
                                                                            
                                           

ADAPTIVE MULTILEVEL METHODS FOR OBSTACLE PROBLEMS*

R. H. W. HOPPEt AND R. KORNHUBERt

Dedicated to Professor R. Bulirsch on the occasion of his 60th birthday.

Abstract. The authors consider the discretization of obstacle problems for second-order elliptic
differential operators by piecewise linear finite elements. Assuming that the discrete problems are
reduced to a sequence of linear problems by suitable active set strategies, the linear problems are
solved iteratively by preconditioned conjugate gradient iterations. The proposed preconditioners
are treated theoretically as abstract additive Schwarz methods and are implemented as truncated
hierarchical basis preconditioners. To allow for local mesh refinement semilocal and local a posteriori
error estimates are derived, providing lower and upper estimates for the discretization error. The
theoretical results are illustrated by numerical computations.
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1. Introduction. Given a closed subspace V c H1(Q), Q being a bounded
polygonal domain in the Euclidean space R'2, we consider obstacle problems of the
form

(1) find u C K such that 3(u) < 3(v), v C K,

for the energy functional 3,

3(v) = 2a(v, v) - (v), v C V,

and a closed, convex set K C V,

K= {v C VI v(x) < io(x) a.e. in Q}.

Assuming that 3 is induced by a symmetric V-elliptic bilinear form a(.,-),

a(v, w) = j E aij &v &3jw dx,
i,j=1

and some functional e C VI, it is well-known that (1) is equivalent to the variational
inequality

(2) find u C K such that a(u, u-v) < ?(u-v), v C K.

For the sake of simplicity we restrict our considerations to the case V = Ho (Q). To
ensure existence and uniqueness of the solution u of (1) and (2), respectively, we

assume p C H1(Q), (o > 0 almost everywhere on r = &Q, and aij E L??(Q) satisfying

(a) aij(x)=aji(x), 1 < i, j < 2,

(3) 2

(b) aoII2 < aijx )ij < a 2, R C 2, 0 < ao < al
i,j=l
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302 R. H. W. HOPPE AND R. KORNHUBER

for almost all x C Q.

Discretizing (2) in space by continuous, piecewise linear finite elements with re-
spect to a triangulation of Q, standard numerical schemes for the solution of the
resulting finite-dimensional variational inequality are projected relaxation methods

(e.g., [17]). These iterative methods typically suffer from rapidly deteriorating con-
vergence rates when proceeding to more and more refined triangulations, which ren-
ders them inefficient from a numerical point of view. However, this drawback can be
overcome by using multilevel techniques with respect to a hierarchy of triangulations.
Multigrid approaches to obstacle problems have been developed by various authors

([10], [18]-[21], [30], [31]). For obstacle-type problems an alternative to projected re-
laxation is to use some sort of linearization techniques based on active set strategies

(e.g., [18]-[20]). This is an iterative scheme in which at each iteration step a set of
active constraints is prespecified and then a linear subproblem has to be solved for the
computation of the new iterate. Note that the multigrid techniques used in [18]-[20]
consist of outer and inner iterations where the outer iteration is an active set strategy
and the inner iterations are multigrid iterations for the approximate solution of the
auxiliary problems.

Because the coefficient matrices of the auxiliary systems are symmetric positive
definite for the obstacle problems under consideration, an alternative choice for the
inner iterations are preconditioned conjugate gradient (pcg) methods, especially those

based on multilevel preconditioners such as Yserentant's hierarchical basis precondi-
tioner [38] or the BPX-preconditioner [9]. A related approach has been proposed
by Schwenkert [36] in which relaxation methods have been applied with respect to
hierarchical bases.

For the adaptive construction of a suitable hierarchy of triangulations efficient and
reliable a posteriori error estimates are required. While a variety of well-established
results are available in the case of linear elliptic problems (see [3], [14], [23], [37] for
further references) the situation is less clear in the case of obstacle problems. Recently,
the concepts introduced in [14] were extended and applied successfully to a special
obstacle problem arising in semiconductor device simulation [26]. A more detailed
investigation of this approach will be one of the subjects of this paper. A posteriori
error estimates for the penalty method together with strategies for the adaptive choice

of a space-dependent penalty parameter and the meshsize were given in [24].
The paper is organized as follows. After a brief discussion of the active-set strat-

egy proposed in [19], we will focus on the construction and analysis of multilevel
preconditioners providing the efficient solution of the arising linear subproblems. In
particular, we will derive two variants of hierarchical basis type by suitable modifi-
cations of the standard hierarchical basis preconditioner. It will turn out that both
variants are performing asymptotically as in the unconstrained case, but that only
one of them is robust with respect to the regularity of the free boundary. Inspired by
a paper of Dryja and Widlund [15], the preconditioners will be regarded as multilevel
additive Schwarz (MAS) methods. This abstract framework allows for obvious exten-
sions to other variants of the MAS method, in particular to the BPX-preconditioner.
By comparing the actual approximation with another approximation of higher ac-
curacy, we will derive semilocal and local a posteriori error estimates, followed by a
detailed analysis of their efficiency and reliability. The final chapter is devoted to
some numerical experiments supporting the theoretical findings.

2. Outer-inner iterations. Let T denote a triangulation of the computational
domain Q C R2. We assume that T is regular in the sense that the intersection of
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ADAPTIVE MULTILEVEL METHODS FOR OBSTACLE PROBLEMS 303

two triangles t, t' c T contains a common edge, a common vertex, or is empty. The
sets of vertices p and edges e that are not part of the boundary 9Q are called JV
and 8, respectively. We approximate V by the subspace S of continuous, piecewise
linear finite elements vanishing on the boundary aQ with the associated nodal basis

AP, p E A, of S defined by Ap(q) = 8pq, p, q c K (Kronecker delta).
Furthermore, let pOT C S be a discrete obstacle approximating the given obstacle

o in an appropriate sense. For example, 'PT may be chosen as the L2-projection
of o onto S or, if p E C(Q), as the S-interpolate. Correspondingly, we denote by

KT = {v E Slv ?< PT} the sets of discrete constraints. Then the finite element
approximation of (1) amounts to the computation of an element uT C KT satisfying

(4) a(uT, uT-v) < ?(uT-v), v C KT.

