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Abstract—Organic Computing tries to tackle the rising com-
plexity of systems by developing mechanisms and techniques that
allow a system to self-organize and possess life-like behavior.
The introduction of self-x properties also brings uncertainty and
makes the systems unpredictable. Therefore, these systems are
hardly used in safety-critical domains and their acceptance is
low. If those systems should also profit from the benefits of self-x
properties, behavioral guarantees must be provided. In this paper,
a genetic algorithm for the self-optimization of resource-flow
systems is presented. Further, its integration into an architecture
which allows to provide behavioral guarantees is shown.

I. INTRODUCTION

During the last decades the complexity and requirements of

industrial applications, like automated production processes,

are steadily increasing. Nevertheless, many technical systems

are tailored very rigidly to the originally intended behavior

and the specific environment they will work in. If not foreseen

during design time, these systems can hardly react to failures

and changes in the environment. Organic Computing (OC) [1]

is trying to tackle these challenging aspects. The idea is to

build systems that can autonomously adapt to a changing

environment and optimize themselves to the current situation

at runtime. The benefits of those systems are that they can

compensate failures or provide a better performance compared

to conventional systems. These abilities are often referred to as

self-organizing, self-optimizing or self-x properties in general.

However, especially in safety-critical domains, as, for ex-

ample, production automation and avionics, one wants to have

behavioral guarantees, despite uncertainty of self-organization.

Here, the challenge is to allow the system to adapt itself, but

still to be able to guarantee correct behavior.

A large class of industrial systems is the class of resource-

flow systems. In resource-flow systems, agents handle re-

sources by receiving them from another agent, processing them

according to a given task, and handing them over to another

agent that performs further steps of the task. An instance of

this are flexible manufacturing systems or logistic systems. A

self-organizing resource-flow system is a system that finds the

routes and assigns the different production steps on its own and

further is able to self-organize in case of a failure or changing

requirements to continue working.

Previous work included design and construction of self-

organizing resource-flow systems [2]. A separation of self-x

and functional behavior was proposed. This allows to specify

behavioral corridors by constraints and to give guarantees. The

problem that should be solved by self-organization was there-

fore specified as a constraint satisfaction problem (CSP) [3].

It constrains the possible configurations of the system to

correct ones, which lead to the wanted behavior. A constraint

solver [4] was used to calculate new valid configurations [5].

This approach allows to give guarantees as only valid config-

urations are forwarded to the functional system. Nevertheless,

in a CSP, all solutions are treated equally, and the solver just

returns one solution which fulfills the constraints no matter

how good it is. But usually some configurations are better than

others. They need less resources or have a higher performance,

for example. Therefore, it is interesting to find not only one

but an optimal or at least a “good” configuration. Further,

constraint solvers are usually slow, due to the fact that they are

systematically and exhaustively exploring the solution space.

In this paper, a genetic algorithm is presented which tackles

these issues and allows to find optimal solutions.

The paper is structured as follows: Sect. II gives a short

overview of the class of self-organizing resource-flow systems,

their design, and their ability to self-optimize. Moreover, a

short introduction to genetic algorithms is given. Afterwards,

Sect. III presents the model of the genetic algorithm that

is used to find new configurations. In Sect. IV the genetic

algorithm is evaluated and some results are presented. Finally,

Sect. V concludes the paper.

II. SELF-OPTIMIZING RESOURCE-FLOW SYSTEMS

In this section, an introduction to the class of self-organizing

resource-flow systems is given. First, an architectural view on

these systems and an extension is presented, which allows the

use of heuristic or even incorrect self-reconfiguration algo-

rithms. The components of a resource-flow system are shortly

described with the help of a design pattern afterwards. Then

the reconfiguration and optimization problem is illustrated, and

the use of genetic algorithms for an optimized reconfiguration

is explained.

