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Abstract. Lock-free implementations of data structures try to better
utilize the capacity of modern multi-core computers, by increasing the
potential to run in parallel. The resulting high degree of possible interfer-
ence makes verification of these algorithms challenging. In this paper we
describe a technique to verify lock-freedom, their main liveness property.
The result complements our earlier work on proving linearizability, the
standard safety property of lock-free algorithms. Our approach mecha-
nizes both, the derivation of proof obligations as well as their verification
for individual algorithms. It is based on an encoding of rely-guarantee
reasoning using the temporal logic framework of the interactive theorem
prover KIV. By means of a slightly improved version of Michael and
Scott’s lock-free queue algorithm we demonstrate how the most complex
parts of the proofs can be reduced to relatively simple steps of symbolic
execution.

Keywords: Verification, Temporal Logic, Compositional Reasoning,
Rely-Guarantee, Lock-Freedom, Linearizability.

1 Introduction

The classic approach for protecting parts of a shared data structure from con-
current access is mutual exclusion locks. One severe disadvantage of this method
is that the crash or suspension of a single process can cause a deadlock or de-
lay of the entire system. Lock-free algorithms were developed to overcome this
shortcoming. One of their main features is that the crash or delay of a single
process has no negative effect on the progress of other processes. This is usually
achieved by applying atomic synchronization primitives such as CAS (compare
and swap) or LL/SC (load linked/store conditional) and an optimistic try and
retry scheme:

1. The relevant part of the shared data structure to be modified is stored in a
local variable (sometimes called “snapshot”).

2. Modification of the shared data structure is prepared, e.g. local fields are
assigned.

3. The shared data structure is updated in one step if no interference has oc-
curred since taking the local snapshot.
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If another process has changed the snapshot during phase 2 (which is kept as
small as possible), the current process must retry until no interference hinders
its update.

This basic idea is extended in lots of different ways, such as by introducing re-
ciprocal helping schemes or executing additional algorithms between the fail and
the retry of an update. These techniques have resulted in lock-free implementa-
tions of various data structures, amongst others stacks [1,2], queues [3], deques
[4] and hash tables [5]. Some of the proposed algorithms had subtle errors which
were found when trying to formally prove their correctness [6]. The complexity
of these implementations justifies the effort of formal verification and various
approaches have been proposed to prove correctness [7,8,9,10,11] and liveness
[12,13,14].

The main correctness criterion for lock-free algorithms is linearizability. It re-
quires each operation to appear to take effect instantaneously at some point (the
linearization point) between invocation and response, behaving according to its
sequential specification [15]. This property rules out certain interleavings but
does not guarantee any kind of progress. Lock-freedom is a global liveness condi-
tion which requires that at all times in a concurrent execution, one of the running
operations eventually completes [16]. Consequently, as soon as no further opera-
tions are invoked, all currently active operations eventually complete. However,
if the system repeatedly invokes new operations, single processes might never
complete, i.e. lock-freedom does not prevent single processes from starvation.

In this paper we present a verification approach based on rely-guarantee rea-
soning [17,18] and interval temporal logic [19,20] and demonstrate it using a
practical lock-free queue algorithm published by Doherty et al. [7], based on the
original implementation of Michael and Scott [3]. The approach allows to prove
two decomposition theorems: a generic refinement theorem which can be in-
stantiated to prove linearizability and a theorem for proving lock-freedom. Both
theorems have been mechanically verified using the semi-automated prover KIV
[21]. The theorem for proving linearizability has been described in [11], where the
resulting proof obligations have been shown to be provable for a simple stack
algorithm as well as for the dequeue operation of the queue. In this work we
therefore focus on describing the lock-freedom theorem and its application to
the enqueue algorithm.

The main contributions are:

- A fully mechanized approach for the intuitive specification and verification
of lock-free algorithms. We provide an easy to read specification language
and require no program counter values for reasoning.

- An expressive temporal logic framework which allows for a simple definition
of the

+
� operator from rely-guarantee reasoning, and to prove composition-

ality results for parallel programs as well as refinement (= trace inclusion)
theorems.

- A decomposition theorem to prove lock-freedom which does not rely on the
explicit construction of well-founded orders, but on intuitive arguments of
program progress.
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The paper is subdivided as follows: in Section 2 we describe the queue algorithm
and argue informally about its liveness. Section 3 gives a short introduction to the
temporal logic framework implemented in KIV. Section 4 describes the concur-
rent system model and rely-guarantee reasoning. Moreover, the decomposition
theorem for proving lock-freedom is introduced. Section 5 shows its application
to the queue. We conclude with a section about related work (Section 6) and a
summary (Section 7).

2 Michael and Scott’s Lock-Free Queue

Lock-free algorithms typically use synchronization primitives such as CA S to
atomically alter a shared data structure in the computer’s memory. CA S can be
formally specified in KIV as

CA S(Old, New; G, Succ){
if* G = Old then {G := New, Succ := true} else {Succ := false}}

where value-parameters Old and New are read only whereas G and Succ denote
reference-parameters that can be read and modified. CA S compares a global
pointer G with the (snapshot) reference stored in pointer Old. If these memory
locations are equal then G is updated to a new reference New and boolean flag
Succ is set to true to indicate a successful CA S. Otherwise the flag is set to
false indicating that no update has occurred. Since CA S executes atomically (a
comma separates parallel assignments), evaluating the if-condition should not
require an extra step (denoted as i f* ). CA S does not guarantee that the value
A of global pointer G has not been changed since it was read by a process. In
the meantime, some other process might have changed G to B and then back to
A. In a system that reuses freed references, these intermediate modifications can
lead to subtle errors, since the content of a reallocated memory location might
have been changed (ABA-problem). We assume (lock-free) garbage collection
[22] and do not explicitly model memory reuse here. Any value assigned to G is
going to be a newly allocated location, and this avoids an ABA-problem.

