
COUPLING PROBLEMS IN MICROELECTRONIC DEVICESIMULATIONR. HIPTMAIR, R.H.W. HOPPE and B. WOHLMUTH 1AbstractThe cost-e�ective design of electronic microstructures requires an advanced mod-eling and coupled simulation of various physical e�ects. The classical isothermalapproach leads to the basic drift-di�usion model for semiconductor device simula-tion. In the stationary case, it represents a coupled nonlinear system consisting ofa Poisson equation for the electric potential and two continuity equations for theelectron and hole 
ow. We discuss various discretization schemes with special em-phasis on mixed �nite element methods and we further address e�cient numericalsolution techniques including adaptive multilevel methods. Finally, to allow for am-bient conditions such as external magnetic �elds we consider consistent extensionsof the classical model and discuss perspectives for their numerical treatment.1. IntroductionThe numerical simulation of microelectronic devices is an integral part of the ComputerAided Design of integrated microsystems. It consists of three main stages: The �rststage is concerned with the simulation of the fabrication processes and comprises struc-ture de�ning processing steps such as lithography, etching, decomposition and thermaloxidation as well as the processing steps of ion implantation and dopand di�usion (cf. e.g.[23]).The second stage deals with the simulation of the physical behavior of the devices withina uni�ed framework which takes into account not only the electrical behavior but alsothermal, magnetic and optical e�ects depending on what the device is aimed for (cf. e.g.[30], [31]).The third stage represents the simulation of the global behavior of networks of microstruc-tures under operating conditions of interest (cf. e.g. [19]).In this paper, the emphasis is on concepts for microelectronic device simulation allowing ane�cient and reliable numerical solution of the underlying physical equations. A commonfeature of the physical modeling is the coupled simulation of carrier and energy transportand the proper incorporation of ambient conditions such as electromagnetic radiation�elds (power laser diodes) or galvanomagnetic e�orts in the presence of an external quasi-static magnetic �eld (magnetotransistors).It has to be noted that in the modeling community there is a controversial debate whatsuch advanced device models should be based on. One common approach uses the so-called hydrodynamic model resulting from a momentum expansion of the Boltzmannequation truncated after the second-order moments (cf. e.g. [20]). Another approach,advocated for example by Wachutka [30], uses the principles of irreversible phenomenolog-ical thermodynamics to provide an extended thermodynamic model as a comprehensiveframework for a uni�ed treatment which allows a tailored modeling of speci�c microelec-tronic devices. The model is such that in the absence of mechanical, thermal, magneticand optical e�ects it reduces to the description of the interaction between the electric �eld1e{mail: hoppe@math.uni-augsburg.de, address: Math.-Nat. Fakult�at der Universit�at Augsburg,Universit�atsstr. 14, D{86 159 Augsburg. The �rst and third author were supported by FORTWIHR,Bavarian Consortium for High Performance Scienti�c Computing.



and the particle transport as given by the classical drift-di�usion model in semiconductordevice simulation. In this sense the drift-di�usion model represents, so-to-say, the kernelof the extended model and any numerical approach for the extended model has to rely onan e�cient solution of the drift-di�usion equations.In this paper, we will advocate the use of mixed �nite elements with special emphasison a technique called mixed hybridization allowing the simultaneous computation of thecurrent densities and the carrier concentrations. We will also indicate its relationshipto other widely used discretization techniques with the celebrated Scharfetter-Gummelscheme at prominent place. Further, we will present tools for adaptive grid generationwithin a mixed �nite element approach and give some numerical results for a MOSFET.Finally, we will shortly address the numerical treatment of an extended model incorpo-rating external magnetic �elds.2. Mixed �nite element discretization of the drift-di�usion modelIn the stationary case, the classical drift-di�usion model describing the distribution of theelectron and hole densities n and p under the in
