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Abstract—Organic Computing tries to tackle the rising com-
plexity of systems by developing mechanisms and techniques that
allow a system to self-organize and possess life-like behavior.
The introduction of self-x properties also brings uncertainty and
makes the systems unpredictable. Therefore, these systems are
hardly used in safety-critical domains and their acceptance is
low. If those systems should also profit from the benefits of self-x
properties, behavioral guarantees must be provided. In this paper,
a genetic algorithm for the self-optimization of resource-flow
systems is presented. Further, its integration into an architecture
which allows to provide behavioral guarantees is shown.

I. INTRODUCTION

During the last decades the complexity and requirements of
industrial applications, like automated production processes,
are steadily increasing. Nevertheless, many technical systems
are tailored very rigidly to the originally intended behavior
and the specific environment they will work in. If not foreseen
during design time, these systems can hardly react to failures
and changes in the environment. Organic Computing (OC) [1]
is trying to tackle these challenging aspects. The idea is to
build systems that can autonomously adapt to a changing
environment and optimize themselves to the current situation
at runtime. The benefits of those systems are that they can
compensate failures or provide a better performance compared
to conventional systems. These abilities are often referred to as
self-organizing, self-optimizing or self-x properties in general.

However, especially in safety-critical domains, as, for ex-
ample, production automation and avionics, one wants to have
behavioral guarantees, despite uncertainty of self-organization.
Here, the challenge is to allow the system to adapt itself, but
still to be able to guarantee correct behavior.

A large class of industrial systems is the class of resource-
flow systems. In resource-flow systems, agents handle re-
sources by receiving them from another agent, processing them
according to a given task, and handing them over to another
agent that performs further steps of the task. An instance of
this are flexible manufacturing systems or logistic systems. A
self-organizing resource-flow system is a system that finds the
routes and assigns the different production steps on its own and
further is able to self-organize in case of a failure or changing
requirements to continue working.

Previous work included design and construction of self-
organizing resource-flow systems [2]. A separation of self-x
and functional behavior was proposed. This allows to specify
behavioral corridors by constraints and to give guarantees. The

problem that should be solved by self-organization was there-
fore specified as a constraint satisfaction problem (CSP) [3].
It constrains the possible configurations of the system to
correct ones, which lead to the wanted behavior. A constraint
solver [4] was used to calculate new valid configurations [5].
This approach allows to give guarantees as only valid config-
urations are forwarded to the functional system. Nevertheless,
in a CSP, all solutions are treated equally, and the solver just
returns one solution which fulfills the constraints no matter
how good it is. But usually some configurations are better than
others. They need less resources or have a higher performance,
for example. Therefore, it is interesting to find not only one
but an optimal or at least a “good” configuration. Further,
constraint solvers are usually slow, due to the fact that they are
systematically and exhaustively exploring the solution space.
In this paper, a genetic algorithm is presented which tackles
these issues and allows to find optimal solutions.

The paper is structured as follows: Sect. II gives a short
overview of the class of self-organizing resource-flow systems,
their design, and their ability to self-optimize. Moreover, a
short introduction to genetic algorithms is given. Afterwards,
Sect. III presents the model of the genetic algorithm that
is used to find new configurations. In Sect. IV the genetic
algorithm is evaluated and some results are presented. Finally,
Sect. V concludes the paper.

II. SELF-OPTIMIZING RESOURCE-FLOW SYSTEMS

In this section, an introduction to the class of self-organizing
resource-flow systems is given. First, an architectural view on
these systems and an extension is presented, which allows the
use of heuristic or even incorrect self-reconfiguration algo-
rithms. The components of a resource-flow system are shortly
described with the help of a design pattern afterwards. Then
the reconfiguration and optimization problem is illustrated, and
the use of genetic algorithms for an optimized reconfiguration
is explained.