The queue is represented in memory as a singly linked list of nodes (pairs of
values and references along with .val and .nxt selector functions), a global pointer
Head which marks the front of the queue and a global pointer Tail indicating
the end of the queue as shown in Figure 1 (a) and (b). At all times Head points
to a dummy node (its value is irrelevant and denoted by a question mark). This
avoids special cases for the empty queue in the implementation. There are two
queue operations: the enqueue operation (CEnq) adds a node at the end of the
queue; the dequeue operation (CDeq) removes the first node from the queue and
returns its value. If the queue is empty, i.e. the dummy node’s next reference is
null, a special value empty is returned.

Attaching a new node at the end of the queue requires two global updates:
the last node’s next field must be set to the new node and the global tail pointer
must be shifted. Since CA S allows only one atomic write access, it must be
called twice. When a process encounters a lagging tail in-between these two
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Fig. 1. Queue representation variants

CAS executions (see Figure 1 (c)), it helps by shifting the tail pointer before
trying to add its new node in the next iteration.

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11
E12
E13

CEnq(v; Hp, Tai l , Newe, T le, Nxte, SuccE ) {
choose Ref with Ref �= nul l ∧ ¬ Ref ∈ Hp in {

Hp := Hp ∪ {Ref }, Newe := Ref , SuccE := false;
Hp[Newe] := v × nul l ;
while ¬ SuccE do {

T le := Tai l ;
Nxte := Hp[T le].nxt;
if T le = Tai l then {

if Nxte = nul l then {
CA S(Nxte, Newe; Hp[T le].nxt, SuccE )

} else {
CA S(T le, Nxte; Tai l )}}}

CA S(T le, Newe; Tai l )}}

Fig. 2. Enqueue operation

Figure 2 shows the KIV specification of the enqueue operation (line numbers
are given for explanatory purposes; they are not used in KIV). In lines E2 -
E4 a new node is allocated (a fresh reference is chosen and added to the global
application heap Hp in one atomic step) and initialized with input value v and
a null next reference (a semicolon denotes sequential composition which may
be interleaved). In E6 a local snapshot is taken. Its next reference is stored
locally in the following line. The test in line E8 checks whether the global tail
has not been changed since the snapshot was taken. If this test fails CEnq must
retry its update due to interference. The next test in E9 discerns the role of the
current loop execution: if Nxte is null, line E7 was executed when the global
queue was in a non-lagging tail state and the current run might successfully
attach a new node at the end of the queue in line E10 and subsequently exit
the loop, given that no interference has occurred in the meantime. If the test in
E9 is false, the loop will be reiterated and the current process can only try to
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help some other process by shifting the lagging tail pointer (line E12). The last
instruction (line E13) tries to shift the tail pointer after attaching a new node
to the queue. This “clean up” guarantees a non-lagging tail representation in
quiescent states. CEnq uses a variant of CA S in which it is irrelevant to know
whether it succeeds (lines E12 and E13). Since it is necessary to observe the
values of local variables Newe, Tle, Nxte, SuccE in assertions, they have been
lifted to transient parameters (see Section 5).

The formalization of the dequeue operation is shown in Figure 3. A process
executing CDeq takes a snapshot of the global head pointer in line D5 and
then locally stores its next reference. If the snapshot has not become obsolete
and the local next reference is null, dequeue returns empty. If the queue is not
empty CA S is applied in line D12 to shift the global head pointer, making Nxtd
the new dummy node. The remaining lines of code (D13-D16) then deal with a
special configuration which emerges from shifting Head when the queue contains
exactly one value v and the tail pointer is lagging (see Figure 1 (d)). Since the
head pointer gets shifted ahead of the tail pointer, dequeue can help the process
which has enqueued v (line D16).1

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17

CDeq(; Hp, Head, Tai l , Hdd, Nxtd, SuccD , O) {
let Lo = empty, T ld = nul l in {

SuccD := false;
while ¬ SuccD do {

Hdd := Head;
Nxtd := Hp[Hdd ].nxt;
if Hdd = Head then {

if Nxtd = nul l then {
Lo := empty; SuccD := true

} else {
Lo := Hp[Nxtd ].val;
CA S(Hdd, Nxtd ; Head, SuccD );
if SuccD then {

T ld := Tai l ;
if T ld = Hdd then {

CA S(T ld, Nxtd ; Tai l )}}}}}
O := Lo}}

Fig. 3. Dequeue operation

The intuitive reason why the implementation is lock-free is that its loops are
retried if some other process changes the queue in the critical time slot between
taking a snapshot and trying to update the data structure. This change however
implies that the interfering process eventually completes. In the formal proof
we will reflect the simplicity of this intuitive argument by using an additional
predicate U (“unchanged”) which describes the absence of interference that can
1 The original dequeue implementation of Michael and Scott reads the shared tail

pointer whenever the loop-body is executed. The implementation given here reduces
shared memory access if the loop has to be executed several times.
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cause a process to retry its loop inÞnitely often. Proving lock-freedom then
requires to show that each data structure operation eventually terminates when
it either encounters no such interference or when it changes the shared state
itself. For the dequeue operation this argument is simple. If it encounters no
interference, then the CAS at D13 will be successful and dequeue terminates. A
successful CAS at D13 is also the only place, where the process itself changes
the shared data structure.

