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Abstract. Because of their self-x properties Organic Computing systems are
hard to verify. Nevertheless in safety critical domains one may want to give be-
havioral guarantees. One technique to reduce complexity of the overall verifica-
tion task is applying composition theorem. In this paper we present a technique
for formal specification and compositional verification of Organic Computing
systems. Separation of self-x and functional behavior has amongst others, ad-
vantages for the formal specification. We present how the specification of self-x
behavior can be integrated into an approach for compositional verification of con-
current systems, based on Interval Temporal Logic. The presented approach has
full tool support with the KIV interactive theorem prover.

Keywords: Organic Computing, Formal Methods, Compositional Reasoning.

1 Introduction

In Organic Computing (OC) systems [24], a potentially vast number of components
interact with each other and make local decisions in order to fulfill global goals. Such
systems are highly desirable as they exhibit characteristics of self-organization and are
therefore highly resilient, adaptive and robust. Therefore, they should be ideally suited
for environments in which safety is a critical concern and those characteristics are re-
quirements of the domain.

However, such domains usually require a rigorous process of analysis and verifi-
cation in order to get a system approved for deployment. In automotive and aviation
systems, certification authorities require proof that a system behaves safely under all
circumstances. Such a proof is more often than not provided by formal analysis and
verification. But due to the dynamic, complex, and highly-parallel nature of Organic
Computing systems, such an analysis is extremely hard to perform and many tools and
techniques (e.g., model checking) are not suitable for sufficiently large examples.

This paper introduces a different approach: “conventional” complex systems have
been analyzed with compositional methods in which parts of the system are regarded
separately before the analyses are combined to make statements for the entire system.

� This work is partly sponsored by the German Research Foundation (DFG) in the special pri-
ority program SPP 1183 “Organic Computing”.
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This compositional and local reasoning is now applied to OC-systems whose correct
behavior can be expressed by rely/guarantees [18,22,7]. These systems can be modu-
larized in a natural way as they usually consist of several components (e.g. agents).

For this purpose, self-organization behavior and functional behavior are regarded
separately. The functional behavior can then be expressed as rely/guarantees and be
verified with a compositional technique. Especially one wants to guarantee that after
a reconfiguration the system again works as intended. This property is a safety prop-
erty [2]. In this paper we present an approach for verification of this kind of properties.
The specification of functional behavior with rely/guarantees for systems and the inte-
gration of the self-x behavior into the environment is shown. The approach is applied
to self-organizing resource-flow systems, a system class in which self-x principles are
beneficial.

Previous work included formal analysis of failure modes for OC-systems which only
applied to specific instances of a system and was therefore limited [15]. Further, sep-
aration of self-organization and functional behavior was not considered. The general
approach to formally specify a system with invariants which express correct system be-
havior has been detailed in [14] and a way to use these invariants for a reconfiguration
mechanism has been proposed in [25]. The present paper builds on these foundations
and provides the formal framework which is necessary to thoroughly and rigorously
analyze and verify such OC-systems.

The paper is structured as follows: Section 2 describes the formal framework as the
foundation of the verification approach which is introduced in Section 3. The tech-
nique is then applied to self-organizing resource-flow systems in Section 4 where a for-
mal model is given and the necessary specification and verification steps are sketched.
Section 5 compares the approach with related work before the paper closes with a dis-
cussion of the benefits and limitations of the proposed framework and an outlook to
future work.

2 Formal Framework

In this section we provide an overview of the formal framework we use for modeling
and verification of Organic Computing systems. We will start by giving an introduction
into the logic framework and its semantics. Afterwards we show how to define behav-
ioral corridors on the system model to exclude unwanted behavior. This technique also
allows to separate functional behavior from self-x behavior of the system, which has
several advantages for system verification.

2.1 Temporal Logic Framework

In the following, an informal overview over the temporal logic calculus used is given,
which is also integrated in the interactive theorem prover KIV [5]. A formal semantics
and a detailed description can be found in [6,4].

The used temporal logic (ITL+) is a variant of interval temporal logic (ITL) [23,9]
that is extended by explicitly including the behavior of the environment into each step.
Further ITL+ combines temporal formulas and program constructs within the same
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formalism. The basis for ITL+ are infinite sequences1 � of states, which are called
traces or intervals. A state � is defined by one evaluation e ∈ eval(v1, ...,vn), where
eval(V) is the set of all possible evaluation of the variables vi ∈V .