A. Architecture

Most OC systems, just as the class of resource-flow systems
presented here, consist of two parts (see Fig. 1). One functional
part providing the basic functionality, and another part which
incorporates the organic intelligence, often in form of a
observer/controller (o/c) component [6]. While the functional
part of the system is working as a traditional system, the o/c



part is responsible for monitoring the system and, in case of
a failure, for reconfiguring the system in such a way that it
can continue working. This view allows the separation of the
self-x behavior and the functional behavior which has several
advantages for the analysis and verification of the system as
now both parts can be treated separately.

Observer [ Controller
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Fig. 1. Architecture of Organic Computing Systems

The idea is to specify a valid system configuration by
constraints on the system variables of the functional part.
Configurations not violating the constraints imply the intended
behavior. This allows the definition of a behavioral corridor
without the need to exactly define how the system should
look like. The o/c is then monitoring these constraints, and,
in case of a violation, it is reconfiguring the system such that
the constraints hold again. This approach is called the Restore
Invariant Approach, and is described in detail in [7].

To ensure correct behavior of the system, one must ensure
that the result of the self-reconfiguration algorithm is correct.
Nevertheless, in OC systems often genetic algorithms [8],
learning classifier systems [9], or other learning techniques
(e.g., neural networks) are used for realization of self-x
features. Those do not necessarily return valid and correct
results. Therefore, we added a result checker (RC) component,
which is integrated into the controller. Its input is the result
of the self-x algorithm, i.e., the configuration the o/c wants
to forward to the system. The RC then checks if this is in-
line with the defined constraints, and in case it is, relays it
to the system. In case it is not, the configuration is rejected.
This allows the use of arbitrary self-x mechanisms, even
incorrect ones. Another advantage is that only the RC has
to be verified to guarantee correctness, which is usually less
complex compared to the verification of the complete self-x
algorithm.

B. Organic Design Pattern

The components of resource-flow systems can be described
by a pattern called Organic Design Pattern (ODP) as depicted
in Fig. 2.

Agents are the main components in these systems, pro-
cessing resources according to a given fask. Every agent

has several capabilities, divided into producing, processing,
and consuming capabilities (produce, process, and consume).
Consequently, the task is a sequence of capabilities beginning
with a producing capability and ending with a consuming
capability. Furthermore, the agent knows a couple of agents
it can interact with and hand over resources. This is encap-
sulated in the inputs and outputs relation. The role concept
is introduced to define correct resource-flows through the
system. This means an agent has roles allocated telling it from
which agent it receives the resource (precondition/port), which
capabilities to apply, and then to which agent to hand over
the resource (postcondition/port). Thus, the roles establish the
connections between the agents and the combination of all
roles forms the resource-flow. For more details on software
engineering and modeling of self-organizing resource-flow
systems and the design pattern see [10].

C. Self-Optimization

The OCL constraints in Fig. 2 specify valid allocations
of roles to agents which leads to correct system behavior.
They define the behavioral corridor. Each role allocation which
fulfills the constraints is a valid one and leads to correct
processing of resources. Typical constraints for the class of
resource-flow systems are, for example, “only capabilities are
assigned via roles that are available at that agent” or “all
needed capabilities (to fulfill the task) must be at least assigned
once”. More constraints can be found in [5], where the recon-
figuration problem is formalized as a constraint satisfaction
problem (CSP), which then can be solved by a constraint
solver. Nevertheless, standard constraint solvers usually return
the first solution they found, no matter how good it is as all
solutions are equally good. This is sufficient for functional
correctness, but usually one wants to find optimal solutions,
which basically involves comparing all solutions of the CSP
according to a given cost function f. In resource-flow systems,
for instance, the o/c should reconfigure in a way that the load is
balanced between the agents and the throughput is maximized,
i.e., that a minimum of roles are assigned to the agents, and
a minimum of capabilities need to be applied within one role.
This leads to a constraint satisfaction optimization problem
(CSOP) as defined by Tsang in [3]. A CSOP is basically a
CSP together with an optimization function f which maps
every solution to a numerical value. The task is to find a
solution with the optimal f-value. Two important techniques
for tackling CSOPs are branch and bound algorithms [11]
which use heuristics to prune the search space, and genetic
algorithms with a stochastic approach [12]. The latter one is
used here for the implementation of the self-x algorithm in the
o/c to allow an optimized reconfiguration of the resource-flow
system.

