a further diagonal

splitting of the subblock associated with aj

S

Q

j

�S

Q

j

. Based on the decoupling (4.4)

we then consider the reduced defect problem:

Find ~e

j

2 K

E

j

such that

~a(~e

j

; v

j

� ~e

j

) � r(v

j

� ~e

j

); v

j

2 K

E

j

: (4.5)

However, in contrast to the unconstrained case the variational inequality (4.5)

does not result in a fully localized problem, since there is still a global coupling

caused by the constraints. To see this we denote by T the transformation from the

hierarchical to the nodal basis representation of Q

j

given by

v

j

= (v

L

j

; v

Q

j

) 7! Tv

j

:=

X

p2N

j

v

L

j

(p) 

Q

p

+

X

m2M

j

(v

Q

j

+ �v

L

j

)(m) 

Q

m

where (�v

L

j

)(m) :=

1

2

[v

L

j

(p

1

m

) + v

L

j

(p

2

m

)] and p

1

m

; p

2

m

stand for the vertices of the

edge e 2 E

j

with midpointm. Then in terms of the hierarchical basis representation

v

j

= (v

L

j

; v

Q

j

) the constraint v

j

2 K

E

j

reads as follows

v

L

j

(p) � '

Q

j

(p)� ~u

j

(p) =: ~'

Q

j

(p);

(v

Q

j

+ �v

L

j

)(m) � ('

Q

j

� �~u

j

)(m) =: ~'

Q

j

(m):

Consequently, de�ning an operator M : Q

j

! Q

j

by means of

Mv

j

:=

X

p2N

j

~'

Q

j

(p) 

Q

p

+

X

m2M

j

( ~'

Q

j

� �v

L

j

)(m) 

Q

m

;
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the reduced defect problem (4.5) can be equivalently written as the quasivariatio-

nal inequality:

Find ~e

j

2 Q

j

such that ~e

j

�M ~e

j

and

~a(~e

j

; v

j

� ~e

j

) � r(v

j

� ~e

j

); v

j

�Mv

j

: (4.6)

For the numerical solution of (4.6) we may further reduce the computational cost,

if we replace a

L

(�; �) in (4.4) by the available bilinear form a

L

C

(�; �) associated with

the hierarchical (C = H) or the BPX preconditioner (C = B) giving

â

C

(v

j

; w

j

) := a

L

C

(v

L

j

; w

L

j

) + d

Q

(v

Q

j

; w

Q

j

); v

j

; w

j

2 Q

j

:

We thus end up with the semi-local defect problem:

Find ê

j

�Mê

j

such that

â

C

(ê

j

; v

j

� ê

j

) � r(v

j

� ê

j

); v

j

�Mv

j

: (4.7)

The semi-local defect problem (4.7) will be solved numerically by using the same

active set strategy as described in section 2. The following result shows that the

semi-local error estimator

jê

j

j

â

C

:= â

C

(ê

j

; ê

j

)

1=2

(4.8)

provides a lower and an upper bound for the discretization error in the sense of

(4.1).

Theorem 4.1 Assume that there are constants 0 � q < 1 and � � 0; q� < 1,

independent of the re�nement level j, such that for u

L

j

:= u

j

; ~u

j

and u

Q

j

there

holds

ku� u

Q

j

k � qku� u

L

j

k; j 2 IN [ f0g; (4.9)

ku� u

L

j

k � �ku� ~u

j

k; j 2 IN [ f0g: (4.10)

Then there exist positive constants 

0

; 

1

depending only on q�, the ellipticity of

a(�; �) and the shape regularity of T

0

such that



0

(j + 1)

�s

jê

j

j

â

C

� ku� ~u

j

k � 

1

(j + 1)

s

jê

j

j

â

C

(4.11)

where s = 1 in case of the hierarchical preconditioner and the dimension d = 2

while s = 1=2 holds for the BPX preconditioner independently of the dimension d.