It is easy to see that the finite-dimensional variational inequality (4) is equivalent
to a linear complementarity problem [13].

LEMMA 2.1. An element UT E KT is a solution to (4) if and only if the vector

u C RN, N := Afl with components up = UT(p), p E K, satisfies

(5) max(Au-b, u-op) =O,

where A is the N x N stiffness matrix with entries apq = a(Aq, AP), p, q E K, and b E
RN and _ C R N are the vectors with components bp = f(Ap) and ,p = WpT(p), p C K.

Note that (5) has to be understood in terms of its components.

Proof. Let UT C KT be the solution of (4). Then Au < b, which can be deduced
by choosing v = UT - z in (4) with arbitrarily given z C S, z > 0. Since u < p, we

thus have (u-p)T(Au-b) > 0. But v = PT in (4) gives (u -)T(Au- b) < 0, hence

(u - W)T(Au - b) = 0, proving (5). The converse statement is obvious. 0
In the following algorithm we will consider an outer-inner iteration technique for

the numerical solution of the complementarity problem (5). The outer iterations are
governed by an active-set strategy as presented in [19], [20]:

Outer iteration. (active-set strategy):

Step 1. Choose a startvector u(?) C RN.
Step 2. Given u() E RN, v > 0, determine K c KV as the set of points p C K

such that (Au(V) -b)p < (u(v) -p)P and set KO := K\K. Then compute u(v+1) C RN
from the splitting

(6) u(v+1) - + u?

where

(7) up-'p, p c K, up = 0, p c KO

and uo satisfies

(8) u =0, p E JK

and

(9) Auo = b - Au.

It is obvious that the computation of the iterate u(v+l) according to (9) actually
requires the solution of a "reduced," i.e., lower-dimensional linear system.
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The set JVA is called active, since in view of u(?+1) = op, p C A(f, it contains
the nodal points where the obstacle is active. Correspondingly, J\f is said to be
the inactive set. Introducing a corresponding splitting of the finite element space
S = S? ED S- in linear subspaces S?, S C S defined by

(10) s3 ={v cSiv(p) =0,pcAf}, S ={vcSiv(p) =0,p c.A},

the reduced system (9) can be rewritten as the variational equality

(11) find u? E S? such that a(u,v) =e(v) -a(u,v), v c S,

with solution u? E S3, where u c S is defined by u(p) = up.
Remark 2.1. If (9) (respectively, (11)) is solved exactly and A is an M-matrix,

it can be shown that for an arbitrarily given initial iterate u(?) the sequence u(V),
M > 1, of iterates is monotonically decreasing and converging to the unique solution
u of (5). Moreover, there is numerical evidence that the approximate solution of the
linear subproblems up to some accuracy iKo provides satisfying results as soon as so is
chosen small enough. See [19] and [20] for details. In the inexact case, the convergence
of a related most-constrained strategy has been proved in [18], providing a stopping
criterion for the inner iteration. However, this strategy turns out to be much too
pessimistic in actual computation, leading to a prohibitively large number of outer
iteration steps.

In contrast to [19] and [20] (where multigrid techniques were used), this paper
focuses on multilevel preconditioned conjugate gradient (cg) iterations that for well-
known reasons are suited to be used within an adaptive finite-element code (FEM). For
an introduction to the preconditioned cg method we refer to [1], while the construction
of appropriate multilevel preconditioners will be subject of the next chapter.

3. Additive Schwarz methods and hierarchical bases. Let To be an inten-
tionally coarse regular triangulation of Q.

The triangulation To is refined several times, providing a sequence of triangu-
lations To, T1,... , Tj and a corresponding sequence of nested finite element spaces
So C Si C ... c Sj. The underlying refinement process described in the sequel is
standard in the literature on multilevel preconditioning [3]-[6], [8], [14], [39]. Note
that this refinement in general does not coincide with the actual refinement process
performed by some finite element code. Nevertheless, the triangulations To, T1, . .., Tj
are available without any computational effort, if the underlying data structures are
chosen properly [3], [28], [33], [34].

A triangle t C Tk is refined either by subdividing it into four congruent subtrian-
gles or by connecting one of its vertices with the midpoint of the opposite side. The
first case is called regular (red) refinement and the resulting triangles are regular, as
are the triangles of the initial triangulation To. The second case is called irregular
(green) refinement and results in two irregular triangles. Because new points should
be generated only by regular refinement, we introduce the following rule:

(T1) Each vertex of Tk+1 that does not belong to Tk is a vertex of a regular
triangle.

Note that irregular refinement is potentially dangerous because the interior angles
are reduced. Hence we add the following rule:

(T2) Irregular triangles must not be further refined.
We say that a refined triangle is the father of the resulting triangles, which in turn

are called sons. We define the depth of a given triangle t e UL=0 Tk as the number of
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ancestors of t. Of course, the depth of all triangles t c Tk is bounded by k. We have
the final rule:

(T3) Only triangles t c Tk of depth k may be refined for the construction of Tk+1,

0 < k < j.
As a consequence of (T3), the whole sequence T0, T1,...,Tj can be uniquely re-

constructed from the initial triangulation To and the final triangulation Tj alone,
neglecting the preceding dynamic refinement process. Recall that in actual compu-
tations we may choose the data structures representing the triangulations cleverly so

that the sequence 'To, T,. . ., j is explicitly given. Note that the subscript j in general
does not coincide with the number of refinement steps, I > j, which were necessary

to create fj from To by the actual finite element code. In practical calculations the
difference I-j of the refinement level I and the maximal depth j can be used to judge

the quality of the implemented refinement strategy.

Of course, adaptive refinement should be based on reliable a posteriori error

estimates, which will be considered in the following chapter. For the moment let

us assume that a hierarchy To, Ti, . . ., 1j with the property (T1-T3) is available. We
further assume that we have a disjoint splitting NiV = JV; UJN;, which may result from
an active set strategy applied to (4) with respect to the triangulation ' = 7j. Recall
that this splitting is supposed to change in each outer iteration step. In the sequel we
will deal with the construction of two multilevel preconditioners of hierarchical basis
type to provide an efficient iterative solution of the corresponding reduced system:

(12) find uc E S? such that a(u 0,v) = e(v) -a(u7,v), v c So.

