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MIXED FINITE ELEMENT DISCRETIZATION OF CONTINUITY
EQUATIONS ARISING IN SEMICONDUCTOR DEVICE SIMULATION

R. HIPTMAIR AND R.HW. HOPPE *

Summary. In the wake of decoupling and linearization semiconductor device simulation based on
van Roosbroecks’s equations requires the solution of convection—diffusion equations. It is well known
that due to the occurrence of local regions of strong convection standard discretizations do not behave
properly. As an alternative among others, mixed methods have been suggested having their roots in
the dual variational formulation of the convection—diffusion problem. Their efficient implementation has
to make use of Lagrangian multipliers. In a novel approach we already introduce the multiplier prior
to discretizing, through a process called hybridization. In the sequel we use the resulting variational
problem to develop a new discretization scheme. Next, we outline how to implement a standard mixed
scheme and investigate some of its aspects. Finally, the behaviour of the mixed method is illustrated by
a series of numerical experiments.
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1. Introduction. We consider the linearized current continuity equation in 2-D
semiconductor device simulation stated as a drift—diffusion equation for the carrier con-

centration n

div(Vn—nV¥)—-Rn = f in Q

n =9 on I'pcaoQ (1)
f_nll =0 on 'y C o9

Here © C R? stands for the cross section of the device, ¥ is the electric potential, R refers
to the differential net recombination rate and f denotes a source term. Further, we assume
inhomogeneous Dirichlet boundary conditions at the Ohmic contacts I'p C I := 9Q and
homogeneous Neumann boundary conditions at the insulation part 'y of the boundary
(TyuTlp =T,y NTp =0). The familiar standard variational (primal) formulation of
(1) is:

Find n € ng + Hf(Q) such that a,a(n,v) = fua(v), v € Hp, () (2)
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where Hf_ () contains the functions of H'(Q2) with zero trace on I'p and ny € H'(R),
nolrp, = ¢ (in the sense of a trace). Additionally we used the bilinear form

HY(Q) x H(Q) » R
Qstd { (n,v) — (fze‘I’<V(e“‘I’n),Vv> dx +(f1an dx (3)

and right-hand side

faa: H(Q)—~R ; vH—/fvdx (4)
Q

In view of the identity e¥V(e™¥n) = Vn—nVV¥ we may introduce the Slotboom variable
u:= e ¥n and get the problem:

div(e¥Vu) —e*Ru = f in Q
u = eYg on ['pcCan (5)
o= 0 on 'y cCoQ

In this paper we are going to switch frequently between both unknowns. To guide the
reader they are invariably denoted by « and n.

By virtue of its symmetric structure (5) can be formulated as an unconstrained minimiza-
tion problem for the total energy over the space H'(I'p,e¥g) := {v € H (Q);yr, =

e ¥g}:
Find u in HY(I'p, e~Yg) such that

J(u) = J(v) (6)

inf
veHY(T'p,e~¥g)
where

J(v) =

N =

/e'l' (lV'ul2 +R|v|2) dx+/fvdx.
2 2

Usually (2) is the starting point for a Galerkin approximation or, more preferably, a
Petrov—Galerkin approach which is more suited in case of strong convection because of
its upwind features (see for example the streamline diffusion method developed by Hughes
et al. in [10]).

On the other hand, for problems where the flux is of primary interest the above formula-
tion is less appropriate, since the current j := e¥ Vu must be calculated by differentiation
thus resulting in a loss of accuracy. Moreover, for problems with regions of strong convec-
tion it may be more advisable to use flux—oriented variational principles that are based
on the conservation of the current. Such variational principles can be obtained by dual-
ity arguments. In particular, it is well known from convex analysis (see for instance [9])
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that the unconstrained minimization of a convex objective functional is equivalent to a
saddle point problem in terms of the convex conjugate which constitutes the so—called
dual problem (as opposed to the primal problem (2)). For the energy functional J in (6)
we can use the obvious identity

1 1
—/IVU|2dX~_— sup /(q,Vv) dX—'/|‘l|2 dx
2] aez2 @) |4 2

together with Green’s formula

/vdiqux+/(Vv,q)dx=/v(q,u)dl", ve H(Q) qeH(dwv,Q)
Q Q T

where H(div, ) := {q € (L%(Q))*;divq € L*(2)} (We use bold type for vector-valued
variables). Setting H(div,,I'v) := {q € H(div, Q); (g, ¥) r,, = 0}, we thus get the dual
problem as the following saddle point problem:

Find (j,u) € H(div,Q,'y) x L2(2) such that

L(j,u) sup L(v,w) (M

= inf
veH(div,Q,T'y) weL2(f)

where

L(v,w) = %/e"y[vlzdx+ / (divv - %e‘I'Rw - f) wdx — /e"‘pg (v,v)dl
Q Q

T'p

The dual problem (7) is also called the mixed formulation of (5).

