
Designing self-healing in automotive systems

Hella Seebach, Florian Nafz, Jörg Holtmann, Jan Meyer, Matthias Tichy,
Wolfgang Reif, Wilhelm Schäfer

Angaben zur Veröffentlichung / Publication details:

Seebach, Hella, Florian Nafz, Jörg Holtmann, Jan Meyer, Matthias Tichy, Wolfgang Reif, and
Wilhelm Schäfer. 2010. “Designing self-healing in automotive systems.” In Autonomic and
Trusted Computing: 7th International Conference, ATC 2010, Xi’an, China, October 26-29, 2010,
proceedings, edited by Bing Xie, Juergen Branke, S. Masoud Sadjadi, Daqing Zhang, and
Xingshe Zhou, 47–61. Berlin: Springer. https://doi.org/10.1007/978-3-642-16576-4_4.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-642-16576-4_4
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Designing Self-healing in Automotive Systems

Hella Seebach1, Florian Nafz1, Jörg Holtmann2, Jan Meyer2, Matthias Tichy2,
Wolfgang Reif1, and Wilhelm Schäfer2

1 Department of Software Engineering and Programming Languages,
University of Augsburg, 86135 Augsburg, Germany

{seebach,nafz,reif}@informatik.uni-augsburg.de
2 Software Engineering Group, University of Paderborn, Paderborn, Germany

{jholtmann,jmeyer,mtichy}@s-lab.upb.de, wilhelm@upb.de

Abstract. Self-healing promises to improve the dependability of sys-
tems. In particular safety-critical systems like automotive systems are
well suited application, since safe operation is required in these sys-
tems even in case of failures. Prerequisite for the improved dependabil-
ity is the correct realization of the self-healing techniques. Consequently,
self-healing activities should be rigorously specified and appropriately
integrated with the rest of the system. In this paper, we present an ap-
proach for designing self-healing mechanisms in automotive systems. The
approach contains a construction model which consist of a structural de-
scription as well as an extensive set of constraints. The constraints specify
a correct system structure and are also used in the self-healing activities.
We exemplify the self-healing approach using the adaptive cruise control
system of modern cars.

Keywords: Organic Computing, Automotive Systems, Self-Organization.

1 Introduction

Self-x operations are increasingly utilized in today’s systems in order to satisfy
the functional requirements even in case of failures, unexpected environmental
changes, etc. without any manual interventions. Self-healing deals with the de-
tection and correction of partial system failures. Building a self-healing system is
very challenging as it must address most of the possible failure scenarios and has
to handle all repairable ones. Consequently, the self-healing part of the system
should not be build in an ad-hoc fashion but rather be specified in a formal way
based on proven platforms and best practices.

In previous works, a design pattern (Organic Design Pattern (ODP)) for self-
organizing resource-flow systems has been developed [11,14,16] and evaluated in
the context of production automation systems. In this work, self-organization is
the basis for self-healing and other self-x properties. The design pattern formally
specifies all relevant parts of the system and defines constraints, which have to
be maintained in operable system states. Thus, a corridor (set of valid systems
states) is defined. Whenever the constraints are violated, the system reconfigures

48

to return into this corridor to repair the system. This is called the Restore
Invariant Approach.

Self-healing is also applicable to other domains. This especially holds for
safety-relevant systems, for example avionics and automotive systems, which
must operate continuously. In avionics, redundancy is the standard for fly-by-
wire systems [8] to ensure a continuous and thus safe operation. However, redun-
dancy is typically not employed for automotive systems due to the prohibitive
costs and the tight integration of hardware and software which are typically sold
as a single product by the automotive suppliers. Due to the increasing amount of
software in automotive systems [10] and the resulting reliance on the safe opera-
tion of the software and electronics as well as the adoption of software standards
like AUTOSAR [1], the usage of self-healing in automotive systems becomes
feasible. There are already some projects [21], [2] working on the requirements
needed for self-healing in the automotive domain. They establish concepts for
the possibility of redundancy and how software components can be relocated on
runtime. But these approaches do not specify how correct system states can be
defined and thus, how guarantees about a correct system behavior can be given
which is absolutely required for self-healing safety-relevant systems.

Automotive systems consist of a number of software components that are
deployed on independent computing units in the car. Data is exchanged between
these components over different buses, examples of data are sensor data, status
reports, or commands. In order to describe the valid system states of such “data-
flow systems”, we adapted the ODP and the restore invariant approach. The
techniques were then applied to the adaptive cruise control system of a car.

