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MIXED FINITE ELEMENT DISCRETIZATION OF CONTINUITY 
EQUATIONS ARISING IN SEMICONDUCTOR DEVICE SIMULATION 

R. HIPTMAffi AND R.H.W. HOPPE· 

Summary. In the wake of decoupling and linearization semiconductor device simulation based on 
van Roosbroecks's equations requires the solution of convection-diffusion equations. It is well known 
that due to the occurrence of local regions of strong convection standard discretizations do not behave 
properly. As an alternative among others, mixed methods have been suggested having their roots in 
the dual variational formulation of the convection-diffusion problem. Their efficient implementation has 
to make use of Lagrangian multipliers. In a novel approach we already introduce the multiplier prior 
to discretizing, through a process called hybridization. In the sequel we use the resulting variational 
problem to develop a new discretization scheme. Next, we outline how to implement a standard mixed 
scheme and investigate some of its aspects. Finally, the behaviour of the mixed method is illustrated by 
a series of numerical experiments. 

Key words. convection-diffusion problem, flux oriented schemes, hybridization, Lagrangian multi­
pliers, mixed finite elements, Raviart-Thomas elements 

MSC subject classifications. Primary 65N30j secondary 35J20 

1. Introduction. We consider the linearized current continuity equation in 2-D 
semiconductor device simulation stated as a drift-diffusion equation for the carrier con­
centration n 

div(V'n - nV'lJ!) - Rn f 
n = 9 

o {}n _ n{}>J! 
{}v {}v 

III n 
on rD Can 
on rN can 

(1) 

Here n c R2 stands for the cross section of the device, IJ! is the electric potential, R refers 
to the differential net recombination rate and f denotes a source term. Further, we assume 
inhomogeneous Dirichlet boundary conditions at the Ohmic contacts rD C r := an and 
homogeneous Neumann boundary conditions at the insulation part rN of the boundary 
(r N U r D = r, r N n r D = 0). The familiar standard variational (primal) formulation of 
(1) is: 

Find n E no + Hfv (n) such that astd(n, v) = fstd( v), v E Hfv (n) (2) 
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where HfD(0.) contains the functions of Hl(0.) with zero trace on rD and no E Hl(0.), 
nOlrD = 9 (in the sense of a trace). Additionally we used the bilinear form 

{ 
Hl(0.) x Hl(0.) 1-+ R 

astd: (n,v) 1-+ Je'Ji(V'(e-'Jin),V'v)dx+JRnvdx 
n n 

and right-hand side 

Vl-+- J fvdx 
n 

(3) 

(4) 

In view of the identity e'JiV' (e-'Ji n) = V'n - n V'1lI we may introduce the Slot boom variable 
u := e-'Jin and get the problem: 

div(e'JiV'u) - e'Ji Ru 

u 
fJu 
av 

f III 0. 

on rD C a0. 

on rN C a0. 

(5) 

In this paper we are going to switch frequently between both unknowns. To guide the 
reader they are invariably denoted by u and n. 

By virtue of its symmetric structure (5) can be formulated as an unconstrained minimiza­
tion problem for the total energy over the space H1(rD, e-'Ji g) := {v E Hl(0.); vlrD = 
e-'Jig}: 

Find u in H1(rD,e-'Jig) such that 

J(u) := inf J(v) 
vEH'(rD,e-<P g) 

(6) 

where 

J(v) := ~  / e'Ji (lV'vI2 + Rlvn dx + / fv dx. 
n n 

Usually (2) is the starting point for a Galerkin approximation or, more preferably, a 
Petrov-Galerkin approach which is more suited in case of strong convection because of 
its upwind features (see for example the streamline diffusion method developed by Hughes 
et al. in [10]). 

On the other hand, for problems where the flux is of primary interest the above formula­
tion is less appropriate, since the current j := e'JiV'u must be calculated by differentiation 
thus resulting in a loss of accuracy. Moreover, for problems with regions of strong convec­
tion it may be more advisable to use flux-oriented variational principles that are based 
on the conservation of the current. Such variational principles can be obtained by dual­
ity arguments. In particular, it is well known from convex analysis (see for instance [9]) 
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that the unconstrained minimization of a convex objective functional is equivalent to a 
saddle point problem in terms of the convex conjugate which constitutes the so-called 
dual problem (as opposed to the primal problem (2)). For the energy functional J in (6) 
we can use the obvious identity 