For this purpose we provide a decomposition A/k = Xk U Nko of the sets A/k of the
nodal points on the lower levels 0 < k < j by means of the definition

(13) Ark = Ark n;, Nk = .Ak\ Nk, ?<k<j-1.

For 0 < k < j and p C A/k we refer to A(k) E Sk as the level k nodal basis function
having p as its supporting point, i.e., A k)(p) = 1. The well-known hierarchical basis

of the whole space Sj (cf. Yserentant [38]) is given by

Ao =A( 0Ip c NVo}, Ak = A( ) k\Ak-1}, 1 < k < j,

denoting A = Uj=1 Ak. According to (10) the splitting (13) induces the subspaces

= span{fAk) p P EkA} C Sk, 0 < k < j. Collecting the hierarchical basis functions
with inactive supporting points according to

(14) Ao := -{4A)pI P E/}, AK :={pk)| PEk\-1}, 1?k?j,

we denote AH = LJk1 Ak. However, the hierarchical decomposition of functions
v C S?? cannot be given in the standard way, since the subsets AO and Ak of Sj in

general are not contained in Sjo. This is due to the fact that functions v c So- 1, 1 <
k < j, in general do not vanish in active nodal points p C NA\k-1 appearing on the
subsequent level k. We will modify such functions by means of suitable truncation
operators Tk : S3 -* So, 0 < k < j, defined by

k ~ P(15) Tkv= - v(p)A4k).
pEf
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Note that Tkv = v, v C Sk. Now a feasible multilevel splitting of Sj? is defined by
successive truncation of the standard hierarchical basis elements

(16) A(1)=Tj,kAk, Tj,k=Tj...Tk, O<k<j.

We will consider a second multilevel splitting, which is based on a more restrictive
choice of coarse grid functions. For this reason we define

(17) AO,reg = {p E A/ko Tj, kA(k) = A(k)}, O < k < j

and fVk = plk\p^f',eg Obviously, we have = Al;?. It is easily seen by
induction that for 0 < k < j the set Ak,1 consists of all p k Kkl f /^reg whose
k-neighbors q E Kk\Kk_l are also contained in Akoreg. As usual, p, q E Ark are called
k-neighbors if there is an edge e = (p, q) C 8k. Now the standard hierarchical splitting

with respect to go,reg 0 < k < j, is given by

(18) (A2) - ? E NA/o,reg} A(2) - {A(k)I P reg \C0reg < k <
Note that a restriction of the active set, which is similar to (17), was used in [19]. In
the context of hierarchical bases, (17) was proposed by Yserentant [40].

Remark 3.1. The difference between A(') and A 2) is illustrated in Fig. 1, where
for ease of exposition we have considered the one-dimensional case.

A(k-1) TkAJkl1) A4k)

q p q p q p

(i) (ii) (iii)

FIG. 1.

In particular, Fig. 1 (i) represents a level k - 1 basis function AkP with sup-
porting point P E \ go,reg having a level k active neighbor q c A/k* on the
left. Figures 1 (ii) and (iii) display the basis functions TkA(k 1) and A(k) selected in
(16) and (18), respectively. Note that TkAkp) generally results in a "nonsymmetric"
truncation, while the choice of the higher level basis function A(k) may be regarded
as a "symmetric" cut.

As proposed in [15], the hierarchical basis preconditioners obtained from (16) and
(18) will be treated in the framework of additive Schwarz methods. For recent results
on the BPX preconditioner as an additive Schwarz method, we refer the reader to
Bornemann [6] and Zhang [41]. Because the following definitions and assertions do

not differ for A('), p = 1, 2, the index 1a is skipped for notational convenience.
Let WY) = span4A(') and V(') span{A}, A C AH = Uk=1A(< for Ht = 1,2.

The direct subspace decomposition

(19) S>VoE 0VA
AEAH
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of Sj] gives rise to an additive Schwarz method. This in turn provides the following
reformulation of the original problem (12):

PuO = e,

where

P=PO+ S Pa
AEAH

is the sum of the Ritz projections Po: Sjo - Vo, PA\: Sjo - VA, A C AH, defined by

a(P,w, v) = a(w, v), v c V, v = 0, ,

for each w C S]?, and e' c (So)' is chosen appropriately. See, for example, [16]

for details. Denoting by (-, ) the standard L2 inner product, we introduce the L2

projections Qo : S- > Vo, QA : S- VA and the representation operators Ao : Vo
Vo, AA\: VA -* VA, A C AH defined by

(Q,w, v) =(w, v), v E V>,

for each w C Si? and

(Avw, v) = a(w, v), v E V>,

for each w E Vv, v = 0, A. Since AVPV = QvA, v = 0, A, the operator P may be
rewritten as

P= HjAj,

where Hj stands for the preconditioner

Hj =A1Qo + E A-JQ,
AEAH

and Aj is the representation operator of a(., ) on S? x S?. Evaluation of A> QA leads
to

(20) - (.,~~~~~~~~~A)
(20) H(A) - (Ao )<1Q0AI + Al [u =1,2.

0 ~~a (A, A)

In light of Remark 3.1, we will refer to H(1) and its variants as the "nonsymmetric"
3

preconditioners and to H(2) as the "symmetric" preconditioner, respectively.
3

Let us briefly discuss some modifications of the preconditioners H("), ,t = 1, 2.

The evaluation of (Ao/"))-1Q(ll) requires the solution of a linear system for the stiffness

matrix given by a(., ) restricted to VOfl") x VOf"), u == 1, 2. Due to the definition (16),

the entries of A(1) and a(A, A), A c A(') may change with each step of the outer
iteration. To avoid the corresponding evaluations of the quadratic form a(-, ) the

preconditioner H(1) may be replaced by

(21) jt) = T7,oA- Qo + E E - T' Tj,kA,
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where Ao is the representation of a(-, ) restricted to SO' x SO and Qo denotes the L2

projection to SO?, respectively. Note that a related modification of Hj2) is not neces-
sary, as only the selection and not the shape of the involved hierarchical basis functions
is depending on. the actual active set jA!. Still, the linear system on the coarsest level
is supposed to change with each outer iteration step, each time causing a Cholesky
decomposition of the new coefficient matrix. To reduce the computational effort, we
may replace the matrix by its diagonal or even by the identity matrix (see [38] for a
further discussion). In the case of rapidly varying coefficients, frequently occurring
in practical problems, the jumps should be incorporated in the preconditioners. We
refer to Yserentant [39] for details.