In the next section, we present the adaptive cruise control system which is
used as a running example. Section 3 contains a presentation of the ODP as
well as its adaptation to data-flow systems including the constraints defined
for this domain. Thereafter, we present the application of the adapted ODP to
the adaptive cruise control including self-healing scenarios in Section 4. After a
discussion of related work in Section 5, we close with a conclusion and an outlook
on future work.

2 Adaptive Cruise Control

In a modern car more and more functions are realized with software [9]. This in-
cludes safety-relevant functions like driver assistance or in the future X-by-wire
systems. These functions need special techniques like redundancy to guaran-
tee correct behavior. Examples for safety-relevant systems are advanced driver
assistant systems. These systems assist the driver to avoid accidents. They use
sensors to identify dangerous situations. If such a situation is detected the driver
is warned visually or auditory. It is even possible that the assistance systems can
regulate the car, to prevent dangerous situations. Therefore, the system has to
interact with other subsystems in the car.

As a typical example for a safety-relevant driver assistance system, we use
an adaptive cruise control (ACC) in this paper [22]. It is an extended speed

49

control. The functionality is that if no obstacle is detected it accelerates the car
to the speed which was entered by the driver. If an obstacle is detected the car
is decelerated, so that there is an adequate gap between the car and the obstacle
(mainly another car).

The structure of the ACC system is presented in Fig. 1. The figure shows
the system structure by means of electronic control units (ECUs) with software
components (...-SW) deployed to it. The ECUs are connected to each other
by bus systems enabling message exchange. Different bus systems have to be
connected by a gateway, which translates between the different bus protocols
and handles throughput differences.

The ACC system normally consists of a speed sensor, an object detection
system, and a control unit. The object detection system is either a radar (radio
detection and ranging) or lidar (light detection and ranging). Using either device,
the ACC detects if there are obstacles in front of the car. If one is detected, the
car’s speed is adapted. This is first done with the engine brake. If this is not
enough then the brakes are activated, too. Thus, the ACC is in contact with
the BrakeControl-ECU and the EngineControl-ECU and additionally with the
LightControl-ECU to show the braking situation to other traffic participants.

Fig. 1. Overview of the ACC system structure

In this example we use some abstractions for the ACC system. We assume
that every control unit is connected to a communication bus. Furthermore, the
sensors are directly connected to the bus, so they are called intelligent sensors
in the automotive domain. We also assume that it is possible to reconfigure
the software at runtime. This is currently not possible since the automotive
manufacturers configure the ECUs’ functions statically at design time. But in
the future online reconfiguration will become more and more interesting and will
be realized. During the reconfiguration process the ACC system is deactivated
and then restarted. This is currently a common procedure to handle software

50

errors. When the system is deactivated the driver is informed that he has to
drive manually without any help. But in the future it is a possible scenario that
redundancy enables the continuous operation even during the reconfiguration
process. The AUTOSAR standard [1] with its standardized interfaces and its
run-time environment (RTE) is the first step towards a system that can be
reconfigured.

We have chosen an example from the automotive industry because it is a
typical representative of a data-flow system. The characteristics of such systems
are that data are produced (e.g., by a sensor) and sent to other systems in a next
step. These can be actuators or other software subsystems. There, the incoming
data are used to execute an action or to calculate new commands. Thus, in
data-flow systems the data are sent from one system to another, so data chains
are established. This is very similar to resource-flow systems where resources are
sent from one agent to another but there are some differences like the possibility
to use data parallel on different agents. This is formulated in the next section.

3 The Organic Design Pattern for Data-Flow Systems

The organic design pattern (ODP) has been developed to design and construct
self-organizing systems in a top-down manner. This section describes shortly
the ODP for resource-flow systems (RFS) and then maps to data-flow systems
like automotive systems. In particular the constraints required to describe this
domain are discussed.

3.1 ODP for Resource-Flow Systems

As the complexity of modern software systems increases steadily, the adminis-
tration and maintenance becomes more and more time intensive. Therefore the
ODP has been defined to develop such systems in a top-down manner and to
specify guarantees for these systems which are maintained by the system itself
without external control. Previously, the ODP was defined for self-organizing
resource-flow systems. One major contribution of this paper is the adaptation of
the ODP-RFS to data-flow systems. But first the ODP-RFS and its concepts,
goals, and mechanisms are described.