D. Genetic Algorithms

Before the genetic algorithm for self-organizing resource-
flow systems is explained in detail, this section gives a short
overview of genetic algorithms. For more details see, for
example, [8].
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Fig. 2. Components of Resource-Flow Systems

Genetic algorithms are used to find solutions in search or
optimization problems. The aim of genetic algorithms is to
find a solution for the given problem. Genetic algorithms are
inspired by natural evolution and try to imitate it.

The basic concept of a genetic algorithm are the individuals.
An individual represents a solution for the given problem,
and several individuals form the population of a generation.
Each individual has a fitness, characterizing how good the
individual solves the problem. The fitter the individual, the
better the solution. The individual’s fitness is crucial for its
survival and reproduction, since fitter individuals are more
likely to be chosen to breed new offspring (“survival of the
fittest”). After offspring was created in the crossover, every
offspring is mutated to a certain mutation probability. While
the offspring forms the population of the next generation,
often supplemented by (the best) individuals of the former
generation, the former generation “dies”.

This whole process is repeated several times. Usually, the
algorithm terminates if it reached a predefined number of
generations or found a solution that is good enough.

III. MODEL OF THE GENETIC ALGORITHM

This section shows the application of a genetic algorithm to
the self-organizing resource-flow systems presented in Sect. II
to allow self-optimization for these systems. After the system
monitors a violation of a constraint and the task cannot be
fulfilled anymore, it triggers a reconfiguration to restore the
system’s invariants again. In order to be able to use the genetic
algorithm to solve the reconfiguration problem, the system has
to tell the algorithm the current system state, i.e., the current
task, all agents, and every agent’s inputs, outputs, and available
capabilities.

There are two possibilities for a genetic algorithm to fill
its population: either it can only allow correct solutions and
throws away all incorrect solutions, or it can also allow
incorrect solutions. Our algorithm allows incorrect solutions
in the population, because a concentration on correct solutions
would immensely restrict the search space of the algorithm.
Furthermore, a lot of work would have to be done in designing
crossover, mutation, etc., which then would rather be a sys-
tematic manipulation than a random mutation. When allowing

incorrect solutions in the population, they have to be less fit
than correct solutions, of course.

Because the genetic algorithm’s operations have the aim to
improve incorrect solutions, they are mostly not maintaining
the correctness of a solution. However, correct solutions are
not lost, since the best solutions are stored (more details later).

Next, we want to present the most important parts and
operations in detail.

A. Individuals

Each individual of a genetic algorithm represents a solution
for the search problem, here the reconfiguration problem. Most
of the system’s components are already fix and thus are no
solution of the problem and not usable as individuals. These
fix components are the task and the agents with their inputs,
outputs, and available capabilities. Not being able to change
the task and the agents, the change of single roles or the
entire assignment of roles to agents are the only degrees of
freedom we have. Choosing a single role as individual is
rather awkward, since it is no solution for the reconfiguration
problem and the fitness of a single role cannot be judged:
a single role might be correct itself and might not violate
a role-bounded constraint, but could be incorrect within the
interaction of all other roles in the system, which would violate
constraints that monitor the interaction of roles. Thus, only the
assignment of roles to all agents, a role allocation, comes into
consideration as individual of our algorithm. A role allocation
is a list of agents with each agent knowing its inputs, outputs,
capabilities, and its allocated roles. The aim of the algorithm
is to find a correct role allocation, i.e., a correct allocation of
roles to each agent in the system that fulfills all constraints
and satisfies the system’s task.

Let us introduce a formal definition of role allocations. Let
RA be the set of all possible role allocations. Then the role
allocation ra € RA is defined as follows:

ra:= (rag,,...,raq,)

with being ra,, the agent a; (i € {1,...,n}) in the role
allocation ra, who has knowledge about its assigned roles
T1,...,T5:

7))

raq, = (a;, {r,..