Note that existing implementations of the standard hierarchical basis precondi-
tioner are easily changed to (21) by simply neglecting the contributions from active
points [22]. For a similar application of truncated hierarchical basis functions to
obstacle problems, we refer to [36].

The final part of this section will provide condition number estimates for both
the nonsymmetric and the symmetric cases. The subsequent analysis will be guided
by the following lemma on abstract additive Schwarz methods.

LEMMA 3. 1. (i) Assume that for all v C S? there is a splitting v = vo + EZAcAH VA
such that

(22) c {a(vo,vo) + E a(vA,vA)} < a(v,v)
AcAH

holds for some fixed positive constant c. Then we have the estimate

ca(v,v) < a(Pv,v), v C S'.

(ii) Assume that for all splittings v = vo + ZAGAH VA of v C Sj? the estimate

(23) a(v, v) < C {a(vo, vo) + E: a(vA VA)}
AcAH

holds for some fixed positive constant C. Then we have the estimate

a(Pv, v) ? Ca(v, v), v C S.

Proof. The assertion (i) is the well-known lemma of Lions [29]. To prove the
second assertion, we apply (23) to the splitting Pv = POv + EAcAH PAV for some
fixed v C S? to obtain

a(Pv, Pv) < C {a(Pov, Pov) + E3 a(PAv, PAv) } Ca(Pv, v),
AEAH

which completes the proof. O
Remark 3.2. The assumptions (22) and (23) can be regarded as an asymptotic

orthogonality of the subspaces Vo, VA,A C AH. Note that (23) is frequently estab-
lished by strengthened Cauchy-Schwarz inequalities measuring the angles between
Vo, VA, A C AH with respect to a(., ) or any other symmetric bilinear form that gen-
erates a uniformly equivalent norm on Sj. We will use this approach later on.
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In addition to the usual (semi-) norms 11 - Ilo andl 11 of L2(Q) and H1(Q), we will
make use of the semi-inner product

2

(VIW)io=ZJ E 9iv&w dx, v,w C H1(Qo)

for measurable Qo C Q with the induced seminorm IVIi,Qo = (v,v)1j12. We continue
by introducing the interpolation operators Ik: Si - Sk by

IkV >3 ,v(p)A ), < k <j.
PCA(k

Finally, constants depending only on the ellipticity (3) and the shape regularity of To
will be denoted by c or C. Other parameters will be indicated explicitly.

We take up the analysis of the preconditioners with the following technical lemma.

LEMMA 3.2. For some fixed k, 0 < k < j, let Sk* C Sk denote the subspace of all
Vk C Sk vanishing in Xk* C cVk. Assume that each point p C .Ak-l is either contained
in Ak* or has at least one k-neighbor q C JFk\\Nk-1 that is contained in j\k*. Then we
have the estimate

I JVk(p)Ap )J1 < CJVklJ, Vk C Sk.
P EAk

Proof. Let p G Vk-l . Then from the assumptions on .Ak-l and A/k*, the seminorm

I Ii is a norm on the restriction of vk C Sk* to supp Ak 1). As norms on finite-
dimensional spaces are equivalent, we immediately have

>3 lk(q)Aq )11 < Ck,plVk SUpp\(k-1), Vk C Ski
qEAkinsupp A(k-)

and as a consequence of the uniform shape regularity of Tk we obtain Ck,p < c uni-
formly in k and p. Summing up over all p C Nk-l gives the assertion. U

Crucial to the analysis of the nonsymmetric preconditioners H(1) and j is the
following assumption on the splitting fj = JAF U JAT:

(R) There is a nonnegative constant ko independent of k such that

(24) Tj,kA = Tk+ko,kA, A C Ak, j > k + ko.

Remark 3.3. The condition (R) states that subsequent truncation of level k func-
tions uniformly becomes stationary after ko steps. From heuristic arguments we can
expect that for each level k we can find a number ko = ko(k) satisfying (24) if the
free boundary is a lower-dimensional manifold that is properly approximated by the
finite element discretization and the underlying active set strategy. It is addition-

ally required by the condition (R) that these numbers be uniformly bounded. The
condition (R) will typically be applied as in the proof of the following lemma.

LEMMA 3.3. Assume that (R) is satisfied. Then there exist constants c(ko), C(ko)
such that

(25) c(ko) a(v, v) < a(Tj,kv, Tj,kv) < C0(ko) a(v, v)

holds for all v E span Ak, k = 1, ... , j.
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Proof. Without loss of generality, we assume j > k + ko. Let v c span Ak. Then
the condition (R) provides

(26) Tj,kV = Tk+k.,kV C Sk+k.-
Let t be a triangle of Tk-1. As v vanishes in the vertices of t and the space of functions

of Sk+k. restricted to t is finite dimensional, there are positive constants c(ko) and
C(ko) depending on ko and a lower bound for the interior angles with

(27) c(ko) IvI1,t ? VTj,kvIl,t ? C(ko) IvIi,t, v C span Ak.

Summing up over t C Tk-1, the assertion follows from the ellipticity of a(., ). D
We are ready to establish lower and upper bounds for the nonsymmetric precon-

ditioners Hj = Hj(l H(l) j' j
THEOREM 3.4. Assume that the regularity condition (R) holds. Then there exist

constants Ko, K1 depending only on ao, a, in (3), the shape regularity of T0 and the
constant ko in (R) such that the estimate

Ko(j +1j 2a(v,v) < a(HjAjv,v) < Kia(v,v), Hj = H H(1)

holds for all v c Sj.

Proof. Let us first consider the case Hj = -H(') To verify the assumption of
Lemma 3.1(i), we consider the splitting

(28) v = i0+ E v', 3oC Vo) v= v(A)A, A C A(1)
H

of some fixed v C Sj. As (19) provides a direct splitting of Sj, this representation is
unique. However, there is another decomposition of v with respect to the standard

hierarchical basis A of Sj,

v = vo + E VA, vo C SO, vA = v(A)A, A c A.
AcA

Observe that we have

No = Tj,oVo, V,= Tj,kvA, A E Ak.