The ODP-RFS combines a top-down engineering approach [17] with self-or-
ganizing concepts which allow, for example, self-healing behavior. The pattern
defines the main concepts of resource-flow systems with self-x behavior and
constraints which are modeled to define correct system states. Based on these
concepts the respective engineer is able to define additional domain specific con-
straints. Fig. 2 shows the main concepts the ODP-RFS also includes, so for a
better understanding of the following explanations please refer to this figure.

Self-healing requires some kind of redundancy in the system. In systems de-
signed with the help of the ODP-RFS the redundancy is achieved by redundant
capabilities the system components called agents have. Additional redundancy
comes into the system by variable resource-flow possibilities or communication

51

possibilities respectively. The agents have roles specifying from which agent they
receive resources, which capabilities to apply to the resource and to which agent
then to hand over the processed resource.

The agent is restricted in its behavior by constraints and is able to perma-
nently monitor these constraints. In case of a violation of at least one of the
constraints, the agent needs to heal the system. This means the agent starts
a reconfiguration process which in the context of the ODP-RFS is a realloca-
tion of roles to the agents. The constraints specified on system class level define
what a correct role allocation looks like and thus define a correct resource-flow
within the system. One aspect of correctness here means that every resource
entering the system leaves the system processed by all capabilities the resource
needs (specified in the task). The role allocation can be calculated by several
mechanisms, for example a constraint solver or distributed algorithms, tailored
to restore the constraints. More details to the ODP-RFS can be found in [11].

How the concepts of the ODP-RFS and the constraints mentioned can be used
in the class of data-flow systems, especially automotive systems, is described in
the following section.

3.2 Adapting the ODP to Data-Flow Systems

Considering data as resources, data-flow systems (DFS) as they occur for ex-
ample in automotive systems are in several points very similar to resource-flow
systems. They only pass data instead of resources to other agents. Therefore the
ODP-DFS inherits many concepts and constraints already defined in the ODP-
RFS. Fig. 2 shows the adapted ODP. Similar to resource-flow systems, data-flow
systems consist of agents. In the ODP-RFS the agents are, for example robots or
autonomous vehicles while in ODP-DFS the agents are, for instance ECUs. Each
agent has different capabilities which are used to work on the data or change
the state of the data. In the ACC example data from the radar sensor is sent to
different software components (represented by the capabilities) like Tracking-SW
or the ObjectDetection-SW which calculates data dependent on the radar data.

In data-flow systems the agents have different types of properties they pro-
vide, for example a certain amount of memory or the clock speed of an ECU.
The different properties are necessary to allow parallel processing of data, a com-
mon feature in data-flow systems. Accordingly the capabilities—mainly software
components—an agent has, require several types of properties of the agent. This
fact is encapsulated in three new concepts, the type of the property (Proper-
tyType), the required property (RequiredProperty) and the provided property
(ProvidedProperty). The properties are used to describe which capabilities can
be allocated to which agent (e.g., which software can be deployed to which ECU).

In RFS the task has been considered as an ordered sequence of capabilities. For
a consistent terminology the term is also used in the ODP-DFS. But the term
task should not be mixed with the term task that is used in the automotive
industry. There the term is used for an operating system resource. Here it is
used for the specification of capabilities. In data-flow systems the task is more
complex than in resource-flow systems because the data can be used in different

52

software components simultaneously. For example the radar sensor data are used
in the Tracking-SW as well as in the ObjectDetection-SW. As a new functionality
of the ODP-DFS the data could easily be split up or merged. For that purpose
every capability defines its posts, that means which capabilities follow in the
processing order. Thus, the task is a graph of capabilities with a partial order.

Another new concept in the ODP-DFS is the channel concept. In resource-
flow systems the agents are able to hand over their resources directly to other
agents. In data-flow systems the agents are connected via communication buses
like CAN or LIN which are used for example in the automotive industry. The
channel in the ODP-DFS models these communication buses. An agent is able
to communicate to all other agents connected to the same channel.

Fig. 2. Organic Design Pattern for Data-Flow Systems

The concept of roles in data-flow systems is very similar to the concept in
the ODP-RFS. The role determines which capabilities an agent performs and
from which agent via which channel it receives the data or to which agent via
which channel the agent has to send the data. The difference here is only the via
concept of the pre- and postconditions which is in addition to the role concept
from the ODP-RFS.