Proof (in the hierarchical case cf. Hoppe/Kornhuber (1993)). It follows from

Bornemann (1991), Yserentant (1990) and Zhang (1992) that there exist positive

constants C

0

; C

1

depending only on the ellipticity of a(�; �) and the shape regularity

of T

0

such that

C

0

â

C

(v

j

; v

j

) � a(v

j

; v

j

) � C

1

(j + 1)

2s

â

C

(v

j

; v

j

); v

j

2 Q

j

: (4.12)

Then, in view of (4.2) and (4.7) we have

a(e

j

; e

j

) � C

1

(j + 1)

2s

jê

j

j

2

â

C

+ 2r(e

j

� ê

j

): (4.13)
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Using the Lipschitz-continuous dependence of the solution of the variational in-

equality (4.7) on the right-hand side with Lipschitz constant C

�1

0

we �nd

r(e

j

� ê

j

) � jê

j

j

â

C

je

j

� ê

j

j

â

C

� C

�1

0

(1 + C

1

(j + 1)

2s

)jê

j

j

2

â

C

: (4.14)

Using (4.14) in (4.13) gives

a(e

j

; e

j

) �

�

C

1

(j + 1)

2s

jê

j

j

2

â

C

;

�

C

1

:= C

�1

0

(2(1 + C

1

) + C

0

C

1

):

Analogously, one can prove

a(e

j

; e

j

) �

�

C

0

(j + 1)

�2s

jê

j

j

2

â

C

;

�

C

0

:=

1

2

C

0

(C

1

(1 + C

0

))

�1

:

Finally, taking advantage of (4.9) the assertion follows with 

0

:= C

�1=2

0

(1+q�)

�1

and 

1

:= C

�1=2

1

(1� q�)

�1

. 2

We get a fully local, but less reliable error estimator which has been ori-

ginally proposed in Kornhuber and Roitzsch (1991), if we decouple the defect

problem (4.6) by the application of just one block Gauss-Seidel iteration using

~e

0

j

= (~e

L;0

j

; ~e

Q;0

j

) = (0; 0) as a startiterate. Denoting by r

L

; r

Q

the restrictions

of the residual r to S

L

j

; S

Q

j

, respectively, this amounts to the computation of

^

�

j

= (

^

�

L

j

;

^

�

Q

j

) by successive solution of the variational inequalities:

1. Find

^

�

L

j

2 D

L

j

:= S

L

j

\K

E

j

such that

a

L

(

^

�

L

j

; v

j

�

^

�

L

j

) � r

L

(v

j

�

^

�

L

j

); v

j

2 D

L

j

; (4.15)

2. Find

^

�

Q

j

2 D

Q

j

(

^

�

L

j

) := fv

Q

j

2 S

Q

j

j v

Q

j

+

^

�

L

j

2 K

E

j

g such that

d

Q

(

^

�

Q

j

; v

j

�

^

�

Q

j

) � r

Q

(v

j

�

^

�

Q

j

); v

j

2 D

Q

j

(

^

�

L

j

): (4.16)

If we assume

K

L

j

� K

Q

j

(4.17)

where K

L

j

:= K

j

, it follows readily from (4.15) that

^

�

L

j

= u

j

� ~u

j

. On the other

hand, the computation of

^

�

Q

j

merely requires the solution of scalar inequalities

associated with the midpoints m 2 M

j

of interior edges. For that reason we refer

to

j

^

�

j

j

~a

:= (ju

j

� ~u

j

j

2

a

L

+ j

^

�

Q

j

j

2

d

Q

)

1=2

; (4.18)

where jv

j

j

a

L
:= a

L

(v

j

; v

j

)

1=2

; v

j

2 S

L

j

, as a local error estimator. Note that an

estimate for the iteration error ju

j

� ~u

j

j

a

L
is easily available from the multilevel

iterative solution process.

We may interpret the linear part ê

L

j

of the semi-local estimator as a perturbation

of the linear part

^

�

L

j

of the local estimator caused by the global coupling of the

constraints. We assume that this perturbation remains local for increasing re�ne-

ment level j in the sense that there exists a constant � > 0 independent of j such

that

j�(ê

L

j

�

^

�

L

j

)j

d

Q
� �jê

L

j

�

^

�

L

j

j

a

L
: (4.19)

Then the local error estimator provides at least a lower bound for the discretization

error as is stated in the following result which we quote fromHoppe and Kornhuber

(1993):
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Theorem 4.2 Suppose that (4.9), (4.17) and (4.19) hold true. Then there exists

a constant 

0

> 0 depending only on q�; �, the ellipticity of a(�; �) and the shape

regularity of T

0

such that



0

j

^

�

j

j

~a

� ku� ~u

j

k: (4.20)

Finally, we present a third a posteriori error estimator which is also based

on the reduced defect problem (4.7) which is further simpli�ed by replacing the

level 0 matrix A

D

0

in (3.11) by its diagonal (cf. e.g. Yserentant (1990)). For the

computation of ê

j

we use the fact that ê

j

is the unique �xed point of the operator

� : Q

j

! Q

j

which assigns to w

j

2 Q

j

the unique solution z

j

= �w

j

of the

variational inequality:

