
On deadlocks and fairness in self-organizing resource-flow
systems

Jan-Philipp Steghöfer, Pratik Mandrekar, Florian Nafz, Hella Seebach,
Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Steghöfer, Jan-Philipp, Pratik Mandrekar, Florian Nafz, Hella Seebach, and Wolfgang Reif.
2010. “On deadlocks and fairness in self-organizing resource-flow systems.” In Architecture
of Computing Systems - ARCS 2010: 23rd International Conference, Hannover, Germany,
February 22-25, 2010, proceedings, edited by Christian Müller-Schloer, Wolfgang Karl, and
Sami Yehia, 87–100. Berlin: Springer. https://doi.org/10.1007/978-3-642-11950-7_9.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1007/978-3-642-11950-7_9
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

On Deadlocks and Fairness

in Self-organizing Resource-Flow Systems�

Jan-Philipp Steghöfer1, Pratik Mandrekar2, Florian Nafz1, Hella Seebach1,
and Wolfgang Reif1

1 Universität Augsburg, Institute for Software- & Systems-Engineering,
Augsburg, Germany

{steghoefer,nafz,seebach,reif}@informatik.uni-augsburg.de
2 Birla Institute of Technology and Science Pilani, Goa, India

pratik.mandrekar@gmail.com

Abstract. Systems in which individual units concurrently process indi-
visible resources are inherently prone to starvation and deadlocks. This
paper describes a fair scheduling mechanism for self-organizing resource-
flow systems that prevents starvation as well as a distributed deadlock
avoidance algorithm. The algorithm leverages implicit local knowledge
about the system’s structure and uses a simple coordination mechanism
to detect loops in the resource-flow. The knowledge about the loops that
have been detected is then incorporated into the scheduling mechanism.
Limitations of the approach are presented along with extension to the
basic mechanism to deal with them.

1 Introduction

In a resource-flow system agents handle resources by receiving them from another
agent, processing them and handing them over to another agent. An instance of
this are flexible manufacturing systems. If agents can only process one resource
at a time and there are no buffers available, such systems are prone to deadlocks.
If the agents are arranged in a way that an agent can receive a resource it had
already processed before, the resource has been processed by agents arranged
in a loop. This loop can fill up with resources, in a way that the agent can not
give its currently held resource to another agent and can thus not accept a new
resource. Such a situation is depicted in Fig. 1.

This paper introduces a deadlock avoidance mechanism that leverages the
implicit knowledge available to the agents in self-organizing resource-flow sys-
tems modelled with the Organic Design Pattern (ODP) [16] and incorporates
the mechanism into a fair scheduler for this system class. The local knowledge of
the agents along with the structure that is given by the definition of the resource
flow allows the algorithm to be efficient both in terms of messages sent and in
computational time required while effectively avoiding deadlocks and preventing
� This research is partly sponsored by the priority program “Organic Computing”

(SPP 1183) of the German research foundation (DFG) in the project SAVE ORCA.

88

Fig. 1. A situation prone to deadlocks induced by cyclic resource processing

starvation without the need to globally analyse the system or trace the state of
all agents during runtime.

The paper is structured as follows: Sect. 2 defines the terms associated with
deadlocks and introduces how deadlocks can be dealt with. Sect. 3 shows how
liveness hazards are dealt with in literature and Sect. 4 describes the system
class the proposed approach is applicable to. Sect. 5 then introduces a fair role-
selection algorithm that is extended with a deadlock avoidance mechanism in
Sect. 6. Limitations of this mechanism and ways to overcome them are outlined
in Sect. 7 and Sect. 8 concludes the paper.

2 Background and Definitions

There are a number of different liveness hazards that can occur in concurrent
systems. The definitions of these hazards often vary a great deal between different
authors and domains. Therefore, the following brief definitions introduce the
terms as they are used in this paper.

Deadlocks. A deadlock is a situation wherein two or more competing actions
are waiting for the other to finish, and thus neither ever does. Coffman et
al. [10] give four conditions that must hold for a deadlock to occur:
1. “Mutual exclusion” i.e., agents claim exclusive control of the resource

they require;
2. “No preemption” i.e., resources cannot be forcibly removed from the

agents holding them until processing of the resources is completed;
3. “Wait for condition” i.e., Agents hold resources allocated to them, while

waiting for additional ones;
4. “Circular wait” i.e., a circular claim of agents exists, such that each agent

holds one or more resources that need to be given to another agent in
the claim.

