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Abstract—The introduction of self-organization into a system
promises, among other things, to reduce the system’s complex-
ity and to increase the system’s robustness against failures
and its adaptability to changes in its environment. An example
for systems that profit from self-organization are resource-flow
systems, e.g., production lines. Such systems are characterized
by a number of independent agents that process resources by
applying capabilities according to a given task.

This paper introduces a decentralized reconfiguration mech-
anism that restructures a part of a resource-flow system in
case of a failure. In order to do so, agents coordinate based
on local knowledge and combine themselves into groups which
are called coalitions. Each coalition then tries to restore the
system’s functionality, returning a previously consistent and
correct system to a new consistent state, thus re-enabling cor-
rect processing of resources. As only local coalitions are formed,
the parts of the system not involved in the reconfiguration
process stay functional, meaning that the overall system does
not come to a standstill.

Keywords-Coalition Formation; Decentralized Reconfigura-
tion; Self-Organization; Multi-Agent Systems

I. INTRODUCTION

Today, self-organization is explored as a means to cope
with the complexity of systems that consist of several
collaborating entities. Self-organization promises to make
these systems more robust against failures, adaptive to new
situations, and to increase their flexibility. With this in mind,
a self-organizing system is characterized by the absence
of external control structures and the capability to find its
organizational structure on itself. Regarding the class of
resource-flow systems that includes, among others, appli-
cations in the field of logistics or production automations,
self-organization leads to many benefits. As described in [1],
today’s resource-flow systems are planned exhaustively and
therefore are static and inflexible but optimized to their
goal. For small series productions, it is desirable to have
systems being able to cope with different changes in the
environment. In [2], a software engineering guideline is
presented which supports an engineer in designing self-
organizing resource-flow systems. The guideline not only
provides design artifacts describing the systems’ structure
and the components’ behavior, but also techniques and
formalisms to ensure the desired behavior of the whole
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systems despite self-organization. One step in the guideline
is to choose the right reconfiguration mechanism for a
given application or domain. In some situations, central
reconfiguration with global knowledge is suitable and most
efficient. But there are many environments which require
decentralized mechanisms without external control. This
paper presents a decentralized algorithm applicable in these
environments which deals with local knowledge, meaning
that there is no external or internal global knowledge base.

The presented algorithm is characterized by the following
three features: first, it is specialized for a class of systems,
i.e., self-organizing resource-flow systems. This provides the
possibility to optimize with respect to specifics of this class
of systems. Second, the algorithm is robust against diverse
failures, such as breakdown of an agent, infrastructural
problems, or partial failures of an agent. Last but not least,
the algorithm is decentralized and gets by with pure local
knowledge. One main benefit of local reconfiguration is
that the bigger part of the system can perform as usual
and is not interrupted by the reconfiguration. In addition,
as the algorithm is embedded in the given guideline, it
guarantees a “good behavior” of the system. This means,
if the system is in a correct configuration before a failure
occurs, the algorithm re-establishes the correct functionality
if the prerequisites for a reconfiguration are given.

The rest of the paper is organized as follows: Section II
introduces the class of systems this algorithm is designed
for. An example and the basic concepts are given. Then,
Section III presents the way the algorithm forms a coalition
for solving an emerging problem. Several failures which
can occur in self-organizing resource-flow systems plus the
reactions of the algorithm are shown. Section IV shortly
describes the implementation before Section V discusses
the properties of the algorithm. Mechanisms for central or
decentralized reconfiguration in the field of self-organizing
systems and other related work is pointed out in Section VI.
Section VII concludes the paper and presents future work.

II. CLASS OF RESOURCE-FLOW SYSTEMS

The class of resource-flow systems contains many kinds
of systems, for example, from the field of production au-



tomation or logistics. These systems are characterized by
many independent units processing resources to achieve a
global goal, e.g., produce a product with certain properties.
As already mentioned, self-organization is very interesting
for these kinds of systems because the ability for flexibility,
redundancy, and different tasks is inherently given. Thus,
it is possible to integrate self-organization concepts into
the rigid systems of today. To introduce these concepts, an
elaborated software engineering guideline presented in [2] is
used which delivers a pattern (Organic Design Pattern, short
ODP) providing an architecture for self-organizing resource-
flow systems. In addition, it determines the behavior and
interactions of the independent units called agents.

In the following, the main concepts and terms of the
ODP are introduced which are necessary for understanding
the reconfiguration algorithm. In systems designed with
the help of the ODP, an agent has capabilities to process
resources according to a given fask. The task is a sequence
of capabilities and the state of the resource is always a prefix
of the task that has to be done for this resource. Which
capabilities to apply when is determined by the roles of the
agent, each related to exactly one task. For this purpose,
a role’s precondition (prec) and postcondition (postc) tell
the agent, among other things, from which other agent it
receives resources and to which agent it has to hand over
processed resources. These conditions are 3-tuples of a target
agent (port) from which, respectively to which, the resource
is taken, respectively given, the current state of the resource
and the task that needs to be done. An agent can have several
allocated roles and can also participate in several resource-
flows. This means if there are several resources in the system
with different tasks (processing steps), there must also be
several resource-flows, one for each task. Corresponding to
the task and the state of the resource, the agent is able to
choose one of its allocated roles and process the resource
accordingly.

Our running example is an adaptive production cell for
small series car production. Figure 1 shows one part of an
initial system configuration. Here, you can see two types of
agents, robots and carts. The agents’ capabilities are shown
on the right side of each agent. The carts do not have any
capabilities in this example. The robots have some out of the
following capabilities: weld the body (B), insert the motor
(M), attach the exhaust (F), insert the lights (L), and attach
the wheels (). The bold letter indicates the capability the
robot is currently applying. For example, robot one (£2;) has
the capabilities B, L, W and is currently welding car bodies
(B). The arrows indicate the resource-flow of the car body
(the resource). Table I not only represents the capability
allocation, but also the input and output relations of the
agents. This information is necessary since an agent is not
capable of exchanging resources with arbitrary agents. The
possible resource-flows are defined by the Input-/Output-
graph (I/O-graph). In the example, cart Cs is able to receive
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Figure 1. One part of the initial resource-flow graph showing the agents’
initial role allocation