Find z

j

�Mw

j

such that

â

C

(z

j

; v

j

� z

j

) � r(v

j

� z

j

); v

j

�Mw

j

:

Starting from an appropriate startiterate ê

0

j

we can show the following:

Theorem 4.3 Let ê

0

j

= (ê

L;0

j

; ê

Q;0

j

) with ê

L;0

j

being the solution of the variational

equation

a

L

C

(ê

L;0

j

; v

j

) = r

L

(v

j

); v

j

2 S

L

j

and ê

Q;0

j

being given arbitrarily. Then the sequence (ê

�

j

)

��1

of iterates obtained by

the �xed point iteration

ê

�

j

= �ê

��1

j

; � � 1 (4.21)

satis�es

ê

2��1

j

� ê

2�+1

j

� ê

j

� ê

2�+2

j

� ê

2�

j

; � � 1: (4.22)

Moreover, if lim

�!1

ê

2��1

j

= lim

�!1

ê

2�

j

= ê

�

j

, then ê

�

j

= ê

j

is the unique solution

of the reduced defect problem (4.7).

Proof. For the proof of (4.22) it is convenient to rewrite the �xed point iteration

(4.21) algebraically as a system of linear complementary problems. Denoting by

A

L

C

; D

Q

and � the matrix representations of a

L

C

(�; �); d

Q

(�; �) and the mapping

�, respectively, and identifying �nite element functions with vectors, (4.21) is

equivalent to the successive solution of the linear complementary problems:

Find ê

�

j

= (ê

L;�

j

; ê

Q;�

j

) such that

ê

Q;�

j

� ~'

Q

j

� �ê

L;��1

j

; D

Q

ê

Q;�

j

� r

Q

< ê

Q;�

j

� ( ~'

Q

j

��ê

L;��1

j

); D

Q

ê

Q;�

j

� r

Q

>= 0;

(4.23)

ê

L;�

j

� ~'

L

j

; A

L

C

ê

L;�

j

� r

L

+�

T

(D

Q

ê

Q;�

j

� r

Q

)

< ê

L;�

j

� ~'

L

j

; A

L

C

ê

L;�

j

� (r

L

+�

T

(D

Q

ê

Q;�

j

� r

Q

)) >= 0

(4.24)

where < �; � > stands for the standard inner product in IR

n

L

j

and IR

n

Q

j

, respectively

(n

L

j

:= dimS

L

j

; n

Q

j

:= dimS

Q

j

). Using the fact that under the assumptions of

this theorem the solutions of (4.23), (4.24) monotonically depend on the upper

obstacles and right-hand sides, respectively, and that D

Q

and � are nonnegative

matrices, the proof of (4.22) is by induction on �. Since ê

L;0

j

is the solution of the
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unconstrained problem A

L

C

ê

L;0

j

= r

L

, we have ê

L

j

� ê

L;0

j

. This implies �ê

L

j

� �ê

L;0

j

whence ê

Q;1

j

� ê

Q

j

by means of (4.23). It follows that �

T

D

Q

ê

Q;1

j

� �

T

D

Q

ê

Q

j

which

in view of (4.24) gives ê

L;1

j

� ê

L

j

. Repeating these arguments proves (4.22) for

� = 1. Assuming (4.22) for some � � 1, the proof that the inequalities also hold

true for � + 1 can be given in exactly the same way as in the case � = 1.

If lim

�!1

ê

2��1

j

= lim

�!1

ê

2�

j

= ê

�

j

, the continuity of � implies that ê

�

j

is a �xed

point of � and hence, ê

�

j

= ê

j

by uniqueness. 2

It should be emphasized that the convergence of the monotonically increasing

sequence (ê

2��1

j

)

��1

of subsolutions and the monotonically decreasing sequence

(ê

2�

j

)

��1

of supersolutions to the same limit is not guaranteed. Indeed, it may

happen that we end up with blockage points

lim

�!1

ê

2��1

j

= ê

�

j

< ê

j

< ê

��

j

= lim

�!1

ê

2�

j

:

In this case, based on a purely heuristical argument we use the arithmetic mean

ê

a

j

:=

1

2

(ê

�

j

+ ê

��

j

) as a substitute for the solution ê

j

. The corresponding error

estimator jê

j

j

â

C

resp. jê

a

j

j

â

C

will be referred to as the \�xed point" error estimator.