Livelock. A liveness failure is referred to as a livelock when an agent although
not blocked cannot proceed further and keeps retrying. As an example con-
sider two mobile agent’s who obstruct each others paths. Both decide to give
way to the other at the same time and move to the right leading again to
an obstruction. Now both decide at the same time to move to the left and
the process keeps repeating leading to no agent moving forward. Another
example is the ’after you after you’ politeness protocol.

89

Starvation. Starvation occurs when an agent is continuously denied access to
a resource. Bustard et al. illustrate the starvation problem using the dining
philosophers problem in the field of autonomic computing [8]. It can also be
characterized as a special case of livelock [21].

Fairness. Fairness in its most general definition guarantees that a process will
eventually be given enough resources to allow it to terminate [26]. This
is usually achieved by implementing a scheduling mechanism. Especially in
distributed systems that share resources, the ability to terminate may depend
on other components or on interacting with them. Fairness is classified into
weak and strong fairness where weak fairness implies that a component will
eventually proceed if it can almost always proceed and strong fairness implies
that a component which can proceed infinitely often does proceed infinitely
often [11].

There are three different ways on how potential deadlocks can be dealt with.
Their applicability depends on the structure of the systems under consideration
and the assumptions that can be made about them.

Deadlock Prevention prohibits circular waits among agents while the system
is not running. The strength of the approach is also its greatest weakness:
a prevention mechanism requires global knowledge of the system and all its
reachable states which often yields a straightforward often-simple control
law but acquiring this knowledge can be difficult and computationally in-
tractable. Additionally, limiting concurrency to prevent any deadlock state
from occurring can be overly conservative, potentially leading to low utiliza-
tion of system resources.

Deadlock Avoidance suitable governs the resource flow to prevent circular
waits. This is a dynamic approach that can utilize the knowledge of the cur-
rent allocation of resources and the future behaviour of processes to control
the release and acquisition of resources. The main characteristic of deadlock
avoidance strategies is that they work during runtime and base their deci-
sions on information about the resource and agent status. More precisely, a
deadlock controller inhibits or enables events involving resource acquisition
or release by using look-ahead procedures.

Deadlock Detection and Resolution monitors the agents and/or the flow of
resources and detects deadlocks at runtime. Resources can then be removed
from the system or put into buffers to resolve the deadlock. This strategy can
in general allow higher resource utilization than that prevention or avoidance
methods can offer. However, it should only be used when deadlock is rare
and detection and recovery are not expensive and much faster than deadlock
generation.

3 Related Work

Deadlocks have been dealt with in several domains that are concerned with
software-systems, e.g. deadlocks which are inherent in databases that use locking

90

mechanisms [5] and involve detecting cycles in the wait-for graphs when the
dependency relations between agents are known locally by using serialization
techniques or resource allocation logic in operating systems [10]. However, the
primary realm of related work that is relevant for the self-organizing resource-
flow systems considered in this paper stems from the domain of manufacturing
control and Flexible Manufacturing Systems (FMS). For an overview of such
approaches, see, [14].

Several proposed Deadlock Prevention strategies are based on the use of
transition systems, mostly Petri nets. [19] provides a mechanism to generate an
automated supervisor to check for deadlocks in the given Petri nets and hence
prevent them from occurring. A survey of techniques using Petri nets has been
made by Zhi Wu Li et al. [23] with respect to AGV (Automated Guided Vehicle)
systems in manufacturing. Siphon based policies are shown to achieve a good
balance of the best of all properties of the Petri net based methods [18]. However
all these techniques rely on known interactions between the agents (mostly the
AGVs in the referred cases) and restrict transitions to states that could lead to a
deadlock based on a universal control policy generated during Petri net analysis.

The methods discussed above all require a global view of the system, offline
computation or computation during the design phase. The deadlock prevention
approach establishes the control policy in a static way, so that, once established,
it is guaranteed that the system cannot reach a deadlock situation if the system is
not changed [13]. Serial execution of the processes on the resource like scheduling
in the case of software processes or threads involves assumptions or knowledge of
the time of execution which might not be available. The computations required
can become infeasible for large scale systems.