For the enqueue operation the argument is slightly more subtle. If the queue
is not modified after taking the snapshot in E6, its loop might be executed
once again before enqueue terminates, due to a lagging tail. But this does not
hinder termination, so we do not count shifting a lagging tail as an interference
(predicate U is true for that case). Finally, if enqueue changes the queue by
adding a new node in E10 it terminates without further iterations.

As we will see, this intuitive reasoning is formally performed in KIV, by apply-
ing symbolic execution to step forward through each line of code of an operation.

3 Temporal Logic in KIV

This section briefly describes the temporal logic calculus integrated into the
interactive theorem prover KIV. A more detailed description can be found in
[23,24].

3.1 I nt er val Temporal Logic

The basis of interval temporal logic (ITL) [19,20] are algebras (to interpret the
signature) and intervals, i.e. finite or infinite sequences of states (each mapping
variable symbols to values in the algebra). Intervals typically evolve from pro-
gram execution. In contrast to standard ITL, the formalism used here explicitly
includes the behavior of the program’s environment into each step: in an interval
I = [I (0), I �(0), I (1), I �(1), . . .] the first program transition leads from the initial
state I (0) to the primed state I �(0) whereas the next transition (from state I �(0)
to I (1)) is a transition of the program’s environment. In this manner program
and environment transitions alternate (similar to [25,26]).

Variables are partitioned into static variables v (written lower case), which
never change their value (I (0)(v) = I �(0)(v) = I (1)(v) = . . .) and ßexible vari-
ables V (starting with an uppercase letter) which can have different values in
different states of an interval. We write V , V � , V � � to denote variable V in states
I (0), I �(0) and I (1) respectively. In the last state (characterized by the atomic
formula last ) of an interval, the value of a primed or double primed variable is
equal to the value of the unprimed variable, i.e. after a program has terminated
its variables do not change by convention.

The logic uses standard temporal operators (� , � , € , unt i l , unless , . . . )
as well as sequential programming constructs (:=, ; ,i f, . . . ). We usually write
� , � to indicate a program and � , � to indicate a formula. � � � is weak fair
interleaving, await � blocks execution until the test � is satisfied (not used in
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the algorithms here). Programs and formulas can be mixed arbitrarily since they
both evaluate to true or false over an algebra A and an interval I (hence system
descriptions can be abstracted by temporal properties). A program evaluates
to true (A, I |= � ) if I is a possible run of the program. Note that a run of a
program is always interleaved by arbitrary transitions of its environment. More
details on the syntax and semantics of these operators can be found in [23].

3.2 Symbol ic Execut ion and I nduct ion

KIV is based on the sequent calculus. Sequents are assertions of the form � � �
where � and � are sets of formulas. A sequent states that the conjunction of all
formulas in antecedent � implies the disjunction of all formulas in succedent � .
Sequents are implicitly universally closed. A typical sequent (proof obligation)
about interleaved programs has the form

� , E , I � �

where an interleaved program � executes the system steps; the system’s envi-
ronment behavior is constrained by temporal formula E ; I is a predicate logic
formula that describes the current state and � is the property which has to
be shown. To verify that � holds, symbolic execution is used. For example, a
sequent of the form mentioned above might be

(M := M + 1; � ), � M � � = M � , M = 1 � � M > 0

The program executed is M := M +1; � where � is an arbitrary program and the
environment is assumed never to change counter M (formula � M � � = M �). The
current state maps M to 1. The intuitive idea of a symbolic execution step is to
execute the first program statement, i.e. to apply the changes on the current state
and to discard the first statement. In the example above, a symbolic execution
step leads to a trivial predicate logic goal for the initial state (M = 1 � M > 0)
and a sequent that describes the remaining interval from the second state on:

� , � M � � = M � , M = 2 � � M > 0

M has value 2 in the new state which follows from the fact that after M has
been set to two by the program transition, the environment leaves M unchanged.
Otherwise M would have an arbitrary value in the new state. Symbolic execution
concerns both programs and formulas and has two phases. In the first phase in-
formation about the first transition (both system and environment) is separated
from information about the rest of the run. We get M � = M + 1 � M � � = M �

from the assignment and the environment assumption for the first step and € �
for the rest of the run. For � M > 0 we get M > 0 and € � M > 0 using the
unwinding rule � � � � � € � � . In the second phase of a symbolic execution
step, the unprimed and primed variables M and M � are substituted with fresh
static variables that describe the former state, whereas the double primed vari-
able M � � is replaced with the unprimed variable M in the new state, and leading
next operators (€) are dropped.
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In addition to symbolic execution, well-founded induction is used to deal with
loops. For finite intervals it is possible to induce over the length of an interval. For
infinite traces a well-founded order can often be derived from liveness properties
� � by inducing over the number of steps N until � holds:

� � ↔ ∃ N . (N = N � � + 1) until �

The equivalence states that � is eventually true, if and only if N can be decre-
mented (note that N = N � � + 1 is equivalent to N > 0 � N � � = N Š 1) until �
becomes true. Proving a formula of the form � � on infinite traces is then simply
done by rewriting � � to ¬ � ¬ � and a proof by contradiction. Similarly, an
unless formula (as needed later in rely-guarantee proofs, cf. Section 5.1) can

be reduced to the case of an eventually formula using the equivalence

� unless � ↔ ∀ B . (� B ) → (� unless (� ∧ B ∨ � ))

� unless � is true if it is true on every prefix of the trace that is terminated
by the first time when boolean variable B becomes true. This rewriting allows
for extracting the liveness property � B to prove that the initial unless formula
holds, by applying well-founded induction over the number of steps until B is
true. The (semantic) proofs of both equivalences above are straightforward.