A �nal remark should be due to the criterion for local re�nement of an element

� 2 T

j

. In view of the decoupling (4.4) the local contribution of an edge e 2 E

j

with midpoint m 2 M

j

to the total error is given by �

e

= d

2

m

a( 

Q

m

;  

Q

m

) where d

m

stands for the computed nodal value inm. Then, an element � 2 T

j

will be marked

for re�nement, if the value �

e

of at least one of the edges e 2 E

j

of � exceeds a

certain threshold �. In case j > 0 such a bound � = �

E

will be computed by

local extrapolation. In particular, for all edges e 2 E

j

which have been obtained

by re�nement of a \father" edge g 2 E

k

; k < j, extrapolation to the next level

yields �

e

= �

2

e

n �

g

while we set �

e

= 0 if there is not such a \father" edge. We

then choose

�

E

:= �

E

maxf�

e

j e 2 E

j

g

where 0 < �

E

< 1 is an appropriate safety factor. In case j = 0, i.e., for the given

coarse triangulation T

0

, we compute the arithmetic mean �

M

:= jE

0

j

�1

P

e2E

0

�

e

of all local error indicators and use � = �

M

with �

M

given by

�

M

:= �

M

�

M

where again 0 < �

M

< 1 is a suitable safety factor.
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5 Numerical Results

In this section we will apply the adaptive algorithm to some selected statio-

nary free boundary problems in two and three space dimensions. The problems

include the torsion of an elastic, ideally plastic cylindrical bar, lubrication in jour-

nal bearings and stationary ow in porous media as in the dam problem and in

the axialsymmetric water cone problem in oil reservoir simulation. In each case

we will illustrate the adaptive re�nement process by displaying the triangulations

or clippings thereof at some selected levels and we will compare both the perfor-

mance of the four multilevel preconditioners and of the three a posteriori error

estimators. For notational brevity the symmetric and nonsymmetric hierarchical

preconditioners will be denoted by H; S and H; NS and its BPX-type counter-

parts by B; S and B; NS, respectively. Further, the local, the semi-local and the

\�xed point" error estimator will be referred to as Estimator 1, 2 and 3.

If not stated otherwise, the components of the adaptive code are given as

follows: Starting with the interpolation of the �nal iterate from the previous level

the outer active set strategy stops as soon as the active set remains invariant. We

use the symmetric BPX preconditioner for the preconditioned inner cg-iterations

which will be terminated if the estimated iteration error is less than � = 10

�2

.

Furthermore, local re�nement is based on the semi-local error estimator using the

extrapolation strategy with �

E

= 0:5.

5.1 Elasto-plastic torsion problem

We consider an elastic, ideally plastic isotropic cylindrical barQ := 
�(0; l) of

cross section 
 � IR

2

and length l > 0 with m cylindrical cavities Q

i

:= 


i

� (0; l)

having the same direction of generatrices and cross sections 


i

� 
; 1 � i � m,

such that

�




i

\

�




j

= ;; 1 � i 6= j � m. Denoting by @Q

l

:= 
�flg; @Q

0

:= 
�f0g

the upper and lower ends of the bar and by @Q

s

:= � � (0; l); � := @
, the

lateral surface, we suppose that at the upper end @Q

l

the bar is twisted around

its longitudinal x

3

-axis by a twist-angle � > 0 in such a way that the lateral

surface @Q

s

remains stress-free. Under this assumption the stress potential u is

independent of the x

3

-coordinate so that we are faced with a 2-D problem. In

particular, using Hencky's law, modeling the plastic region according to the von

Mises yield criterion and normalizing physical constants, it can be shown (cf. e.g.

Lanchon (1970)) that u is the unique solution of the variational inequality:

Find u 2 K := fv 2 H

1

0

(
)j vj
�




i

= c

i

; 1 � i � m; jrvj � 1 a.e. in 
g such that

Z




�

ru � r(v � u) dx � 2C

Z




�

(v � u) dx; v 2 K (5.1)

where C := �=l stands for the torsion angle per unit length, 


�

:= 
n (

S

m

i=1

�




i

) is

the region e�ectively occupied by the elastic-plastic material and c

i

; 1 � i � m, are

constants (see below). Consequently, the two subregions 


�

E

:= fx 2 


�

j jruj <

a.e.g and 


�

P

:= fx 2 


�

j jruj = 1 a.e.g represent the elastic and plastic region

being separated by the free boundary �

�

F

= @

�




�

E

\

�




�

P

.