Table 1
PART OF THE INITIAL SYSTEM CONFIGURATION

[ Relation [ Elements
Ri.availableCapabilities | {B, L, W}
Rs.availableCapabilities | {B,E, M}
Rs.availableCapabilities | {E,L, M}
Ry.availableCapabilities | {B,E,L}

R, .inputs {C1,C5,C3,C4,Cs}
Rz .outputs {C1,C>,C3,C4,C5}
Ry.inputs {C1,C2,C3,C4,C5}
Ra.outputs {C1,C3,Cy,C5}
Cy.availableCapabilities | { }

C. .inputs {R1, R2, R3, R4}
C,.outputs {R1,R2, R3, R4}
Co.inputs {R1, R3, R4}
Cy.outputs {R1,R2, R3,R4}
C3.inputs {R1,R2,R3,R4,C4}
Cs.outputs {R1,R2, R3, R4,C4}
Cy.inputs {R1, R2, R3, R4, C3}
Cy.outputs {R1,R2,R3,R4,C3}
Tasks {{..B,M,E,L,..],[...],...}

with z € {1,3,4}, y € {1,2,3,4,5}, and z € {1,5}

resources from all robots except robot Rs.

The system configuration is given by the allocation of
roles to the agents. In the example, initially, > has the
following role:

Precondition: (C2,[...,B],I[...,B,M,E,L,...])

Capabilities to Apply: [M]

Postcondition: (C3,[...,B,M],[...,B,M,E,L,...])
According to the role’s precondition, the resource is taken
from Cy with state [...,B] and task [...,B,M,E,L,..]
and the capability “insert motor” (/) is applied. Subse-
quently, as stated in the role’s postcondition, the resource
is given to C3 with the new state [...,B, M| and rask
[...,B,M,E,L,...]. As the example only considers a part
of the whole system, the dots in task and state indicate the
remaining capabilities relative to the full task of the resource.

The resource-flow graph (RF-graph) for a task is defined



by the connections between the agents as they are deter-
mined by the roles for the task. If the ports in the pre- and
postconditions are combined, they yield a path through the
[/O-graph. The communication infrastructure is independent
from the I/O and RF-graph. As soon as an agent is aware of
another agent, it can communicate with this agent. Usually,
an agent only knows agents which are in its input or output
relations.

Accurate system configurations are ensured by several
constraints that can be monitored at runtime by the agents
themselves. Some of these constraints are listed in [3]. The
constraints define a correct role allocation and thus form the
specification of the reconfiguration algorithm. An example
is the I/O-Consistency for an agent (self):

Ya € agents : Vr € a.allocatedRoles :

r.prec.port € a.inputs A r.postc.port € a.outputs

This constraint states that all agents that are assigned as the
port in the pre- or postcondition of any of the allocated roles
have to be part of the I/O-relation as well. It is violated in
case an agent is no longer responsive.

Summarizing, the constraints describe “valid system con-
figurations” and are monitored by the agents. In case of
violations, they are restored by a reconfiguration mechanism.
This idea is called “Restore Invariant Approach”. A detailed
description of this mechanism can be found in [4]. It is
obvious that a central reconfiguration mechanism which
knows all agents, all capabilities, inputs, outputs, and so
on is able to find a solution for this constraint satisfaction
problem. But if the problem should be solved decentral-
ized and most notably if the agents have only their local
knowledge, the situation gets really difficult. This paper now
introduces an algorithm which re-establishes a “valid system
configuration”. It starts the coalition formation only with
the knowledge of the agent that identifies a violation of a
constraint.

III. COALITION FORMATION STRATEGY

The main idea of the algorithm proposed in this paper is to
form groups of agents — coalitions — that are able to restore
locally violated constraints. More precisely, the algorithm
reacts to broken capabilities, inputs, or outputs as well
as to the breakdown of entire agents and reconfigures the
system so that, after reconfiguration, all locally monitored
constraints hold again. This is achieved by updating the sets
of allocated roles of agents that participate in a coalition. In
the following, the process of building the coalitions is called
coalition formation.

In the course of coalition formation, the algorithm makes
use of the existing system structure while it is restricted to
local knowledge. Whenever an agent is added to a coalition,
the coalition’s knowledge of the system grows as each agent
has a set of capabilities, allocated roles, and usually several
inputs and outputs to other agents.
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Figure 2. A3 loses its capability C' that is needed to process resources
in task 7. First, it recruits A4 which cannot help. Afterwards, it recruits
Ag resulting in a coalition with members {Ag, Az, A4} and CTF =
[B,C, D] (4] Since Ag has capability C' and Ag capability B, they can
“swap” roles which results in in TFR = [B, C][A] and CA = {A2, As}.
Edge agents A1 and A4 connect the reconfigured part (T'F'R) with the parts
of the system that are not reconfigured. Therefore, A; becomes a member
of the coalition.

Each coalition is able to restore multiple violated con-
straints at once and is led by one of its coalition members.
This agent is called leader. It coordinates its coalition in
order to restore locally violated constraints of a specific task.
As soon as an agent A; notices the violation of a locally
monitored constraint, it initiates the reconfiguration for the
affected task 7 by creating a new coalition in case it is not
yet included in a coalition reconfiguring 7. Otherwise, it
waits until the current reconfiguration is finished and starts
a new coalition afterwards if necessary. Since the initiator
A; becomes the leader of this coalition and reconfigures
T, the coalition is called (A4;,7). At this point, (4;,7)
has only one member — its leader A;. The objective of
A; is to reconfigure the members of (A;,7) for task 7.
However, in order to bring the reconfiguration to completion,
a certain level of flexibility is needed. Therefore, the leader
A; increases its coalition’s flexibility by inviting other agents
to participate in (A;, 7) for 7. While (A;, ) grows, the most
important information is about input and output relations
of newly added coalition members. The reason for that is
that this is the only way a coalition becomes acquainted
with other agents of the system. If (A;,7) has enough
flexibility to reconfigure a continuous segment of 7, the so-
called connected task fragment (CTF), there is no need
to expand it any more. After this, (A;, 7) determines the
part of CTF that is actually reconfigured in terms of
calculating new roles. This part is called task fragment to
reconfigure (I'F'R). Thereafter, leader A; recruits agents
that are responsible for maintaining the interconnections,
i.e., the resource-flow, between the reconfigured part of the
system and the parts of the system that are not reconfigured.
These agents form the set of edge agents (EA) as they
enclose the reconfigured part with regard to the resource-
flow. Edge agents are not necessarily new agents; instead,