! J lV'vl2 dx = sup {J (q, V'v) dx - ! J Iql2 dX} 
2 qE(L2(fl))2 2 

fl fl fl 

together with Green's formula 

J v div q dx + J (V'v, q) dx = J v (q, v) dr, v E H 1(0,) q E H(div, 0,) 
fl fl r 

where H( div, 0,) := {q E (£2(0,))2; div q E £2(0,)} (We use bold type for vector-valued 
variables). Setting H(div, 0" r N) := {q E H(div, 0,); (q, v)lrN = O}, we thus get the dual 
problem as the following saddle point problem: 

Find (j,u) E H(div,0"rN) x £2(0,) such that 

£(j,u) = inf sup £(v,w) 
VEH(div ,fl,r N) wE£2(fl) 

(7) 

where 

£(V,w):= ~  J e-l\IlvI 2 dx+ J (diVV- ~ e I \ l R w - f)wdx- J e-l\Ig(v,v)dr 
fl fl ~  

The dual problem (7) is also called the mixed formulation of (5). 

A widely used approach to the numerical solution of that mixed formulation is to use 
mixed finite elements (cf. [7], [8]), a specimen of which are the lowest order Raviart­
Thomas elements presented in [l1J. Following De Veubeke's smart idea in [13]' one sub­
sequently eliminates the continuity constraints for the normal component of the discrete 
fluxes at the interelement boundaries from the discrete flux space by means of appro­
priate Lagrangian multiplzers. Static condensation and rescaling then leads to a Schur 
complement system which is related to a specific nonconforming finite element method. 
This hybridization of the mixed discretization has been theoretically analyzed by Brezzi 
at al. (cf. [6], [1]) and has recently been implemented by Reusken (cf. [12]) within a 
multigrid framework. 

So far De Veubeke's trick has only been employed after discretization had already been 
completed. To our mind a quite appealing alternative is to apply hybridization directly 
to the dual formulation which results in some sort of continuous analogue of the Schur 
complement. As the side-effects of a particular discretization do not have to be taken into 
account this approach may reward us with additional insights into the genuine properties 
of the problems. As the continuous problem is subject to spectral analysis, prospects 



200 

arise to gain important information about appropriate preconditioning. Note that in 
classical domain decomposition a related approach, namely hybridization of the primal 
problem has been investigated by Bj0rstad and Widlund in [4]. 

The remainder of the paper is organized as follows: In section 2 we will give the mixed 
formulation of (1) and present the details of dual hybridization. A spectral analysis of the 
dual hybrid operator is then carried out for a simple model problem. The next section 
is devoted to a special flux-oriented upwind scheme that is related to the discretization 
technique of Baliga-Patankar (d. [2]). In section 4 we are reviewing some aspects of the 
standard mixed discretization and its relationship to inverse average type nonconforming 
Petrov-Galerkin methods. Finally, in section 5 we are presenting the results of a couple 
of numerical experiments which center on the performance of the mixed method in special 
situations. 

2. Dual Hybridization. The variational equations arising from the mixed saddle 
point problem (7) by means of Gateaux differentiation of the functional L with respect 
to both variables read: 

Find (j,u) E H(div,O,rN ) x L 2(0) such that 

J wdiv j dx 
n 

J udivvdx 
n 
J e'll Ruwdx 
n 

J e-'lI 9 (v, v) dr, 
fD 

J fwdx, 
n 

v E H(div,O,rN ) 

wE L 2(0) 
(8) 

Another derivation of (8) immediately replaces e'llY'u in (5) by the new variable j (the 
flux) and thus converts (5) into a first order system of partial differential equations: 

u 

(j,v) 

Both equations are now written in variational form and applying Green's formula we 
arrive at (8). We can take our cue from these considerations to prove that both the 
mixed problem (8) and its standard counterpart (2) do yield the same solutions apart 
from scaling. 

The main objective of hybridization is to get rid of the global space H( div, 0, r N). It is a 
common experience - see for instance [11] -, that its discrete analogues are not easily 
handled. The tool of a Lagrangian multiplier enables us to break up the space into less 
bulky pieces. The splitting of the space H( div, 0, r N ) is based on a decomposition of 0, a 
"generalized triangulation" Th := { T ' } ~ l  (N E IN): The patches T; are open, nonempty 
convex subsets, mutually disjoint and the union of their closures entirely covers 0. Fur­
thermore we demand that they align with the boundary parts. A general triangulation 
of this kind is feasible as long as ° has polygonal boundary and all internal boundaries 
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have to be straight lines. In the sequel this is always taken for granted. For convenience 
we write t: to refer to the union of edges of the T,. 