Setting 


0

:= IR

2

n

�


 and �

0

:= @


0

; �

i

:= @


i

we consider the sets �

i

; 0 � i � m,
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of directed paths from �

i

to �

0

where a path P 2 �

i

consists of directed edges

P

i

j

;i

j+1

; 0 � j � n � 1; n 2 IN , of length dist(


i

j

;


i

j+1

connecting 


i

j

and 


i

j+1

such that i

0

= i; i

n

= 0 and i

j

6= i

k

for 0 � j 6= k � n. We denote by d

i

the length

of the shortest path within �

i

and de�ne ' : 
 ! IR as the generalized distance

function

'(x) = inf

0�i�m

[dist(x;


i

) + d

i

]; x 2 
: (5.2)

Then it is well known (cf. Lanchon (1970)) that (5.1) is closely related to the

obstacle problem:

Find u 2 K

�

:= fv 2 H

1

0

(
)j vj
�




i

= c

i

; 1 � i � m; v � ' a.e. in 
g such that

Z




�

ru � r(v � u) dx � 2C

Z




�

(v � u) dx; v 2 K

�

: (5.3)

where c

i

:= 'j
�




i

. Indeed, in case m = 0 of simply connected domains, where '

reduces to dist(�;�), the equivalence between (5.1) and (5.2) has been established

by Br�ezis and Sibony (1971). For m � 1 there is no strict mathematical proof

for that equivalence which, however, is strongly supported by various numerical

results (cf. e.g. Glowinski/Lanchon (1973) and Hoppe (1988)).

As a �rst example we have chosen a bar with simply connected cross section


 = (0; 1)

2

and C = 15. Figure 5.1a shows the initial coarse triangulation T while

Figures 5.1b, c and d represent adaptively re�ned triangulations at some selected

levels. Note that nodal points within the plastic region 


�

P

are marked by a black

square.

For a comparison of the performance of the preconditioners, in Figure 5.2 we

have plotted the average number of inner cg-iterations versus the total number

of nodal points. To amplify the di�erent behavior we chose � unreasonable small,

i.e. � = 10

�4

and the initial iterate is �xed to the obstacle for all inner iterations.

We see that preconditioning becomes e�ective as soon as we have a su�ciently

good resolution of the free boundary between the elastic and the plastic region. As

predicted by the theoretical �ndings, all preconditioners asymptotically behave in

the same way with the symmetric versions giving better results.

The complete history of the adaptive re�nement process is reected by Table 5.1

containing the level, the depth, the total number of inner nodal points and the

number of outer iterations and average number of inner cg-iterations both for the

iterative solution and the error estimation. Note that the depth of a triangulation

is the maximal number of ancestors of its elements which may be less than the

actual level of the re�nement process (cf. Deuhard et al. (1989)).

For a comparison of the performance of the error estimators, in Figure 5.3 we have

plotted the \exact" error and the error predicted by the three error estimators

versus the total number of nodal points. Note that the error in Figure 5.3 is

given in units of 10

�1

. Moreover, to compute the \exact" error we have performed

two uniform re�nements of the �nal triangulation and accepted the corresponding

result as the \exact" solution. We see that at the lower levels the local error

estimator badly underestimates the exact error but produces acceptable results as

soon as the free boundary is resolved by a su�ciently good accuracy. On the other
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Fig. 5.1a Initial Triangulation Fig. 5.1b Level 5

Fig. 5.1c Level 6 Fig. 5.1d Level 8

Table 1: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

0 0 1 2/0.0 1/2.0

1 1 5 1/1.0 1/2.0

2 2 13 1/1.0 2/1.5

3 3 53 1/2.0 2/1.5

4 4 69 1/1.0 2/2.0

5 5 161 2/1.5 2/1.5

6 6 461 2/2.0 2/1.5

7 7 673 2/2.0 1/1.0

8 7 1177 2/3.0 1/1.0

9 7 3153 3/2.3 1/1.0

10 8 9877 1/1.0 1/0.0
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hand, at the lower levels we have a pronounced overestimation by the \�xed point"

error estimator which results in a uniform re�nement on these levels. Obviously, the

most reliable estimates are provided by the semi-local error estimator. It should

be emphasized, however, that asymptotically all estimators behave in the same

way.

We have performed a series of computations for cylindrical bars with multiply

connected cross sections. In all cases we did observe a similar behaviour of the

preconditioners and the error estimators. As representative examples we present

the results for a bar with one hole and torsion number C = 7:5 and for a bar with

four symmetrically distributed holes and torsion number C = 5:0. In particular,

Figures 5.4a,b and 5.5a,b represent the initial triangulation and an intermediate

level of the re�nement process while Tables 5.1, 5.1 reect the history of the

iterative process, respectively (for further details see Frei (1992) andWiest (1991)).