4 Rely-Guarantee Reasoning and the Decomposition
Theorem for Lock-Freedom

This section gives a short introduction to the concurrent system model in our ap-
proach and to the well-known decomposition technique of rely-guarantee reason-
ing. Furthermore, we describe a decomposition theorem for proving lock-freedom.
Its formal proof is available online [27].

4.1 Syst em M odel and R ely-Guarant ee R easoning

A concurrent system is a program which spawns an arbitrary positive number
of processes to execute in parallel

CSpawn(n; Act , In, CS, Out ) {
if* n = 0 then

CSeq(n; Act , In, CS, Out )
else

CSeq(n; Act , In, CS, Out )�
CSpawn(n − 1; Act , In, CS, Out )}

CSeq(m; Act , In, CS, Out ) {
{ skip
∨ {Act (m) := true;

COP(m, In ; CS, Out );
Act (m) := false}

}*}

CSpawn consists of n + 1 processes that execute CSeq in parallel. Operation
CSeq finitely or infinitely often (denoted by * ) does some computations that
have no direct influence on the underlying data structure (modeled as no op-
eration skip) or it executes an arbitrary data structure operation COP (in the
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queue example, COP is simply the nondeterministic choice (� ) between one of
the two operations CEnq and CDeq).

Operation CSeq is called with a value parameter m of type nat which repre-
sents the identifier of the invoking process. Reference-parameter Act : nat � bool
is a boolean function which is used to distinguish whether a process is currently
active in the sense of currently executing COP (this activity flag is only relevant
for proving lock-freedom). Function In : nat � i nput is used to pass an arbitrary
input value In(m) to COP. In is a reference parameter in CSeq whereas it is
a value parameter in COP, i.e. whenever COP is invoked, its input value can
differ from previous invocations due to changes on In by CSeq’s environment
(this ensures that different values can be enqueued). The remaining parameters
include a generic state variable CS : cstate for the (shared and local) state on
which COP works and an output function Out : nat � output to return values.

Rely-guarantee reasoning is a widely used decomposition technique to prove
properties of an overall concurrent system by looking at the system’s components
only [17,18]. To this end each process (component) m is extended with two pred-
icates: a two-state rely predicate Rm : cstate× cstate describing the behavior of
m’s environment (including other processes within the system plus the environ-
ment of the entire system) and a binary guarantee predicate Gm : cstate× cstate
which describes the impact of m on its environment (the first parameter of a
guarantee/rely condition denotes the state before the system/environment step
and the second argument denotes the next state). To ensure correctness each
guarantee condition must preserve the rely conditions of all other processes

m �= n ∧ Gm (CS0 , CS1) → Rn (CS0 , CS1) (1)

The intuitive idea of the rely-guarantee approach is to claim that every process m
fulfills its guarantee Gm if every other process does not violate its rely condition
Rm . To break circularity of this argument, a special implication operator

+
�

(as defined in [28]) is used which states that m fulfills its guarantee if its rely
condition has not been violated in some preceding step (Rm

+
� Gm ). The explicit

separation between program and environment transitions in our logic enables us
to specify guarantees as predicates Gm (CS, CS�) with unprimed and primed
variables describing steps of process m. Rely conditions Rm (CS� , CS� �) instead
use primed and double primed variables to restrict steps of m’s environment. The
formal definition of

+
� is then simply based on the temporal operator unless

Rm
+
� Gm :≡ Gm (CS, CS� )unless (Gm (CS, CS� ) ∧ ¬ Rm (CS� , CS� � ))

Since � unless � � (� � ) � (� unt i l � ), either the guarantee Gm always holds
or it holds until a system step occurs in which the guarantee still holds, but
where the subsequent environment transition violates m’s rely condition.

In order to show that a process m which executes CSeq satisfies Rm
+
� Gm ,

two properties must be fulfilled. First, each guarantee must be reflexive (in case
of skip or a step that sets the activity flag, the current state stays the same)

Gm (CS, CS) (2)
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Second, Rm
+
� Gm must be preserved by the data structure operation

COP(m, In ; CS, Out ), Inv(CS) � Rm
+
� Gm (3)

where predicate Inv : cstate introduces an invariant. Properties (2) and (3) also
imply that every process m preserves its guarantee condition at all times, in an
environment that always respects m’s rely condition. To show that in this case
m always preserves the invariant too, we stipulate stability of the invariant over
rely steps:

Inv(CS� ) ∧ Rm (CS� , CS� � ) → Inv(CS� � ) (4)

With (1) it follows that Inv is also stable over each local guarantee (note that (1)
holds for arbitrary distinct natural numbers) and specifies indeed an invariant
property