A. Architecture

Most OC systems, just as the class of resource-flow systems

presented here, consist of two parts (see Fig. 1). One functional

part providing the basic functionality, and another part which

incorporates the organic intelligence, often in form of a

observer/controller (o/c) component [6]. While the functional

part of the system is working as a traditional system, the o/c



part is responsible for monitoring the system and, in case of

a failure, for reconfiguring the system in such a way that it

can continue working. This view allows the separation of the

self-x behavior and the functional behavior which has several

advantages for the analysis and verification of the system as

now both parts can be treated separately.

Fig. 1. Architecture of Organic Computing Systems

The idea is to specify a valid system configuration by

constraints on the system variables of the functional part.

Configurations not violating the constraints imply the intended

behavior. This allows the definition of a behavioral corridor

without the need to exactly define how the system should

look like. The o/c is then monitoring these constraints, and,

in case of a violation, it is reconfiguring the system such that

the constraints hold again. This approach is called the Restore
Invariant Approach, and is described in detail in [7].

To ensure correct behavior of the system, one must ensure

that the result of the self-reconfiguration algorithm is correct.

Nevertheless, in OC systems often genetic algorithms [8],

learning classifier systems [9], or other learning techniques

(e.g., neural networks) are used for realization of self-x

features. Those do not necessarily return valid and correct

results. Therefore, we added a result checker (RC) component,

which is integrated into the controller. Its input is the result

of the self-x algorithm, i.e., the configuration the o/c wants

to forward to the system. The RC then checks if this is in-

line with the defined constraints, and in case it is, relays it

to the system. In case it is not, the configuration is rejected.

This allows the use of arbitrary self-x mechanisms, even

incorrect ones. Another advantage is that only the RC has

to be verified to guarantee correctness, which is usually less

complex compared to the verification of the complete self-x

algorithm.

B. Organic Design Pattern

The components of resource-flow systems can be described

by a pattern called Organic Design Pattern (ODP) as depicted

in Fig. 2.

Agents are the main components in these systems, pro-

cessing resources according to a given task. Every agent

has several capabilities, divided into producing, processing,

and consuming capabilities (produce, process, and consume).

Consequently, the task is a sequence of capabilities beginning

with a producing capability and ending with a consuming

capability. Furthermore, the agent knows a couple of agents
it can interact with and hand over resources. This is encap-

sulated in the inputs and outputs relation. The role concept

is introduced to define correct resource-flows through the

system. This means an agent has roles allocated telling it from

which agent it receives the resource (precondition/port), which

capabilities to apply, and then to which agent to hand over

the resource (postcondition/port). Thus, the roles establish the

connections between the agents and the combination of all

roles forms the resource-flow. For more details on software

engineering and modeling of self-organizing resource-flow

systems and the design pattern see [10].

C. Self-Optimization

The OCL constraints in Fig. 2 specify valid allocations

of roles to agents which leads to correct system behavior.

They define the behavioral corridor. Each role allocation which

fulfills the constraints is a valid one and leads to correct

processing of resources. Typical constraints for the class of

resource-flow systems are, for example, “only capabilities are

assigned via roles that are available at that agent” or “all

needed capabilities (to fulfill the task) must be at least assigned

once”. More constraints can be found in [5], where the recon-

figuration problem is formalized as a constraint satisfaction

problem (CSP), which then can be solved by a constraint

solver. Nevertheless, standard constraint solvers usually return

the first solution they found, no matter how good it is as all

solutions are equally good. This is sufficient for functional

correctness, but usually one wants to find optimal solutions,

which basically involves comparing all solutions of the CSP

according to a given cost function f . In resource-flow systems,

for instance, the o/c should reconfigure in a way that the load is

balanced between the agents and the throughput is maximized,

i.e., that a minimum of roles are assigned to the agents, and

a minimum of capabilities need to be applied within one role.

This leads to a constraint satisfaction optimization problem

(CSOP) as defined by Tsang in [3]. A CSOP is basically a

CSP together with an optimization function f which maps

every solution to a numerical value. The task is to find a

solution with the optimal f -value. Two important techniques

for tackling CSOPs are branch and bound algorithms [11]

which use heuristics to prune the search space, and genetic

algorithms with a stochastic approach [12]. The latter one is

used here for the implementation of the self-x algorithm in the

o/c to allow an optimized reconfiguration of the resource-flow

system.