Deadlock Avoidance mechanisms using Petri nets [33,17] restrict the max-
imal number of parts that can be routed into the system. The Petri nets are
either constructed upfront or constructed dynamically which involves a com-
munication overhead. A Petri net allows to check at each state whether the
next state would lead to a deadlock or not. This analysis can be used to obtain
suitable constraint policies for the system [3,33]; a similar mechanism has also
been utilized for deadlocks in software programs [30] using supervisory control of
Petri nets. A resource-allocation graph can be used to construct a local graph to
check for deadlocks based on a global classification of agents into deadlock risk
and deadlock free agents and combines the restrictions of deadlock prevention
with the flexibility of deadlock avoidance [34]. [6] also uses a resource-allocation
graph in which resource allocation and release is modelled by the insertion and
deletion of edges. Deadlock avoidance is achieved by prohibiting actions that
would lead to the insertion of an edge that would make the graph cyclic. If the
components of a system know the nature of all the jobs they will be performing
and all the components they will be communicating with in advance, deadlocks
can be avoided in a distributed fashion [27].

Deadlock Detection and Resolution [28] often involves construction of a
wait-for graph [7]. A wait-for graph is a graph to track which other agent an agent
is currently blocking on. Maintaining such a global picture or agent state involves

91

a lot of communication overhead while locally distributed deadlock detection
schemes like Goldman’s Algorithm [15] pass information locally to agents in the
form of tables or other data sets. Ashfield et al. [2] provide dedicated agents
for deadlock initiation, detection and resolution in a system with mobile agents.
Deadlock Recovery Mechanisms using buffers [32] or rollback propagation [31]
have been proposed.

Livelocks are closely related to deadlocks [1] but have not been dealt with
as rigorously as deadlocks have been. A combination of different formal methods
is used in [9] to check a system for livelock freedom at design time. Similarly,
[20] introduces a type system that can be used to prove that processes and their
communication are deadlock- and livelock-free.

In [22], the author examines different characterizations of fairness in trace-
based systems and explores the practical usefulness of generalized fairness prop-
erties. [4] introduces least fairness, a property that is sufficient to show freedom
of starvation as well as the concept of conspiracy that describes how concurrent
processes interact to induce starvation. Parametric fairness, a fairness measure
based on a probabilistic model is used in [29] to show that most executions of
concurrent programs are fair. Markov Models are used to study unfairness and
starvation in CSMA/CA protocols [12].

4 Self-organising Resource-Flow Systems

In order to analyse, specify, model, and construct self-organising resource-flow sys-
tems, the Organic Design Pattern (ODP) has been developed [16]. It describes
self-organizing systems in terms of agents that process resources by applying ca-
pabilities according to roles. Roles are data structures that contain a precondition,
a list of capabili ties to apply and a postcondition ODP is part of a methodology
that contains a design guideline, the pattern description with its static and dy-
namic parts as well as methods and tools for formally verifying properties of sys-
tems modelled with ODP. In the following, only the relevant parts of the pattern
will be described. More information can be found in the cited resources.

4.1 Set-Based Description of ODP

An ODP system consists – among other things – of a set agents of the agents
in the system, a set capabilities which is the set of all capabilities in the system
and a set roles which denotes the set of all possible roles in the system. An agent
ag ∈ agents consists of two sets of agents (inputag and outputag), the former
one defining the agents from which ag may accept resources and the latter one
to which ag may give resources, as well as a set capag of capabilities the agent
can apply and a set rolesag which determine the function of the agent in the
system. A condition c is an element of the set conditions, containing an agent to
exchange a resource with, a sequence of capabilities1 that have been applied to a
1 In this definition, capabi l i t i es is treated as an alphabet whose symbols can form

words which describe the state, task and capabilities to apply to a resource.

92

resource and a sequence of capabilities that have to be applied to an agent (also
called the task to be performed on the resource). A role r ∈ roles is composed
of a precondition that describes where a resource comes from, its state and task
when it is accepted by the agent, a sequence of capabilities to apply on the
resource, and a postcondition that describes to which agent the resource has to
be given and its state and task after processing.

ODP systems are reconfigured by changing the allocation of roles to agents.
Whenever an agent can not fulfil its capabilities any more or is no longer avail-
able, a new allocation of roles to the agents is calculated (e.g. by employing con-
straint satisfaction techniques [25]) and the newly calculated roles are adopted
by the agents. This ensures that as long as all the capabilities that are required
to process resources are still available in the system, a valid configuration can
be found.