CSeq(m; . . . ), � Rm (CS� , CS� � ), Inv(CS) � � (Inv(CS) ∧ Inv(CS� ))

To lift this property (resp. (3)) to the level of an interleaved execution of the
overall system CSpawn, it is necessary to be able to summarize several con-
secutive local rely steps in one rely step, i.e. we require Rm to be transitive

Rm (CS0 , CS1) ∧ Rm (CS1 , CS2) → Rm (CS0 , CS2) (5)

Since the generic setting also takes into account the environment of the overall
system, a global rely condition R : cstate × cstate is required too. It preserves
each local rely condition

R(CS� , CS� � ) → Rm (CS� , CS� � ) (6)

Conditions (1) to (6) are the same as described in [11] for linearizability. The
few extensions required to prove lock-freedom are introduced in the next section.
As several of the following proof obligations will assume an invariant and a rely
condition to always hold, we define the following abbreviation:

I (R) :≡ Inv(CS) ∧ Inv(CS� ) ∧ R(CS� , CS� � )

4.2 D ecomposi t ion T heorem for Lock-Freedom

Lock-freedom is a global progress property of a concurrent system which states
that at all times throughout an (infinite) execution of the system, eventually one
process completes its currently running operation [16]. There are two further im-
portant liveness properties [29]: wait-freedom requires each invoked operation to
eventually complete (thus it is stronger than lock-freedom); obstruction-freedom
requires completion of every operation that eventually executes in isolation
(hence it is a weaker property than lock-freedom). In contrast to lock-freedom,
proofs of these properties require no decomposition technique, since they are al-
ready process-local. All three properties preclude the standstill (deadlock) of the
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system but in a lock-free implementation, repeated change of the data structure
can force a single process to retry again and again.

In our formal setting (see Section 4.1) - apart from executing infinitely often
COP - processes may also execute skip or terminate. Therefore an additional
activity flag is required to detect termination of the data structure operation. A
process m finishes its current execution of an operation when it resets its activity
flag Act (m). In a concurrent system which consists of n processes, global progress
P is defined in terms of the activity flags as

P (n, Act , Act � )
↔ ((∃ m ≤ n. Act (m)) → � (∃ k ≤ n. Act (k) ∧ ¬ Act � (k)))

That is, if there is at least one active process (m), one of them (k) will eventually
reset its activity flag, i.e. complete its operation on the data structure.

To model the absence of interference that forces a process to reiterate, an
additional predicate U : cstate × cstate (“unchanged”) is added to the rely-
guarantee theory. This predicate must be reflexive, because steps that leave the
state unchanged do not interfere with other processes. It is also necessary (for
the lifting) to be able to summarize several consecutive steps which satisfy U
into one step by transitivity

U (CS, CS)
U (CS0 , CS1) ∧ U (CS1 , CS2) → U (CS0 , CS2)

(7)

Furthermore, we exclude steps from the system’s environment which unpre-
dictably change the activity flags or the critical parts of the data structure by
extending the global rely condition:

Rex t (CS� , Act � , CS� � , Act � � )
↔ R(CS� , CS� � ) ∧ Act � � = Act � ∧ U (CS� , CS� � )

This extension is acceptable, since we assume that only processes within the
overall interleaved system are allowed to manipulate these specific resources.
Lock-freedom of CSpawn then follows from the following intuitive local proof
obligation

COP(m, In ; CS, Out ), � I (Rm )
� � (¬ U (CS, CS� ) ∨ (� U (CS� , CS� � )) → � last)

(8)

At any time (leading � ), a lock-free operation that updates the relevant part of
the shared state itself in a step (¬ U (CS, CS�)) or encounters no interference
(� U (CS� , CS� �)), eventually terminates (� last ).

Properties (7) and (8) together with the rely-guarantee conditions of the pre-
vious subsection are sufficient to prove lock-freedom of the overall system, when
initially the invariant holds and all activity flags are false.

T heorem 1 (D ecomposi t ion T heorem for Lock-Freedom)
I f formulas (1) to (8) can be proved (for some Inv, U, R, Rm , Gm ), then:

CSpawn(n; . . . ), � Rex t , Inv(CS), ∀ m ≤ n. ¬ Act (m) � � P (n, Act , Act � ) (9)
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Given that the global environment satisfies Rex t at all times, the presence of an
active operation will always lead to the completion of some (active) operation.
Although there are no blocking steps in the queue example, the theorem holds
for algorithms COP which include such steps too.

The theorem is proved in two stages. The first stage proves

CSeq(m; . . . ), � I (Rm ),¬ Act (m)
� � ( Act (m) ∧ (¬ U (CS, CS� ) ∨ (� U (CS� , CS� � )))

→ � (Act (m) ∧ ¬ Act � (m)))
(10)

while the second proves the main theorem. Both proofs rely on the fact, that our
logic allows to reduce a goal �

�
� (resp. � ; � ) to �

�
� (resp. � ; � ), when a lemma

� � � is available (see [23] for more details). Note that for interleaving this fact
crucially depends on our semantics with alternating system and environment
steps. It does not hold in standard temporal logic.