they may already be part of the coalition. Furthermore,
(A;, Ty specifies the agents that should apply capabilities
within T'F'R. These agents and those that were responsible
for TF' R before the reconfiguration was initiated form the
set of core agents (C'A). Next, the resource-flow between
the agents is re-established. If a resource-flow between
two agents cannot be established (e.g., due to insufficient
inputs and outputs), A; recruits additional agents in order
to increase the coalition’s flexibility. Those that are useful
form the set of resource-flow agents (RF A). As soon as the
resource-flow is rebuilt, leader A; distributes the updated
role allocations to all coalition members. Finally, the leader
gives all coalition members a signal to resume operation
and (A;,7) dissolves itself. The small example in Figure 2
illustrates the terminology introduced in this section.

In the following, more precise definitions of the sets C A,
EA, RFA, and the task fragments CTF and TFR are
given:

Core Agents (CA): Contains all agents of a coalition
(A;, Ty that should apply at least one capability within T'F' R.
Additionally, the set contains all agents that were responsible
for processing resources or maintaining the resource-flow
between the first (r¢) and the last role (r;) that have to be
replaced due to a broken capability, port, agent, or due to a
change in the application of capabilities. In other words, this
set contains agents that lose allocated roles or get completely
new ones.

Edge Agents (EA): Contains all agents with roles 7;
that formerly sent/received resources that were received/sent
by rg/r;. r;’s post-/precondition port is updated during
reconfiguration.

Resource-Flow Agents (RFA): Contains all agents that
are needed to generate the resource-flow and that are not
included in CA or EA. These agents get additional roles
for 7. Other roles are not modified or replaced.

Connected Task Fragment (CTF): The segment of
task 7 that is reconfigured by a coalition. C'T'F' starts at
the first capability that is applied by the role having the
shortest precondition state «, and ends at the last capability
that is applied by the role having the longest postcondition
state 3 (only those roles are considered that are allocated to
members of (A;, 7) for task 7). CTF is defined as

CTF =[14,...

s ] s
where a,b € N and 1 < a < b < 1.length. 7 denotes the
k-th capability in 7. o and (8 are defined as follows:
a = min{ra, (7,1).prec.state | Ay € (A;,7) Nl € N}
B8 = max{ra,(1,1).postc.state | Ay € (A;,7) Nl € N}
=a+ [Ty -7

ra,(7,1) is the I-th allocated role of agent Ay for task 7.
Furthermore, here, + is the operator for list concatenation
and min/max are operators that return the shortest/longest
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state that is included in a set of states. « is a resource’s
state [ry,...,7,—1] after the application of the (a — 1)-th
capability in 7 or the empty list [ ] for a = 1. Consequently,
immediately before a capability of CTF is applied to a
resource, its state is «. For this reason, « unambiguously
defines the task fragment’s location in 7. This information
is important as a task can consist of a recurrent sequence of
capabilities. [ is the state of a resource that leaves C'T'F.

Task Fragment to Reconfigure (TFR): The part of
CTF = [1,,...,m), a coalition actually reconfigures in
terms of calculating and distributing an updated role alloca-
tion. Let a be a prefix of a state -y, then the task fragment
to reconfigure is denoted as

TFR = [Tm,...,Tn],Y,

where m,n € N and a < m < n < b. Analogously to
CTF, v defines the location of TFR in 7. TFR starts at
the first and ends at the last capability in C'T'F’ that should
be applied by an agent that does not hold an appropriate
role.

In the following subsections, the algorithm’s behavior and
actions are explained by different reconfiguration scenarios.
Additionally, the utilization of core, edge, and resource-flow
agents in the course of a reconfiguration is clarified. Starting
with the basic reconfiguration procedure in Section III-A,
Section III-B shows reconfiguration due to I/O failures,
whereas Section III-C highlights reconfiguration in case of
a breakdown of an entire agent.

A. Reconfiguration Due to a Broken Capability

The reconfiguration due to a defective capability that is
needed to correctly perform an allocated role is an important
feature when dealing with reconfiguration in resource-flow
systems.

Regarding the system presented in Section II, assume that
R5 loses its capability M. As Ry needs M to perform its role
TR, (T, 1), which applies M to the resource-flow, Ry creates
anew coalition (R, 7) with leader R; that reconfigures task
7=[..,B,M,E,L,....

In order to repair the system, R» has to enlarge (Rs, T)
to a point at which it includes an agent that is capable of
applying M to the resource-flow. However, Ry has limited
knowledge and therefore it cannot send a request to an arbi-
trary agent of the system to join the coalition. Furthermore,
Ry does not know which agent has capability M. Initially,
Ro knows agents listed in its inputs and outputs as well as
those agents that are stated in pre- and postcondition ports
of its allocated roles. Hence, Ry knows {C1,...,C5} (see
Table I).

Denote K as the set of known agents that are not members
of the coalition, then, currently, K is {C1,...,C5}. Cay,
the set of available capabilities of agents participating in



Figure 3. Rg starts a reconfiguration for task 7 due to its broken capability
M and becomes the leader of coalition (Ra, T)

(Ra,T), is Rg.availableCapabilities = { B, F'}. Addition-
ally, CTF is [M] p because of:

TR, (T, 1).prec.state = |[..., B|
TR, (T, 1).postc.state = [..., B, M|

Therefore, C'yg4, the set of capabilities that are needed
to fulfill CTF, is {M}. Figure 3 shows the situation in
which Ry started a new coalition with members {R3}. The
defective capability M is marked with a cross.

The first goal of every leader is to satisfy

Cna C Cay, ey

which means that the union of all capabilities of coalition
members C4, has to contain all capabilities C'n4 that are
needed to fulfill CT'F'.