In our setting we introduce an additional intermediate state � ′
i to distinguish between

system and environment transitions. Therefore besides variables v there are also primed
v′ and double primed v′′ variables. For each variable v in V there is a corresponding
primed and double primed variable. The sets of all primed/double primed variables
is denoted accordingly by V ′ and V ′′. The relation between v and v′ is called system
transition, whereas the relation between v′ and v′′ environment transition. The value
of v′′ in a state must be equal to the value of v in the next successive state (� ′′

0 = � 1).
Thereby the system and the environment transition alternate. For an intuition this is
depicted in Figure 1.

1

0 0

1

2 2

1

0 2

3

system transition environment transition

Fig. 1. A trace as sequence of states

The explicit inclusion of the environment allows for a separation of system and envi-
ronment. Further, an arbitrary environment is considered without stipulating syntactic
restrictions for the formula describing the system behavior. Especially in the case of
OC-systems which interact with their environment, an explicit model of the behavior of
the environment is advantageous [30]. It allows a detailed modeling of the environments
properties and the interaction between system and its environment.

The logic contains the standard predicate logic operators ¬ (not), ∧ (and), ∨ (or),
→ (implies), ↔ (equivalence) and quantifiers ∀,∃. Predicate logic formulas however
are only evaluated over a triple of states � i, � ′

i and � ′′
i . For example p(V,V ′) denotes a

predicate which is evaluated over the unprimed and primed state. To express properties
over intervals the following operators – which are also standard operators in linear
temporal logic (LTL) – can be used.

� � � holds now and always in the future
� � � holds now or eventually in the future
� until � � eventually holds and � holds until � holds
� unless � always if � does not hold, then � holds or � held earlier
◦ � there is a next step which satisfies � (strong next)
last the current state is the last
� 1 ‖ � 2 interleaving

Further, the formulation of programs in SPL (Simple Programming Language) [21], a
program like syntax is supported. The semantics of both formulas and programs can be

1 For simplicity we assume that the systems have no terminal states as it does not impose any
serious restrictions. Therefore all traces we consider are infinite.
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expressed as a set of traces. In ITL+ programs and temporal formulas can be mixed.
This can be used for the parallel composition of programs with the interleaving op-
erator [4]. The calculus supports symbolic execution of parallel programs, which is a
successful technique for interactive verification (e.g. Dynamic Logic [16,17]). It is a
very intuitive strategy for programs as the proof advances step by step similar most hu-
mans do it when trying to understand a program [20]. Furthermore, it can be automated
to a large extend.

2.2 Organic Computing Systems

In self-x systems - just like in traditional systems - failures and environmental distur-
bances can not be prohibited. Disturbances and failures force the system into a state
where it can not provide its functionality. Therefore we can distinguish the state space
of a system into two sets.

– A set Sf unc of functional states, in which the system can provide the desired
functionality,

– A set Srecon f of erroneous or reconfiguration states in which the system can‘t pro-
vide the functionality and a reconfiguration has to take place to get back to a state
within Sf unc.

For those sets S:= Sf unc∪Srecon f , with Sf unc∩Srecon f = /0 holds. In opposition to most
traditional systems self-x systems are characterized by their ability to compensate dis-
turbances. Traditional systems without self-x properties and any degree of freedom have
traces in which the system switches to an error state serr, for example caused by com-
ponent failures or other environmental influences. In that state the traditional system
can’t provide its functionality anymore and without restarting it will never return to a
functional state. The OC-system, however, has the ability to compensate the failure (e.g.
by self-reconfiguration) and get back into a functional state, where it can again meet its
requirements.

1
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Fig. 2. Behavioral Corridors and Traces

In Figure 2 a possible trace of a self-x system is shown. In this example the set of
functional states is Sf unc = {� 0, � ′

0, � 1, � ′
1, � 2, � ′

2, �
′
err, ...} and there is one error state in

Srecon f = {� err}. The system switches via an environment transition (e.g. a component
failure) into an error state � err. The self-x system then starts a self-organization and
reaches a state � ′

err in which functional correctness can be assured again.
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2.3 Specification of Functional Corridors

The last example leaves some open questions. For example, it is unclear how to dis-
tinguish functional states from erroneous states in which reconfiguration has to occur.
Further, we want to restrict the system transitions in such a way that it always stays in
functional states and tries to get back into a functional state, if not in one. The proposed
technique is called restore invariant approach and is described informally in [14]. The
idea is to define behavioral corridors, by defining a predicate INV (V ) which holds in
all functional states and does not hold otherwise. The predicate can in some sense be
seen as an invariant, as the systems goal is that this invariant holds on the entire trace.