Each role allocation has the same ordered list of agents
A1y...,0n.
A role has several attributes (see Sect. 1I-B):

r:= ( (task, state, port),
capabilitiesToApply,
(task’, state’, port’) )

The first tuple is the role’s precondition, the second tuple is
the role’s postcondition. A condition always contains the task,
the resource’s current state, and the port, i.e., where to get the
resource from or where to give the resource to next.

Every role knows about the system’s task, task = task’ =
[t1,...,t.]'. The role’s precondition defines where the re-
source comes from (port) and what state it then has, denoted
by state = [s1,...,5,], 0 < p < z. If p = 0, the state would
be empty. Furthermore, a role determines which capabilities
have to be applied to the given resource. This is done in
capabilitiesToApply = [c1,...,¢q], 0 < ¢ < 2. If ¢ = 0,
no capability is applied. The postcondition’s state informs
about the resource’s state after the application of the role’s
capabilities to be applied, i.e., state’ = [s1,...,5p,C1,...,¢qls
0 < p+ g < z. Finally, the postcondition tells where the
resource is handed next (port’).

In a role that violates no role-bounded constraints state is
a prefix of task (state C task), as well as state’ C task’.
Moreover, state + capabilitiesToApply = state’, with “+”
meaning the concatenation of lists.

B. Fitness of Individuals

In order to measure the quality of the algorithm’s individ-
uvals, i.e., the quality of its found solutions for the recon-
figuration problem, we have to introduce a fitness function
that assigns a fitness value to each individual — the fitter an
individual the better the solution. The fitness of an individual
directly influences its chance to reproduce and survive, as can
be seen later on in Sect. III-E.

In [3], E. Tsang suggests to tackle the application of genetic
algorithms to tightly constrained CSOPs, as is the recon-
figuration problem of resource-flow systems, with a penalty
function. A penalty function assigns a penalty, i.e., a low
fitness value, to individuals that violate constraints. Our fitness
function uses the same principle.

When using a penalty function, there exist several alter-
natives to punish an incorrect role allocation. Either a role
allocation that violates constraints is punished once, no matter
how many constraints are violated; or it gets a punishment for
every constraint that is violated by the role allocation, as used
here. This option allows us to distinguish between really bad
solutions that violate a lot of constraints, and almost correct
solutions that violate only a few constraints. It is even possible
for us (and actually realized that way) to use different heights
of penalties for every constraint.

But we do not only want to find correct solutions; our aim
is to find optimal solutions. Thus, correct but not optimal role

"Here, [...,...] is to be understood as the notation of an ordered list of
capabilities.

allocations have to be slightly punished, too. In our case, an
optimal role allocation is a role allocation, in which every
agent does not have more than one allocated role and does
not apply more than one capability in a role. A suboptimal
role allocation slows down the processing of a resource, e.g.,
a role allocation with an agent that applies more than one
capability. A role allocation with an agent that applies more
than one capability takes more time than a load-balanced role
allocation in which every agent applies one or no capability,
since changing the agent’s capabilities takes a lot of time. The
penalty, however, must not be that hard like a violation of a
constraint, so that correct but suboptimal role allocations have
a better fitness than incorrect role allocations. Consequently,
optimal (thus correct) role allocations do not get any penalties
and, therefore, have the best fitness.

C. Crossover

In the crossover, offspring role allocations are bred by parent
role allocations. Here, we use a simple one-point-crossover
that randomly chooses a cutting point, divides each of the two
parent role allocations in two parts at the (same) cutting point,
and recombines the front part of the one parent with the rear
part of the other parent and vice versa. This process is shown
in Fig. 3, where two parent role allocations ra* and ra’ (left
side) are divided between agent a; and agent a;;;, and are
recombined to two new offspring role allocations (right side).

k k |k k k K | j
raa] raai raaH raan raa] raai raaM raan
_>
ral ral [ral ra) ral ral, [rak rak
a 3 |" iy a, 3 [ Tayf T a,

Fig. 3. Crossover of two Role Allocations

D. Mutation of Individuals

After crossover, the offspring is mutated, i.e., every role in
a role allocation is mutated with a certain probability. This
implies that every role in a role allocation might be mutated,
but possibly no role in a role allocation is mutated, too.