D. Genetic Algorithms

Before the genetic algorithm for self-organizing resource-

flow systems is explained in detail, this section gives a short

overview of genetic algorithms. For more details see, for

example, [8].



Fig. 2. Components of Resource-Flow Systems

Genetic algorithms are used to find solutions in search or

optimization problems. The aim of genetic algorithms is to

find a solution for the given problem. Genetic algorithms are

inspired by natural evolution and try to imitate it.
The basic concept of a genetic algorithm are the individuals.

An individual represents a solution for the given problem,

and several individuals form the population of a generation.

Each individual has a fitness, characterizing how good the

individual solves the problem. The fitter the individual, the

better the solution. The individual’s fitness is crucial for its

survival and reproduction, since fitter individuals are more

likely to be chosen to breed new offspring (“survival of the

fittest”). After offspring was created in the crossover, every

offspring is mutated to a certain mutation probability. While

the offspring forms the population of the next generation,

often supplemented by (the best) individuals of the former

generation, the former generation “dies”.
This whole process is repeated several times. Usually, the

algorithm terminates if it reached a predefined number of

generations or found a solution that is good enough.

III. MODEL OF THE GENETIC ALGORITHM

This section shows the application of a genetic algorithm to

the self-organizing resource-flow systems presented in Sect. II

to allow self-optimization for these systems. After the system

monitors a violation of a constraint and the task cannot be

fulfilled anymore, it triggers a reconfiguration to restore the

system’s invariants again. In order to be able to use the genetic

algorithm to solve the reconfiguration problem, the system has

to tell the algorithm the current system state, i.e., the current

task, all agents, and every agent’s inputs, outputs, and available

capabilities.
There are two possibilities for a genetic algorithm to fill

its population: either it can only allow correct solutions and

throws away all incorrect solutions, or it can also allow

incorrect solutions. Our algorithm allows incorrect solutions

in the population, because a concentration on correct solutions

would immensely restrict the search space of the algorithm.

Furthermore, a lot of work would have to be done in designing

crossover, mutation, etc., which then would rather be a sys-

tematic manipulation than a random mutation. When allowing

incorrect solutions in the population, they have to be less fit

than correct solutions, of course.

Because the genetic algorithm’s operations have the aim to

improve incorrect solutions, they are mostly not maintaining

the correctness of a solution. However, correct solutions are

not lost, since the best solutions are stored (more details later).

Next, we want to present the most important parts and

operations in detail.

A. Individuals

Each individual of a genetic algorithm represents a solution

for the search problem, here the reconfiguration problem. Most

of the system’s components are already fix and thus are no

solution of the problem and not usable as individuals. These

fix components are the task and the agents with their inputs,

outputs, and available capabilities. Not being able to change

the task and the agents, the change of single roles or the

entire assignment of roles to agents are the only degrees of

freedom we have. Choosing a single role as individual is

rather awkward, since it is no solution for the reconfiguration

problem and the fitness of a single role cannot be judged:

a single role might be correct itself and might not violate

a role-bounded constraint, but could be incorrect within the

interaction of all other roles in the system, which would violate

constraints that monitor the interaction of roles. Thus, only the

assignment of roles to all agents, a role allocation, comes into

consideration as individual of our algorithm. A role allocation

is a list of agents with each agent knowing its inputs, outputs,

capabilities, and its allocated roles. The aim of the algorithm

is to find a correct role allocation, i.e., a correct allocation of

roles to each agent in the system that fulfills all constraints

and satisfies the system’s task.

Let us introduce a formal definition of role allocations. Let

RA be the set of all possible role allocations. Then the role

allocation ra ∈ RA is defined as follows:

ra := (raa1 , . . . , raan)

with being raai
the agent ai (i ∈ {1, . . . , n}) in the role

allocation ra, who has knowledge about its assigned roles

r1, . . . , rj :

raai
:= (ai, {r1, . . . , rj})



Each role allocation has the same ordered list of agents

a1, . . . , an.