To satisfy Equation 1, Ry asks other agents to participate
in (Ra, 7). Ro puts its requests in an order that is given
by two queues 2;, and Q4 With Q;, U Qpr = K. Q4
contains all agents that are listed in the inputs of coalition
members. Analogously, €2,,; contains the outputs. Whenever
the coalition has to be enlarged, the first agent of a queue is
dequeued, removed from the other queue, and requested to
join the coalition. Starting at 2,,:, the algorithm alternates
between both queues. With each agent that enters a coalition,
its leader’s knowledge grows and €2;,, as well as €,,,; are up-
dated so that ;,, U ©,,; = K holds at any time. Whenever a
queue is updated, the agents, which are known to participate
in the task that is to be reconfigured, are moved to the front
of the queue. An agent A; is known to participate in task
7 if the coalition contains an agent that has at least one
role whose pre- or postcondition port points to A;. Among
others, one reason for preferring agents that are known to
participate in the task to reconfigure is that it is beneficial
to restructure a system without influencing the processing
of other tasks. For instance, an agent applying different
capabilities in different tasks has to switch capabilities which
needs time and therefore slows down the system.

Initially, the queues are initialized as

Qin = [@;53701705704]
Qout = [03501764705]
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(agents that are marked with a tilde are known to par-
ticipate in 7) because of Ry.inputs = {C4,...,C5} and
Rs.outputs = {C4,C3,Cy, Cs}. Further, it is known that
(5 and Cj3 participate in 7 since rg,(7,1) takes resources
from Cy and gives them to Cs.

Consequently, Ry removes the first entry of €,,:, in
this case C3, and requests this agent to participate in
(Rg,7) for 7. As a result, C3 starts reconfiguration for
7, joins (Ry,7), and transmits its knowledge in the form
of inputs, outputs, capabilities, and allocated roles to R,
whereupon Rp updates the coalition’s information as well
as Q= [R3,Cy,...] and Q,y = [R3,C1, .. .]. CTF stays
unchanged as r¢,(7,1) does not apply any capabilities to
the resource-flow.

As Equation 1 is not satisfied, Ro invites the first agent of
Qin, that is Rs, to join (Ro, 7). As a result, CTF expands
to [M, E] 5 because of:

TR, (T, 1).postc.state = [..., B, M, E]

However, since R3 has capabilities {E, L, M}, Ry finally
found an agent that is able to apply capability M to the
resource-flow. Equation 1 holds.

Ry now calculates the combinations in which the coalition
members can apply the capabilities listed in task fragment
CTF. Since capabilities M and E are needed to fulfill
CTF and R, has capabilities {B, E}, whereas C3 has no
capabilities at all and R3 can apply {E, L, M}, there are
two possible combinations: Combination 1 plans that R3
applies M and Ry capability E to the resource-flow, which
means that R as well as R3 would be involved in 7 after
reconfiguration. In Combination 2, R3 should perform both
capabilities and Ry none. The algorithm makes use of a
number of heuristics to estimate the quality of combinations
and to sort the combinations according to different criteria.
The most important one is to optimize a system’s throughput
by involving as many agents as possible in the application of
capabilities specified by the task. Therefore, the algorithm
chooses Combination 1.

In the next step, T F'R is determined. Here, T F'R equals
CTF = [M,E|, p as capability M should be applied
by Rj3 in Combination I, which was formerly done by Ro,
and capability E should be performed by R, which was
formerly done by R3. Consequently, the set of core agents,
CA = {R2,C3, R3}, is identified as stated in Section III
with 7y = rpg,(7,1) and r; = rg,(7,1). The set includes
Cj5 because this cart was responsible for conveying resources
from Rs to Rs.

Since each coalition reconfigures a specific task fragment
and therefore changes a part of the structure of the associated
resource-flow, it is of great importance to ensure that the
reconfigured part will correctly interact with the parts of the
system that are not reconfigured. Hence, there is a need for
connections between agents with updated role allocations
and agents that are not reconfigured. These connections are



Table 11
INFORMATION USED FOR RECONFIGURATION

[ Information | Elements ]
(R2,T) {C2, R2,(C3,R3,C4}
CA {R2,Cs, R3}

EA (Ca,Cu}
RFA [

CTF VT E_p,
TFR OLE] g
CNd {M7 E}

Cav {B,E,L,M}

identified with the help of r; and 7;. On the one hand, the
agent that formerly performed r; ([22) took resources from
another agent (C5) that now has to send its resources to the
agent that should apply the first capability in TF R (R3).
On the other hand, the agent that formerly performed r;
(R3) gave resources to another agent (Cy4) that now has to
receive resources from the agent that should apply the last
capability in TFR (Ry). If TFR was an empty sequence,
the first edge agent (C2) would have to send resources to the
second one (Cy). Thus, the postcondition port of r¢, (7,1)
and the precondition port of r¢,(7,1) have to be updated
accordingly. Because of that, both agents, C5 and Cj, are
requested to join the coalition. As Cy and C; are “special”
in the sense that either only the pre- or postcondition ports of
their roles may be updated, C'; and Cy form the coalition’s
set of edge agents (E'A). The final sets of edge and core
agents are depicted in Table II.

Finally, the algorithm checks if the resource-flow can be
re-established within the coalition. For this purpose, Dijk-
stra’s Algorithm for calculating shortest paths is applied to a
weighted, directed I/O-graph (see Section II). The weight of
a directed edge is 1 if its head is element of CAUEAURF A.
Otherwise, the edge has weight 2|(Rs, 7)|, where |(Ro, T)|
is the size of the coalition. The weighting guarantees that a
path will not include an agent A; ¢ CAUEAURF A if there
is a path that consists only of agents A; € CAUFAURF A
because of |CA| + |FA| 4+ |RFA| < 2|(Rs,T)| (factor 2 is
needed as sets C'A and E'A are not disjoint in all cases,
whereas the sets RF'A and C'A as well as RFA and FA
are always disjoint). This ensures that the algorithm prefers
agents whose role allocations will be updated anyway.
Therefore, the set of agents with updated roles is kept as
small as possible. If a path includes such an agent A;, A;
is added to the set of resource-flow agents (RF A) and the
weights are updated as stated above. For each capability 7; in
TFR, a path is calculated from the agent that should apply
7; to the agent that should apply the next capability 741
in TFR if there is one. Additionally, a path is calculated
from the edge agent that gives resources to the coalition to
the agent that applies the first capability in T F' R because
it is not guaranteed that these agents are able to directly
exchange resources. For the same reason, a path is calculated
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Figure 4. Rg and R3 “swapped” roles to compensate the loss of capability
M in Ro

from the agent that applies the last capability in TFR to
the edge agent that receives resources from the coalition. If
TFR was an empty sequence, the resource-flow would be
re-established between the edge agents.