uence of an electric �eld consists of twocontinuity equations for the current densities jn and jp coupled with a Poisson equationfor the electric potential 	. ���	 = q(D + n� p);div jn = qR(n; p) + f1;div jp = �qR(n; p) + f2 (2.1)where jn = q�n(UTgradn� ngrad	);jp = �q�p(UTgrad p+ pgrad	):Here, D stands for the dopand pro�le, R(n; p) for the recombination/generation rate andf1, f2 are the source terms. Further, �, q, UT and �n, �p denote the dielectric permittivity,the elementary charge, the thermal voltage and the mobilities, respectively. We consider(2.1) in a bounded polyhedral domain 
 � IR3 with boundary conditions of Dirichlet typeat the Ohmic contacts �D and of homogeneous Neumann type at the isolating part �Nof the device. 	 = 	D; n = nD; p = pD on �D;@	@� = 0; � � jn = 0; � � jp = 0 on �N : (2.2)Typically, the dopand pro�le D is strongly varying causing a pronounced layer behaviorof the electric potential 	. Consequently, we may expect local areas with signi�cantchange in magnitude of the gradient of 	. In view of the constitutive relations for thecurrent densities, the convective transport is dominant in such areas so that the continuityequations represent convection-dominated di�usion-convection problems. It is well knownthat the numerical solution of such problems requires utmost care in the discretizationprocess. Apart from upwinding techniques for methods based on the primal variationalapproach (cf. e.g. [4]), �nite volume techniques are widely used, because they are basedon the principle of current conservation. Related techniques are provided by mixed �niteelement discretizations allowing the simultaneous computation of the current densitiesand the carrier concentrations. For simplicity, we consider the continuity equation foronly one minority carrier in the following scaled and linearized formdiv (exp(	)gradu)� exp(	)Ru = f



where we have introduced the Slotboom variable u = exp(�	)n and R stands for thedi�erential net recombination/generation rate. The mixed approach is based on the dualformulation of the problem which can be obtained by introducing the current densityj = exp(	)gradu as an additional unknown. In this way, the second order elliptic partialdi�erential equation can be formally written as a �rst order system. In contrast to theprimal approach we rely on the weak formulation of the relationship between he currentdensity j and the Slotboom variable u whereas the continuity equation is treated in thestrong L2-sense. This gives rise to a system of two variational equations:Find (j; u) 2 H�N (div ; 
)� L2(
) such thatR
 exp(�	)j � q dx + R
 div q udx = R�D exp(�	)nD� � q d�; q 2 H�N (div ; 
)R
 div j v dx� R
 exp(	)Ruv dx = R
 fv dx; v 2 L2(
) (2.3)where H�N (div ; 
) = fq 2 (L2(
))3 j div q 2 L2(
); � � qj�N = 0g:In the following we will focus on an approach called dual or mixed hybridization whichtakes advantage of ideas from domain decomposition and can be carried out both inthe continuous and discrete setting of the problem. We will concentrate on the discretesetting and refer to [16] for a treatment of the continuous case. For that purpose weconsider the standard mixed discretization by means of the lowest order Raviart-Thomasapproximation. Given a simplicial triangulation Th of 
, the Slotboom variable u will beapproximated by piecewise constants resulting in the ansatz spaceW0(
; Th) = fvh 2 L2(
) j vhjK 2 P0(K); K 2 Thgwhere Pk(K), k � 0, denotes the polynomials of degree � k on K. An associatedapproximation of the dual variable j can be obtained by requiring the divergence of thediscrete 
ux to be piecewise constant, too. This requirement leads in a natural way to thelowest order Raviart-Thomas element RT0(K) = P0(K)3+xP0(K), x = (x1; x2; x3)T . Wenote that any vector �eld from RT0(K) is uniquely determined by 4 degrees of freedomwhich can be chosen as the normal component of the 
ux in the center of gravity of thefaces of K. SettingRT0;�N (