Together with Lemma 3.3 and the equivalence of norms on the coarse space (1) this
gives

(29) a(i30, V0) + E a(vA,v) < c(ko) {a(vo, vo) + E a(vA,\VA4)}

Hence, in view of (29) the lower bound follows from

(30) a(vo, vo) + E a(vx, v>\) < C(j + 1)2a(v, v).
AcA

Assume for the moment that So' + 0. Then we only have to collect the well-known
results of Yserentant [39] to show

Z a(v, v>) < ?a1Z 1v2 < c 4k Z V(>)IIAII|
AEA AEA k=1 ACAk

<2cZ4kll(Ik - Ik_)VIIo <C(j + 1)21I2
k=1
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In particular, we have employed an inverse inequality ([39, Lem. 3.3]), the boundedness
of the incorporated quadrature rule by the L2-norm, i.e.,

I E Itl E Iw(p)12 < 2Jjwj12, w c Sk,
tiTk pet

and the approximation of unity by the interpolation operators Ik ([39, Thm. 3.2]).
The remaining estimate

a(vo,vo) = a(Iov, Iov) < C(j + 1)JvV1

easily follows from the stability of the interpolation ([39, Thm. 3.1]).
As by definition SOO = span A0, we still have to consider the case

(31) Ak* 0, Ak- =O *-- =Ao = 0

for some k* > 0. Now changing the initial level from 0 to k*, we have vA - v(p)A,

A - A(k) = Ak*, so that the assertion (30) is immediately obtained from

(32) E |v(p)A(k4)12 < CIIk*v2

and the stability of the interpolation cited above. As a consequence of (31), we have

Pk*-i = jVk**- C NMk* so that (32) follows from Lemma 3.2, with A/k** := Mk.A and
Vk* = Ik*v C Sk** :_ span{A I A C Ak* }. This completes the proof of the lower bound
of a(H(1)A-v v).

To prove an upper bound by Lemma 3.1(ii), it is sufficient to show that

(33) a(v,v) < K1 {a (oi,vo)+ E a(vA,vj)}

holds for the splitting (28) of some fixed v C Sj. Recall that the splitting is unique.
Using the arguments of the proof of Lemma 3.3, we can show that

(34) c(ko) 3 Iw(p)12 < Iw12t < C(ko) 3 Iw(p)12, t C 7k,
pElvk nt pEArknt

holds for all w c span A(). Based on this norm equivalence, we can extend the proof
of the strengthened Cauchy-Schwarz inequality [38, Lem. 2.7] to truncated functions,
giving

i1-ki-ko

(35) ~~(Wl,Wk)l < c(ko) l7) WllllWkl

for all w, c span Al Wk c span A(), and I1- k > ko. FRom (35) the estimate

(36) vl < C(ko) {Ivo 1 + +E v\ }I1
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can be derived by well-known arguments from [38]. Finally, (33) is an immediate
consequence of (36) and the ellipticity of a(., .).

By Lemma 3.3 and the equivalence of norms on So, it is obvious that the precon-

ditioner Hj' is just a spectrally equivalent modification of H(')I This completes the
proof of the theorem. O

For the symmetric preconditioner H (2) we can state a related result without any
3

regularity assumptions imposed on the active set.

THEOREM 3.5. There exist constants Ko, K] depending only on ao, a1 in (3)
and the shape regularity ofTN0 such that the estimate

Ko(j + 1)-2a(v, v) < a(H (2)A v v) < Kia(v, v)

holds for all v E S30.

Proof. Let v E Sj. Based on the unique splitting

V =O+ V ), V0CV E VA C V(2)

AEA 2)

we can follow the arguments in the proof of Theorem 3.4, with the important difference
that the corresponding results on hierarchical bases can be applied directly. Again we

have to take care of the case

(37) A 2) k 0, Ak) - 2 - A(2) = 0

for some k* > 0. But as J\Ek0f* is empty, for each point p E Avk*1 n goreg we find
at least one k*-neighbor q E Vk*\Vk* -I contained in Ak * Hence Lemma 3.2 can

be applied as above, setting .A/f** if1;reg and Sk: span{A A C }.
Remark 3.4. Recall that the construction of the preconditioners is independent

of the construction of the disjoint splitting AfV = AV? U J.Af. In particular, if we are
solving an unconstrained elliptic problem, we can define the active set N! as the set
of all nodes on which the iterative error is considered small enough. A corresponding

strategy was proposed in [35]. In this case we cannot expect ko in condition (R) to
be uniformly bounded (cf. Remark 3.3) so that only the symmetric preconditioner
should be used.

Remark 3.5. In the proofs of Theorems 3.4 and 3.5 we have extended well-known
results on hierarchical bases from the unconstrained to the constrained case by suitable

properties of the truncation operators Tj,k or the restriction of the active set AFV. The
same technique can be applied to other multilevel additive Schwarz methods as, for
example, in applying the BPX preconditioner to obtain related results in three space
dimensions [7].

Theorems 3.4 and 3.5 show that under reasonable assumptions all preconditioners

under consideration are spectrally equivalent. However, in the nonsymmetric case

the actual constants depend heavily on the constant ko, while the behavior of the
symmetric preconditioner H(2) has been shown to be more robust with respect to the

 3~~~~~~choice of A/?7. This superiority will be supported by the numerical results pr-esented

in ?5.

4. Semi-local and local error estimates. Let u E Ho(Q) denote the exact
solution of (2) and uj e SJ the exact solution of the approximate problem (4) with
respect to T = 7j. Expecting that only an approximation UiJ e Sj of uj is known in
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actual computations, we are interested in a posteriori error estimates E for the total
error c,

? = Ilu- :j = a(u - fij,u - ij)l!2

which are efficient and reliable in the sense that

(38) -Yo-< ?lu - uij 1- < ?yi

holds with positive coefficients -to, -yi depending only moderately on the refinement
level j. The local contributions to E will be used as local error indicators in the
adaptive refinement process. This concept of adaptivity is well established for linear

elliptic equations and has been used by a variety of authors. See [3], [14], [23], [28], [37]
for further references. Extending the approach of Deuflhard, Leinen, and Yserentant
[14], [28] to obstacle problems, we will proceed in two main steps:

Step 1. Replace the exact solution u in (38) by the piecewise quadratic approxi-

mation Uj E Ho (Q).
Step 2. Localize the computation of Uj to obtain Uj with E := - iij I satisfying

(38).