In some of the classes of the ODP-DFS OCL-constraints1 are defined to spec-
ify correct system states. For example in the class task, there are three con-
straints defining a correct task or role allocation to agents (Producer-/Consumer-
Assurance, Producer-/Consumer-Roles, Task-Assurance). In the next section the
1 Object Constraint Language, OMG Available Specification.

53

constraints are explained in detail and are represented in a formal notation (stan-
dard logic notation). In [7,14] the translation from OCL-constraints to a standard
logic notation is presented.

3.3 Constraints

As mentioned above, a correct configuration of the system (which leads to correct
behavior) is defined by constraining the system. This is done by annotation
of OCL-constraints to the ODP-DFS. In case of a failure, one or more of the
constraints are violated and the system needs to calculate a new configuration,
such that the constraints hold again. This can be done by using a standard off-
the-shelf constraint solver, like KodKod [19], Alloy [12], or Cassowary [5]. In [14]
this specification approach with constraints is presented for ODP-RFS systems
and non-numerical constraints. As described in Section 3.2, the major extensions
besides some artifacts like the channel concept are much more complex tasks in
form of graphs as well as quantitative restrictions, for example for bus load or
RAM. In the following we describe some of the constraints for the ODP-DFS,
especially the more complex ones resulting from the extensions of the ODP. For
better readability constraints are written in standard logic notation not in OCL
notation.

Basic Constraints: These constraints are a standard set for the role model
proposed with the ODP. They just need to be adopted to the designation used in
ODP-DFS and the additional associations. The values which can be assigned in a
role must adhere to the agents situation. For example, only available capabilities
can be assigned or channels which the agent is connected to. This is expressed
in the two constraints Capability-Consistency and Channel-Consistency.

Capability-Consistency:
� a � Agent , � r � a.al locatedRoles :

r.capabi l i t i esToApply � a.avai lableCapabi l i t i es
Channel-Consistency:

� a � Agent , � r � a.al locatedRoles :
(� c � r.precondi ti on : c.via � a.communication)

� (� c � r.postcondi t i on : c.via � a.communication)

A more complex constraint is ensuring that if one agent has a role which tells
it to send data to another one via a specific channel, the other one must have
a role assigned, with a precondition, telling him that he receives data via this
channel. So they must be connected with respect to their role assignment.

Pre-Postcondition-Consistency:
� a � Agent , � r � a.al locatedRoles :

(� c � r.postcondi t i on , � ar ec � c.agent : connected(a, ar ec))
� (� c � r.precondi ti on , � asen d � c.agent : connected(asen d, a))

connected(asen d, ar ec) :�
� r sen d � asen d.al locatedRoles , � r r ec � ar ec.al locatedRoles,

� csen d � r sen d .postcondi ti on , � cr ec � r r ec.precondi t i on :

54

csen d .agent = ar ec � cr ec.agent = asen d

� csen d .via = cr ec.via � csen d.task = cr ec.task

Further basic constraints are for instance, that a producer role has an empty
set of preconditions (isProducer) and analogously a consumer role an empty set
of postconditions (isConsumer). Produce-/Consume-Assurance states that roles
with produce or consume capabilities must apply the first or the last element of
the task. Likewise, the first and the last element of a task has to be a produce
and a consume capability, respectively (Produce-/Consume-Assurance), see for
example Fig. 4.

Extension to graph like tasks: Further it must be assured that the state
within a role always conforms to the actual task.

� c � Condi t i on : c.state � c.task

Here “� “ formally denotes a prefix relationship between state and task. In [14]
we just considered simple tasks in form of lists, with strongly sequential appli-
cation of capabilities and no forks. Therefore the prefix relationship for lists was
sufficient. In the domain of data-flow-systems we now have tasks which are graph
like structures, describing the dependencies on the processing steps. Several suc-
cessors mean that the result needs to be processed by each one and therefore
for example transmitted to several agents which have the required capabilities
assigned. For a task T described as a graph a state S is a subgraph describing
the part which is already done. The prefix property over graphs is defined as
follows:

Task-Assurance:
S � T :� V (S) � V (T)

� E (S) � E (T)
� S = T Š (V (T)\ V (CT −1 (V (S))))

where T Š (V (T)\ V (CT −1 (V (S)), V (S)))) is the subgraph induced by building
the transitive closure over T Š 1 (T with reverse edge relation) starting from the
nodes in S.