In this case, edge agent Cs is able to directly give
resources to [?3. After applying M to the resource-flow, 3
sends its resources via C's to Ry since R is not included in
R3’s outputs. Subsequently, Ro gives the resources to edge
agent Cjy.

A part of the leader’s knowledge and the reconfigured
system are depicted in Table II and Figure 4.

B. Reconfiguration Due to a Broken I/O-Port

This section outlines the reconfiguration of the initial
system shown in Figure 1 in a situation in which Ry loses
its output port C'3 and Cj its input port Ry. Reconfiguration
is necessary, as otherwise the resource-flow would come to a
standstill. As R, notices that it is not able to send resources
to C5, which is needed to perform rg, (7,1), and C5 detects
that it is not able to receive resources from R, which
is needed to perform r¢,(7,1), both agents independently
start new coalitions (Rg,7) and (C5, 7) for task 7. On the
one hand, (Ry,7) knows that C3 has to be reconfigured
because ('3 must have a role that receives resources which
are sent by g, (7, 1). On the other hand, C3 knows that R
has to be reconfigured because Ro must have a role that
sends resources which are then received by rc, (7,1). As
a result, the first objective of (Rg, 7) is to recruit C3 and,
analogously, (C3, ) wants to recruit Rp.

However, an important property of coalitions is that agents
must not participate in more than one coalition for a specific
task at the same time. This is necessary since multiple,
simultaneous memberships in different coalitions reconfig-
uring the same task can lead to inconsistent role allocations.
Regarding a situation in which several reconfigurations for
the same task exist in parallel, an agent would update
its role allocation with roles it received most recently. In
conjunction with roles other agents receive, these roles
could violate constraints that specify the resource-flow as
a chain of interlocking roles (see con3 and con4 in [3]).
This leads to the necessity of merging coalitions that collide;
a situation in which at least one coalition wants to recruit



a member of another coalition. This situation is called a
clash. Whenever two coalitions are merged, a leader election
mechanism determines the agent A; that should lead the
merged coalitions by utilizing the lexicographic order of
unique agent identifiers; the other leader A; is degraded to
a common member of A;’s coalition. All members of A;’s
coalition are assigned to A;’s coalition and all knowledge
of A;’s coalition is transferred to A;.

While Ry waits for a response from C'3 indicating that the
agent joins the coalition and vice versa, both leaders realize
that they wait for each other and that the clashing coalitions
have to be merged. In order to avoid deadlocks, the agents
unambiguously determine the leader that stops waiting and
initiates the merging of both coalitions.

Assume that ('3 won the leader election and that the
merging was successfully completed. Because of CTF =
[M]; g, Cna = {M}, and Ca, = {B, E, M}, Equation 1
holds.

TFRequals CTF as CTF is of length one. Because C'3
does not have any capabilities, there is only one combina-
tion that fulfills TF'R. In this combination, R3 retains the
responsibility for applying M to the resource-flow.

Finally, the set of core agents is { Ry, C3} because Ry’s
and C35’s roles have to be replaced by a new one. Therefore,
the adjacent agents C; and Rs3 become edge agents of
<C3, T >

While calculating the resource-flow between core and
edge agents, the algorithm cannot determine a path from
core agent Ro, which has to apply capability M in TFR,
to edge agent Rs3. The reason for that is that Ro lost its
output to C'3 and it is not able to directly send resources to
Cy or R3.

Since an agent A; is not able to receive resources from
agents that are not included in its inputs, the leader requests
agents A; € Aj.inputs to join its coalition until the path
exists. If the coalition includes all agents in A;.inputs, the
leader asks the inputs of the inputs and so on until the path
exists or all such agents have been requested. As before, a
leader prefers those agents A; that are known to participate
in 7. In case there is no such path, the leader switches the
selected T'F'R or enlarges the coalition by an arbitrary agent
while preferring agents that participate in 7. However, if
such a path exists, all agents that form the path, but are not
included in the sets C'A or E A, are added to the set RF' A.

In this case, Rg.inputs is {C4,...,C5} and Cy, Cs, as
well as C,4 are known to participate in 7. Since Co and Cj
are already a coalition members, Cy is added to (Cs, 7).
Furthermore, C; becomes a resource-flow agent because
resources can be sent from Ry to Rs via Cy, and Cy is
not included in the sets C'A or FA.

A part of C3’s knowledge and the reconfigured system
are shown in Table IIT and Figure 5. C; now has two roles
— one role to convey resources from Ry to R3 and another
to transport them from R3 to R4 — whereas C'3’s role is not
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Table IIT
INFORMATION USED FOR RECONFIGURATION

[ Information | Elements |
(C3,7) {C2, R2,(3, R3,Cy}
cA (R, Cs7
EA {C3, R3}

RFA {C4}

CTF [M]; . p

TFR [M];. g

Cnd {M}

Cav {B,E, M}

; ‘®

9
©

Figure 5.  After reconfiguration, Cs has two roles, whereas C'3 has no

roles at all

replaced by a new one.

C. Reconfiguration Due to the Loss of an Agent

This section shows reconfiguration of the initial system
depicted in Figure 1 due to the breakdown of an entire
agent', using the example of agent Cs. In order to detect
malfunctioning agents, all agents use a ping mechanism to
monitor the liveness of agents they cooperate with. An agent
cooperates with another agent if they exchange resources.
By using this mechanism, Ry and Rj3 observe that Cj is
not available and independently start new coalitions (Rg, T)
and (Rg, 7). Initially, both coalitions have two objectives:
first, to identify the capabilities that were performed by the
malfunctioning agent and second, to restore the resource-
flow. The problem is that, owing to the restriction on local
knowledge, Ry as well as R3 do not know C'3’s allocated
roles and the way resources take through the system.