A detailed description of the proofs is beyond the scope of this paper, we
just give the main idea of the second proof. The proof of (9), which can be
written in the form CSpawn(n; . . .) � � (n), starts by induction over the number
of processes. Lemma (10), which can be written as CSeq � � , directly closes
the base case. In the induction step, unfolding of CSpawn(n + 1; . . .) gives an
interleaving of CSeq and CSpawn(n; . . .). The first formula in the interleaving
can be replaced with � , while the second can be replaced with � (n) by the
induction hypothesis. Therefore it remains to prove �

�
� (n) � � (n + 1). The

main part of the proof is now by induction over � P(n +1, Act , Act �) in � (n +1)
and symbolic execution. The proof has a large number of cases, since a symbolic
execution step of each of the two formulas � and � (n) can terminate (causing
the other formula to remain), or do an unblocked or blocked step (the latter
forcing a step of the other formula, or a blocked step if both block). Also in
each symbolic execution step we have to prove the implication of the progress
property for the current state. The proof is more complex than all the proofs of
the case study. Since it has to be done once only, it moves much of the complexity
of analyzing the lock-freedom property into the generic theory. The proof has
been mechanized using KIV and is online [27].

5 Proving Lock-Freedom for the Queue

In this section we present the instantiation of the decomposition theorem for
the queue. The presentation is in two parts: first we give the necessary rely and
invariant conditions which are a subset of those used for proving linearizability in
[11]; second we describe the instantiation of the unchanged predicate and outline
the proof of termination for the enqueue operation. Full details are available
online [27].

5.1 R ely-Guarant ee Condi t ions and I nvar iant

The generic operation COP is instantiated with the nondeterministic choice
between the two queue operations. The generic state variable CS becomes a tuple
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consisting of a shared state Hp, Head, Tail and local states Newef (m), Tlef (m),
Nxtef (m), Succef (m), Hddf (m), Nxtdf (m), Succdf (m) for every process m.

Since all processes execute the same set of operations, all processes will have
the same rely condition Rm by symmetry. It claims that the environment step
preserves the invariant Inv and that predicates Enqlocalm and Deqlocalm hold.

Rm (CS� , CS� � )
↔ (Inv(CS� ) → Inv(CS� � )) ∧ E nqlocalm (CS� , CS� � ) ∧ D eqlocalm (CS� , CS� � )

The invariant ensures that there are no dangling pointers and that newly allo-
cated nodes are disjoint from one another and from the queue. It also guarantees
that the current state is a valid queue representation, i.e. it conforms to one of
the variants shown in Figure 1.

Predicate Enqlocalm specifies that pointer variables Succef (m), Tlef (m) and
Nxtef (m) (which were lifted from originally local variables to global ones) are
unchanged by other processes

Succef � � (m) = Succef � (m) ∧ T lef � � (m) = T lef � (m)
∧ Nxtef � � (m) = Nxtef � (m)

(11)

The main interesting information necessary to prove lock-freedom is that when-
ever the snapshot’s next pointer is not null, this reference remains untouched by
m’s environment:

T lef � (m) �= nul l ∧ Hp� [T lef � (m)].nxt �= nul l
→ Hp� � [T lef � � (m)].nxt = Hp� [T lef � (m)].nxt

(12)

This rely condition is interesting when a process shifts a lagging tail pointer for
two reasons: first, to argue that this step maintains a valid queue representation
and second, to ensure that it does not violate the unchanged predicate (cf. pred-
icate IdS in the next subsection). Proof obligation (3) from the rely-guarantee
theory implies that this assumption is acceptable. Its proof rewrites the unless
formula in the succedent as described in Section 3.2 to extract an inductive ar-
gument in case that a loop is reiterated. When symbolically executing the code
of a queue operation of an arbitrary process m, it has to be shown that each
step preserves m’s guarantee condition Gm , given that m’s local rely condition
was true for the last environment transition. The local guarantee condition Gm

(and the global rely condition R) is defined as weak as possible by constraint (1)
(resp. (6)) of the rely-guarantee theory. Since proving (3) has also been neces-
sary in our previous work to show that the queue algorithm is linearizable and
since the required rely-guarantee conditions from the linearizability-proof were
sufficient to prove lock-freedom too, the former proof of (3) has been reused.

Altogether the required rely conditions for lock-freedom of enqueue are a
valid queue representation, (11), and (12). Similar assumptions as defined in
Enqlocalm are defined in in Deqlocalm for the linearizability poof of the de-
queuing process. However, for proving lock-freedom of dequeue, only the locality
of Succdf (m) and Hddf (m) are required.
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5.2 U nchanged Pr edicat e

According to proof obligation (8) a suitable instantiation of predicate U must en-
sure termination of a process in an environment that respects U at all times and
it must be preserved by each program transition, unless a transition eventually
leads to completion (e.g. a successful CAS).

That is, when a process dequeues it is sufficient for its termination to assume
that the global head pointer remains unchanged by the environment

IdH :≡ Head � � = Head �

When m enqueues, assuming that other processes n will not change the global
tail pointer is not sufficient to ensure termination. Suppose a system execution in
which m repeatedly shifts the lagging tail for every n which attaches a new node
to the queue. In this situation, no other process ever changes the tail pointer, as
this is done by m who never completes. Instead, U must ensure that m finally
can attach its newly allocated node to the queue, i.e. no other process may add
a new node. Two cases are discerned regarding the current representation. If the
tail pointer does not lag (its next reference is null) neither the global tail pointer
nor its next reference may be changed

IdT :≡ Tai l � � = Tai l � ∧ Hp� � [Tai l � � ].nxt = Hp� [Tai l � ].nxt

When the tail pointer is lagging, m assumes the following environment behavior:
other processes leave the tail pointer and its next reference unchanged or they
shift the tail to its direct successor node (which has a null next reference)

IdS :≡ IdT ∨ Tai l � � = Hp� [Tai l � ].nxt ∧ Hp� � [Tai l � � ].nxt = nul l

Predicate U is the conjunction of these identities:

IdH ∧ (Hp� [Tai l � ].nxt = nul l → IdT ) ∧ (Hp� [Tai l � ].nxt �= nul l → IdS )

It specifies that changes relevant for progress are enqueuing or removing an
element, while moving a lagging tail does not guarantee progress and can only
be done according to Figure 1.