The role that has been applied to process a resource by agent agproc is also
used to determine which agent agnext it has to be given to. agproc sends agnext a
message informing it of the intent to transfer a resource. The message contains
information about the resources status that can be used by the agnext to deter-
mine the role whose precondition fits the resource status and the sending agent.
The role that has been derived is then stored in a map in which the agproc is
the key and the role is the value. The set of values in this map is used at a later
point to select the next role to be executed by agnext. Sect. 6.2 describes the
message reception and role selection process formally.

4.2 Liveness in Self-organising Resource-Flow Systems

Preventing starvation of an agent is straight-forward: it has to be ensured that
the resource the agent holds is eventually taken by another agent. This can be
ensured by a role-selection mechanism that will eventually select each applicable
role. Dealing with deadlocks, however, is a more complicated matter.

Systems with a flow of physical resources are prone to deadlocks whenever
they are in a configuration that establishes a cycle in the resource-flow graph.
In Sect. 2, four different characteristic conditions for deadlocks were mentioned.
The first three of these (mutual exclusion, no preemption, and wait-for condition)
are always true in ODP systems as resources can not be shared between agents
but are claimed exclusively by an agent for processing, processing of a resource
is always completed before it is available to another agent, and an agent has
to wait for a subsequent agent to take the resource away before it can process
another one. Thus, the only way to deal with deadlocks in ODP systems is to
break the “circular wait” property. A circular wait occurs when two or more
agents are arranged in a loop and each agent waits for the subsequent agent to
take the resource it has been offered.

All centralized approaches of deadlock prevention and avoidance suffer from
the same limitations: pre-calculating all states a system can reach is very ex-
pensive and in many cases computationally infeasible even for relatively small
cases. Supervising the state of all agents involves a massive amount of commu-
nication and limits the agents’ autonomy considerably. Additionally, ensuring a

93

consistent state to make decisions about applicable state transitions is by no
means simple and may require the introduction of synchronization between
agents, thus severely reducing system performance. A centralized solution also
always suffers from standard problems: it is a bottleneck and a single point of
failure. Finally, a distributed solution can be employed regardless of an existing
centralized entity, that, e.g., handles reconfiguration.

Deadlock detection might be feasible in resource-flow systems as there are
distributed mechanisms available (see [28] for a survey). However, the resolution
mechanisms proposed are hardly adaptable to resource-flow systems. Rollback
propagation [31] is not applicable since resources undergo an irreversible set of
operations. Use of buffers [32] has to be avoided as in many applications agents
can not store resources and it can not be assumed that there are spare agents to
temporarily hold resources. A conceivable mechanism for deadlock resolution is
to let an agent dump the resource it currently holds, which is undesirable because
resources are potentially valuable and should be processed to completion.

5 A Fair Role-Selection Mechanism

The main purpose of a fair role-selection mechanism is to avoid starvation. As
described above, starvation occurs if an agent is waiting for a resource to be taken
by another agent and this never happens. In ODP terminology, the agent agrec

that is the receiver of the resource never executes the role rx that would take
the resource from the sending agent agsen. The scheduling algorithm described
below thus ensures that each role that is applicable is eventually executed.

Definitions and Initialization: An agent contains the following data struc-
tures: a map of roles associated to agents that sent a request to the current
agent requests ⊆ agents × roles, a map applicationT imes ⊆ roles × N that
stores the value of the counter at the point in time when a role has last been
executed and contains one value per role (∀(r1, t1), (r2, t2) ∈ applicationT imes :
r1 = r2 → t1 = t2), and a number counter ∈ N that counts the number of
times the agent executed a role. These structures are initialized as requests = ∅,
applicationT imes = {∀r ∈ roles|(r, 0)}, and counter = 0.

Reception of Message: Whenever an agent agsen is ready to transfer a re-
source to an agent agrec, agsen sends a message m = (agsen, c) where c is
the postcondition of the role that agsen executed. agrec executes a function
getRole : agents × conditions → roles+ as appRoles = getRole(agsen, c) where

getRole(agsen, c) = {r : r ∈ rolesagrec ∧
r.precondition.from = agsen ∧
r.precondition.state = c.state ∧
r.precondition.task = c.task}

and updates the requests set: requests = requests∪ {(agsen, r)}∀r ∈ appRoles.
Each tuple in requests is also associated with the timestamp of its reception
which can be retrieved by ts : agents → N.