A fundamental result (d. [6]) now states that a "fragmented" vector field in X := 
® H( div, T,) belongs to H( div, fl, r N ) if and only if its normal components at the internal 
• 

boundaries of T are continuous and do vanish on r N . Hence, any Lagrangian multiplier 
meant to single out members of H( div, fl, r N) has to enforce the continuity of the normal 
components across the joint edge of two patches. We do not want to dip into details 
here: A careful analysis reveals that M := Hfv (fl) is a suitable space of multipliers. Of 
course, for an m E M only the traces on [ are relevant. Now, by means of the multiplier 
space M an element v E X lives in H( div, fl, r N) if and only if 

l(v, m) = 0, mE M (9) 

with I : X x M t-+ lR denoting the bilinear mapping 

N 

l(v,m):= - L: J (vJT.,v)mdr . 
• =laT. 

(7) and (9) are now merged into an augmented saddle point problem: Find (j,u,p) E 
X x W x M such that 

£(j,u,p) = sup inf sup £(v,w,m) 
wEWVEXmEM 

(10) 

where £(v, w, m,) := L(v, w) + l(v, m) and W served as an abbreviation for L 2(fl). For 
the sake of accuracy we should point out that L (d. (7)) is assumed to be extended 
to functions in X in a canonical fashion. Once more, Gateaux differentiation of (10) is 
quickly done and yields the mzxed hybrzd problem 

Find (j, u,p) E X x W x M such that 

a(j, v) + b(v, u) + l(v,p) 

b(j,w) d(u,w) 

l(j, m) 

g(v) , 

f(w) , 

0, 

vEX 

wEW 

mEM 

where 

a(j,v):= J e-'lI(j,v)dx, b(v,u):= L:J udivvdx, d(u,w):= J e'llRuwdx 
n ' T. n 

and 

g(v):= J e-'lIg(v,v)dr, f(w):= J fwdx 
fv n 

(11) 
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Standard techniques developed for general saddle point problems (d. [6]) establish ex­
istence and uniqueness of a solution of (11); uniqueness of p is to be understood as a 
statement about its traces on t:. 

As an elementary but interesting feature of (11) we wish to mention that the components 
u and p of the solution have the same trace on t:. First of all, this fact teaches us how to 
write (11) for the original unknown n: Just replace u and p by eWu and eWp, respectively. 
This observation is also numerically significant: As soon as an approximation of p is 
available, one of u is also known on the edges. 

Each bilinear form of (11) can be associated with a Riesz operator denoted by the respec­
tive capital letter. Their adjoints are marked by an asterisk. Writing (11) as an equation 
for operators in function spaces we then obtain the following system: 

(
A B* L * ) ( j) ( 9 ) B -D 0 u = f 
L 0 0 p 0 

(12) 

2.1. The Dual-Hybrid Variational Problem. Due to its special structure the 
system (12) lends itself to static condensation in a wider sense: Through a process similar 
to block elimination of linear systems we seek to dump all unknowns except for p. Doing 
so produces the following equation: 

which we are going to write as Sp = q. 

To go beyond playing with symbols we are now scrutinizing the related variational prob­
lem: Find p E M such that 

(Sp,m)M'XM = q(m), mE M (13) 

by untangling the left hand side: ( As usual, dual spaces are marked by a prime ') 

• First ( ~ r p  E (X x W)' for p EM is given by 

( ~  ) * p (:) = - t J P hT, , v) dr = l (v, p) , 
,-laT, 

(:) E X x W 

• Evaluating ( ~  !; rl 
( ~ ~  ) E X x W for hl E X', h2 E W' is equivalent to 

the variational problem: 

Find (j, u) E X x W such that 

a(j,v) + b(v,u) 

b(j, w) d(u, w) 

vEX 

wEW 
(14) 
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Now, we are witnessing the crucial benefit of hybridization: The main purpose of 
introducing a multiplier was decoupling: Writing v = L:ivi,vi E H(div,Ti,rN) and 
W = L:i Wi, Wi E L2(Ti) (14) spawns a host of variational problems: 

Find (ji,Ui) E H(div,T;,rN) x L2(Ti) such that 

a(ji, Vi) + b(Vi, Ui) 

b(ji, Wi) d(Ui, Wi) 

hI (Vi), 

h2(Wi), 

Vi E H(div,Ti,rN) 

Wi E L2(Ti) . 
1 ~  i ~  N (15) 

Since we have disposed of all the continuity ties between the Vi, these problems can 
be solved independently .