In the above OC-system the set of functional states is then defined by Sf unc := {� ∈
S|INV (� )}. As long as INV holds the system is in a state within the corridor, whenever
it is false the system has left the corridor and needs to get back. Traces only consisting
of states out of Sf unc are in some sense “good“ traces within the corridor. It is desired
that an OC-system has only traces that consist of states out of Sf unc or whenever a
failure occurs and it enters a state out of Srecon f := S\Sf unc there will eventually be
some state s ∈ S f unc later in the trace. This property can be expressed as a temporal
logic formula � INV ∨ � (¬INV →�INV ). This formula can also be used to specify the
self-organization (SO) mechanism of the system, as it describes what the effect of the
self-organization is. Usually self-organization after a component failure decreases re-
dundancy, as hardware components that broke can’t be recreated, but the systems func-
tionality can still be provided as another component can take over, for example. This
also means that there is some point where restoration of the invariant is not possible
anymore. For a realistic (non-perfect) self-organization we need to modify the specifi-
cation of the SO-mechanism by adding a predicate � stating that no solution is possible
anymore or weaker, no solution was found. With some simplifications the specification
of the reconfiguration then looks as follows:

� (¬INV → �(INV ∨ � ))

� can be seen as some kind of quality predicate as depending on how it is formu-
lated some algorithms can fulfill the specification or not. For example, the weakest �
is stating ”Algorithm result is, ’found no solution’“ whereas the strongest is � = f alse
(”Reconfiguration is always possible and successful’). Of course, one wants to have
something in between like “As long as enough redundancy is available” or “As long as
a functional state is reachable”. An example is given in the case study.

The idea of the restore invariant approach is reflected in a two-layered architecture
(see [14]). One layer is the observer/controller (o/c) layer, which is responsible for the
self-x intelligence of the system and incorporates the self-organisation mechanism, for
instance. It further observes the invariant and starts a self-organization phase whenever
it is violated. This o/c can be either implemented as a central o/c agent or as several
o/c agents on top of each component of the functional system. For an implementation
o/cimpl the self-organisation property for a defined � must hold and be proven.

o/cimpl |= � (¬INV (V ) →�(INV (V ′)∨ � )) (1)

The second layer is the functional layer, which contains the functional part of the sys-
tem. The functional layer does not necessarily consist of one monolithic component.
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Especially in a self-x system it will be composed out of several components (one may
say ”agents“) providing the functionality. The presented approach will show how com-
ponent specifications can be composed to one global system.

3 Formal System Specification and Verification

In this section first we will briefly describe the rely/guarantee view on systems, which
is common in compositional reasoning. This allows us to reason about individual com-
ponents and derive global system properties by doing so. Therefore we present the used
compositional theorem. Afterwards we describe the idea of the formal approach and
how the separation is advantageous for the compositional specification.

3.1 Rely/Guarantee Specifications

The behavior of a system is specified as a transition system described by the formula
G(V,V ′). This expresses the guarantee the system gives. To be able to guarantee its
specified behavior the system relies on a certain, but not necessarily completely fixed
or predefined behavior of its environment. In an arbitrary environment a system will
not be able to give any guarantees. The environment is specified by a transition formula
R(V ′,V ′′). A typical property of the environment R is that the local variables of the
particular system are not changed R(V ′,V ′′) :⇔ V ′ = V ′′. The system behavior is then

formulated using the “sustain”-operator
+
� , which is used in most rely/guarantee based

compositional proof techniques.

R(V ′,V ′′)
+
� G(V,V ′)

Informally the formula means, that if rely R holds up to step i, then guarantee G must
hold up to step i + 1. It allows to formulate that a system or component violates its
guarantee G only after its assumption R is violated. This is needed to break circularity
when applying compositional reasoning. Guarantees are formulated as propositional
predicates over unprimed and primed variables, while for relies predicates over primed
and double primed variables are used. In this way it can be formalized which steps are

allowed for the system and which for the environment. The
+
� operator therefore can

be derived using the standard TL unless operator:

R
+
� G := G unless (G∧¬R)