A role has several attributes (see Sect. II-B):

r := ( (task, state, port),
capabilitiesToApply,
(task′, state′, port′) )

The first tuple is the role’s precondition, the second tuple is

the role’s postcondition. A condition always contains the task,

the resource’s current state, and the port, i.e., where to get the

resource from or where to give the resource to next.

Every role knows about the system’s task, task = task′ =
[t1, . . . , tz]

1. The role’s precondition defines where the re-

source comes from (port) and what state it then has, denoted

by state = [s1, . . . , sp], 0 ≤ p ≤ z. If p = 0, the state would

be empty. Furthermore, a role determines which capabilities

have to be applied to the given resource. This is done in

capabilitiesToApply = [c1, . . . , cq], 0 ≤ q ≤ z. If q = 0,

no capability is applied. The postcondition’s state informs

about the resource’s state after the application of the role’s

capabilities to be applied, i.e., state′ = [s1, . . . , sp, c1, . . . , cq],
0 ≤ p + q ≤ z. Finally, the postcondition tells where the

resource is handed next (port′).
In a role that violates no role-bounded constraints state is

a prefix of task (state � task), as well as state′ � task′.
Moreover, state + capabilitiesToApply = state′, with “+”

meaning the concatenation of lists.

B. Fitness of Individuals

In order to measure the quality of the algorithm’s individ-

uals, i.e., the quality of its found solutions for the recon-

figuration problem, we have to introduce a fitness function

that assigns a fitness value to each individual – the fitter an

individual the better the solution. The fitness of an individual

directly influences its chance to reproduce and survive, as can

be seen later on in Sect. III-E.

In [3], E. Tsang suggests to tackle the application of genetic

algorithms to tightly constrained CSOPs, as is the recon-

figuration problem of resource-flow systems, with a penalty

function. A penalty function assigns a penalty, i.e., a low

fitness value, to individuals that violate constraints. Our fitness

function uses the same principle.

When using a penalty function, there exist several alter-

natives to punish an incorrect role allocation. Either a role

allocation that violates constraints is punished once, no matter

how many constraints are violated; or it gets a punishment for

every constraint that is violated by the role allocation, as used

here. This option allows us to distinguish between really bad

solutions that violate a lot of constraints, and almost correct

solutions that violate only a few constraints. It is even possible

for us (and actually realized that way) to use different heights

of penalties for every constraint.

But we do not only want to find correct solutions; our aim

is to find optimal solutions. Thus, correct but not optimal role

1Here, [. . . , . . .] is to be understood as the notation of an ordered list of
capabilities.

allocations have to be slightly punished, too. In our case, an

optimal role allocation is a role allocation, in which every

agent does not have more than one allocated role and does

not apply more than one capability in a role. A suboptimal

role allocation slows down the processing of a resource, e.g.,

a role allocation with an agent that applies more than one

capability. A role allocation with an agent that applies more

than one capability takes more time than a load-balanced role

allocation in which every agent applies one or no capability,

since changing the agent’s capabilities takes a lot of time. The

penalty, however, must not be that hard like a violation of a

constraint, so that correct but suboptimal role allocations have

a better fitness than incorrect role allocations. Consequently,

optimal (thus correct) role allocations do not get any penalties

and, therefore, have the best fitness.

C. Crossover

In the crossover, offspring role allocations are bred by parent

role allocations. Here, we use a simple one-point-crossover
that randomly chooses a cutting point, divides each of the two

parent role allocations in two parts at the (same) cutting point,

and recombines the front part of the one parent with the rear

part of the other parent and vice versa. This process is shown

in Fig. 3, where two parent role allocations rak and raj (left

side) are divided between agent ai and agent ai+1, and are

recombined to two new offspring role allocations (right side).

Fig. 3. Crossover of two Role Allocations

D. Mutation of Individuals

After crossover, the offspring is mutated, i.e., every role in

a role allocation is mutated with a certain probability. This

implies that every role in a role allocation might be mutated,

but possibly no role in a role allocation is mutated, too.