• Finally, ( ~ )  (:) with (:) E X x W is a linear form on M: 

( ~ )  (:)P=I(V,P)=-tJ p(v,v)dr, pEM . 
,-laT, 

In sum, the evaluation of (Sp, m)MxM requires basically two steps: 

1. As a first step for each Ti E T we have to solve 

Find (ji,Ui) E H(div,Ti,rN) x L2(Ti) such that 

a(ji, Vi) + b(Vi, Ui) 

b(ji,Wi) d(Ui,Wi) 

-l(vi,p) , 

0, 

Vi E H(div,Ti,rN) 

Wi E L2(Ti) 
1 ~  i ~  N(16) 

Recalling (7) these problems turn out to be local Dirichlet problems for the equation 
(5) with vanishing source term f and boundary values provided by the multiplier. 

2. Using the result of the previous step this one reduces to the calculation of 

N 

L J mUi,v)dr 
,=laT, 

for mE M . 

In order to condense the remaining steps into a single formula we resort to Poincare­
Steklov operators, defined to be the Dirichlet-Neumann operators 

They map Dirichlet data on the boundary of a patch Ti via the local problem (16) to the 
resulting flux through the edges of Ti . The desired formula now reads: 

N 

( S p , m ) M I X M = L J T ~ N P · m d r  , p,mEHfD(O)=:M 
'=laTi 

The right hand side q can be treated in a similar fashion. 
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2.2. Spectral Analysis of a Model Problem. The mixed hybrid problem for 
the Lagrangian multiplier is now more closely examined in the case of a simple model 
problem which permits an explicit calculation of eigenfunctions. The setting is as follows 
(see Figure 1): 

• n is the square jO, 1f[2 
• The triangulation T of n consists of two patches 

Tl =jO, 1f[ X jO, h[ and T2 =jO, 1f[x jh, 1f[ for h EjO,1f[ 
with joint edge r3 := aTl n aT2 

• The analysis is confined to piecewise linear poten­
tial, meaning that \l1(x) = (c,x) 'ix E n with a 

constant vector c := ( ~ ~ )  E R? 

• We assume R(x) = ° for all x E n 
• We have homogeneous Dirichlet conditions all over 

an. 

y 

T2 r3 
hf-------

Figure 1 
1f x 

We regard S of (13) as an operator in a space of functions defined on r3 and we are now 
looking for its eigenfunctions. Since convection-diffusion problems on each sub domain 
Tl , T2 are involved at first we have to focus on the operator 

L. {Hl(D) f-+ H-l(D) 
. n f-+ l:;.n - (c, V'n) 

for an arbitrary domain D. Straightforward calculation shows that for any K, E lR the 
functions 

\l1,,(x) = et(c,x) sin(K,x) sinh ( K,2 + ~ l c l 2  y), x = (;) En, K, E R 

belong to the kernel of L. Thanks to this result the boundary problems (16) we face as 
a first step in the evaluation of Sp yield an analytic solution, if the multiplier p on r3 is 
of the form 

These functions also satisfy the boundary conditions imposed by our current settings. 
The main difficulty is now overcome; it just takes mere calculation to show that those 
PIt (x) are eigenfunctions of S. Moreover, we also get the eigenvalues 

Oddly enough, this lengthy expression deserves further attention. First the PIt represent 
a complete set of eigenfunctions for the one-dimensional convection-diffusion operator 
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acting on Hl(r3)' homogeneous boundary conditions provided. Its corresponding eigen­
values are given by J.ll< := 1),2 + i Ic1 2: for large I), AI< is about twice the square root of J.ll<' 
Loosely speaking, S behaves like the square root of a 1D convection-diffusion operator. 
As it was successfully done in the case of purely elliptic problems (see e.g. [4]), these 
findings can be exploited to construct a preconditioner for the Schur complement system 
in a domain decomposition framework. 

3. Flux-oriented discretization scheme. We now pursue the intriguing idea to 
find a discretization scheme for problem (1) based on its mixed hybrid formulation (13). 
In principle we stick to the customary finite element approach of replacing the function 
spaces by finite dimensional analogues. We have to supply both a finite dimensional 
space Mh of ansatz functions and a space Mh of test functions. They may but do not 
need to coincide as we do not want to rule out Petrov-Galerkin techniques. In the usual 
manner approximating finite element spaces M h, Mh are built upon a triangulation T 
of O. So far any kind of polygonal patches was admitted but from now on we restrict 
their shapes to triangles and are calling them elements. All other requirements upon T 
remain in effect. 