Further we need a constraint describing the effect of the application of a
capability. The state in the postcondition must be the result of the application
of a capability to the state in the precondition. We formally express that with
the function ”++“.

� r � Role : � cpost � r .postcondi t i on :
cpost .state = r.precondi t ion.state+ +r.capabi l i tyToApply

For lists and one precondition, ++ is the standard list concatenation operator.
Extending the definition to graph like structures and multiple conditions in roles
leads to the following definition:

S + +c =

�
�

s� S

s

�

	

�

�
�

v� f i n (S)

(v, c)

�

�

55

where f i n(S) is the set of all sinks of all state graphs in S and S is a set of state
graphs and c a capability.

Extension for parallel role execution: During reconfiguration a simple as-
signment of the capabilities to one agent that can perform them and ensuring
that the data can be sent via a channel to the next one is not sufficient. Usually,
capabilities require some amount of properties, like memory or processor power,
which the agent needs to provide. As the roles are executed in parallel, an agent
might not be able to perform a capability because it lacks memory as it is re-
served to several other assigned capabilities. The following constraint makes a
pessimistic assumption to assure that capabilities are only assigned if there is
enough amount of needed properties available. Same holds for the channel, as
it is not exclusive, it needs to be ensured that the load of the channels is not
greater then the bandwidth provided2.:

Property-Consistency:
� pt � Proper tyType :
((� a � Agent :	

r � a.aR ol e

c� r .capT oA pp c.requi res(pt)

�

 a.provides(pt))

� (� ch � Channel :	

r � aR ol e|r.pc.via= = ch

c� r .capT oA pp c.requi res(pt)

�

 ch.provides(pt)))

There are a few further constraints derived from the cardinalities of the pat-
tern. A cardinality of one leads to a constraint that there must be exactly one
element. For example,

� c � Condi t i on : � c.task� = 1

states that there is exactly one task connected to a condition.
Together these constraints express a valid configuration of the system (a valid

role allocation) and whenever a failure occurs the system needs to reconfigure
according to these constraints.

4 Application of the ODP to the Automotive Domain
(ACC)

In Section 3 the ODP and the specific ODP-DFS for data-flow systems have been
described. In this section a specific automotive system, the ACC, is modeled with
the ODP-DFS. This is done in a simplified way while abstracting from technical
issues. Thus, the functionality of the ODP-DFS is shown and can be understood
without knowledge how the ACC system works in detail. The instantiation of
the ODP-DFS yields to several diagrams which specify the structure of the ACC
example. These diagrams are called domain models.
2 aRole := allocatedRoles, capToApp := capabilityToApply, pc := postcondition.

56

Fig. 3 shows the domain model of a 16bitAgent representing a 16-bit ECU.
In the ACC scenario four types of agents exist: A 16-bit agent, a 32-bit agent,
a gateway agent, and a sensor agent. These agent types represent ECU types
(ECUs with word size of 16/32 bit) or other types of hardware devices (gate-
way/sensor). A domain model exists for every agent type which determines what
kind of capabilities the agent type has in general (e.g., which software compo-
nents can be deployed to a 16-bit ECU) and which properties the agent provides.
Additionally the properties required by the capabilities are defined. In Fig. 3 the
small annotation in the upper right corner indicates which general ODP-DFS
concept the domain specific concept is derived from.

������������������������ ��

������ ������ ���	�

����

������ ��

������ ��

������ ������ ���	�

������ ������ ���	�

����

Fig. 3. Domain model for a 16-bitAgent

A 16bitAgent has four capabilities, BrakeLight-SW, Light-SW, Infotainment-
SW, and Indicator-SW. All these capabilities represent software components
(SW) which can be deployed on any ECU with a 16-bit word size. For ex-
ample in Fig. 1 the components Light-SW and Indicator-SW are running on
LightControl-ECU. These components could also run on a different 16-bit ECU.
In contrast, 32-bit ECUs can compute bigger values and can address more mem-
ory than a 16-bit ECU. Thus, they are able to deal with more time and resource
consuming operations needed by software components like ObjectDetection-SW,
VelocityControl-SW, Tracking-SW, TimeGapControl-SW, EngineControl- SW,
and BrakeControl-SW. A 32-bit ECU can also handle software components which
are designed for 16-bit ECUs.