As already explained, mutation modifies roles. This could

be a single part of a role that is mutated, like a port, or

the whole role. We have invented several mutation rules that

mutate different parts of a role. If a role has to be mutated,

one of the rules is chosen randomly and applied to the role.

The rules are weighted differently, i.e., some rules are more

likely to be chosen than other rules.

Each rule has the motivation to improve either the role itself

or the whole role allocation. Thus, an incorrect role allocation

might get repaired by applying a mutation rule. However, a

role allocation might of course get worse after mutation took

place. In the following, all mutation rules are introduced.



1) Mutate Ports: The first mutation rule we want to explain

is the mutation of ports. As the name already suggests,

the ports of a role are mutated, i.e., the information from

what agent the resource comes from, and where it is handed

afterwards. Previously, it is randomly decided whether to

mutate only one of the two ports (and which one) or to

mutate both ports. However, the assignment of new ports is

not totally loose; actually, the ports are randomly chosen out

of the agent’s set of inputs or outputs, so that no “wrong” port

is assigned that does not match the agent’s inputs or outputs.

The idea of this rule is the possible improvement in the

role allocation’s resource-flow. Ports that did not fit together

previously, e.g., agent ai wanted to give the resource to agent

aj , but aj expected to get the resource from another agent ak,

could match after the application of this mutation rule.
2) Delete Capability: This rule deletes the last capability

of the capabilities to be applied and the last capability of the

postcondition’s state. If no capability is applied, no mutation

is done.

So suboptimal roles, in which the agent has to apply two

capabilities, get better, because the agent only has to apply

one capability afterwards. The whole role allocation could also

improve, since a task’s step that is applied twice by mistake

then possibly is only applied once.

The application of this rule is shown below:

capabilitiesToApply = [c1, . . . , cq]
mutation−→

capabilitiesToApply = [c1, . . . , cq−1],

state′ = [s1, . . . , sp, c1, . . . , cq]
mutation−→

state′ = [s1, . . . , sp, c1, . . . , cq−1]

As you can see, the last capability cq is deleted from

capabilitiesToApply and from state′.
3) Left Shift Capability: If this mutation rule is chosen, the

first capability of the capabilities to be applied is moved to the

end of the precondition’s state. Again, no mutation is done if

no capability is applied.

Just like in the rule above, this rule helps suboptimal roles

getting better by reducing the applied capabilities by one, and

helps incorrect role allocations getting correct.

state = [s1, . . . , sp]
mutation−→

state = [s1, . . . , sp, c1],

capabilitiesToApply = [c1, . . . , cq]
mutation−→

capabilitiesToApply = [c2, . . . , cq]

The above example presents the rule of left shifting a capabil-

ity. The first element of capabilitiesToApply, c1, is removed

and put at the end of state.
4) Right Shift Capability: Analogously to the rule above,

the last capability of the precondition’s state can be shifted to

the first position of the capabilities to be applied.

By right shifting a capability from the precondition’s state

to the capabilities to be applied, roles that apply no capability

improve, because they apply one capability subsequently.

Moreover, if a task’s step is missing in the role allocation,

the application of this rule might solve this problem.

The rule is demonstrated in the following example, in

which sp, the last element of state, is moved to the front

of capabilitiesToApply:

state = [s1, . . . , sp]
mutation−→

state = [s1, . . . , sp−1],

capabilitiesToApply = [c1, . . . , cq]
mutation−→

capabilitiesToApply = [sp, c1, . . . , cq],

5) Add parts of the Task: In addition to deleting or shifting

capabilities, parts of the task could be added to the end of

the capabilities to be applied and the postcondition’s state.

More precisely, the first task’s step that is not contained in the

postcondition’s state is added.

As before, this rule helps to improve suboptimal roles with

no applying capability by applying one capability afterwards,

and it helps to improve role allocations where a task’s step is

missing.