The first step is settled by the following lemma, which is a consequence of the
triangle inequality.

LEMMA 4.1. Assume that the piecewise quadratic approximation Uj is of higher
accuracy in the sense that

(39) Iu - Ujll < qllu - ujjl , 0 < q < 1 , j = 0,1, ...

and iij E Si satisfies

(40) ilu - uj 11 <_ (1lu - ij III j = O, 1, .. .

with qc < 1 and q, a not depending on j. If E satisfies

(41) ibS < illui - UjjI < Y17i,

then (38) holds with -yo = fo/(l + qu) and 'Yj = fy/(1 - qc).
Remark 4.1. Recall that for sufficiently smooth data the piecewise quadratic

approximation is even of higher order than are piecewise linear elements (cf. [12]). In
this case (39) is trivial, if the initial triangulation T0 is chosen fine enough. Further

note that (40) is always satisfied if no obstacle is present because in this case uj is
the best approximation of u in Sj. In general, (40) follows from

lluj - iij 11 < (1 - 1/a)Ilu - uj 11,

with a < q-1, which may be regarded as an accuracy assumption on u;.
In the sequel we assume that (39) and (40) are satisfied to concentrate on the

derivation of E with the property (41).

Let Qj C Hoj(Q) denote the subspace of piecewise quadratic functions on T
vanishing at the boundary and

KQ {v C Q v(p) < ?L(p),p C Mj, v(e) < ? Q(e), eC ?j8},
the corresponding approximation of the constraints K. For notation we used v(e)

v(midpoint of e), e C 1j, for functions v : Q 1+R and suitable restrictions W L, ,(Q of
the obstacle s to .Aj and Sj, respectively. Now U3 can be computed from

(42) find UjE K9 such that a(Uj,Uj3-v) <?(U3-v), v Ej 3 1
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For notational convenience the index j will be suppressed in the following notation.

In view of Lemma 4.1 we are interested in the defect d = U-ji- C Qj, which is the
unique solution of the following:

(43) find d C D such that a(d, d-v) < r(d-v), v CD.

The constraints are given by

D= D(i2j) := {vC Qjf vv+ ij C K9}

and the right-hand side is the residual r := - a(ij, ).
As d is not available at reasonable computational cost, the remainder of this

section will be devoted to the localization of the defect problem (43). A possible way
is indicated in the next lemma, showing that (38) is preserved by spectrally equivalent
modifications of a(-,.).

LEMMA 4.2. Let d be the solution of the following:

(44) find dDsuchthat a(d,d-v)<r(d-v), v C D

with a symmetric form a(., -) satisfying

(45) cod(v,v) < a(v,v) < ci&(v,v), v C Qj,

with positive constants co, c1. Then

(46) Coa(d, d) < a(d, d) < Cl (d,d)

holds with Co = (c I1 +2ci(1 + c1)) , C cl +2c-1(1 +cl).
Proof. By symmetry arguments it is sufficient to establish the right inequality in

(46). Together with (45) we obtain from (43) that

a(d, d) < cia(d, d) + 2r(d - d).

Now the assertion follows from

(47) r(d - d) < co 1(1 + cl)a(d, d).

To show (47), observe that the choice v = d in (44) leads to

(48) r(d-d) < (d, d-d).

Hence, in view of Cauchy's inequality it remains to prove

(49) Id-dila < co1(1 + c)IlIa,

with I la denoting the energy norm induced by a(-, .). It is obvious that d is the
solution of the original problem (43), with r replaced by a modified right-hand-side i
defined by

r =r + a(d, )-(d,)

As the solution of variational inequalities depends Lipschitz-continuously on the right-

hand side with Lipschitz constant cU1 (cf. [25, p. 24]), we obtain (49) from

Id-dIla < co1 sup Ja(d,v) - &(d,v)I < c 1(1 + cO)IdRIi
| u 1
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This completes the proof. El

Note that Lemma 4.2 is valid for arbitrary convex constraints and arbitrary space

dimensions.

To construct suitable quadratic forms a(,.) we introduce the two-level splitting

(50) Qj = SL (D sQ,

which consists of the linear part SL = Sj and the remaining quadratic part sQ. Note
that the quadratic bubbles ,Ue C Qj, e C ?j, defined by

He (P) = ?0 p C Arj, He(e) = be,e)l e C ?j,

form a basis of SQ. Following (50), we split v C Qj according to

V = VL + vQ
(51) vL C SL, vQ = eE Velte C sQ.
Then we obtain the quadratic form b(., .),

(52) b(v, w) = a(vL, wL) + aQ(vQ, wQ), aQ(vQ, wQ) = > vewea(te, [He),
eEE,

by neglecting the coupling of SL, sQ and Ite. u9, e ?& g, respectively. By also using
the preconditioner &(., ) resulting from the standard hierarchical basis decomposition

of SL = Sj, we end up with

(53) b(v, w) = -(vL, wL) + aQ(vQ wQ)

From [14, Lem., p. 14] and the following considerations it is well known that

(54) cb(v,v) < a(v,v) < C(j + 1)2b(v,v), v C Qj,

holds with suitable constants c, C. Summarizing these results, we obtain the first

important result of this section.

THEOREM 4.3. Assume that the conditions (39) and (40) are satisfied. Let d be
the solution of the semilocal problem

(55) find d C D such that b(d,d-v) < r(d-v), v c D.

Then (38) holds for

52 =dl? = &(dL, dL) + aQ(dQ, dQ)

and constants -yo = lo/(j + 1), -yi = C(ij + 1). Here 1jo, 1i are depending only on qc,
the ellipticity of a(., -), and the shape regularity of To.