94

Choose a Role: Whenever agrec has to decide which role to execute next, it goes
through requests and applies for each of the roles stored in it a fitness function
f : Roles → N. In its simplest form, f is instantiated as f(r) = (counter − t)
where (r, t) ∈ applicationT imes. This will yield the highest value for the role
that has not been executed the longest, thus ensuring that each role that is
applicable will eventually be executed if f(r) is maximized.

Formally, the selection of the role to execute is done by evaluating a function
max : (agents×roles)+ → (agents×roles) which yields (a, r) = max(requests)
where

max(requests) = (ag, rnext) if ∀(ag� , r�) ∈ requests :
f(r�) < f(rnext) ∨ (f(r�) = f(rnext) ∧ ts(ag) ≤ ts(ag�))

The agent then chooses rnext as the next role to execute. The incorporation of
ts ensures that even if two or more requests evaluate to same fitness value, max
yields an unambiguous result, namely the oldest request.

Update: Once a role has been selected for execution, the agent needs to update
its structures to reflect the changes by setting t = counter where (rnext, t) ∈
applicationT imes, requests = requests \ {(ag, rnext)}, counter = counter + 1.

6 Distributed Deadlock Avoidance

The basic principle of the deadlock avoidance algorithm is very simple: If a loop
is detected, determine the size of the loop n and allow only n − 1 resources to
be processed by the n agents that are part of the loop at any one time.

The algorithm described below, however, constitutes a kind of local simula-
tion of the surroundings of an agent and works in a distributed fashion. It is
therefore applicable for systems with a centralized and a distributed configu-
ration mechanism. Thus, it is more versatile than a centralized loop detection
mechanism, but suffers some limitations because of its distributed nature and
the limited knowledge that is available at the agents.

6.1 Distributed Loop Detection

The algorithm is split in two parts: The first part is run locally on each agent
after it has received a new role allocation (i.e. after it has been reconfigured). It
determines whether the agent potentially is the entry of a loop. The second part
then verifies this assumption by sending a message that will eventually reach a
sink – meaning that the agent is not part of a loop – or return to the sending
agent – meaning of course that the agent is part of a loop.

Loop Estimation: Define a set S : roles × roles as follows:

S = {(ri, rj) | ri.precondition.state � rj .precondition.state ∧
ri.precondition.task = rj .precondition.task ∧
ri, rj ∈ roles ∧ ri �= rj}

95

where ‘�’ is the list prefix operator. Also define a function min as

min(S) = abs(|pq| − |pr|), if ∀ (pk, pl) ∈ S : abs(|pq| − |pr|) ≤ abs(|pk| − |pl|)
where pi = ri.precondition.state, for i ∈ {k, l, q, r}. This allows to determine
whether a loop exists and give an estimate of the length of the loop:

|S| ≥ 1 ⇒ loop = true∧ nest = min(S)

This algorithm also yields an estimate nest for the number of agents in the loop
that is an underestimate when we assume that each agent applies at most one
capability.

Loop Determination: To determine the actual size of the loop and to eliminate
potential loops the agent agorg creates a message m that has a list of agent
identifiers magents initialized with the identifier of agorg, a boolean flag msink

that determines if the message has reached a sink and that is initialized with
false, the postcondition of role rj in mcondition, and the tuple (ri, rj) ∈ S in
mroles. The message is sent to the agent in the output of the condition2.

When an agent agi receives a loop-detection message, it uses the getRole()
function to find the role that would be chosen if the sending agent had delivered
a request to take a resource. agi then adds its own identifier to magents. If agi

is not a sink, i.e. the role chosen by agi does contain a postcondition, it replaces
mcondition by the postcondition of the selected role and forwards the message to
the agent that is set as the output in the chosen role. In case agi is a sink, it
sets msink to true and returns the message to its originator, i.e., the first entry
in magents

3.
Eventually, the message will return to the original sender agorg, either because

it passed through the loop (in which case msink will be false) or because it
reached a sink and was returned. If a sink was reached, a loop does not exist and
S can be updated: S = S \ {mroles}. Otherwise, the actual length of the loop is
determined by counting the elements in magents and updating the agent-global
n that contains the number of agents in the smallest loop the agent is part of. n
is updated only if the number of elements in magents is less than the current n.