A widely used approach to the numerical solution of that mixed formulation is to use
mixed finite elements (cf. [7], [8]), a specimen of which are the lowest order Raviart-
Thomas elements presented in [11]. Following De Veubeke’s smart idea in [13], one sub-
sequently eliminates the continuity constraints for the normal component of the discrete
fluxes at the interelement boundaries from the discrete flux space by means of appro-
priate Lagrangian multipliers. Static condensation and rescaling then leads to a Schur
complement system which is related to a specific nonconforming finite element method.
This hybridization of the mixed discretization has been theoretically analyzed by Brezzi
at al. (cf. [6], [1]) and has recently been implemented by Reusken (cf. [12]) within a
multigrid framework.

So far De Veubeke’s trick has only been employed after discretization had already been
completed. To our mind a quite appealing alternative is to apply hybridization directly
to the dual formulation which results in some sort of continuous analogue of the Schur
complement. As the side—effects of a particular discretization do not have to be taken into
account this approach may reward us with additional insights into the genuine properties
of the problems. As the continuous problem is subject to spectral analysis, prospects
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have to be straight lines. In the sequel this is always taken for granted. For convenience
we write £ to refer to the union of edges of the T,.

A fundamental result (cf. [6]) now states that a “fragmented” vector field in X :=
® H(div, T;) belongs to H(div, 2, T'y) if and only if its normal components at the internal

bzoundaries of T are continuous and do vanish on I'yy. Hence, any Lagrangian multiplier
meant to single out members of H(div, 2, T'y) has to enforce the continuity of the normal
components across the joint edge of two patches. We do not want to dip into details
here: A careful analysis reveals that M := H} () is a suitable space of multipliers. Of
course, for an m € M only the traces on £ are relevant. Now, by means of the multiplier
space M an element v € X lives in H(div,Q,T'y) if and only if

l(vim)=0, meM (9)
with [ : X x M — R denoting the bilinear mapping
N
Iv,m):=-%" / <v,;p',u>de“
1':10T,

(7) and (9) are now merged into an augmented saddle point problem: Find (j, u,p) €
X x W x M such that

L(j,u,p) = sup inf sup L(v,w,m) (10)
weW VeX meM

where L(v,w,m,) := L(v,w) + (v, m) and W served as an abbreviation for L3(Q). For
the sake of accuracy we should point out that L (cf. (7)) is assumed to be extended
to functions in X in a canonical fashion. Once more, Giteaux differentiation of (10) is
quickly done and yields the mized hybrid problem

Find (j,u,p) € X x W x M such that

a(§,v) + bv,u) + IUv,p) = g(v), veX
b(G,w) — d(u,w) = f(w), wew (11)
I(j,m) = 0, meM
where
a(j,v) = [ e ¥, v)dx, b(v,u) = Z udivvdx, d(u,w) := [ ¥ Ruwdx
/ -/ /
and

g(v) = /e"pg(v,u)dl", f(w) :=/fwdx
Q

Tp
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Now, we are witnessing the crucial benefit of hybridization: The main purpose of
introducing a multiplier was decoupling: Writing v = ¥, v;, v; € H(div, T;,T'y) and
w =Y, w;,w; € L*(T;) (14) spawns a host of variational problems:

Find (j;, u;) € H(div, T;, T ) x L*(T;) such that

a(ji,vi) + b(Vi,u,‘) = iLl(V,’), ViEH(diV,Ti,PN)

: 1<i<N (15)
bGi,wi) — d(u,wi) = hy(wi), w; € L*(T;)

Since we have disposed of all the continuity ties between the v;, these problems can
be solved independently.
¢ Finally, (g) (1“’)) with (;) € X x Wis a linear form on M:

(5) (;)pzl(vm):—i/p(v,u)dl“, peM

=lgT;

In sum, the evaluation of (Sp,m) . 1, requires basically two steps:
1. As a first step for each T; € 7 we have to solve
Find (j;, ;) € H(div, T}, T'y) x L*(T;) such that

a(ji,Vi) + b(Vi,Ui) = "l(Vz‘,Z’), VieH(divai,FN)

: ) 1<i< N16)
b(i, wi) — d(ui,wy) = 0, w; € L(T)

Recalling (7) these problems turn out to be local Dirichlet problems for the equation
(5) with vanishing source term f and boundary values provided by the multiplier.
2. Using the result of the previous step this one reduces to the calculation of

N
Z/m(ji,v)df‘ for meM
izlaT.