We continue with the local definition of approximating finite element functions, devel­
oping a representation for a single element. The rash approach to fix the ansatz for the 
discrete multiplier Ph E Mh in the first place is certainly doomed in practice: it is all 
but impossible to obtain solutions of the local problems (16) that bulked large in the 
definition of the mixed hybrid problem. A promising remedy lies in role reversal: we 
recommend to determine a simple solution of (16) first and then to take its values on aTi 

to build M h . 

We now assume that R vanishes in all of 0 and that the potential III varies only linearly 
over each element, i.e. ll1(x) = (Ci, x), x E Ti with constant Ci E R2. Then, provided 
that Ci =P 0, it makes sense to choose 

(
e(C"X) - 1) 

'¢i,h(X) = 0: ICil + {3 (ri, x) + 7, x E Ti (17) 

(in the trivial case Ci = 0, '¢i,h is taken to be an ordinary linear function), with ri being 
any nonzero vector perpendicular to Ci, as a local ansatz for a function in M h . The 
very same approximation of the local flux has already been used by Baliga and Patankar 
in a finite volume scheme (cf. [2]). Our decision in favour of (17) is backed by several 
observations: Firstly, the discrete flux 

is a "smooth" function and does not change in the direction of Ci. Remember that Ci 
is parallel to the electric field to see that ji neatly fits the current which does not vary 
much along electric field lines either. Secondly, the ansatz also meets our original goal of 
satisfying the local problem what div ji = 0 gives evidence for. 
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Given div j, = 0, the current ansatz is reminiscent of one proposed by Bank et al. in [3], 
for it is obviously dzvergence-Jree and this property carries important consequences: By 
means of Green's formula we see for 'l/J"h of type (17) and arbitrary 41 E Hl(O) 

(S'l/J"h, 41) M'(T,)xM(T,) = J div( ellf \?( e- llf 'l/J"h)) dx + J (e llf \?( e- llf 'l/J"h) , \? 41) dx 
T1 ' .... 'T, 

=0 

J ellf (\?( e-IIf'l/J"h), \? 41) dx 
T, 

astd( 'l/J"h, 41 )IT, in T, 

with astd: Hl(O) x Hl(O) 1--* lR as defined in (3). A related equation can be established 
for the right hand side of (13): It relies on p, E HJ(T,) satisfying 

p, 

f 
o 

in T, 

on aT, 

Due to its shape we dub p, "bubble". Again an application of Green's formula shows: 

in T, . 

If we set Mh to be the space spanned by the functions (17) over all elements, a preliminary 
result is that the solutions Ph and nh of the variational problems 

Find Ph E Mh such that (SPh,mh)M'XM = q(mh) , mh E Mh 
Find nh E Mh such that astd(nh + p, Vh) = fstd(Vh) , Vh E Mh 

have common values on the edges. 

Up to now we have ignored that Mh c M is violated: Through opting for a simple 
flux we have sacrificed continuity at interelement boundaries, for tightly welding the 'l/J"h 
together would cost us almost all degrees of freedom. Thus we inevitably have to put up 
with a nonconJormzng method in a narrow sense. Apart from pure continuity there is 
also a less phenomenological criterion to categorize methods. A discretization is regarded 
as by nature conforming if source terms are taken into account by jumps of the normal 
component of the flux across interelement boundaries. Conversely, nonconforming meth­
ods usually trade continuity of the solution for n for being more or less flux-conserving. 
For a reasonably manageable scheme it seems impossible to accommodate both features. 
In this perspective our divergence-free ansatz can be assigned to the conforming class. 
Since the flux is the crucial unknown of the continuity equation, we are eager to add 
some nonconforming flavour. Incorporating the nonconforming principle can be accom­
plished by enlarging the space. The above calculations provide a clue: They suggest 
that we add the bubbles p, as an additional local basis function. In other words, we try 
MBh := Mh + Bh with Bh := {,Bh : 0 1--* lR; ,BhIT, E Span {p,} ,T, E T d as new ansatz 
space. But the particular appeal of this choice emerges no sooner than one discovers the 
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relation astd(mh, Pi) = 0 ,mh E Mh meaning that the arising stiffness matrix possesses 
upper triangular structure if the basis functions are properly arranged. This paves the 
way for processing source terms independently on each element in advance to calculating 
the solution on the edges. 