3.2 Modularization

Usually systems consist of several components running in parallel. A component Agi

is specified in the same way by a local rely Ri and a local guarantee Gi. Hence, from
a point of view of each component, the other components are in its environment. The
local rely can therefore also contain some properties assuming “good“ or also ”bad”
behavior of the other components in the system. To be able to give global guarantees
by local reasoning we use a compositional theorem. Details and proofs can be found
in [6].
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Theorem 1. If:

i. for all i = 1, . . . ,n: Gi(V,V ′) � G(V,V ′)∧ �
j∈{1..n}∧ j �=i R j(V,V ′)

ii. for all i = 1, . . . ,n: Ri(V,V ′)∧Ri(V ′,V ′′) � Ri(V,V ′′)
iii. R(V,V ′) � �

i∈{1..n} Ri(V,V ′)

then: R1(V ′,V ′′)
+
� G1(V,V ′) ‖ . . . ‖ Rn(V ′,V ′′)

+
� Gn(V,V ′) � R(V ′,V ′′)

+
� G(V,V ′)

Premises i - iii contain only predicate logic formulas, which are considerably easier to
be proven, than interleaved temporal logic formulas. These three proof obligations have
the following informal meaning:

i. The guarantee of each component preserves the global guarantee and does not violate
the assumptions of all other components.

ii. The assumptions of all components are transitive. With this property, the compo-
nents assumption is preserved even if other components make several steps.

iii. All component assumptions hold if the global assumption holds. Therefore, no com-
ponent assumption is violated in the environment step.

The use of this theorem enables the proof of a global rely/guarantee (r/g) property by
reasoning over local r/g properties for the individual components. If the system consists
of identical components of the same type only the premises for one of this components
have to be proven. The theorem allows then to reason about a system with an arbitrary
number of these components. The theorem was proven with KIV and can therefore be
applied directly during a proof.

3.3 Organic Computing System – Specification and Verification

The global behavior of an OC-system is formulated by a global r/g property Rocsys
+
�

Gocsys. One big advantage of the separation (Sect. 2.3) of the complete system into an
observer/controller (o/c) and a functional system (sys) is, that from the point of view
of the functional system, the o/c is contained in the environment, and vice versa. Using
the compositional approach we consider both parts as abstract components which run
in parallel, specified by local r/g properties. The according proof obligation for the
separation then looks like:

Ro/c(V ′,V ′′)
+
� Go/c(V,V ′) ‖ Rsys(V ′,V ′′)

+
� Gsys(V,V ′)

� Rocsys(V ′,V ′′)
+
� Gocsys(V,V ′)

(2)

The behavior of the functional system is specified as a transition system described by the
formula Gsys(V,V ′). This expresses the guarantee the functional system gives. Hence,
for the system verification, the specification of the self-organization mechanism can be
integrated into the environment, which can be assumed by the functional system.

Rsys(V ′,V ′′) :⇔ (V ′ = V ′′)∨SO(V ′,V ′′)

This formula states that either no changes are made to the system variables V (no self-
organization takes place) or in case a self-organization takes place the variables are
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changed according to SO(V ′,V ′′). Here the effect of a reorganization is assumed to
occur in one transition. This does not mean that the self-organization takes one step,
just that the effect is seen by the agent in one point of time. An o/c implementation
needs to reflect this, which is expressed by refining formula (1).

o/cimpl |= (¬INV (V ) → (V = V ′) until � (INV (V ′)∨ � )
∧ ( INV (V ) → (V = V ′))

For the verification of safety properties [2] it is sufficient to use the safety closure here,
and leave the liveness part of the formula beside2. Based on this SO(V ′,V ′′) can be
specified as

SO(V ′,V ′′) :⇔ (¬INV (V ′) → (V ′ = V ′′∨ INV (V ′′)∨ � )
∧(INV (V ′) → (V ′ = V ′′))

Informally the specification of the functional system states that under the assumption of
a correct self-organization algorithm and environment Rsys, the system will guarantee
Gsys. This specification can later be replaced by an actual implementation, for example
given as a pseudo program Progsys, whose syntax is supported in ITL+. This leads to
the following proof obligation for the implementation.

Progsys � Rsys(V ′,V ′′)
+
� Gsys(V,V ′) (3)

The o/c layer is defined similar. It needs to guarantee the assumed self-organization
for the functional system SO(V,V ′). Further it relies on the global environment to not
change its local variables.

o/cimpl �Ro/c(V ′,V ′′)
+
� Go/c(V,V ′) (4)

For a particular system usually some more concrete assumptions and guarantees are
made, like the particular effect of the o/c layer on the functional system. Further, the
global environment usually is allowed to change some of the variables, in order to model
failures. We will have a closer look on this in the next section when applying the ap-
proach to a case study.