The loop determination part of the algorithm terminates when all messages
send out by agorg have returned to agorg.

6.2 Extension of the Scheduling Mechanism to Avoid Deadlocks

If a minimal loop size n has been calculated, the role-selection algorithm pre-
sented in Sect. 5 can be extended as follows:
2 We assume that agents operate in a stable communication environment and message

loss is thus not considered.
3 In case direct communication is not possible, the message is passed back along the

way it reached the sink. If an agent agj receives a message with msink set to true,
it looks up the agent that is in front of agj ’s agent identifier in magents and sends
the message to this agent.

96

1. Define executions : roles × roles × N
2. Initialize executions = {∀s ∈ S|(s, 0)}
3. Choose:

f �(r) =

{
0, if ∃((ri, rj), x) ∈ Executions : ri = r ∧ x ≥ n − 1
f(r), otherwise

4. Update:

∀((ri, rj), x) ∈ executions :

{
x = x + 1 if rnext = ri

x = x − 1 if rnext = rj

The fitness function f �(r) ensures that role ri is only executed if the difference
between the number of times ri and rj have been executed is less than n − 1.
If role ri is not executed because of this condition, the entry in requests will
be evaluated again the next time a role is selected. If a resource leaves the loop
(i.e., rj is executed), the difference becomes less than n − 1 and ri is eligible
for execution again. Loop-induced deadlocks are thus avoided while the fairness
guarantees are still upheld.

If ∀(ag, r) ∈ requests : f �(r) = 0 (i.e., no role can be executed at the moment
without causing a deadlock), the agent stays idle until requests is updated by a
new request and the role-selection algorithm is executed again.

7 Alternatives and Extensions

The basic mechanism described above works for many systems. However, there
are situations that can not be dealt with as easily. This section describes these
situations and how the mechanism can be adapted to accommodate more com-
plex system structures and concurrent, distributed reconfiguration.

7.1 Dealing with Distributed Reconfiguration

Usually, the cycle detection algorithm would be executed whenever an agent
receives a new configuration. However, in some systems with a distributed re-
configuration algorithm, the agents of a cycle might be reconfigured without
the agent at the entry of the cycle even noticing. The process might break the
cycle, change the number of agents in it or alter the cycle’s structure in other,
unforeseen ways. If the agent at the entry point upholds its deadlock avoidance
strategy, there might thus be deadlocks occurring.

To counter this kind of situation, two strategies are conceivable. Firstly, after
a reconfiguration occurred, information about this can be distributed to adjacent
nodes and the algorithm can be run after receiving this information. Secondly,
the agent at the entry point just runs the cycle detection periodically. As the
algorithm requires only few messages and very little computational effort, this
approach seems more efficient and also avoids problems with consistency and
information dissemination in large-scale systems.

97

7.2 More Than One Entry Point into a Loop

A situation where a loop has several entry points is depicted in Fig. 2. It is
most likely to occur when some agents of the loop do not apply a capability but
just forward the resource and if there are two independent upstream resource
processing lines that produce resources with the same state.

Fig. 2. Examples of loops of three agents and two entry points

It is possible that resources enter the loop at two different points thus causing
a congestion. Such a situation can only be remedied if the two agents that let
resources into the loop are cooperating to limit the number of resources processed
in the loop. The requirement can be described as follows: if a loop consists of
n agents and has n − k entries where n − 1 < k ≥ 0, the agents at the entries
have to coordinate to ensure that a maximum of n − 1 resources are within the
loop.

If an agent agi sent out a loop detection message and at a later point receives
such a message originating from another agent agj , agi can suspect that aj is an
entry point to the same loop. After agi and agj determined they are part of a
loop, they can exchange information about the loops they are part of and thus
establish their relationship. During productive phases, the agent at the exit of
the loop (say, agi) can award the other agent (agj) a quota of resources aj may
allow into the loop. After a resource has been allowed into the loop, agj will
inform agi. When agj’s quota is exhausted and agi has detected that resources
exited the loop again, agj will be granted a new quota.

Although it is suspected that this simple coordination mechanism scales well
for loops with more than two entry points, an investigation of such situations as
well as a detailed description of the mechanism will be left as future work.