We must not gloss over the glaring flaw of the approach described so far: the Pi remain 
elusive. As we are dealing with approximate solutions anyway, we hope to find a simple 
replacement sufficiently close to Pi. For example, the classical cubic bubble scaled by the 
exponential e1j2(Ci'X) might be suitable. Also the test space still needs to be specified; 
pondering experiences obtained for other discretizations we guess that linear test func­
tions can be recommended leading to a Petrov-Galerkin method. All this badly needs 
empirical underpinning and the results of numerical experiments will be reported in a 
forthcoming paper. 

4. Standard Mixed Finite Element Discretization. Again for simplicity we 
assume Q to be a bounded polygonal domain and seek to discretize (11) immediately by 
means of finite elements. Then with respect to a simplicial triangulation T := {Ti}i of Q 

an appropriate local approximation of the flux space H( div, Q, r N) can be obtained by 
means of the lowest order Raviart-Thomas element given by 

RTh(Ti) := {x f-+ a + (Jx; x E Ti , a E R2 , (J E R} 

Then we set X h := ®RTh(Ti) to be the "chopped , 
up" global approximation space for the flux. For each 
Vh E RT h(Ti) the divergence div Vh is constant in Ti 
and so are its normal traces (Vh' V)lei,k along the edges 
ei,k, k = 1,2,3 of Ti . For the meaning of the symbols 
we refer to the figure beside. 

According to famous theoretical results on saddle point problems (Babuska-Brezzi con­
dition, see [5]), we have to choose a locally constant ansatz for Wh. One can easily 
check that Vh E RT h(Ti ) is uniquely determined by its normal traces on aTi . This hints 
that the discrete multipliers need only be constant along edges. It takes little more than 
counting dimensions of the spaces involved to verify that such an Mh complies with (9). 
So we have made sure existence and uniqueness of a solution of 

a(jh,Vh) + b1(vh,nh) + l(Vh,Ph) 

b2 (jh, Wh) d(nh' Wh) (18) 

l(jh' mh) 0, 
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If we partition a comprehensive basis of all approximating spaces according to (X h x 
Wh) X Mh the associated linear system takes the form 

(t Lj) ( ~ )  = ( ~  ) (19) 

~  '-v--' 
stiffness matrix load vector 

Zh, Ph are the vectors of unknowns belonging to basis functions in X h X Wh and Mh, 
respectively. Please note that now Lemat # Lzmat since the problem in the original 
unknown n is not symmetric. 

4.1. Discrete Hybridization: Implementational Point of View. As pointed 
out at length the natural treatment of (19) is static condensation. What remains is the 
smaller linear problem 

(20) 

Thanks to decoupling through the multiplier, A is blockdiagonal and hence cheaply in­
vertible. With the unknowns in Zh being eliminated the choice of a particular basis for 
X hand Wh does not affect S. A basis of Mh is constructed in a canonical way: Each of 
its members has support equal to a single edge in £0' 

We do not need to deal with S as a whole: As the Lagrangian multiplier is the only 
unknown tying together adjoining elements with respect to (19), static condensation can 
be carried out on the elements' level, provided the bases of Wh and X h are purely local. 
Our task is thus reduced to calculating 7x 7-stiffness matrices and, on these, doing a block 
elimination of the unknowns belonging to h, nh. After this cumbersome procedure has 
been finished we have the 3 x 3-element stiffness matrix for the multipliers, in symbolic 
notation given by 

where we used the abbreviations 

U := ((VI, Vj) h::;l,j9 , f:= J e- IJI dx , OJ:= J e- IJI dr 
T, 

We remark that the formulas above are only valid in the case R = O. For ease of 
presentation we also forgo the separate treatment of elements attached to the Dirichlet 
boundary rD. 
The element load vector can be expressed by 
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where ( E R,3 and (j := (p, Vj) - c l J e- Ilt (x, Vj) dx with p E ej. A brief calculation 
Ti 

shows that Sloe and ~ o e  can be read as the stiffness matrix and the load vector of the 
following local variational problem: 

Find Ph E Mh(Ti ) such that 

C l ( J mhv dr, J e-Iltphv dr) = - 2 1 ~ 1  J f dx· 7r(mh) , mh E Mh(Ti ) (21) 
aTi aTi' n 

where 

In practice the rationale behind solving (1) often is to determine the current j passing 
through a certain section of the boundary, for example Ohmic contacts. Unfortunately, 
we just discarded jh in the process of static condensation. Therefore, we face the task of 
retrieving jh from the values of the multiplier Ph. First we observe that this again can be 
done for each element Ti separately. Tedious tinkering with the full 7 x 7 local stiffness 
matrix is rewarded by a surprising result: The total flux through the edge of an element 
is readily available as a component of the residual of the equation Sloe jh.,loe = ~ o c .  In 
this context Ph covers three components of P which are linked to the edges of Ti . Thus 
we can obtain the desired fluxes at virtually no extra cost. This should be taken as an 
additional incentive to search for error estimators based on the flux. It seems wise to do 
so anyway, considering the pivotal role of the flux in mixed discretization schemes. 