Verification: Besides the verification of (3) and (4), the derived proof obligations when
applying the compositional theorem to (2) need to be verified. As both parts of an OC-
system usually consist of several components again, the strategy is to also use modular-
ity for verification of the local relies of o/c and sys.

4 Self-organizing Resource Flow Systems

In the previous section the general approach was described. In this section we want to
focus on the class of self-organizing resource-flow systems to demonstrate the

2 For each formula � exists formulas s and l, where s is a safety and l is a liveness formula, so
that following equation holds: � ↔ s∧ l. The safety closure of � is the strongest formula s that
satisfies this equation [1].
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application of the presented approach. For the sake of brevity, we will present the
compositional verification of the functional part of the system. But as the relies of the
functional systems are the guarantees of the o/c layer, all interesting issues should be
tackled.

4.1 Design of Self-organizing Resource-Flow Systems

The components of resource-flow systems can be described by a pattern called Organic
Design Pattern (ODP-RFS) as seen in Fig. 3.

Fig. 3. Components of Resource-Flow Systems

Agents are the main components in these systems, processing the resources accord-
ing to a given task. Every agent has several capabilities, divided into producing, pro-
cessing, and consuming capabilities (produce, process, and consume). Consequently,
the task is a sequence of capabilities beginning with a producing capability and end-
ing with a consuming capability. Furthermore, the agent knows a couple of agents he
can interact with and hand over resources. This is encapsulated in the inputs and outputs
relation. The role concept is introduced to define correct resource-flows through the sys-
tem. This means an agent has roles allocated telling him from which agent he receives
the resource (precondition/port), which capabilities to apply, and then to which agent
to hand over the resource (postcondition/port). Thus, the roles establish the connec-
tions between the agents and the combination of all roles forms the resource-flow. The
OCL-constraints in Fig. 3 specify correct allocations of roles to agents and are used in
the formal model of the resource-flow systems to specify the self-organization mecha-
nism, as described in the next section. For more details on the SE process and modeling
of self-organizing resource-flow systems see [26]. In this case study, self-organziation
is done by role allocation. In case of a failure the system calculates a new valid role
allocation, to be able to fulfill the task again.

4.2 Formal Model and Verification

The functional part of the system model described above, is formally represented as
an abstract resource-flow system by defining data types for all the concepts and their
relations. For instance, the static part of an agent is represented as a tuple



26

agent := ( .id : Nat × .availableCapabilties : list(capability)× .inputs : list(agent)
×.out puts : list(agent)× .allocatedRoles : set(role))

“.identifier : type” splits into a selector identifier and the type of this element of the
tuple. E.g. for an agent Ag, Ag.availableCapabilties selects the list of capabilities the
agent Ag has. The agent is a five-tuple consisting of a natural number as identifier, a
list of the capabilities it can perform, two lists of agents for possible inputs and outputs
and a set of roles which are currently assigned to this agent. To express the location of
the individual resources we use a so called store, which is a data structure (associative
array) mapping agent identifiers to resources locST : Nat ⇒ Resource. The resource at
agent id is selected by locST [id]. If there is no resource a special resource value ⊥ is
returned. A role is represented as a tuple:

role := ( .precondition : condition× .capabilitiesToApply : list(capability)
×.postcondition : condition)

condition := (.port : agent × .state : list(capability)× .task : Task)

Task, Resource are defined in the same way. Capabilities are defined abstractly as sorts.
The set Agents contains one variable of type agent for each agent in the system. #Agents
is then the amount of agents in system. In this case study we verified a system with
one simultaneous task in the system. As described in Section 2.3 we strictly separate
the self-x from the functional behavior. For the verification of the functional system
only the specification of the self-organisation is used and its implementation is verified
separately.

Global system behavior: In the example one global guarantee the system should give is
that resources are always processed according to their task. Formally speaking for every
key m of the location store holds that the state of the associated resource is a prefix of
the task.

G(V,V ′) :⇔∀ m : (m ∈ locST) →
locST [m].state � locST [m].task → locST ′[m].state′ � locST ′[m].task′

The behavioral corridor for that class of system is specified as INV (V ). It expresses a
valid role allocation. For instance one part of INV is stating that only capabilities can
be assigned that are available.