However, by utilizing the system structure, i.e., the struc-
ture of the resource-flow which is defined by the system’s
role allocation, it is possible to reconstruct the roles of
a malfunctioning agent if enough knowledge is available.
For this purpose, on the one hand, if a coalition member’s
role 7, has to be replaced because of a broken agent A;
that represents r,’s postcondition port, a coalition’s leader
searches a role r, that is applied after 7, to the resource-
flow. On the other hand, if a coalition member’s role r. has
to be replaced because r.’s precondition port equals 4;, a
leader searches a role r4 that is applied before 7. to the
resource-flow. Without using information provided by the

n case this agent is currently a leader of a coalition, the coalition
members realize the breakdown and form new coalitions in order to
reconfigure the system.



pre- and postcondition ports of a role, a role r; is known to
be applied after role r, to the resource-flow if
rq.postc.task = ry.postc.task
A (rq.poste.state C ry.poste.state
V (rq.capabilitiesToApply # | ]

A rq.poste.state = ry,.postc.state))

(@)

evaluates to true, where L is the proper list prefix operator.

In order to reconstruct the roles of the broken agent Cs,
(Ro,T) searches a role that is applied after rg,(7,1) and
(R3,7) looks for a role that is applied before rg,(7,1).
Therefore, the leaders recruit new agents by making use of
the queues €2, and 2,,;. However, in this case, it is not
useful to recruit agents that are known to participate in task
T because the leaders would prefer agents that do not fulfill
Equation 2: leader R3 would recruit C4 and then Ry, and
leader Ro would recruit C5 and then R;. For this reason,
whenever a leader tries to satisfy Equation 2, it prefers
agents that are not known to participate in the task by always
recruiting the last agent of a queue. In this example, assume
that Rs.outputs contains R4 and Rg.outputs contains R.
Hence, (Rq, 7) recruits Ry. rg, (7, 1) fulfills Equation 2 with
regard to 7R, (7,1).

As soon as Equation 2 is satisfied with the help of a role
rh, a leader tries to gather all agents that are involved in the
processing of C'I'F'. This can be done by either simulating
the resources-flow in its usual or reverse direction. This is
important because it is necessary to gather all functioning
agents that are involved in the processing of C'T'F' in order
to bring the system back to a consistent state with respect to
the constraints that define an accurate system configuration.

Here, CTF is [M, E, L] g because of:

TR, (T,1).prec.state = ..., B|
rr,(7,1).postc.state = [..., B, M, E, L]

In order to contain all agents that are involved in the
processing of CT'F', R, simulates the resource-flow, starting
at rg, (7, 1).

Whenever the simulation performs a role of a broken
agent, it proceeds with a role r; that fulfills Equation 2
with a shortest postcondition state. However, before the
usual resource-flow simulation continues, the resource-flow
is simulated backwards, starting at r;. When the inverse
resource-flow simulation comes across a broken agent, the
usual resource-flow simulation proceeds at r;. This proce-
dure ensures that the simulation gathers as much agents as
possible that are involved in the processing of CTF.

Consequently, since Cs, the agent that represents the post-
condition port of rg,(7,1), is broken, (R, 7)’s resource-
flow simulation continues at rg, (7, 1) in reverse direction.
Hence, C4 becomes a member of (Ra,T).

In the meantime, (R3,7) looks for an agent whose roles
satisfy Equation 2 and asks R to join the coalition. Subse-
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Table IV
INFORMATION USED FOR RECONFIGURATION
[ Information | Elements |

(Ra, T) {C2, R, R3,C4, Ry}
CA {R2, R3}
EA {C2,C4}
RFA 4
CTF [0, E I
TFR [M,E]; . g
CNd {M7 E7 L}
Cav {B,E,L,M}

: A

v H

[B]

Figure 6. Since C3 is broken, C4 assumes the role which transports
resources from Rz to R3

quently, Ry wants to recruit Rg, but it notices the clash. As
a result, the coalitions are merged as shown in Section III-B;
(R3, T) is integrated in (Ro, T).

Now, as CTF stays unchanged, the coalition contains
all agents that are involved in processing CTF'. The sets
Cngand Cy, are {M,E,L} and {B, E, L, M}. As aresult,
Equation 1 is satisfied.

The reconfiguration proceeds as outlined in Section III-A.
In this case, the leader selects an agent combination which
defines that TFR = [M, E]| g, is the task fragment being
reconfigured. As a consequence, 7y equals rg,(7,1) and
r; equals rg,(7,1). Thus, CA is {R2,R3} and EA is
{C5,C4}. Although R, is a member of (Ro,T), it is not
included in the sets CA, FA, or RF A, which means that
Ry4’s role allocation is not altered during reconfiguration.
Table IV shows a part of the leader’s knowledge and Figure 6
depicts the reconfigured system.

The next two sections describe in which context the algo-
rithm is implemented (Section IV) and evaluate its qualities
with respect to completeness, correctness, and scalability
(Section V).

IV. IMPLEMENTATION

The generic concepts of the ODP are implemented in the
ODP Runtime Environment (ORE) [5] using the multi-agent
system Jadex [6]. The ORE distinguishes between two types
of Jadex agents: base agents that provide the functionality
to process resources and to establish the resource-flow, and
reconfiguration agents that implement the self-organization



mechanism as, for example, the presented coalition forma-
tion. Each base agent continuously monitors its state and
local constraints which must hold for an overall correct sys-
tem behavior. Reconfiguration agents are created whenever a
reconfiguration is necessary, triggered by their base agents or
another reconfiguration agent, and communicate with base
agents through a clearly defined interface.

Currently, the algorithm does not calculate the new roles
itself. It utilizes a constraint solver such as Alloy [7] or
Kodkod [8] to determine new roles for a specific task
fragment. For this purpose, the task fragment to reconfigure
as well as the agent sets C'A, FA, and RFA are used
as input for the calculation. Once the constraint solver’s
calculation is completed, the coalition formation algorithm
combines the reconfigured and untouched roles to a new
role allocation. Subsequently, the roles are distributed to the
coalition members.

V. DISCUSSION

This section analyses the different qualities of the coali-
tion formation algorithm regarding completeness, correct-
ness, and scalability.

A. Completeness

As it would be the case for every algorithm dealing with
local knowledge, the coalition formation algorithm is not
complete because there can be a global solution that cannot
be found locally. However, the following paragraphs specify
situations in which the algorithm comes up with a solution.