4.2. An Equivalent Nonconforming Petrov-Galerkin Ansatz. In section 3, 
setting out at the mixed hybrid problem, we unexpectedly arrived at a scheme that 
looked like a modified standard formulation (2). As well the genuine mixed discretization 
given before can be recast to resemble a variant of (2), though a good deal of twisting is 
needed. Our presentation partly follows that of Reusken in [12] Again we pick a single 
element T; with edges {el' e2, e3}, outward normal unit vectors {Vb V2, V3} and midpoints 
{ml' m2, m3} of the edges. Furthermore, R = 0 is assumed. 

Let {¢t,h' ¢;,h' ¢r,h} be the local canonical basis of the Crouzeix-Raviart space CRh of 
linear nonconforming functions given by 

1:Skfl:S3 xETi 

We additionally require continuity at the midpoints of interelement boundaries and in this 
case these functions (for all the Ti combined) span the space of test functions. Following 
the Petrov-Galerkin principle we use the scaled functions 

¢i\ := (l e1kl i e- Ilt dr ) ¢ ~ , h '  1:S k :S 3 (22) 



210 

as a local basis of the ansatz space CRh , from which a global basis is constructed as 
before. 

LEMMA 4.1. Let {f.Lt,h' f.LT,h' f.Lt,h} be the set of local basis functions of Mh belonging to 
the edges of the element Ti . Then 

holds for 1 ::; k, I ::; 3. The functional7r : Mh(Ti ) f-+ R, defined in (21), satisfies 

These relations give ample hint about how to alter astd and fstd of (2) in such a way that 
the new forms can describe the variational problem (21): 

amod(u,V) 'Y! (lid! e-1jI dX'r
1 

(Vu, Vv}dx 

fmod(v) = L 21b J f dx· J (e-1jI (lid J e-1jI dX') -1 - 3) v dx 
t Ti Ti Ti 

(23) 

With these tailored expressions we finally have: 

THEOREM 4.2. The stiffness matrix arising from the discrete variational problem 

is equal to the stiffness matrix S of (20) if we build the test space from the canonical nodal 
basis of the lowest order Crouzeix-Raviari space and the ansatz space from their scaled 
counterparis (22). 

The conspicuous term 

in (23) is the definition of the harmonic average of the function e1jl over Ti . To this 
expression an important class of discretization schemes for the continuity equations (1), 
namely the inverse averaging type methods, owes its name. We consider it satisfactory 
that mixed methods belong to this prominent club that also includes the widely used 
Scharfetter-Gummel scheme. 
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Figure 2: Exact solution for first experiment 

5. Numerical experiments. Though general convergence estimates for standard 
mixed discretizations are available (d. [1], [6]) they give little insight into the actual 
performance of the methods in practice. Too many details of their behaviour and qual­
itative phenomena still defy a theoretical explanation, let alone prediction. So we have 
to rely on numerical experiments to probe the quality of the method when applied to 
the continuity equation (1). In semiconductor device simulation the particular challenge 
of (1) is posed by the layer behaviour of the potential Ill: Steep gradients occur near 
pn-junctions whereas III is only slightly varying elsewhere. In order to model these con­

ditions we used the "radial step potential" llI(x) = <7a(r),r = Jxi + x ~ , x  = (Xl,X2) E 

n, <7a (r) = 1/(1 + e-a(r-l)). The parameter a governs the slope of the step: the larger a 
the sharper the drop. All calculations were carried out on n =]0,1[2. If necessary, linear 
interpolation of III and f was used and all linear systems have been solved exactly. 
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Mixed scheme Conforming discretization 