The agent (ECU) provides RAM and a certain LOAD which is required by the
capabilities running on the agent. Every capability (software component) that
runs on it, decreases the provided load by a certain value. So the capabilities are
categorized as produce, consume and process capabilities as shown in Fig. 2. This
means that some capabilities produce (e.g., sensors) bus load if they send the
data via channels to another agent or just process (Indicator-SW) the data (also
producing bus load), while other capabilities consume the data (BrakeLight-SW)

57

and thus do not require any bus load. The need for free bus load of the channel is
encapsulated in the concept of the RequiredBusload which must accordingly be
provided by the bus the 16-bit ECU is connected to. In Fig. 3 the missing links
between BrakeLight-SW/Light-SW and RequiredBusload also indicate that these
capabilities do not produce any bus load and thus are consuming capabilities.

After defining the agents in the scenario with all its capabilities and properties
the next step is to define the task the system has to fulfill. As already mentioned,
a task is a graph of capabilities with a partial order. Fig. 4 shows the task for
our running example ACC. Every depicted capability fulfills a part of the ACC
functionality and represents the corresponding software component in Fig. 1.

������

������

��

�������� ������

������������������

Fig. 4. A task for the ACC example

The task starts with the data producing capabilities Radar and SpeedSen-
sor, which deliver sensor data to the dependent capabilities ObjectDetection-SW
and Tracking-SW. ObjectDetection-SW keeps track of the current velocity and
of objects within the driving direction of the vehicle. Based on this data and
the stored desired speed, the software component decides whether the ACC has
to apply velocity or time gap control. In velocity control mode the component
VelocityControl-SW is active. In this case it adjusts the current velocity to the
desired velocity by sending signals to EngineControl-SW and BrakeControl-SW.
In time gap control mode, the components Tracking-SW and TimeGapControl-
SW are active. The first one determines and filters relevant target objects from
the complex radar data. Afterwards, TimeGapControl-SW compares the vehi-
cle’s current velocity with the velocity of the relevant target objects and operates
engine and brakes via EngineControl-SW and BrakeControl-SW, respectively.
When the brake is actuated, the brake lights are turned on by sending a signal
to BrakeLight-SW.

When all agents and the task for the system are defined, it is possible to
specify scenarios for self-healing. This is presented in the next paragraph.

Self-healing Scenarios. One possible instance of our domain model is already
given by our ACC example in Fig. 1. The ECUs BrakeControl-ECU, Engine-
Control-ECU, and ACC-ECU have a word size of 32-bit, while LightControl-
ECU and Infotainment-ECU have a word size of 16-bit. The only software
component needing just 16-bit running on a 32-bit ECU is BrakeLight-SW (cf.
Fig. 3). Furthermore, we have a LIN-Bus which delivers input and feedback
to the user via the infotainment system. There is also a CAN-Bus with more
throughput for a fast delivery of signals from the time critical systems ACC,

58

engine control, and brake control. These two buses are connected by a gateway,
which translates between the protocols and compensates the throughput differ-
ences. Since some software components also need a certain bus load, the possible
throughput of these buses also influences the reconfiguration scenario.

One possible scenario is that the ACC-ECU crashes. In this case, we have to
move the deployed software components ObjectDetection-SW, VelocityControl-
SW, Tracking-SW, and TimeGapControl-SW to other ECUs. One condition for
this reconfiguration is that every 32-bit component has to be deployed on a 32-
bit ECU, and that 16-bit components can be deployed on 16-bit as well as 32-bit
ECUs. The second condition is that these 32-bit ECUs have to be connected
to the high-throughput CAN-Bus. The third and last condition in this case is
that Tracking-SW and TimeGapControl-SW have to be deployed onto the same
ECU, since the first one produces a lot of traffic for the second one such that
even the high-throughput bus may not suffice.

After detecting the ACC-ECU’s crash, the reconfiguration is started. The
reconfiguration calculates a new possible and correct deployment for the software
components on the ECUs. To realize this deployment different strategies are
possible. One scenario is to use a planning algorithm to re-allocate the software
components, similar to [13]. While the constraint solver is working (and the
reconfiguration is done) the ACC functionality is deactivated and the driver
is informed. After finishing the reconfiguration the system is started and the
functionality is working again.