7.3 Bifurcations

An agent can have two roles with the same precondition but different postcon-
ditions, e.g. to balance the load for the successive agents. In such a case, the
resource-flow graph bifurcates and the loop-detection message has to be sent to
both outputs of both postconditions. As the originating agent agorg now has to
expect more than one message as a reply to its cycle detection message, it has
to be informed about the bifurcation. agorg then waits until the original message

98

and all bifurcated message return. It is then able to establish the length of the
minimal loop it is part of by the mechanism described above.

This theoretically rather simple procedure becomes tedious when implemented.
The main problem is that it is not certain when a message will arrive at aorg. If
the message that went through a cycle arrives before the message that indicates a
bifurcation, the agent might have finished its cycle determination already. Special
cases might have to be introduced to deal with such a situation.

7.4 Multiple Tasks

If resources with several tasks are processed in a system simultaneously, circular
waits can now be induced by roles that are dealing with different tasks as shown
in Fig. 3. However, such waits do not necessarily occur in every system with
more than one task. If resources flow only in one direction through the system
or if each agent is configured to handle only one task, the proposed approach
is still applicable. In the general case, an extended loop detection mechanism
would be able to detect circular waits induced by the processing of resources
with different tasks and reduce this problem to the case of loops with several
entry points. This, however, is left as future work.

Fig. 3. Cycles induced by roles dealing with multiple tasks

8 Discussion and Conclusion

This paper described mechanisms for fair scheduling and deadlock avoidance
based on local knowledge and minimal communication that are suitable for large
scale dynamic system with a changing structure. In comparison to the approaches
in literature this method is not limited by the computational time that is required
to construct and simulate a global graph, works during runtime of the system and
specifies the concrete application of the knowledge about potential deadlocks in
the context of the scheduler. It also does not involve a massive amount of message
passing and does not undermine the self-organizing and autonomous properties
of a system and its entities respectively.

Although some details of extensions for more complex system structures are
not yet fully elaborated, the approach already proves useful and has been imple-
mented in the ODP Runtime Environment [24] on a case study of an adaptive
production cell. The preliminary results are very encouraging and the open issues
will be evaluated and solved with the help of this implementation.

99

References

1. Abate, A., Innocenzo, A.D., Pola, G., Di Benedetto, M.D., Sastry, S.: The Concept
of Deadlock and Livelock in Hybrid Control Systems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 628–632. Springer, Heidelberg
(2007)

2. Ashfield, B., Deugo, D., Oppacher, F., White, T.: Distributed Deadlock Detection
in Mobile Agent Systems. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS
(LNAI), vol. 2358, pp. 146–156. Springer, Heidelberg (2002)

3. Banaszak, Z.A., Krogh, B.H.: Deadlock avoidance in flexible manufacturing sys-
tems with concurrently competing process flows. IEEE Transactions on Robotics
and Automation 6(6), 724–734 (1990)

4. Bandyopadhyay, A.K.: Fairness and conspiracy concepts in concurrent systems.
SIGSOFT Softw. Eng. Notes 34(2), 1–8 (2009)

5. Barbosa, V.C.: Strategies for the prevention of communication deadlocks in dis-
tributed parallel programs. IEEE Transactions on Software Engineering 16(11),
1311–1316 (1990)

6. Belik, F.: An efficient deadlock avoidance technique. IEEE Transactions on Com-
puters 39(7), 882–888 (1990)

7. Bracha, G., Toueg, S.: Distributed deadlock detection. Distributed Computing 2(3),
127–138 (1987)

8. Bustard, D., Hassan, S., McSherry, D., Walmsley, S.: GRAPHIC illustrations of
autonomic computing concepts. Innovations in Systems and Software Engineer-
ing 3(1), 61–69 (2007)

9. Buth, B., Peleska, J., Shi, H.: Combining Methods for the Livelock Analysis of a
Fault-Tolerant System. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548,
p. 124. Springer, Heidelberg (1998)

10. Coffman, E.G., Elphick, M.J.: System deadlocks. Computing Surveys (1971)
11. Costa, G., Stirling, C.: Weak and strong fairness in CCS. Information and Com-

putation 73(3), 207–244 (1987)
12. Durvy, M., Dousse, O., Thiran, P.: Self-Organization Properties of CSMA/CA

Systems and Their Consequences on Fairness. IEEE Transactions on Information
Theory 55(3), 1 (2009)