As already explained, mutation modifies roles. This could
be a single part of a role that is mutated, like a port, or
the whole role. We have invented several mutation rules that
mutate different parts of a role. If a role has to be mutated,
one of the rules is chosen randomly and applied to the role.
The rules are weighted differently, i.e., some rules are more
likely to be chosen than other rules.

Each rule has the motivation to improve either the role itself
or the whole role allocation. Thus, an incorrect role allocation
might get repaired by applying a mutation rule. However, a
role allocation might of course get worse after mutation took
place. In the following, all mutation rules are introduced.



1) Mutate Ports: The first mutation rule we want to explain
is the mutation of ports. As the name already suggests,
the ports of a role are mutated, i.e., the information from
what agent the resource comes from, and where it is handed
afterwards. Previously, it is randomly decided whether to
mutate only one of the two ports (and which one) or to
mutate both ports. However, the assignment of new ports is
not totally loose; actually, the ports are randomly chosen out
of the agent’s set of inputs or outputs, so that no “wrong” port
is assigned that does not match the agent’s inputs or outputs.

The idea of this rule is the possible improvement in the
role allocation’s resource-flow. Ports that did not fit together
previously, e.g., agent a; wanted to give the resource to agent
a;, but a; expected to get the resource from another agent ay,
could match after the application of this mutation rule.

2) Delete Capability: This rule deletes the last capability
of the capabilities to be applied and the last capability of the
postcondition’s state. If no capability is applied, no mutation
is done.

So suboptimal roles, in which the agent has to apply two
capabilities, get better, because the agent only has to apply
one capability afterwards. The whole role allocation could also
improve, since a task’s step that is applied twice by mistake
then possibly is only applied once.

The application of this rule is shown below:

capabilitiesToApply = [c1, . .., cq mutation
capabilitiesToApply = [c1, ..., cq—1],
state’ = [s1,...,8p,C1,...,Cql mutation
state’ = [s1,...,8p,Cl,. .y Cq—1]

As you can see, the last capability ¢, is deleted from
capabilitiesToApply and from state’.

3) Left Shift Capability: If this mutation rule is chosen, the
first capability of the capabilities to be applied is moved to the
end of the precondition’s state. Again, no mutation is done if
no capability is applied.

Just like in the rule above, this rule helps suboptimal roles
getting better by reducing the applied capabilities by one, and
helps incorrect role allocations getting correct.

state = [517 o sp] muﬂ)ion
state = [817 ey 5p7c1]’
capabilitiesToApply = [c1, . . ., cq] muﬂon

capabilitiesToApply = [ca, . .., ¢4

The above example presents the rule of left shifting a capabil-
ity. The first element of capabilitiesToApply, c1, is removed
and put at the end of state.

4) Right Shift Capability: Analogously to the rule above,
the last capability of the precondition’s state can be shifted to
the first position of the capabilities to be applied.

By right shifting a capability from the precondition’s state
to the capabilities to be applied, roles that apply no capability
improve, because they apply one capability subsequently.

Moreover, if a task’s step is missing in the role allocation,
the application of this rule might solve this problem.

The rule is demonstrated in the following example, in
which s, the last element of state, is moved to the front
of capabilitiesT oApply:

state = [s1,. .., Sp] mutation
state = [s1,...,8p—1],
capabilitiesToApply = [c1, ..., ¢ mutation

capabilitiesToApply = [sp,c1, ..., Cqls

5) Add parts of the Task: In addition to deleting or shifting
capabilities, parts of the task could be added to the end of
the capabilities to be applied and the postcondition’s state.
More precisely, the first task’s step that is not contained in the
postcondition’s state is added.

As before, this rule helps to improve suboptimal roles with
no applying capability by applying one capability afterwards,
and it helps to improve role allocations where a task’s step is
missing.