Table 2: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

1 1 12 1/1.0 1/1.0

2 2 50 1/1.0 1/3.0

3 3 130 3/1.6 1/1.0

4 4 417 4/2.0 1/1.0

5 5 776 3/2.0 1/1.0

6 6 1759 4/2.3 1/1.0

7 7 2993 3/2.3 1/1.0

10 9 4053 3/2.3 1/1.0

15 11 5082 2/3.5 1/0.0

Table 3: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

0 0 5 1/0.0 1/1.0

1 1 33 3/2.3 1/1.0

2 2 113 1/3.0 1/1.0

3 3 317 2/3.0 1/1.0

4 4 681 3/2.6 1/1.0

6 6 1313 3/3.0 1/1.0

8 8 2541 2/2.5 1/1.0

9 9 4501 3/2.3 1/1.0

10 10 8517 2/2.5 1/0.0
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Fig. 5.2 Comparison of the preconditioners
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Fig. 5.3 Comparison of the error estimators
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Fig. 5.4a Initial triangulation Fig. 5.4b Level 6

Fig. 5.5a Initial triangulation Fig. 5.5b Level 6
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5.2 Lubrication in journal bearings

We consider a journal bearing consisting of a rotating cylinder which is se-

parated from the bearing surface by a thin �lm of lubricating uid (cf. Figure

5.6a).

x

F

B A

F*

B*

A*

θ

h(θ)

p = 0

p > 0

B

A

C

F

Fig. 5.6a Journal bearings

Fig. 5.6b Cross section of journal

bearings

The uid is fed in between A and A

�

and ows out between B and B

�

. Introducing

the angle � as an independent variable (cf. Figure 5.6b) and performing the coor-

dinate transformation x

2

= �=�, the computational domain 
 is given by 
 :=

f(x

1

; x

2

) 2 IR

2

j 0 < x

1

< a := dist(A;A

�

); 0 < x

2

< b := �

B

=�g; �

B

� 2�. The

width of the �lm can be modeled by the function h(x

1

; x

2

) := (1+ � cos(�x

2

))=

p

�

where 0 � � < 1 is the eccentricity ratio (cf. e.g.Pinkus and Sternlicht (1961)). Evi-

dently, the width is increasing in the subdomain [0; a]� [1; b] causing the pressure

in the lubricating �lm to decrease. At the line S

P

:= [0; a]�fx

F

2

g; 1 < x

F

2

< b, we

assume the pressure to become so low that the uid vaporizes. The interface S

P

represents a free boundary separating the liquid phase 


L

:= fx 2 
j p(x) > 0g

from the gaseous phase 


G

:= fx 2 
j p(x) = 0g of the uid.

As shown e.g. in Crank (1987) and Cryer (1971) the problem can be formu-

lated as the following 2-D obstacle problem:

Find p 2 K := fq 2 H

1

0

(
)j q � 0 a.e. in 
g such that

Z




h

3

rp � r(q � p) dx � �

Z




@h

@x

2

(q � p) dx; q 2 K: (5.4)

In our computations we have used a = 4 and �

B

= 2�. Moreover, the eccent-

ricity ratio � has been chosen as � = 0:4. Figure 5.7a shows the initial triangulation

T while Figures 5.7b and c represent some selected levels during the adaptive re-

�nement process. Again, nodal points within the gaseous phase 


G

are marked by

a black square.

Figures 5.8 and 5.9 illustrate the performance of the preconditioners and the er-

ror estimators, respectively, while Table 5.2 covers the history of the adaptive

re�nement process.
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Fig. 5.7a Initial triangulation

Fig. 5.7b Level 4

Fig. 5.7c Level 10
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As opposed to the elastic-plastic torsion problem, in this application the non-

symmetric versions of the preconditioners perform better than their symmetric

counterparts which can be partially explained by the fact that there already is a

good resolution of the free boundary on the lower levels. This is also reected by

the small di�erence in the performance of the error estimators.
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Fig. 5.8 Comparison of the preconditioners
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1e+01 1e+02 1e+03
Fig. 5.9 Comparison of the error estimators
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Table 4: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