For t1, . . . , ti−1 ∈ state′ and ti /∈ state′, the following

example shows capabilitiesToApply and state′ before and

after the mutation, when ti was added to both:

capabilitiesToApply = [c1, . . . , cq]
mutation−→

capabilitiesToApply = [c1, . . . , cq, ti],

state′ = [s1, . . . , sp, c1, . . . , cq]
mutation−→

state′ = [s1, . . . , sp, c1, . . . , cq, ti]

6) Mutate whole Role: Mutate whole role replaces the

old role with a completely new generated role that is self-

consistent, i.e., it violates no role-bounded constraint, e.g.,

the resource’s state when it is given to the agent, the applied

capability, and the resource’s state when it is given to the next

agent do not disagree. Moreover, the assigned ports and the

applied capabilities suit the agent’s input, output, and available

capabilities.

The replacement of an old and probably bad role with a

completely new role could improve the role itself and the entire

role allocation.

Let us give a short example:

state = [s1, . . . , sp]
mutation−→

state = [t1, . . . , ti],

capabilitiesToApply = [c1, . . . , cq]
mutation−→

capabilitiesToApply = [ti+1, . . . , tj ],

state′ = [s1, . . . , sp, c1, . . . , cq]
mutation−→

state′ = [t1, . . . , tj ],

where i ≤ j ≤ z. state, capabilitiesToApply, and state′ got

completely replaced such that state � task, state′ � task′,
and state+ capabilitiesToApply = state′.



7) Mutate Resource-Flow: The last rule is the only one that

does not only mutate one single role, but looks at all roles in

the role allocation. It tries to improve the role allocation’s

resource-flow, i.e., the route of the resources in the system.

This is done by going through the list of agents and, for every

agent ai, looking at its postcondition’s port, i.e., the agent aj
where to hand the resource next. Now aj is searched, and its

precondition’s port, i.e., the agent where the resource comes

from, is examined: if the precondition’s port is unequal to ai,
the port is set to ai. Hence, ai gives the resource to aj , and

aj now gets the resource from ai.

E. Other Decisions

This section gives a short overview of other decisions that

had to be made in order to run the genetic algorithm.

1) Initialization: In the initialization, the genetic algorithm

creates the initial population. Thus, the algorithm has to create

several random role allocations. This is done by assigning each

agent one randomly generated role that is self-consistent, like

in the mutation rule “Mutate whole Role”.

As a possible extension in the future, the system’s last

configuration could be added in the starting population, too,

in order to have an already quite good individual to start the

search from at the beginning.

2) Selection: To select parent role allocations for crossover,

we use the common roulette-wheel selection, which selects

individuals directly proportional to their fitness. That means

that a fitter individual is more likely to be selected for

crossover than a less fit individual (“survival of the fittest”).

This increases the algorithm’s chance to improve the quality

of the population. Nevertheless, role allocations with a low

fitness can be selected with a lower probability, too, trying to

avoid a too soon convergence in a wrong direction.

3) Replacement Scheme: The generated offspring and the

best k individuals of the parent generation are the starting

population for the next generation. This replacement scheme

is called elitism. We use it to maintain best solutions, because

the search space is huge. A “proof” can be seen in Sect. IV.

4) Termination: If a termination condition is satisfied, the

algorithm stops and verifies if the solution is correct by

asking the result checker. If so, the solution is returned to

the system subsequently. One termination condition is the

number of generations: the algorithm stops if it has processed

a predefined number of generations. Of course, the algorithm

might not yet have found a correct solution at that time.

Alternatively, the algorithm could terminate at once if it

found a solution that satisfies minimum criteria, i.e., the solu-

tion is correct (but not necessarily optimal). This decreases the

runtime indeed, but – in case of a suboptimal solution – also

avoids the chance to find a better or optimal solution. However,

we abort the algorithm if a solution satisfies minimum criteria,

because our results showed that the ongoing search for a better

solution took too much time, especially in larger systems.

Additionally, the algorithm could be restarted after it has

reached the end and has not yet found a solution. In order

to prevent an endless computation, it may run at most a

predefined number of times.

IV. EVALUATION

In order to evaluate the genetic algorithm, we implemented

it in Java. This section now shows the tests we made to

optimize the algorithm’s parameters, to study the algorithm’s

scalability, and to compare the results with the former used

constraint solver.