For t1,...,t;—1 € state’ and t; ¢ state’, the following
example shows capabilitiesToApply and state’ before and
after the mutation, when ¢; was added to both:

capabilitiesToApply = [c1, ..., ¢q mutation
capabilitiesToApply = [c1, . .., cq, til,
state’ = [s1,...,8p,C1,...,Cql mutation
state’ = [s1,...,8p,C1,. .., Cq,ti]

6) Mutate whole Role: Mutate whole role replaces the
old role with a completely new generated role that is self-
consistent, i.e., it violates no role-bounded constraint, e.g.,
the resource’s state when it is given to the agent, the applied
capability, and the resource’s state when it is given to the next
agent do not disagree. Moreover, the assigned ports and the
applied capabilities suit the agent’s input, output, and available
capabilities.

The replacement of an old and probably bad role with a
completely new role could improve the role itself and the entire
role allocation.

Let us give a short example:

state = [s1,. .., Sp] mutation
state = [t1,...,t;],
capabilitiesToApply = [c1, .. ., ¢4 mutation
capabilitiesToApply = [tiy1, ..., t;],
state’ = [s1,...,8p,C1,...,Cq) mutation
state’ = [t1,..., 1],

where i < j < z. state, capabilitiesToApply, and state’ got
completely replaced such that state C task, state’ C task’,
and state + capabilitiesToApply = state’.



7) Mutate Resource-Flow: The last rule is the only one that
does not only mutate one single role, but looks at all roles in
the role allocation. It tries to improve the role allocation’s
resource-flow, i.e., the route of the resources in the system.
This is done by going through the list of agents and, for every
agent a;, looking at its postcondition’s port, i.e., the agent a;
where to hand the resource next. Now a; is searched, and its
precondition’s port, i.e., the agent where the resource comes
from, is examined: if the precondition’s port is unequal to a;,
the port is set to a;. Hence, a; gives the resource to a;, and
a; now gets the resource from a;.

E. Other Decisions

This section gives a short overview of other decisions that
had to be made in order to run the genetic algorithm.

1) Initialization: In the initialization, the genetic algorithm
creates the initial population. Thus, the algorithm has to create
several random role allocations. This is done by assigning each
agent one randomly generated role that is self-consistent, like
in the mutation rule “Mutate whole Role”.

As a possible extension in the future, the system’s last
configuration could be added in the starting population, too,
in order to have an already quite good individual to start the
search from at the beginning.

2) Selection: To select parent role allocations for crossover,
we use the common roulette-wheel selection, which selects
individuals directly proportional to their fitness. That means
that a fitter individual is more likely to be selected for
crossover than a less fit individual (“survival of the fittest™).
This increases the algorithm’s chance to improve the quality
of the population. Nevertheless, role allocations with a low
fitness can be selected with a lower probability, too, trying to
avoid a too soon convergence in a wrong direction.

3) Replacement Scheme: The generated offspring and the
best k£ individuals of the parent generation are the starting
population for the next generation. This replacement scheme
is called elitism. We use it to maintain best solutions, because
the search space is huge. A “proof” can be seen in Sect. IV.

4) Termination: If a termination condition is satisfied, the
algorithm stops and verifies if the solution is correct by
asking the result checker. If so, the solution is returned to
the system subsequently. One termination condition is the
number of generations: the algorithm stops if it has processed
a predefined number of generations. Of course, the algorithm
might not yet have found a correct solution at that time.

Alternatively, the algorithm could terminate at once if it
found a solution that satisfies minimum criteria, i.e., the solu-
tion is correct (but not necessarily optimal). This decreases the
runtime indeed, but — in case of a suboptimal solution — also
avoids the chance to find a better or optimal solution. However,
we abort the algorithm if a solution satisfies minimum criteria,
because our results showed that the ongoing search for a better
solution took too much time, especially in larger systems.

Additionally, the algorithm could be restarted after it has
reached the end and has not yet found a solution. In order

to prevent an endless computation, it may run at most a
predefined number of times.