0 0 1 1/0.0 1/3.0

1 1 7 2/1.5 1/3.0

2 2 26 2/1.5 1/3.0

3 3 46 1/3.0 1/1.0

4 4 157 2/3.0 1/1.0

5 4 210 2/2.0 1/1.0

6 5 350 2/2.0 1/1.0

7 5 554 1/3.0 1/1.0

8 5 789 2/2.0 1/1.0

9 6 2230 2/2.5 1/1.0

10 7 3491 2/2.0 1/1.0

11 7 8317 2/2.5 1/0.0

5.3 Seepage ow through a three-dimensional dam

We consider a porous dam occupying a 3-D domain Q := 
 � (0; H) with

an L-shaped cross section 
 := (0; 2a) � (0; 2b) n [a; 2a)� (0; b] which separates

two water reservoirs at constant height so that the inlet face @Q

in

and the outlet

face @Q

out

are given by @Q

in

:= �

in

� [0; H ]; �

in

:= f0g � [0; 2b] and @Q

out

:=

�

out

� [0; h]; �

out

:= (fag [ f2ag)� [0; b]. We assume that the dam consists of a

homogeneous, isotropic material and has an impervious bottom @Q

b

:= 
 � f0g.

We denote by Q

w

the wet part of the dam and by u(x

1

; x

2

; x

3

) = p(x

1

; x

2

; x

3

)+x

3

the piezometric head where p stands for the inner pressure of the water inQ

w

. Then

extending u intoQnQ

w

by u(x

1

; x

2

; x

3

) = x

3

and using the Baiocchi transformation

(cf. e.g. Baiocchi et al. (1973))

w(x

1

; x

2

; x

3

) =

Z

H

x

3

(u(x

1

; x

2

; s)� s) ds;

it can be shown (cf. e.g. Ca�rey and Bruch (1979)) that w satis�es the variational

inequality:

Find w 2 K := fv 2 H

1

(Q)j vj

@Q

b

= w

b

; vj

@Q

D

= g; v � 0 a.e. in Qg such that

Z

Q

rw � r(v � w) dx � �

Z

Q

(v � w) dx; v 2 K (5.5)

where the Dirichlet data g on @Q

D

:= @Q n (@Q

N

[ @Q

b

); @Q

N

:= (0; a)� f0g �

(0; H)[ (0; 2a)� f2bg � (0; H) are given by

g(x

1

; x

2

; x

3

) =

8

>

>

>

<

>

>

>

:

1

2

(H � x

3

)

2

; (x

1

; x

2

; x

3

) 2 @Q

in

1

2

(h� x

3

)

2

; (x

1

; x

2

; x

3

) 2 @Q

out

0 ; (x

1

; x

2

; x

3

) 2 �

out

� [h;H ]

0 ; (x

1

; x

2

; x

3

) 2

�


� fHg
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and where w

b

is harmonic in @Q

b

ful�lling the boundary conditions

w

b

=

(

1

2

H

2

on �

in

1

2

h

2

on �

out

@w

b

=@x

2

= 0 on (0; a)� f0g; (a; 2a)� fbgand (0; 2a)� f2bg:

In particular, the computation of the Dirichlet data on the bottom @Q

b

of the

dam requires the solution of the 2-D Laplace equation with boundary data as

given above.

We have applied the adaptive 3-D algorithm to a dam with the data a = b =

10:0; H = 10:0 and h = 2:0. Figures 5.10a,b represent the surface of the initial and

of the �nal triangulation, respectively, while Figure 5.10c shows the clipping plane

@Q

1

:= [0; 20]� f10g � [0; 10] of the �nal triangulation. Moreover, Figure 5.11a

illustrates the level curves of the pressure in the wet part of the dam. Note, that

the dry part is shown as the shaded region. To demonstrate the corner singularity

of the solution, Figure 5.11b contains the level curves on the clipping plane @Q

1

.

As can be clearly seen from Figure 5.10c most re�nement has been done in a

neighborhood of the reentrant corner. Finally, Table 5.3 summarizes the history

of the adaptive re�nement process.

Fig. 5.10a Surface of the initial triangulation
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Fig. 5.10b Surface of the �nal triangulation

Fig. 5.10c Clipping plane @Q

1
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Fig. 5.11a Level curves of the �nal solution

Fig. 5.11b Level curves on the clipping plane @Q

1
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Table 5: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

0 0 105 4/3.8 2/0.0

1 1 585 5/6.4 2/0.0

2 2 2184 4/9.8 2/0.0

3 3 4123 4/9.5 2/0.0

4 4 10192 5/8.4 2/0.0

5 5 15881 5/8.2 2/0.0

6 6 34280 5/8.6 2/0.0
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5.4 The axialsymmetric water cone problem in oil reservoir simu-

lation

Another free boundary problem arising from stationary ow in porous media

is the following: We consider an oil reservoir which is bounded from below by a

layer of sand saturated with water and from above by an impermeable sediment.

If we suppose that oil is produced at the production well, then due to the gradient

of the inner pressure of the oil in the oilbearing layer a water cone forms below

the well. At constant production rate the ow becomes stationary and so does the

free boundary separating the oil from the water (cf. Figure 5.12).