A genetic algorithm has numerous possibilities for scaling,

adjusting, and optimizing. Apart from the fact that the algo-

rithm could be implemented with, e.g., other mutation rules

or an n-point-crossover, there exist several parameters that can

be fine-tuned, e.g., the population size, the mutation rate, the

number of generations, the number of elitism elements, or

the crossover probability. Moreover, all mutation rules can be

weighted differently. The fitness function can be modified as

well, for example, by varying and weighting the penalties for

violating constraints.

In the chosen system setting, each agent had the full set of

inputs, outputs, and available capabilities. This means that the

search space had the full size. By constraining the agents’ sets

we would probably get better results, because the search space

gets smaller. Furthermore, in order to see how much time it

takes the algorithm to find a solution if it is not disturbed, it

did not restart after a certain amount of generations, although

this would improve the average runtime, since, in some cases,

it runs in the wrong direction, what takes a lot of time.

First of all, the tests showed that if the algorithm does

not maintain the best individual of the parent generation, it

is not usable. The runtime rises tremendously while the found

solutions get worse. Anyway, the number of individuals that

are taken from the parent to the offspring generation makes not

that big a difference. However, we got slightly better results

when taking three individuals from one generation to the other

instead of one, two, or more than three.

Fig. 4 shows the results for the optimization of the mutation

rate in a system of 17 agents, the standard system size in one

of our case studies. For this purpose, we varied the mutation

rate while the other parameters were kept constant, i.e., the

population size was 50, the algorithm should terminate at the

latest after 50,000 generations, and the three best individuals

were taken from the former generation to the next generation.

For each mutation rate we made 100 tests. The mutation rate

varied from about 1.5 % to 17.5 %.

As can be seen, we got the best results with a mutation rate

around 9-11 %, where the algorithm’s found solutions were in

approximately 90 % of all tests correct and in about 60 % of

all tests optimal.

After finding a good setting for the mutation rate, we

optimized the population size. Again, the system had 17

agents, and all other parameters were kept constant, i.e., the

mutation rate was around 9 %, termination was set to 50,000

generations, and we kept the three best individuals. The pop-

ulation size varied from 50 individuals to 1,000 individuals,

each tested 100 times. The results can be seen in Fig. 5.



Fig. 4. Optimizing the Mutation Rate for 17 Agents

Fig. 5. Optimizing the Population Size for 17 Agents

Increasing the population size continuously improved the

quality of the algorithm’s found solutions. The number of

correct solutions improved from 90 % at 50 individuals to

100 % at 200 individuals, and stayed from then on constant

at 100 %. The number of optimal solutions increased from

about 60 % to 91 % at 750 individuals. A further increase of

the population size did not significantly improve the quality

of the found solutions, but considerably enlarged the runtime.

In our case study, we mostly operate with a system size of

9 or 17 agents. In order to test the algorithm whether it can

also be applied for bigger systems, we made some tests with

different numbers of agents, which should give a rough idea

about scalability. For every system size we made 100 tests

where all parameters were fixed, and measured the number of

optimal and correct solutions, the runtime, and the number of

generations the genetic algorithm had to search. The mutation

rate and the population size were indeed constant for a single

system size, but were different compared to other system sizes,

since, for example, a system with 9 agents has no need for

750 individuals – this only would slow down the algorithm.

However, we have not yet searched for an optimal parameter

set for systems with sizes of 21 and 25 agents, and guessed in

each case a parameter set that should be quite good. With an

optimal parameter set, the algorithm would further improve.

The results are presented in Tab. I.

The table shows that the algorithm found a correct solution

in every case, even in bigger systems, and in most cases

it found an optimal solution. However, there is certainly a

remaining possibility that the algorithm does not find a correct

solution. What cannot be seen in the table is the fact that

the non-optimal solutions in almost every case were nearly

optimal, i.e., only one agent applied two capabilities instead

of one capability. The average runtime is quite low at the

beginning and gets higher with an increasing number of

agents. Since the search space increases immensely with every

additional agent, the average runtime of course rises, too. You

should not be too confused about the quite constant average

number of generations compared to the increase of the average

runtime, as the runtime increases due to the higher number of

agents and individuals.