The reconfiguration has changed the system instance to the one depicted in
Fig. 5. The software components Tracking-SW and TimeGapControl-SW are, as
stated in the third condition, deployed together onBrakeControl-ECU. Since there
were not enough resources on this ECU, the formerly deployed BrakeLight-SW
requiring only a 16-bit ECU was moved to Light-Control-ECU. The remaining two
components VelocityControl-SW and ObjectDetection-SW were moved to Engine

Fig. 5. The ACC system after the reconfiguration

59

Control-ECU. No component was moved to Infotainment-ECU because it is con-
nected via the low-throughput LIN-Bus.

Further self-healing scenarios our approach could be applied to are the failures
of sensors or software components. Newer versions of the ACC system use a
combination of different sensor systems to retrieve more detailed data (e.g.,
camera and radar). If one part of such a sensor combination fails, the other part
can resume its work with lower quality characteristics. This leads to a graceful
degradation of the sensor system. In case of the failure of a software component
the problem is more challenging, because backup components have to be provided
on other ECUs. The current resource constraints in the automotive sector make
it difficult to use redundancy, but there is a trend towards more powerful ECUs.
This would support the self-healing ability of automotive systems to deal with
failed software components, also.

5 Related Work

Other approaches also deal with the reconfiguration in automotive systems. The
Dyscas project [4,3] specified a system architecture for automotive systems which
also provides reconfiguration possibilities. These possibilities are mainly captured
in the developed middleware. But the described reconfiguration is mainly used to
recognize errors and to degrade the functionality, so that a minimal functionality
is still there. In contrast our approach uses the reconfiguration to re-establish the
entire functionality. By using the different constraints it is possible to calculate
a new configuration for the whole system.

Another approach that deals with reconfiguration is described in [6]. There,
a possibility is demonstrated how the AUTOSAR tool Systemdesk3 can be ex-
tended to model reconfiguration possibilities. The system can then choose be-
tween the different reconfigurations at runtime. The problem with this approach
is that every possible reconfiguration has to be modeled at design time and then
be stored at the ECUs. The number of needed scenarios is exponential with the
components and sensors in the system. To avoid that amount of data and the
development work, we use the constraint solver to calculate a correct reconfig-
uration. Additionally we can also react to situations that nobody has thought
about during the development phase.

In [20] an extension to the AUTOSAR standard is demonstrated that makes
dynamical reconfiguration and self-healing possible. But this approach only takes
some properties like memory into account. Other constraints like that two soft-
ware components have to be deployed to the same node are missing. In our
approach it is possible to specify such constraints. As already mentioned, we
are currently working on a planner to rearrange the software components on the
ECUs to attain the calculated correct system states. In [15] a PDDL planner
for a robotic scenario is presented. It also uses constraints for defining the re-
configuration task. The tasks there are sequences of capabilities and it does not
consider quantitative constraints like presented in this paper.
3 www.dspace.de

60

[18] proposed a framework for self-healing and self-adaptive networks of hard-
ware/software nodes was presented. It focuses on the restarting of jobs on other
nodes in case of a failure. Properties like load balancing are addressed. In con-
trast to this work, they consider no dependencies between the particular jobs.

6 Conclusions and Future Work

We have shown that the ODP is applicable to data-flow systems and especially
to automotive systems. With only minor adjustments and extensions the pattern
was successfully applied to an adaptive cruise control system. Furthermore, we
were able to show how to self-heal the system after an ECU failure simply by
exploiting the constraints which are specified for the ODP-DFS.

The AUTOSAR standard supports the basic requirements for self-healing by
propagating a component-based software design and appropriate interface defini-
tions for decomposition. However, it currently does not support reconfiguration
at runtime since all connections between components and hardware nodes are
fixed prior to runtime. Nevertheless, there are ongoing efforts to extend AU-
TOSAR to support reconfiguration [20].

The application of the restore invariant approach to the constraints defined
in this paper computes a new system configuration based on the response to
failures. We did not address how to reconfigure the system from the old to the
new configuration. Depending on the current system configuration, the desired
system configuration and additional constraints, the reconfiguration maybe en-
compasses multiple and possibly concurrent steps. We are currently investigating
whether planning as in [13] can be integrated into our approach for this purpose.

Finally, the presented ODP-DFS will be extensively evaluated to check wheth-
er all relevant characteristics of data-flow systems are contained in the pattern.
This includes redundancy to support safety-critical systems and time to support
real-time systems. In this area it is possible that extensions are necessary. The
application to other domains than automotive systems is especially interesting.