INVi(V ) :⇔∀ag ∈Agents,∀r ∈ ag.allocatedRoles :
r.capabilitiesToApply ⊆ ag.availableCapabilties

The complete invariant is a conjunction of several predicate logic formulas like this
one. They can also be derived from the ODP-RFS, by translating the OCL constraints
into the equivalent predicate logic formula. [25] provides more details about defining
corridors for self-organizing resource-flow systems and how the constraints look like.
Further a possible realization via a constraint solver is presented. On part of � in this
example is defined as:

� :⇔∃c ∈ Task,¬∃ag ∈ Agent : c ∈ ag.availableCapabilities
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This states that for at least one needed capability, there is no agent that can perform
it. SO(V,V ′) is derived by substitution of (1). Besides the specification of the self-
organization we assume that the environment does not change internal system variables,
except availableCapabilities. This is done by specifying a conjunction

�
w∈V\L w′ = w′′

of all variables, except the variables in L, which in this case consist of all available-
Capabilities of Agents. The environment is allowed to arbitrarily take or even give ca-
pabilities to the agents. Together with SO(V ′,V ′′) this forms the rely for the complete
system.

Local behavior: Next we define the r/g specification for a single agent. Besides the
global rely, a single agent also relies on good behavior of the other agents. That means
e.g. it assumes that another agent is not taking its resource away or changing it. Only
during a reconfiguration this is allowed. For technical reasons we introduce a variable
reconfCnt which is counting the reconfigurations, indicating if there was a reconfigu-
ration or not. The rely Ri for an agent i is below. For better readability of the formulas
we use a special formatting and the following abbreviations: allocR := allocatedRoles,
prec := precondition and postc := postcondition. capToApp := capabilitiesToApply.

Ri := (¬ isEmpty(locST ′[allocR.prec.port′]
∧ reconfCnt′ = reconfCnt′′)

→locST ′[allocR.prec.port′] = locST ′′[allocR.prec.port′′] )
∧ (isEmpty(locST ′[allocR.postc.port′])
→isEmpty(locST ′′[allocR.postc.port′′]))

∧ (reconfCnt′ ≤ reconfCnt′′)
∧ (SO(V,V ′))

Note that only a part of the global rely is included as from a local point of view, more
variables are allowed to change (e.g. location store). Under this assumption an agent
guarantees that it will process the resource correctly.

Gi :=( ¬ isEmpty(locST [allocR.prec.port])
∧ isEmpty(locST [allocR.postc.port])

→ locST = locST ′ (1)
∨( locST[allocR.prec.port].state = allocR.prec.state

∧ locST[allocR.prec.port].task = allocR.prec.task
∧ locST ′[allocR.prec.port].state :=

locST ′[allocR.prec.port].state + allocR.capToApp )

(2)

∨( locST[allocR.prec.port].state = allocR.postc.state
∧ locST[allocR.prec.port].task = allocR.postc.task
∧ locST ′[allocR.postc.port] := locST[allocR.prec.port]
∧ locST ′[allocR.prec.port] :=⊥ )

(3)

Formula Gi describes the behavior of an agent i. If there is a resource in its input port
waiting to be process and the outgoing port is free the agent can ...
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(1) ... do nothing.
(2) ... process it according to the role, if the resource has a state and task that fits to its

assigned role.
(3) ... give it to the next agent if the workpiece is already processed.

Ri
+→ Gi describes the guaranteed behavior of a particular agent i. In this case study

we have nearly homogeneous agents, therefore most agents have the same behavior.
The only slight difference in agent behavior is that some agents have a producer or
consumer role. That means they create or remove resources from the system. Here the
rely/guarantee looks analogous except that a producer agent doesn‘t have to wait for an
incoming resource and a consumer agent doesn’t have to forward the resource.

A system with one producer, one consumer and n-process agents can than be speci-
fied by interleaving their local rely-guarantee formulas.

SYSRFS := Rproducer
+→ Gproducer ‖ R1

+→ G1 ‖ ... ‖ Rn
+→ Gn ‖ Rconsumer

+→ Gconsumer

The resulting sequence we want to prove is then given by:

SYSRFS � R(V ′,V ′′) +→ G(V,V ′)

Applying Theorem 1, we get a total of seven proof obligations. For premise (i) and
(ii) we get one proof obligation for each type of agent (producer, consumer, process).
Further we get one proof obligation for premise (iii).