Let R be the binary I/O-relation on the set of agents in
the system:

2Ry : &y exinputsVy € z.outputsVe =y

Further, let R* be the reflexive transitive closure of R and
x the leader of a coalition that reconfigures a task 7. Then
the coalition formation algorithm always finds an existing
solution if there is a set of agents S that is able to reconfigure
a sufficiently large task fragment 7, of 7, where 7, equals
S’s CTF:

S={y|zR"y}

That is because coalitions grow over time by utilizing I/O-
relations and, eventually, TF'R equals 7. Consequently, in
the worst case, the coalition equals the Grand Coalition [9],
which contains every agent in the system, and reconfigures
a task fragment 7y = 7 that covers the whole task.

In case there is no such set S because of unfavorable
I/O-relations (i.e., « cannot recruit additional agents that are
necessary for reconfiguration), define the agent set S’ that
is able to reconfigure a sufficiently large task fragment 7
of 7 and S’ as

S'={y| zR*ynz €L},

where L is a set of agents. Then the algorithm comes up with
a solution if 2’s coalition is merged with other coalitions
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being led by agents that form the set L. This can happen
if z’s coalition has no input or output to an agent outside
the coalition, but coalitions that are led by agents contained
in L do have inputs or outputs to members of x’s coalition
and, furthermore, try to recruit some of these agents.

The statement holds as a coalition that is not able to com-
plete reconfiguration waits for clashes with other coalitions.

Otherwise, reconfiguration fails. For example, this can be
the case if at the time of reconfiguration the I/O-graph is
disconnected, i.e., it is divided into two or more disconnected
subgraphs G; and if a reconfiguration, which takes place in
subgraph G, needs an agent of subgraph G}, with j # k.

B. Correctness and Complexity

The coalition formation algorithm is developed in the
context of the SAVE ORCA project. The main goal of this
project is to give correctness guarantees about the system’s
behavior despite self-organization mechanisms. As stated
in Section IV, currently, a coalition utilizes a constraint
solver to generate new roles that fulfill the coalition’s T'F'R.
Under the assumption that a system was in a consistent state
before a failure occurred, that there are no further failures
in the non-reconfigured part of the system, and that the
constraint solver works correctly, it can be proved that a
global consistent state is restored if invariants are restored
locally within the coalition. That is because the coalition is
clearly separated from the rest of the system by edge agents,
the reconfiguration of the coalition is assumed to be correct,
the configuration of the rest of the system is not touched,
and the resource-flow is re-established by the use of edge
agents.

The algorithm is very complex since for a constant set
of coalition members, in the worst case, it has to check
the resource-flow on all possible combinations in which the
coalition members can apply the capabilities listed in the
coalition’s CTF. That is why the algorithm tries to keep
the coalition as well as CT'F small. However, a typical self-
organizing resource-flow system provides sufficient degrees
of freedom in the form of redundant agents, capabilities, and
alternative resource-flows, thus enabling various “valid sys-
tem configurations”. As Section V-C shows, the algorithm’s
behavior on such a system is promising, especially as it is
restricted to local knowledge.

C. Scalability

In this section, the coalition formation algorithm is em-
pirically evaluated. All tests were performed on randomly
generated systems in the ORE. The first part of this section
shows the connection between redundancy and reconfigu-
ration properties, such as coalition size and runtime®. The
second part exposes the algorithm’s behavior in a situation

2Runtime measurements were restricted to coalition formation and there-
fore did not include the runtime of the constraint solver.



Table V
REDUNDANCY LEVELS FOR SYSTEMS OF SIZE 24

[ Level | #caps/agent | #ins/agent = #outs/agent |
very low 2 3
low 4 6
medium 6 9
high 8 2
very high 12 18

in which a system is enlarged without changing the number
of capabilities, inputs, and outputs per agent.

In order to figure out how redundancy influences the
performance of the algorithm, we observed the algorithm’s
behavior on systems of equal size, i.e., they contained the
same number of agents but varying redundancy. Therefore,
we randomly generated ten systems. Each system contained
24 agents. Initially, each agent applied one capability within
a task of length 24. There were two systems for each of
the five redundancy levels that are listed in Table V. The
redundancy levels define different degrees of redundancy in
a system of size 24, for example, redundancy level medium
states that each agent had 6 different capabilities (caps),
9 inputs (ins), and 9 outputs (outs). Additionally, the
number of agents having a certain capability equaled the
number of capabilities per agent. Thus, for medium re-
dundancy level, each capability was assigned to 6 agents.
Furthermore, whenever an agent A; contained an agent A; in
its outputs/inputs, A; was contained in A;’s inputs/outputs.
For each redundancy level, we measured average runtime,
coalition size, and number of reconfigured agents that were
necessary to complete reconfiguration due to a broken capa-
bility of an arbitrary agent. Coalition size may differ from
the number of reconfigured agents since a coalition may
contain agents that are not useful for reconfiguration.

As can be seen in Diagram 7, in general and unsur-
prisingly, the coalition formation algorithm benefits from
increasing redundancy. As the graphs show, it is particularly
advantageous to increase redundancy if it is rare. Further-
more, the runtime curve reveals that runtime is more or
less inversely proportional to the level of redundancy. Addi-
tionally, the number of reconfigured agents approaches the
number of coalition members with increasing redundancy.
These numbers almost coincide at very high redundancy
level. The reason is that the higher redundancy, the more
likely a coalition recruits agents suitable for reconfiguration.
Further, it can be noticed that coalition size approximates 4
at very high redundancy level. Regarding the fact that nearly
every coalition that is initiated due to a broken capability
has to have a minimum size of 4 (two core and edge
agents), the algorithm forms almost minimum coalition
sizes. Consequently, there is no need to increase redundancy
further since coalition formation and runtime would not
behave significantly better.

The second part of the tests was performed on six systems,
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Figure 7. Reconfiguration of systems consisting of 24 agents for different
redundancy levels
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each with redundancy level low of Table V. The systems
contained either 8, 16, or 24 agents. There were two systems
for each system size. The tests were performed in the same
manner as for Diagram 7.