(r)ϕ
Γ

z = 
J*

J (0,H)

E (0,b) ,0)wC (r

0

F (a,H)

r

z

A (a,0)B (rw ,0)

Oil

Water

Fig. 5.12 Axialsymmetric water cone problem

For symmetry reasons the problem can be treated in 2-D with the computational

domain 
 given in terms of cylindrical coordinates by 
 := f(r; z)j 0 < r <

a; 0 < z < Hg n f(r; z)j 0 < r < r

w

; 0 < z � bg. Using again the piezometric

head as unknown and performing the Baiocchi transformation, the problem can

be stated as the following variational inequality in the pressure-like quantity w

and the unknown constant production rate q

�

(cf. e.g. Brakhagen (1989)):

Find q

�

2 (0; q

max

); q

max

:= (H

2

+ b

2

� 2�b)=(2 ln(a=r

w

)), and w 2 K

q

�
:= fv 2

H

1

(
)j vj

�

D

= g

D

(q

�

); v � 0 a.e. in 
g such that

a(w; v� w) � l(v � w); v 2 K

q

�
(5.6)

where

a(w; v) :=

Z




(

@w

@r

@v

@r

+

@w

@z

@v

@z

)r dr dz;

l(v) := �

Z




vr dr dz +

Z

�

N

g

N

vr dr d�
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and the Neumann data g

N

on �

N

:= [CE][ [EJ ] and the Dirichlet data g

D

(q) on

�

D

:= @
 n �

N

are given by

g

N

:=

(

�� b on [CE]

on [EJ ]

g

D

(q) :=

8

>

>

>

<

>

>

>

:

1

2

(H � z)

2

on [AF ]

1

2

H

2

+ q ln(r=a) on [AB]

1

2

H

2

+ q ln(r

w

=a) +

1

2

z

2

� �z on [BC]

0 on [FJ ]

:

Note that the unknown production rate q

�

can be calculated in advance as the

solution of the nonlinear problem

F (q) := lim sup

z!b+

�

w

q

(r

w

; z)� w

q

(r

w

; b)

z � b

� (b� z)

�

= 0 (5.7)

where w

q

is the unique solution of the variational inequality:

Find w

q

2 K

q

such that

a(w

q

; v � w

q

) � l(v � w

q

); v 2 K

q

: (5.8)

We have applied our adaptive algorithms for the data a = H = 1; � = b = 0:4

and r

w

= 5 � 10

�4

yielding q

max

= 5:53 � 10

�2

. In view of the geometry of the

computational domain we have provided a suitable initial triangulation by the grid

generator BOXES (cf. Roitzsch and Kornhuber (1990)). The constant production

rate q

�

has been computed by the secant method applied to (5.7) solving (5.8) by

the adaptive algorithm. Using 10

�4

as termination criterion, after seven iterations

we ended up with q

�

= 3:75 � 10

�2

.

Figures 5.13a-c show the initial triangulation and some selected levels of the re-

�nement process while Figure 5.13d represents level curves of the pressure-like

quantity w on level 11. Note that the radius r

w

of the production well is so small

compared to the dimension of the reservoir that the well is hardly visible in the

�gures. As can be seen in Figure 5.13d, we have high pressure gradients at the

production well but almost vanishing gradients at the oil-water interface: This

explains the fact that the re�nement is concentrated around the well but less pro-

nounced at the interface causing di�culties in the resolution of the free boundary.

Figure 5.14 illustrates the performance of the preconditioners. While the symme-

tric and nonsymmetric versions of the BPX preconditioner behave similarly, the

symmetric hierarchical preconditioner clearly outperforms its nonsymmetric coun-

terpart which is in accordance with the theoretical reasoning. Finally, Table 5.4

represents the history of the adaptive re�nement process.
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Fig. 5.13a Initial triangulation Fig. 5.13b Level 10

Fig. 5.13c Level 11 Fig. 5.13d Level curves (pressure)
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X Graph
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Fig. 5.14 Comparison of the preconditioners

Table 6: History of the iterative process

Iterations

Level Depth Nodes Solution Error Est.

0 0 219 2/0.0 1/1.0

1 1 681 3/1.6 1/1.0

7 7 752 2/4.0 1/1.0

9 9 950 2/5.0 1/1.0

10 10 1102 2/5.0 1/1.0

11 11 2033 2/6.0 1/1.0

12 12 3303 2/6.5 1/1.0

13 13 5836 2/6.5 1/0.0
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