IV. EVALUATION

In order to evaluate the genetic algorithm, we implemented
it in Java. This section now shows the tests we made to
optimize the algorithm’s parameters, to study the algorithm’s
scalability, and to compare the results with the former used
constraint solver.

A genetic algorithm has numerous possibilities for scaling,
adjusting, and optimizing. Apart from the fact that the algo-
rithm could be implemented with, e.g., other mutation rules
or an n-point-crossover, there exist several parameters that can
be fine-tuned, e.g., the population size, the mutation rate, the
number of generations, the number of elitism elements, or
the crossover probability. Moreover, all mutation rules can be
weighted differently. The fitness function can be modified as
well, for example, by varying and weighting the penalties for
violating constraints.

In the chosen system setting, each agent had the full set of
inputs, outputs, and available capabilities. This means that the
search space had the full size. By constraining the agents’ sets
we would probably get better results, because the search space
gets smaller. Furthermore, in order to see how much time it
takes the algorithm to find a solution if it is not disturbed, it
did not restart after a certain amount of generations, although
this would improve the average runtime, since, in some cases,
it runs in the wrong direction, what takes a lot of time.

First of all, the tests showed that if the algorithm does
not maintain the best individual of the parent generation, it
is not usable. The runtime rises tremendously while the found
solutions get worse. Anyway, the number of individuals that
are taken from the parent to the offspring generation makes not
that big a difference. However, we got slightly better results
when taking three individuals from one generation to the other
instead of one, two, or more than three.

Fig. 4 shows the results for the optimization of the mutation
rate in a system of 17 agents, the standard system size in one
of our case studies. For this purpose, we varied the mutation
rate while the other parameters were kept constant, i.e., the
population size was 50, the algorithm should terminate at the
latest after 50,000 generations, and the three best individuals
were taken from the former generation to the next generation.
For each mutation rate we made 100 tests. The mutation rate
varied from about 1.5 % to 17.5 %.

As can be seen, we got the best results with a mutation rate
around 9-11 %, where the algorithm’s found solutions were in
approximately 90 % of all tests correct and in about 60 % of
all tests optimal.

After finding a good setting for the mutation rate, we
optimized the population size. Again, the system had 17
agents, and all other parameters were kept constant, i.e., the
mutation rate was around 9 %, termination was set to 50,000
generations, and we kept the three best individuals. The pop-
ulation size varied from 50 individuals to 1,000 individuals,
each tested 100 times. The results can be seen in Fig. 5.
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Increasing the population size continuously improved the
quality of the algorithm’s found solutions. The number of
correct solutions improved from 90 % at 50 individuals to
100 % at 200 individuals, and stayed from then on constant
at 100 %. The number of optimal solutions increased from
about 60 % to 91 % at 750 individuals. A further increase of
the population size did not significantly improve the quality
of the found solutions, but considerably enlarged the runtime.

In our case study, we mostly operate with a system size of
9 or 17 agents. In order to test the algorithm whether it can
also be applied for bigger systems, we made some tests with
different numbers of agents, which should give a rough idea
about scalability. For every system size we made 100 tests
where all parameters were fixed, and measured the number of
optimal and correct solutions, the runtime, and the number of
generations the genetic algorithm had to search. The mutation
rate and the population size were indeed constant for a single
system size, but were different compared to other system sizes,
since, for example, a system with 9 agents has no need for
750 individuals — this only would slow down the algorithm.
However, we have not yet searched for an optimal parameter
set for systems with sizes of 21 and 25 agents, and guessed in
each case a parameter set that should be quite good. With an
optimal parameter set, the algorithm would further improve.

The results are presented in Tab. I.

The table shows that the algorithm found a correct solution
in every case, even in bigger systems, and in most cases
it found an optimal solution. However, there is certainly a
remaining possibility that the algorithm does not find a correct
solution. What cannot be seen in the table is the fact that
the non-optimal solutions in almost every case were nearly
optimal, i.e., only one agent applied two capabilities instead
of one capability. The average runtime is quite low at the
beginning and gets higher with an increasing number of
agents. Since the search space increases immensely with every
additional agent, the average runtime of course rises, too. You
should not be too confused about the quite constant average
number of generations compared to the increase of the average
runtime, as the runtime increases due to the higher number of
agents and individuals.