Diagram 8 demonstrates that the coalition formation al-
gorithm is able to reconfigure large systems in acceptable
time in comparison to reconfiguration runtime for smaller
systems, even if the redundancy level is left unchanged and
therefore low. However, the runtime curve shows that self-
organizing systems consisting of more than 24 agents should
feature more flexibility, i.e., redundancy. The diagram also
illustrates that coalition size and number of reconfigured
agents increases with the size of the system if the number of
capabilities, inputs, and outputs per agent stays constant. The
larger such a system, the more the number of reconfigured
agents differs from the actual size of the coalition. As above,
that is because the probability of recruiting unsuitable agents
increases with larger systems.

VI. RELATED WORK

There has been much work in the field of coalition for-
mation algorithms in conjunction with multi-agent systems,



particularly for solving the set covering, the set partition-
ing [9], or the coalition generation problem [10], where the
goal is to find suitable coalitions whose members cooperate
in the performance of a set of tasks.

[10] describes a coalition as a goal-directed and short-
lived organization that internally coordinates its activities
in order to achieve the coalition’s goals. Additionally, the
structure within each coalition is described as flat, optionally
featuring a leader that represents the coalition. These char-
acteristics pretty well match the properties of the coalitions
which are presented in this paper. However, our coalitions
are used for reconfiguration and therefore the typical activi-
ties of the coalition formation process, which can be found
in [10], as coalition value calculation, coalition structure
generation, and pay-off distribution do not take place here.

In [11], multiple agents with simple skills can form
coalitions to provide complex skills in a self-organizing
evolvable assembly system environment. If a component
fails or the task changes, coalitions are formed and re-
arranged with the help of a so-called ontology agent. This
agent holds information about all registered agents which
includes information about the agents’ skills. Thus, the coali-
tion formation process is not restricted to local knowledge.

Coalition formation in the context of service composition
is presented in [12]. The coalition formation process is
simplified by using a blackboard architecture that provides
a common information space in the form of a blackboard.

By contrast, our algorithm uses completely local knowl-
edge which is possible by utilizing information extracted
from the underlying system structure.

A decentralized coordination mechanism for self-organ-
izing, anticipatory vehicle routing is proposed in [13]. How-
ever, the system architecture differs from the one used by
the coalition formation algorithm as it features a distributed
software entity that reflects the real environment and can be
explored by software agents on behalf of others.

[14] introduces a design pattern for the engineering of
self-organizing emergent systems whose decentralized coor-
dination is based on digital infochemicals. In such systems,
agents emit infochemicals into the environment in which
they diffuse to other locations and thus enable exchange of
information.

The ideas proposed in [13], [14] are also decentralized
self-organization mechanisms which make use of the envi-
ronment as communication medium. The main difference to
the algorithm given here is that these mechanisms run per-
manently to coordinate the systems’ components, whereas
the coalition formation is only used when deficient parts of
the whole system need to be reconfigured.

An algorithm for automatic configuration of applications
in the domain of pervasive computing is shown [15]. These
are applications that consist of multiple components running
on heterogeneous, often resource-limited, specialized, or
mobile devices. Each component has structural and resource

30

requirements that specify valid compositions of components
in terms of functionalities and local resource requirements of
a component’s instantiation. The approach for finding valid
configurations is based on Distributed Constraint Satisfac-
tion and, therefore, translates requirements into constraints.
More precisely, it uses an algorithm for Asynchronous Back-
tracking presented in [16] as its basis. Because pervasive
systems are highly dynamic, the algorithm is able to deal
with fluctuations that occur during the execution of the
algorithm, e.g., situations in which resources or devices
become unavailable. However, the algorithm is currently not
capable of reconfiguring local parts of a configuration if a
failure is detected during the execution of an application. In
contrast to the algorithm presented in this paper, it has to
recalculate a complete configuration.

[17] presents a distributed algorithm for generic role as-
signment in wireless sensor networks. Each sensor node has
a local cache table that contains information the algorithm
needs for the assignment of roles to nodes. This includes
information about properties and roles of the corresponding
sensor node as well as of its neighbors. Furthermore, each
sensor node holds a role specification that defines roles
and rules for how to assign roles to sensor nodes. The
algorithm runs on each sensor node and uses information
from the node’s cache table and role specification. Because
information available at sensor nodes is not restricted to
local knowledge, whenever a relevant property changes, a
sensor node informs its neighbors about this change by
broadcasting update messages. A sensor node that receives
an update message determines its role and, if necessary,
forwards the message to other sensor nodes. Unlike the
coalition formation algorithm, which is triggered in case
of an invalid role allocation and which guarantees the
assignment of valid role allocations, the algorithm in [17] is
continuously executed and tolerates invalid role assignments.

Another completely decentralized and ODP-based recon-
figuration mechanism is introduced in [18], where reconfigu-
ration propagates through the system like a wave until a new
role allocation is found. This mechanism differs from coali-
tion formation in that reconfiguration is done by “swapping”
roles between the agents until a new valid configuration is
found without forming groups or gathering local knowledge.
However, until now, pending points are reconfiguration due
to broken inputs or outputs and the breakdown of an entire
agent. This approach will be compared to the coalition
formation algorithm in more detail in a forthcoming paper.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced a coalition formation algorithm as
a means of decentralized reconfiguration of self-organizing
resource-flow systems. In the course of reconfiguration, the
algorithm is entirely restricted to local knowledge. The dis-
cussion in Section V showed that the algorithm scales very
well in systems which are prepared for self-organization,



that is, which have a medium degree of redundancy in
relation to their system size. The algorithm combined with
the techniques developed in the project SAVE ORCA, in par-
ticular the runtime environment, enables self-reconfiguration
in self-organizing resource-flow systems with a guaranteed
correct behavior. Furthermore, the principle of this algo-
rithm, i.e., being able to cope with local knowledge by
making use of domain knowledge and the topology of the
system that is to be reconfigured, is applicable to other
system classes, too.

Future work includes a further improved version of the
coalition formation algorithm. More precisely, it will be
able to determine new role allocations itself, instead of
relying on a constraint solver. In this scenario, a result
checker will validate the correctness of the results produced
by the coalition formation algorithm so that the behavioral
guarantees still hold. Scalability is improved due to reducing
the solution space and therefore overcoming the limitations
of the constraint solver. In addition, the future version of
the algorithm provides potential for optimizing the role
allocation, given that a constraint solver only calculates one
correct, but not always optimal, solution.
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