5.3 Proof Out l ine

The unchanged predicate is reflexive and transitive. The temporal logic proof
obligation (8) from Section 4.2 is divided into four subgoals by discerning which
operation is currently executed (enqueue or dequeue) and splitting the disjunc-
tion in the succedent to distinguish whether a local transition of the current
process changes the data structure or the environment satisfies the unchanged
property at all times.2 For enqueue we get two proof obligations

E1, � I (Rm ) � � (¬ U (CS, CS� ) → � last)
E1, � I (Rm ) � � (� U (CS� , CS� � ) → � last)

(13)

2 As the interleaving operator is not used in proof obligation (8), its proof is indepen-
dent from the underlying scheduler. Scheduling issues are covered in the lifting proof
of the decomposition theorem only.
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E8 . . . , S1 � . . .
· · · �= nul l , Tai l = T lef (m) � . . .

(4) · · · = nul l � . . .
E7, . . . , S0 � . . .

(3)

. . . Hp[Tai l ].nxt �= nul l � . . .
(2) · · · = nul l � . . .

E6, VRU � � last
(1)

VRU :≡ � (val id(Head, Tai l , Hp) ∧ (11) ∧ (12) ∧ U (CS� , CS� � ))

S0 :≡ T lef (m) �= nul l

S1 :≡ T lef (m) �= nul l ∧ Nxtef (m) �= nul l ∧ Hp[T lef (m)].nxt = Nxtef (m)

Fig. 4. Proof outline enqueue lock-free

where Ek denotes the remaining program starting from line Ek , e.g. and E1 �
CEnq and E12 � CA S(Tle, Nxte; Tail ); whi le ¬ SuccE do . . . (these abbrevi-
ations are not used in KIV). The first is rather simple, since the only step with
¬ U (CS, CS�) is a succeeding CAS at line E10 which sets the loop-flag to true,
so the algorithm terminates after the final step E13.

The second proof is more challenging. It consists of an induction for the lead-
ing always operator and symbolically executing the enqueue operation until it
either terminates or the induction hypothesis can be applied. During execution
we get a side goal for every step: starting from the considered step, formula
� U (CS� , CS� �) must lead to termination. This can be proved by stepping to
the start of the loop (instruction E5) and applying the following lemma

E5, � I (Rm ) � � U (CS� , CS� � ) → � last

which states that the additional environment assumption � U (CS� , CS� �) is suf-
ficient to guarantee termination of the loop of the enqueue operation.

Its proof needs no induction, but requires stepping through the loop once or
twice, depending on whether the tail is lagging when the snapshot is taken; the
basic idea is illustrated in Figure 4. In the conclusion of the proof tree, the first
symbolic execution step to enter the while loop has already been executed. The
remaining program is E6 (instruction E6 takes the local snapshot Tlef (m)).
In a valid state, the required rely conditions and the unchanged predicate are
assumed to hold at all times (VRU ); no further restrictions on the current state
are necessary to prove termination of the loop. Proof step (1) is a case distinction
on whether the current queue has a lagging tail pointer (Hp[Tail ].nxt 	=null ).
If the tail pointer is not lagging (second premise, right hand side) no further
interference will hinder m to complete according to VRU, i.e. the proof consists
of executing E6 until completion. If the tail pointer is lagging behind (first
premise, left hand side), proof step (2) symbolically executes the instruction at
E6 (followed by an environment transition) which yields the new state S0 and the
remaining program is E7. Case distinction (3) tests whether the environment has
helped m according to predicate U by shifting the lagging tail pointer (second
premise). If this is true, the current proof obligation can be discarded by symbolic
execution until the remaining program is again E6 and using the second premise



392

of proof step (1) as a lemma (during these symbolic execution steps - the test
at E8 is false - the tail pointer and its next reference null remain unchanged). If
however the tail is still lagging (first premise of proof step (3)) the snapshot is
accurate, i.e. Tail = Tlef (m), and the proof continues with symbolic execution
of E7 (proof step (4)). In the new state S1, the snapshot’s next reference is
Nxtef (m) which is not null. We proceed analogously discerning whether the tail
pointer is lagging and symbolic execution: at the latest when the CAS transition
at E12 is (successfully) executed, a non-lagging tail representation is established
and the second premise of step (1) can eventually be used again as a lemma to
finish the proof.

Proving the analog properties to (13) for dequeue is straightforward. The
locality assumptions (for the loop-flag and the snapshot) from the rely condition
and knowing that the head pointer always remains unchanged according to U,
imply termination. This is because after the snapshot is taken, the CAS at D12
will be successfully executed: it is the only dequeue step that does not satisfy
the unchanged predicate, but it guarantees progress.