Verification: All proof obligations were formally proven with the interactive theorem
prover KIV, which fully supports higher order logic, concurrency and the presented
temporal logic. As the resulting proof obligations are all predicate logic and the agents
are no more interleaved after modularization, the proofs are straightforward. They start
with a case distinction of the conjunctions on the right-hand side of the sequence. Most
premises can then be closed by the simplifier of KIV automatically. Only some interac-
tion for reasoning over the location store was needed.

5 Related Work

There is a lot of work done in the area for compositional reasoning for concurrent
systems in general. Cau and Collette [10], use a similar technique for defining relies
and guarantees but without the focus on a calculus and tool support. Solanki et. al. [28]
use compositional reasoning together with ITL. They use a rely/guarantee variant that
allows guarantees to be formulated in ITL. The tool they use (ana)Tempura [9,23]. This
technique is applied to a semantic web service description. Both do not consider self-x
properties, like self-reconfiguration of the system.

Formal verification of self-x systems is a young research area [11]. But there is al-
ready some interesting work done on this topic. In [30] Wooldridge states that for the
verification of agents the environment is essential. He presents a formal model where
the behavior of an agent within an environment is described as a sequence of interleaved
environment states and agent actions. This is similar to the idea of ITL+ and also allows
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for explicit modeling of the environment. We further show the integration of this idea
into a modular approach for compositional reasoning.

In [13] a Temporal Belief Logic (TBL), was introduce to define semantics and for-
malize and verify properties of systems specified in the Concurrent METATEM lan-
guage. Here modal operators are used to distinguish knowledge of different agents. The
main difference to our approach is that we utilize compositionality and can do local
reasoning. In [3] a policy-based modeling approach based on PobSAM is presented,
which also proposes a separation of the self-x part from the functional part of the sys-
tem. Further an operational semantics based process algebras is presented, but they do
not consider compositionality. In [29] the specification language ASSL and a tier-based
framework for specification of autonomic systems is presented. Formal verification is
not considered.

In the area of compositional verification of multi-agent systems [12] presents a for-
malization using Temporal Multi-Epistemic Logic (TMEL). Here the system structure
is exploited for compositional verification and their proofs were constructed by hand.
In [8,19], Jonker et al. present a compositional approach for one-to-many negotiation
protocols of agents. They verify one abstraction level against another level until they
reach a so called primitive component, where they can apply standard verification tech-
niques. For specification of dynamic properties they use different variants of temporal
logic, depending on the type of properties.

Smith and Sanders present an incremental top-down approach for the formal devel-
opment of self-organizing systems in [27]. The verification of the global system is done
by verifying all refinement steps down to component level. Their work provides good
strategies for the refinement between different abstraction layers, which also could be
used for further refinement on the component level in this paper. While in this paper
a strict separation of self-x and functional behavior is assumed, they make no explicit
distinction.

6 Summary and Outlook

In summary, we have presented a method for formal specification and compositional
verification of systems with self-x properties. We first presented how the separation of
the self-x mechanism and the functional system can be used to split the verification task
into a verification of the particular self-x algorithm and a verification of the functional
system by using only the specification of the self-x algorithm. Furthermore a technique
for compositional verification of such systems is presented. As basis for this work an
ITL variant [4] that provides a compositional interleaving operator and a rely-guarantee
theorem for modularization is used. The logic is fully integrated into the interactive
theorem prover KIV and all proofs where done within this tool. The advantage of the
use of an interactive theorem prover is, that it can deal with infinite datatypes, because
it provides powerful techniques for abtraction.

The approach is applied to a resource-flow system as case study. This case study was
chosen as therefore already a software engineering process and design framework was
developed and a continuous approach including verification was desired. Nevertheless
the approach is applicable to all kind of sytems fitting into the two layered architec-
ture. The main advantage of these technique is that it is independent of the number of
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agents. Only one rely-guarantee for each agent type is needed. Further for a particular
implementation only local reasoning is needed.

Next steps are to extend this approach to liveness properties. So, we can prove
properties like, “eventually the system will produce some output”, so it shows some
progress. This mainly depends on the behavior of the environment, as it can interfere
with every progress by breaking enough of the system. Here, the environment needs
to be adapted to allow expressions like “if long enough nothing breakes”. First experi-
ments in this direction were very promising.
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