13. Ezpeleta, J., Colom, J.M., Martinez, J.: A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Robotics and
Automation 11(2), 173–184 (1995)

14. Fanti, M.P., Zhou, M.C.: Deadlock control methods in automated manufacturing
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A 34(1), 5–22
(2004)

15. Goldman, B.: Deadlock detection in computer networks. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA (1977)

16. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A Specification and
Construction Paradigm for Organic Computing Systems. In: Proceedings of the
2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, pp. 233–242. IEEE Computer Society, Washington (2008)

17. Hsieh, F.S.: Fault-tolerant deadlock avoidance algorithm for assembly processes.
IEEE Transactions on Systems, Man and Cybernetics, Part A 34(1), 65–79 (2004)

18. Huang, Y.S., Jeng, M.D., Xie, X., Chung, D.H.: Siphon-based deadlock prevention
policy for flexible manufacturing systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part A: Systems and Humans 36(6), 1249 (2006)

100

19. Kim, K.H., Jeon, S.M., Ryu, K.R.: Deadlock prevention for automated guided
vehicles in automated container terminals. OR Spectrum 28(4), 659–679 (2006)

20. Kobayashi, N.: Type systems for concurrent processes: From deadlock-freedom to
livelock-freedom, time-boundedness. In: van Leeuwen, J., Watanabe, O., Hagiya,
M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 365–389. Springer,
Heidelberg (2000)

21. Kwong, Y.S.: On the absence of livelocks in parallel programs. In: Kahn, G. (ed.)
Semantics of Concurrent Computation. LNCS, vol. 70, pp. 172–190. Springer, Hei-
delberg (1979)

22. Lamport, L.: Fairness and hyperfairness. Distributed Computing 13(4), 239–245
(2000)

23. Li, Z.W., Zhou, M.C., Wu, N.Q.: A survey and comparison of Petri net-based
deadlock prevention policies for flexible manufacturing systems. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38(2), 173–
188 (2008)

24. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.-P., Reif, W.: A generic software
framework for role-based Organic Computing systems. In: SEAMS 2009: ICSE 2009
Workshop Software Engineering for Adaptive and Self-Managing Systems (2009)

25. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.-P., Reif, W.: A universal self-
organization mechanism for role-based Organic Computing systems. In: González
Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp.
17–31. Springer, Heidelberg (2009)

26. Park, D.: On the Semantics of Fair Parallelism. In: Bjorner, D. (ed.) Abstract
Software Specifications. LNCS, vol. 86, pp. 504–526. Springer, Heidelberg (1980)

27. Sanchez, C., Sipma, H.B., Manna, Z., Gill, C.D.: Efficient distributed deadlock
avoidance with liveness guarantees. In: Proceedings of the 6th ACM & IEEE In-
ternational conference on Embedded software, pp. 12–20. ACM, New York (2006)

28. Sfinghal, M.: Deadlock detection in distributed systems. Computer 22(11), 37–48
(1989)

29. Wang, J., Zhang, X., Zhang, Y., Yang, H.: A Probabilistic Model for Parametric
Fairness in Isabelle/HOL. In: Theorem Proving in Higher Order Logics: Emerging
trends Proceedings, pp. 194–209 (2007)

30. Wang, Y., Kelly, T., Kudlur, M., Mahlke, S., Lafortune, S.: The application of
supervisory control to deadlock avoidance in concurrent software. In: 9th Interna-
tional Workshop on Discrete Event Systems, WODES 2008, pp. 287–292 (2008)

31. Wang, Y.M., Merritt, M., Romanovsky, A.B.: Guaranteed deadlock recovery: Dead-
lock resolution with rollback propagation. In: Proc. Pacific Rim International Sym-
posium on Fault-Tolerant Systems (1995)

32. Wu, N., Zhou, M.C.: Deadlock resolution in automated manufacturing systems with
robots. IEEE Transactions on Automation Science and Engineering 4(3), 474–480
(2007)

33. Wu, N., Zhou, M.C., Li, Z.W.: Resource-oriented Petri net for deadlock avoidance
in flexible assembly systems. IEEE Transactions on Systems, Man and Cybernetics,
Part A 38(1), 56–69 (2008)

34. Zajac, J.: A deadlock handling method for automated manufacturing systems.
CIRP Annals-Manufacturing Technology 53(1), 367–370 (2004)