6 Related Work

The analysis of non-blocking algorithms is a current and highly active field of
research. Several techniques have been proposed to prove correctness and liveness
of these algorithms.

With respect to linearizability, Doherty et al. [7] were the first to publish a
formal verification of the queue algorithm (including memory reuse and version
numbers to avoid an ABA-problem) based on refinement of IO automata. In
contrast to our approach, program counters and a global simulation relation
are used to mechanize the proofs using PVS. Since single steps of a concrete
algorithm are refined individually, an intermediate automaton and backward
simulation had to be used to complete the formal proof for the dequeue operation,
while our approach verifies trace inclusion directly avoiding backward simulation
(see [11] for details).

Vafeiadis [30] also proves linearizability of the queue. His proof technique is
closer to ours in also using rely-guarantee reasoning. A major difference is that
his approach is based on adding abstract ghost code to the implementation,
and not on refinement. To solve the problem of the dequeue operation, the use
of a prophecy variable is suggested (which is basically equivalent to the use of
backward simulation).

Many other groups have contributed to the verification of non-blocking algo-
rithms. Groves et al. [8] for instance present the verification of linearizability of a
more complex lock-free implementation based on trace reduction. Our approach
is currently not able to formally handle these kind of (elimination) algorithms,
where the linearization of an operation can be part of the execution of another
process. Gao et al. [31] have described the verification of a lock-free hash table
which took more than two man years of work.



393

A rather different approach is taken by Yahav et al. [32] using shape analysis
[33]. The approach assumes that the abstract operations - although atomic -
already work on the low level heap and that only their interleaving has to be
shown correct. Therefore it compares the intermediate heaps that occur during
interleaved execution of the algorithms to the structures at the beginning and
the end and keeps track of the differences by a finite abstraction (“delta heap
abstraction”) to verify linearizability.

The third author has also contributed to Derrick et al. [34]. The approach
given there is rather different: it is based on the Z specification language and
requires program counters to encode steps of the algorithm as Z operations.
Instead of rely-guarantee reasoning, Owicki-Gries [35] like proof obligations are
generated. The approach is the only one we are aware of, that proves linearizabil-
ity formally using the original definition of [15]. All other approaches (including
ours in [11]) argue informally that linearizability holds.

Related to lock-freedom, we are aware only of two approaches: Colvin and
Dongol [12,13] describe the verification of several lock-free implementations (in-
cluding an array-based nonblocking queue [36]) by explicitly constructing a well-
founded order on program counters and proving that each action either guar-
antees progress or reduces the value of the state according to the well-founded
order. They identify progress actions, which correspond to those steps where
our predicate U is false. Constructing a well-founded order is unnecessary in our
approach, since it is implicit in stepping through the program.

A higher degree of automation is achieved by Gotsman et al. [14] based on rely-
guarantee reasoning and techniques like shape analysis and separation logic [37].
Their approach can verify proof obligations that imply lock-freedom for several
non-trivial algorithms automatically, using a combination of several tools. Deriva-
tion of these proof obligations however is done on paper. There are several dif-
ferences in the proof obligations too: our approach does not use a reduction of
CSpawn to a spawning procedure where the call to CSeq is replaced by COP
(which needs some assumptions about symmetry to be correct). Our proof obli-
gation ensures that the algorithm terminates after a step which falsifies U, while
their proof obligation requires that no process can execute steps which change the
data structure infinitely often. A close comparison for the queue example is hard,
since the queue is only mentioned as one of the examples automatically provable.

Both related approaches assume potentially unfair scheduling, which is more
adequate than our assumption of weak fairness. A closer analysis shows that we
need fairness only to prove that a process is not suspended in favor of another
process which executes skip steps only. Both related approaches consider pro-
cesses which execute an infinite loop of calls to COP and no other instructions.
If we replace the implementation of CSeq with such a loop, the fair interleaving
operator can be replaced with an unfair one. We prefer the more general for-
malization of CSeq, since it is realistic that a process executes other statements
or terminates rather than just calling COP repeatedly. Nevertheless we have
mechanized a version for this loop with unfair interleaving too. For simplicity,
the current proof is limited to algorithms without blocking steps.
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The proof proceeds much like the original one, since the symbolic execution
rules for non-fair interleaving are the same as for fair interleaving. The main
difference is that without weak fairness, it can no longer be guaranteed that the
first of two interleaved processes will do a step eventually. Instead, an additional
case split is necessary which gives the same goal as for weak fairness, plus an
extra goal for the case where the first process is never scheduled again, so only
the second remains. This proof is available online [27] too.

7 Summary

We have described a decomposition theorem that reduces the proof of the global
property lock-freedom to process-local proof obligations and we have shown how
this theorem can be applied to prove lock-freedom of a non-trivial lock-free queue
implementation. All specifications and proofs are fully mechanized in the inter-
active theorem prover KIV and the main proofs of lock-freedom in the queue case
study are highly automated. The theory shares rely-guarantee conditions with
those necessary to prove linearizability. We believe that our technique closely
follows the intuitive arguments necessary to prove lock-freedom.

In future work we will consider the ABA-problem in an additional refinement
step (similar to [8]), by extending the current implementation with reference-
recycling and version numbers. Moreover, we will try to improve our method by
better exploiting the symmetry of typical lock-free implementations in the rely-
guarantee theory and by including a formal definition of linearizability within
the reduction approach (similar to [34]).
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