Proof. Using (54), Theorem 4.3 is an immediate consequence of Lemmas 4.1 and
4.2. 0

Remark 4.2. The error estimate (55) is called semilocal because the frequencies

of d are decoupled with respect to the quadratic form but coupled by the set of
constraints D. In our numerical experiments we will use the local contributions

r1e = (dQ)2ae A) e C SF,
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of aQ (Q, dQ) as local error indicators in the adaptive refinement process. Of course,
(55) reduces to the error estimate proposed in [14], if the obstacle is not active.

Remark 4.3. The simplified defect problem (55) may be solved approximately
using the active-set strategy described above. Because the preconditioners proposed

in the preceding section are just truncated versions of &(., .), we can expect the cor-

responding linear subproblems to be solved very efficiently.

To derive a less robust but local error estimate, we consider the simplified defect

problem:

(56) find 6 C D such that b(b, 6-v) < r(6-v), v C D.

Recall that

(57) cob(v, v) < a(v, v) < clb(v, v), v C Qi,

with positive constants co, c1 independent of j (cf. [14]). Assuming (39) and (40), it
follows from Lemmas 4.1 and 4.2 that the solution 6 of (56) provides an error estimate

with the property (38). Now (56) is decoupled by one block Gauss-Seidel iteration

step applied to the initial iterate zero, i.e., we compute an estimate - -L + 5Q from

(58) find 6L c DL such that a(6L, 5L _ V) < rL(SL _ V) v c DL,

and

(59) find 6Q C DQ(6L) such that
(59) aQ(SQ,SQ -v) < rQ(SQ -v), v c DQ(SL),

where rL, rQ denote the restriction of r to SL, SQ and DL, DQ(6L) are defined by

DL = SL nD, DQ(WL) = {VQ C SQI VQ + WL c D}, WL C SL.

Assuming that

Kj = {v E Sjl v(p) < ?L(p), p E VM} C K,

the linear defect problem is recovered by (58) with the consequence that

= Uj ij.

Moreover, each component 6Q of SQ can be computed separately, giving

(60) eQ = min{rQ(bLe)/a(p,epe), (iOQ _ 5L _ iQj)(e)} e C ?j.

Hence

(61) 52 := j1S2 = IlUj-ij12+ aQ(QjI+Q)

provides a local error estimate as soon as the iterative error IIuj-tj II is known. Again
(61) reduces to the error estimate proposed in [14] if the obstacle is not active, and the
local contributions to aQ(SQ, 6Q) may be used as local error indicators in the adaptive
refinement process.

We will make use of the interpolation operator ir : SL s SQ, defined by

7r(VL)(pe) = (vL(p,) + vL(p2))/2, e = (P1,P2) E ?j, VL E SL,
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to show that (61) provides a lower bound for the total error.

THEOREM 4.4. Assume that the conditions (39) and (40) are satisfied. Let Kj c
KP and assume that

(L) 17r(6L - SL)IaQ < /116L _ SLII

holds with a positive constant 3 independent of j. Then

(62) -Y01S1b < |liij - ull

holds with a positive constant 'yo depending only on q, /3, the ellipticity of a(., ), and
the shape regularity of To.

Proof. First recall that we have from Lemmas 4.1 and 4.2

(63) cOI6&b < IiU - i|jIj < clI61b,

with constants c0, c1 independent of j. As Kj C KfQ we obtain 3L = Uj-Uj So that
(40) leads to

(64) IISLII < (a + 1)IIU -_ iij 11c|6.

The estimation of the quadratic part of l16J2 = 1ELJ12 + I8QI2Q is more complicated.
Obviously 6Q is the solution of

(65) find 6Q C DQ(6L) such that aQ(6Q, ,Q-v) < r(6Q-v), v E DQ(6L),

with 6 6L +6Q. By representing (65) as a complementary problem it is easily verified
that (59) and (65) are symmetric with respect to the obstacle and the right-hand side.
More precisely, (59) and (65) can be replaced by

(66)

find 8Q C R such that aQ (Q, 6Q-v) < aQ(pQl-7r(iij + 6L),6Q_v), v ER,

and

(67)

find &Q E R such that aQ(6EQ,Q-v) < aQ(Q- 7r(ij + 6L),6Q _ v), v C RI

with constraints

R {v C SQ I ve < rQ (e)/a(bLe, He), e C }j

Again we assume that (66), (67) are Lipschitz with respect to the right-hand side in
order to obtain by assumption (L) the following inequality:

(68) 16Q- Q < r(6" - SL)1aQ ? /!L -6 LI.

Now the triangle inequality gives

(69) 15Qj2Q 2 4/2(11 6L 112 + 1612)

and the assertion follows, along with (63) and (64). 0

                             
                                                                         

                                                



318 R. H. W. HOPPE AND R. KORNHUBER

Remark 4.4. In the simplified case of a quasiuniform sequence of triangulations

with meshsize hj the condition (L) is equivalent to

(70) _ 6 ll0 < chjL -

with c independent of j. Obviously (70) is always satisfied with c = c(j), giving
(62) with -Yo = yo(j). In general, (70) may be regarded as a regularity condition on
6. Indeed, assuming uj = uj and regarding 6L as a perturbation of 6L - 0 by the
coupling with 6Q at the free boundary, condition (L) is satisfied if these perturbations
remain local with increasing j.

Of course, a further restriction is imposed by the assumption Kj C K9, which, j
for example, is satisfied if the obstacle function is continuous and piecewise linear and
the initial triangulation is chosen appropriately (cf., e.g., the example treated in the
following section).

The error estimate (61) was originally proposed in [26] and [27] for the adaptive
solution of a special obstacle problem arising in semiconductor device simulation. In
this special problem we can expect from the physical data that the error is dominated
uniformly in j by contributions generated away from the free boundary, suffering only
minor effects from the localization (58), (59). In particular, the nonactive region can
always be resolved with sufficient accuracy on the initial triangulation To. Under these
assumptions we can easily prove that (61) is reliable in the sense of (38), particularly
in that it also provides a uniform upper bound of the exact error c.

However, simple examples show that (61) may deliver 6 = 0 even though d /= 0
holds true. Together with Theorem 4.4 this indicates that (61) is likely to underes-
timate the true error, which will be confirmed by numerical experiments reported in
the next section.