References

1. Autosar specification (2009), www.autosar.org
2. Amor-Segan, M., McMurran, R., Dhadyalla, G., Jones, R.: Towards the Self Heal-

ing Vehicle. In: Automotive Electronics, 2007 3rd Institution of Engineering and
Technology Conference on, pp. 1–7 (2007)

3. Anthony, R., Leonhardi, A., Ekelin, C., Chen, D., Trngren, M., de Boer, G., Jah-
nich, I., Burton, S., Redell, O., Weber, A., Vollmer, V.: A future dynamically
reconfigurable automotive software system. In: Proceedings of the IESS (2007)

4. Anthony, R., Rettberg, A., Chen, D., Jahnich, I., de Boer, G., Enkelin, C.: Towards
a dynamically reconfigurable automotive control system architecture. International
Federation for Information Processing (IFIP) 231, 71–84 (2007)

5. Badros, G.J., Borning, A., Stuckey, P.J.: The cassowary linear arithmetic constraint
solving algorithm. ACM Trans. Comput.-Hum. Interact. 8(4), 267–306 (2001)

www.autosar.org

61

6. Becker, B., Giese, H., Neumann, S., Schenck, M., Treffer, A.: Model-based ex-
tension of autosar for architectural online reconfiguration. In: Proceedings of the
ACES-MB 2009, CEUR Workshop Proceedings, CEUR-WS.org, pp. 123–137
(2009)

7. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Proceedings, VERIFY, Workshop at Federated
Logic Conferences (FLoC), pp. 113–123 (2002)

8. Brière, D., Favre, C., Traverse, P.: A family of fault-tolerant systems: electrical
flight controls, from airbus a320/330/340 to future military transport aircraft. Mi-
croprocessors and Microsystems 19(2), 75 (1995)

9. Broy, M.: Challenges in automotive software engineering. In: International Confer-
ence on Software Engineering, ICSE (2006)

10. Grimm, K.: Software technology in an automotive company: major challenges. In:
ICSE 2003: Proceedings of the 25th International Conference on Software Engi-
neering, pp. 498–503. IEEE Computer Society, Washington (2003)

11. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification
and construction paradigm for organic computing systems. In: Brueckner, S.A.,
Robertson, P., Bellur, U. (eds.) SASO, pp. 233–242. IEEE Computer Society, Los
Alamitos (2008)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

13. Klöpper, B., Meyer, J., Tichy, M., Honiden, S.: Planning with utilities and state
trajectories constraints for self-healing in automotive systems. In: Proc. of the
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems Budapest, Hungary. LNCS, Springer, Heidelberg (2010)

14. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A universal self-
organization mechanism for role-based organic computing systems. In: González
Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp.
17–31. Springer, Heidelberg (2009)

15. Satzger, B., Pietzowski, A., Trumler, W., Ungerer, T.: Using automated planning
for trusted self-organising organic computing systems. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 60–72.
Springer, Heidelberg (2008)

16. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: software engineering guideline for
self-organizing resource-flow systems. In: Proceedings of the Fourth IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (2010)

17. Seebach, H., Ortmeier, F., Reif, W.: Design and Construction of Organic Comput-
ing Systems. In: Proceedings of the IEEE Congress on Evolutionary Computation
2007. IEEE Computer Society Press, Los Alamitos (2007)

18. Streichert, T., Haubelt, C., Koch, D., Teich, J.: Concepts for Self-Adaptive and
Self-Healing Networked Embedded Systems. In: Organic Computing. Springer,
Heidelberg (2008)

19. Torlak, E., Jackson, D.: Kodkod: A relational model finder. pp. 632–647 (2007),
http://dx.doi.org/10.1007/978-3-540-71209-1_49

20. Trumler, W., Helbig, M., Pietzowski, A., Satzger, B., Ungerer, T.: Self-
configuration and self-healing in autosar. In: APAC-14 (2007)

21. Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards Self-organization in Automo-
tive Embedded Systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J.
(eds.) ATC 2009. LNCS, vol. 5586, pp. 32–46. Springer, Heidelberg (2009)

22. Winner, H., Hakuli, S., Wolf, G.: Handbuch Fahrerassistenzsysteme- Kapitel Adap-
tive Cruise Control. Vieweg Verlag (2009)

http://dx.doi.org/10.1007/978-3-540-71209-1_49