We also examined whether the algorithm is able to deal
with relatively large systems. For this purpose, we did one test
run with 51 agents, without an optimal parameter setting. The
genetic algorithm found a nearly optimal solution (one agent
applied two capabilities) after less than 5.5 hours, which is
of course too long to be used in a real world application.
Usually, failures occur locally at one agent and, therefore,
not necessarily the whole system needs to be involved for
reconfiguration. Hence, the idea is to localize the failure and
apply the genetic algorithm to a small part of the system, with
fewer agents.

The use of a genetic algorithm tailored to self-organizing
resource-flow systems was a big step forward compared to
the use of a constraint solver. The constraint solver we used
before to reconfigure the system was by far slower, but it
certainly was not optimized for this specific problem domain.
For example, the calculation for a solution in a system with
9 agents took in average about 6 seconds, the calculation
in a system with 13 agents around 75 seconds. In larger
systems with more than 20 agents it even took hours or did
not complete at all.

V. CONCLUSION AND FUTURE WORK

The use of genetic algorithms for solving classical CSOPs is
not new (e.g., [13], [14]). For example, job-shop scheduling
problems are solved with genetic algorithms in many cases
(see [15] and [16]). In the field of Organic Computing systems,
genetic algorithms are often used for implementation of self-
optimization. In [17], evolutionary algorithms and learning
classifier techniques are used to optimize traffic lights and
therefore traffic flow. But usually the optimization problem
is not a CSOP; rather, the genetic algorithm is used to find an
optimal parameter set for the underlying system.

In this paper, we presented a genetic algorithm for the recon-
figuration of safety-critical systems. The used architecture is a
variant of the observer/controller architecture proposed in [6].
As the evaluation shows, the systems must not be excessively
large. Current work is to try to localize the reconfiguration
problem, such that a subset of the agents can reconfigure
without comprising the complete system. This is promising



# Agents || Population Size | Mutation Rate || Optimal Solutions | Correct Solutions | Avg. # Generations | Avg. Runtime

9 75 23.33 % 98 % 100 % 79 03's

13 200 9.33 % 91 % 100 % 201 6.5s

17 750 9.33 % 91 % 100 % 211 53.7 s

21 1500 9.33 % 83 % 100 % 286 2444 s

25 3000 9.33 % 77 % 100 % 314 855.7 s
TABLE I

SCALABILITY TEST DATA

as failures occur locally. For reconfiguration, the system must
be in a so-called quiescent state [18], such that no harm occurs
during the reconfiguration. To allow the use in safety-critical
domains, a result checker component was added. In the future,
the result checker could provide valuable feedback for the
genetic algorithm in case of a non-valid solution. It knows
which constraint was violated and that probably allows to draw
conclusions, e.g., about which mutation rules are better than
others.

The genetic algorithm is used for self-optimization of self-
organizing resource-flow systems. It is integrated into the ref-
erence implementation presented in [19]. The reconfiguration
problem can be formulated as a CSP. While standard CSP
solvers only return one solution, not necessarily the best, the
presented algorithm allows to add optimization criteria to the
problem and comes up with a better or even optimal solution
compared to the CSP solver. The results showed that the
algorithm is applicable to these class of systems for solving the
CSOP and finding optimal configurations. Together with the
result checking component it can also be used in safety-critical
domains, where a valid configuration has to be provided.

The next steps are to further optimize the parameters and
improve the convergence and scalability by doing further work
on the mutation rules. Another interesting extension that is
planned is the introduction of coordinates for the agents, which
allows to include distance or other locality criteria in the fitness
function. Further the effect of the use of two-point- or n-point-
crossover could be interesting to investigate. The effect of
different distributions of the capabilities, e.g., sparse or dense
redundancy, as well as the degree of interconnection for the
agents on the convergence and quality is another issue worth
investigation.
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