In order to condense the remaining steps into a single formula we resort to Poincaré-
Steklov operators, defined to be the Dirichlet—-Neumann operators

Tiy:H(T) — H3(dT,) ; p— e\”%‘i
v

They map Dirichlet data on the boundary of a patch T; via the local problem (16) to the
resulting flux through the edges of T;. The desired formula now reads:

N
EXOEDS / Tixp-mdl , pmeHL (Q) =M
i=13T;

The right hand side g can be treated in a similar fashion.
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acting on H*(I'3), homogeneous boundary conditions provided. Its corresponding eigen-
values are given by p, := k% + i|c|2: for large k A, is about twice the square root of p,.
Loosely speaking, S behaves like the square root of a 1D convection—diffusion operator.
As it was successfully done in the case of purely elliptic problems (see e.g. [4]), these
findings can be exploited to construct a preconditioner for the Schur complement system
in a domain decomposition framework.

3. Flux-oriented discretization scheme. We now pursue the intriguing idea to
find a discretization scheme for problem (1) based on its mixed hybrid formulation (13).
In principle we stick to the customary finite element approach of replacing the function
spaces by finite dimensional analogues. We have to supply both a finite dimensional
space My, of ansatz functions and a space My, of test functions. They may but do not
need to coincide as we do not want to rule out Petrov—Galerkin techniques. In the usual
manner approximating finite element spaces My, M,, are built upon a triangulation 7
of . So far any kind of polygonal patches was admitted but from now on we restrict
their shapes to triangles and are calling them elements. All other requirements upon 7
remain in effect.

We continue with the local definition of approximating finite element functions, devel-
oping a representation for a single element. The rash approach to fix the ansatz for the
discrete multiplier p, € M, in the first place is certainly doomed in practice: it is all
but impossible to obtain solutions of the local problems (16) that bulked large in the
definition of the mixed hybrid problem. A promising remedy lies in role reversal: we
recommend to determine a simple solution of (16) first and then to take its values on 97T;
to build My,

We now assume that R vanishes in all of Q2 and that the potential ¥ varies only linearly
over each element, i.e. ¥(x) = (c;,x), x € T; with constant ¢; € R%. Then, provided
that c¢; # 0, it makes sense to choose

eleox) — 1
|ci

(in the trivial case c; = 0, ¢; is taken to be an ordinary linear function), with r; being
any nonzero vector perpendicular to c;, as a local ansatz for a function in M,;. The
very same approximation of the local flux has already been used by Baliga and Patankar
in a finite volume scheme (cf. [2]). Our decision in favour of (17) is backed by several
observations: Firstly, the discrete flux

3i(x) = e* V(e 9in)(x) = Bri — (B (ri,x) +7 = o/lcil)

is a “smooth” function and does not change in the direction of c;. Remember that c;
is parallel to the electric field to see that j; neatly fits the current which does not vary
much along electric field lines either. Secondly, the ansatz also meets our original goal of
satisfying the local problem what div j; = 0 gives evidence for.

Pip(X) = ( ) +B8(r,x)+7, x€T; (17)
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relation agq(ms, p;) = 0 ,m; € M, meaning that the arising stiffness matrix possesses
upper triangular structure if the basis functions are properly arranged. This paves the
way for processing source terms independently on each element in advance to calculating
the solution on the edges.

We must not gloss over the glaring flaw of the approach described so far: the p; remain
elusive. As we are dealing with approximate solutions anyway, we hope to find a simple
replacement sufficiently close to p;. For example, the classical cubic bubble scaled by the
exponential e'/2(¢*) might be suitable. Also the test space still needs to be specified;
pondering experiences obtained for other discretizations we guess that linear test func-
tions can be recommended leading to a Petrov-Galerkin method. All this badly needs
empirical underpinning and the results of numerical experiments will be reported in a
forthcoming paper.