We also examined whether the algorithm is able to deal

with relatively large systems. For this purpose, we did one test

run with 51 agents, without an optimal parameter setting. The

genetic algorithm found a nearly optimal solution (one agent

applied two capabilities) after less than 5.5 hours, which is

of course too long to be used in a real world application.

Usually, failures occur locally at one agent and, therefore,

not necessarily the whole system needs to be involved for

reconfiguration. Hence, the idea is to localize the failure and

apply the genetic algorithm to a small part of the system, with

fewer agents.

The use of a genetic algorithm tailored to self-organizing

resource-flow systems was a big step forward compared to

the use of a constraint solver. The constraint solver we used

before to reconfigure the system was by far slower, but it

certainly was not optimized for this specific problem domain.

For example, the calculation for a solution in a system with

9 agents took in average about 6 seconds, the calculation

in a system with 13 agents around 75 seconds. In larger

systems with more than 20 agents it even took hours or did

not complete at all.

V. CONCLUSION AND FUTURE WORK

The use of genetic algorithms for solving classical CSOPs is

not new (e.g., [13], [14]). For example, job-shop scheduling

problems are solved with genetic algorithms in many cases

(see [15] and [16]). In the field of Organic Computing systems,

genetic algorithms are often used for implementation of self-

optimization. In [17], evolutionary algorithms and learning

classifier techniques are used to optimize traffic lights and

therefore traffic flow. But usually the optimization problem

is not a CSOP; rather, the genetic algorithm is used to find an

optimal parameter set for the underlying system.

In this paper, we presented a genetic algorithm for the recon-

figuration of safety-critical systems. The used architecture is a

variant of the observer/controller architecture proposed in [6].

As the evaluation shows, the systems must not be excessively

large. Current work is to try to localize the reconfiguration

problem, such that a subset of the agents can reconfigure

without comprising the complete system. This is promising



# Agents Population Size Mutation Rate Optimal Solutions Correct Solutions Avg. # Generations Avg. Runtime

9 75 23.33 % 98 % 100 % 79 0.3 s
13 200 9.33 % 91 % 100 % 201 6.5 s
17 750 9.33 % 91 % 100 % 211 53.7 s
21 1500 9.33 % 83 % 100 % 286 244.4 s
25 3000 9.33 % 77 % 100 % 314 855.7 s

TABLE I
SCALABILITY TEST DATA

as failures occur locally. For reconfiguration, the system must

be in a so-called quiescent state [18], such that no harm occurs

during the reconfiguration. To allow the use in safety-critical

domains, a result checker component was added. In the future,

the result checker could provide valuable feedback for the

genetic algorithm in case of a non-valid solution. It knows

which constraint was violated and that probably allows to draw

conclusions, e.g., about which mutation rules are better than

others.

The genetic algorithm is used for self-optimization of self-

organizing resource-flow systems. It is integrated into the ref-

erence implementation presented in [19]. The reconfiguration

problem can be formulated as a CSP. While standard CSP

solvers only return one solution, not necessarily the best, the

presented algorithm allows to add optimization criteria to the

problem and comes up with a better or even optimal solution

compared to the CSP solver. The results showed that the

algorithm is applicable to these class of systems for solving the

CSOP and finding optimal configurations. Together with the

result checking component it can also be used in safety-critical

domains, where a valid configuration has to be provided.

The next steps are to further optimize the parameters and

improve the convergence and scalability by doing further work

on the mutation rules. Another interesting extension that is

planned is the introduction of coordinates for the agents, which

allows to include distance or other locality criteria in the fitness

function. Further the effect of the use of two-point- or n-point-

crossover could be interesting to investigate. The effect of

different distributions of the capabilities, e.g., sparse or dense

redundancy, as well as the degree of interconnection for the

agents on the convergence and quality is another issue worth

investigation.
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