Figure 3: Approximate solutions for first experiment 

eo 

Mixed scheme Conforming discretization 

Figure 4: Absolute errors of approximate solutions of first experiment 

For a first experiment n was triangulated by a rectangular grid of mesh width h = fG 
with each cell being further subdivided into two triangles. The radial step potential with 
a = 500 and vanishing right hand side were employed, along with boundary values that 
yield eW as exact solution. In physical parlance this situation is referred to as thermal 
equilibrium. We solved the problem by our mixed method and compared the solution 
and the errors with those obtained by using standard conforming linear elements. The 
figures 2 through 5 give a graphical representation of the results. 
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40 

30 

Mixed scheme Conforming discretization 

Figure 5: Absolute errors of the flux for first experiment 

200 

Mixed scheme Conforming discretization 

Figure 6: Approximate solution for 2nd experiment. (Two Neumann sides) 

We see that the mixed discretization benefits from the very smooth, actually vanishing 
flux in this experiment. It copes with the internal layer of the solution for n far better than 
the conforming method and flatly outstrips the latter with respect to reproducing the 
zero flux. It should be noted that presumably not the method itself but post-processing 
has to be blamed for the spurious spikes that pop up close to the step. Perhaps this 
taint can be removed by a more refined post-processing that includes bubble functions as 
investigated in [1]. The mixed method may perform strikingly better in this setting, but 
that does the method only small credit, because the comparison is not quite fair, as the 
conforming discretization are prone to failure in the presence of dominating convection. 
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so 

Mixed scheme Conforming discretization 

Figure 7: Approximate solution for 2nd experiment. (Three Neumann sides) 

The next experiment was designed to investigate the impact of boundary conditions. The 
setting remained unchanged except that Neumann boundary conditions were imposed on 
one or more sides of n. The figures 6 and 7 show how both methods respond to additional 
Neumann boundary parts. 

0,4 0 ,6 

Figure 8: Triangulation with obtuse elements 

The mixed solution turns out to be scarcely affected by changing boundary conditions. 
Conversely, the conforming approximation quickly deteriorates when the size of the Neu­
mann boundary portions increases. This is hardly surprising, because at Neumann bound­
aries the flux is fixed and so is one unknown of the mixed ansatz. This accounts for the 
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stabilizing effect of large Neumann parts on the mixed approximation. 

Flux oriented discretizations are notorious for their vulnerability to "badly" shaped el­
ements that have an obtuse angle. To expose this shortcoming of the mixed method 
we built a triangulation with obtuse elements in one part of the domain (See Figure 8), 
which was then regularly refined twice. This (third) experiment was conducted with a 
linear potential w(x) = (c, x) , c E R2. The boundary values and right-hand side were 
adjusted to yield a polynomial solution. The distribution of different kinds of errors for 
three different directions c of the convection is displayed in figures 9, 10 and 11. Figure 
12 shows how the presence of wretched elements leads to distortions in the calculated 
flux for a particular choice of c. Besides we measured how errors depend on the direction 
of c. c had length 100 and in very small steps was fully rotated around the origin (a 
denotes the angle relative to the abscissa.). The result is plotted in figure 13. 

Absolute local error Absolute local error of the flux 

Figure 9: Results of experiment 3 with c = e ~ O )  

Absolute local error Absolute local error of the flux 

Figure 10: Results of experiment 3 with c = G ~ )  
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,OIl 

Absolute local error Absolute local error of the flux 

Figure 11: Results of experiment 3 with c = ( l ~ O )  

Exact flux Calculated flux 

Figure 12: Exact and calculated flux for c = G ~ )  

, . r - - - - - - ~ - - . . . . - - - - - - - - - _ ,  

~ ~ o - - - - - - - - - - ~ , o o . - - - - - - - - - ~ . ~  ~ ~ - - - - - - - - - ~ ~ ~ - - - - - - - - ~  
a a 

Error norm lin - nhllL2 Error norm lli - jhllL2 

Figure 13: £2-Norm of the error depending on a for experiment 3 
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The results teach that for some values of c obtuse angles might cause disastrous instabil­
ity. The plots also reveal that in these cases large errors spread to parts of the domain 
where the triangulation is not "marred", that is, a sort of pollution effect is present. 
Apparently other directions of c do no harm; we see an enigmatic relationship between 
error and direction of convection: Maybe a clever orientation of the obtuse elements 
can help to steer clear of the instability trap. Nevertheless, the results send a daunting 
message as far as an adaptive strategy is concerned: While for plane problems clever re­
finement strategies for triangulations exist that avoid obtuse elements, in 3-D simulation 
they inevitably occur. The viability of the mixed method in practice hinges on whether 
instability can be managed. 
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