4. Standard Mixed Finite Element Discretization. Again for simplicity we
assume 2 to be a bounded polygonal domain and seek to discretize (11) immediately by
means of finite elements. Then with respect to a simplicial triangulation 7 := {T;}, of
an appropriate local approximation of the flux space H(div,Q,T'y) can be obtained by

means of the lowest order Raviart-Thomas element given by
a,

/

RTW(T;) :={x—a+px;xeT;,acR?, fcR} /
T;

3
v
Then we set X := @ RTx(T) to be the “chopped 2
up” global approximation space for the flux. For each vy
v, € RT,(T;) the divergence div v, is constant in T; : €1
I
ay

€2
and so are its normal traces (vs, v),,, , along the edges /
e, k=1,2,3 of T;. For the meaning of the symbols a e3
we refer to the figure beside. 3

According to famous theoretical results on saddle point problems (Babuska-Brezzi con-
dition, see [5]), we have to choose a locally constant ansatz for W,,. One can easily
check that v, € RT(T;) is uniquely determined by its normal traces on 87;. This hints
that the discrete multipliers need only be constant along edges. It takes little more than
counting dimensions of the spaces involved to verify that such an M, complies with (9).
So we have made sure existence and uniqueness of a solution of

Find (ju, 7h, pr) € Xn X Wy X M, such that

a(Gn,ve) + bi(va,mn) + UVh,pn) = 9(Vi), VREX,
bo(jn, wn) — d(nn, wh) = f(wn), wh€W4 (18)
l(jh,mh) =0, mp € My
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where ¢ € R® and ¢ := (p,v;) — ¢! [ e ¥(x,v;) dx with p € e;. A brief calculation
T

shows that Sie and fj. can be read as the stiffness matrix and the load vector of the
following local variational problem:

Find p, € My(T;) such that
1
-1 dF/“I’ ar)=-——— [ fdx. , T,
€ <6! myv ,aT‘e fphu 2|T,~|Q/f x-m(my), mp € Mp(T:) (21)

where

m(mp) = / my, <x —¢! / e Yy dx',u> dl’
aT;

T;

In practice the rationale behind solving (1) often is to determine the current j passing
through a certain section of the boundary, for example Ohmic contacts. Unfortunately,
we just discarded j, in the process of static condensation. Therefore, we face the task of
retrieving jj, from the values of the multiplier p,. First we observe that this again can be
done for each element T; separately. Tedious tinkering with the full 7 x 7 local stiffness
matrix is rewarded by a surprising result: The total flux through the edge of an element
is readily available as a component of the residual of the equation Sysc Ph10c = t1oc. In
this context pj, covers three components of p’ which are linked to the edges of T;. Thus
we can obtain the desired fluxes at virtually no extra cost. This should be taken as an
additional incentive to search for error estimators based on the flux. It seems wise to do
so anyway, considering the pivotal role of the flux in mixed discretization schemes.

4.2. An Equivalent Nonconforming Petrov—Galerkin Ansatz. In section 3,
setting out at the mixed hybrid problem, we unexpectedly arrived at a scheme that
looked like a modified standard formulation (2). As well the genuine mixed discretization
given before can be recast to resemble a variant of (2), though a good deal of twisting is
needed. Our presentation partly follows that of Reusken in [12] Again we pick a single
element T; with edges {ey, 2, €3}, outward normal unit vectors {v1, v, v3} and midpoints
{mj, my, m;} of the edges. Furthermore, R = 0 is assumed.

Let {@},, 824,925} be the local canonical basis of the Crouzeix-Raviart space CR, of
linear nonconforming functions given by

09 = xmum)  1SkA1S3 xeT,
i

We additionally require continuity at the midpoints of interelement boundaries and in this

case these functions (for all the T; combined) span the space of test functions. Following

the Petrov—Galerkin principle we use the scaled functions

ok, = (l—elk—|/e-“f dF) fh, 1<k<3 (22)

€k
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The results teach that for some values of ¢ obtuse angles might cause disastrous instabil-
ity. The plots also reveal that in these cases large errors spread to parts of the domain
where the triangulation is not “marred”, that is, a sort of pollution effect is present.
Apparently other directions of ¢ do no harm; we see an enigmatic relationship between
error and direction of convection: Maybe a clever orientation of the obtuse elements
can help to steer clear of the instability trap. Nevertheless, the results send a daunting
message as far as an adaptive strategy is concerned: While for plane problems clever re-
finement strategies for triangulations exist that avoid obtuse elements, in 3-D simulation
they inevitably occur. The viability of the mixed method in practice hinges on whether
instability can be managed.
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