5. Numerical results. In this section we concentrate on composing an adaptive
Multilevel Method from the modules described above. This method is then applied to
a challenging model problem confirming the properties expected from the theoretical
considerations.

On each refinement level j we apply the active-set strategy given in ?2 until the
active set is left invariant. The iteration is started with the interpolated approximation
from the previous level, with the value at each node having at least one active neighbor
projected to the obstacle. On the first level the obstacle function is used as the initial
iterate. Each step of the outer iteration requires the solution of the linear subproblem
(11), which is performed iteratively by cg iterations preconditioned by the reduced
hierarchical basis preconditioners introduced above. This inner iteration is stopped
as soon as the estimated linear iteration error n satisfies i, < so. Here estimate es is
computed as described in [14]. Recall that the threshold ro has to be chosen small
enough to ensure the convergence of the outer iteration (cf. Remark 2.1). In the
following example, to = 10-3 is used.

The same algorithm with to replaced by ,d = 10-2 is applied to the solution

of the semilocal defect problem (55), providing the error estimate Ei = Idlb. A local

error estimate E1 = I61b is obtained by using the iterative error of the final linear
subproblem as an approximation for 6L = Uj- ij and evaluating (59). The iterative
solution of the semilocal defect problem is started with the local estimate (0, SQ).

According to Remark 4.2, an edge e E ? is bisected if its contribution qe exceeds
a certain threshold i-. To determine -7 we extrapolate Tie as proposed in [2] (see [26]
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for details). A new triangulation is constructed by red refinements and green closures

(refer to [3], [28], [33], and [34] for further information).
Now we apply the algorithm to a well-known problem describing the elastoplastic

torsion of a cylindrical bar with quadratical cross section Q = (0,1) x (0,1), which is

twisted at its upper end around the longitudinal axis in such a way that the lateral

surface remains stress free. By modelling the plastic region according to the von Mises

yield criterion and normalizing physical constants, it has been shown in [11] that for

positive twist angle C per unit length the stress potential u is the solution of the

variational inequality (2) with a(., ), e(.) given by

a(v, w) = f (01V&iw + 02vo2w)dx, e(v) = 2C v dx

and constraints K,

K = {v C HO(Q)I v(x) < dist(x,&Q), a.e. in Q}.

The active points characterize the plastic region while the material is considered elastic

in nonactive points. We refer to [17] and [19] for the numerical treatment and to [32]
for a theoretical analysis of the problem.

Note that the problem has singular perturbation character with respect to the

elastic region, which is located along the diagonals and shrinks for increasing C.

TABLE 1

Iteration history.

Level Depth Nodes Iterations

Solution Error Estimate

0 0 5 1/0.0 2/0.5
1 1 13 1/0.0 2/1.0
2 2 29 1/0.0 3/1.0
3 3 57 2/0.5 3/2.3
4 4 153 2/2.5 3/3.6
5 5 381 2/5.0 4/2.0

6 5 541 3/3.0 3/2.0
7 5 749 3/3.3 1/0.0
8 6 1605 3/4.3 2/0.0
9 7 5793 4/5.5 2/0.0

10 8 6265 3/6.0 2/0.0

Starting with the initial trianguilation To depicted in Fig. 2 and choosing C -15,
all nodal points remain active up to the third (uniform) refinement level, rendering a
quite challenging problem for an adaptive multilevel method.

In Table 1 we report the number of iterations required by the solution process. The
data are presented in the form "number of outer iterations/average number of inner
iterations" both needed for the solution and the semilocal error estimate, respectively.
In both cases the symmetric version of the hierarchical basis preconditioner is used.

The difficulty of detecting the elastic region leads to the difference between depth
and refinement level arising from level 5 to level 7. In the sequel the actual number
of refinement levels is indicated by subscript in spite of some ambiguity compared

to the notation in ?3. Note that T7 finally allows for a satisfying resolution of the
elastic zone. Up to this level the computational work is dominated by the error
estimation, providing the local error indicators for the adaptive refinement process.

On the subsequent levels the semilocal error estimate automatically reduces to the
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FIG. 2. Initial triangulation To.

FicG 3. Final triangulation Tio and solution Ulo.

local error estimate. Indeed, the outer iterations do not change the initial guess and
may be skipped.

The final triangulation Tl0 is depicted in Fig. 3 along with the level curves and
the elastic region of the corresponding solution.

The behavior of both error estimates is illustrated in more detail in Fig. 4. Again
it is obvious that the situation changes at level 7 (749 nodes), showing a significant
decrease of the "exact" error, and both estimates. To compute the "exact" error,
we performed a uniform refinement of Tl0 and computed the difference to the corre-
sponding solution. Note that only the semilocal estimate provides satisfactory results
on lower levels. In fact, due to the very coarse initial grid the local error estimate
fails in this example, providing El. = 0 for j = 0, 1, 2. Recall that the performance
of both error estimates could be expected from the theoretical considerations in the
preceding section. In particular, the local estimate (59) should not be used until the
underlying triangulation is fine enough to detect all parts of the inactive region but
works very effectively from this moment on.

The final Fig. 5 gives a comparison of both versions of the hierarchical basis
preconditioners. To amplify the different behavior we choose Ko very small, i.e.,
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FIG. 4. Comparison of the error estimates.

-= 10-8 and the initial iterate is fixed to the upper obstacle for all inner iterations.
For each refinement level we choose the linear subproblem with the maximal number
of unknowns and report the number of (preconditioned) cg iterations required for its

solution.

* SYMMETRIC
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FIG. 5. Comparison of the preconditioners.

As expected, multilevel preconditioning does not improve the convergence of the
cg iteration as long as the actual problem allows no suitable representation on the

coarser triangulations. Obviously, the nonsymmetric version even causes deterioration

of the convergence until the contribution of nontruncated hierarchical basis functions

becomes dominant on level 9. On the other hand, the symmetric version immediately
takes advantage of the good resolution on level 7 (133 unknowns) and does not lead to
deterioration of the convergence on lower levels. Note that in both cases the number

of iterations becomes a linear function of the refinement level j, if j is large enough.
This is exactly the behaviour predicted by the theoretical results derived in ?3.
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