; Th) = fqh 2 H�N (div ; 
) j qhjK 2 RT0(K); K 2 Thg;the mixed discretization requires the computation of a pair (jh; uh) 2 RT0;�N (
; Th) �W0(
; Th) as the solution of (2.3) when restricted to RT0;�N (
; Th) and W0(
; Th), re-spectively. The concept of mixed hybridization originally due to Fraeijs de Veubeke [11](cf. also [7]) is to decompose the saddle point problem arising from the standard mixedapproach into less bulky pieces by considering the \broken" Raviart-Thomas ansatz spaceRT�10;�N (
; Th) = fqh 2 YK2ThRT0(K) j � � qhj�N = 0g:We note that RT�10;�N (
; Th) is not a subspace of H�N (div ; 
), since the continuity ofthe normal components � � qh of vector �elds qh 2 RT�10;�N (
; Th) across the interelementboundaries of the triangulation is no longer guaranteed. Instead, the continuity con-straints are taken care of by appropriate Lagrangian multipliers. Denoting by Fh the setof faces of Th an appropriate multiplier space is given byM0;�D(
; Th) = f�h 2 L2(Fh) j �hjF 2 P0(F ); F 2 Fh; �hjF = 0; F 2 Fh \ �Dg:



Then, in terms of the original primal variable nh the mixed hybridization requires thecomputation of a triple (jh; nh; �h) 2 RT�10;�N (
; Th)�W0(
; Th)�M0;�D(
; Th) such thatPK2Th RK exp(�	)jh � qh dx+ PK2Th RK div qh exp(�	)nh dx� PK2Th R@K exp(�	)�h� � qh d� = PK2Th R@K\�D exp(�	)nD� � qh d�; qh 2 RT�10;�N (
; Th);PK2Th RK div jhvh dx� PK2Th RK Rnhvh dx = R
 fvh dx; vh 2 W0(
; Th);PK2Th R@K �h� � jh d� = 0; �h 2M0;�D(
; Th): (2.4)The purely local character of the bases of RT�10;�N (
; Th) and W0(
; Th) strongly suggestsstatic condensation of both the discrete 
ux jh and the discrete carrier concentration nhresulting in the Schur complement systemSh�h = th: (2.5)Theorem 2.1 The Schur complement Sh can be assembled from its local contributionsSKh , K 2 Th, resulting from static condensation on the elements' level. For interiorelements K 2 Th \ 
 we obtainSKh = �D1K(��1K UK + �KTK)D2K (2.6)where D1K, D2K, UK and TK are the 4� 4 matricesD1K = (jFij�ij)4i;j=1; D2K =  (RFi exp(�	) d�)�ij!4i;j=1 ; UK = (�i � �j)4i;j=1TK = �K�TK ; �K;i = p � �i � ��1K RK exp(�	)x � �i dx; p 2 Fi; 1 � i � 4and the constants �K , �K are given by�K = RK exp(�	) dx; �K = (
K RK Rdx+ 9�KjKj)�1 RK Rdx;
K = RK exp(�	)�K � �K dx; �K(x) = x� ��1K RK exp(�	)x0 dx0:For elements K 2 Th attached to the boundary �D obvious modi�cations apply.Proof: Since the Schur complement does not depend on the choice of the bases inRT�10;�N (
; Th) and W0(
; Th), we pick a local basis q(i)K , 1 � i � 4, of the discrete 
uxspace according to q(i)K = ei, 1 � i � 3, q(4)K = �K where ei stands for the i-th canonicalbasis vector of IR3. Observing that the q(i)K are orthogonal with respect to the innerproduct (pK ;qK) = RK exp(�	)pK � qK dx and that div q(i)K = 0, 1 � i � 3, div q(4)K = 3,the representation (2.6) follows from straightforward, but tedious computations. 2It can be immediately seen from (2.6) that the matrix �SKh is an M -matrix provided theelement K has no obtuse angle. Obviously, this property carries over to the global Schurcomplement �Sh.Following the same line of arguments as in the previous theorem, the right hand side of theSchur complement system can be similarly assembled from local load vectors tKh , K 2 Th.



Moreover, the inhomogeneous Dirichlet data can be incorporated into the multiplier bysetting �hjF = (RF exp(�	) d�)�1 RF exp(�	)nD d�, F 2 Fh \ �D.Though in the process of mixed hybridization we have discarded the discrete currentdensities jh and the discrete carrier concentrations nD, they can be easily retrieved fromthe values of the Lagrangian multiplier �h. In particular, denoting by jKh the vector of
uxes through the faces of K 2 Th we �nd that jKh is readily available as the residual ofthe local Schur complement equation:jKh = tKh � SKh �Kh ; K 2 Th:Note that the residual in general does not vanish, since the actual value of �h results fromthe solution of the global Schur complement system and thus inherits contributions fromthe other elements.An important implementational aspect of mixed hybridization - in particular with respectto the construction of iterative solvers - is that the Schur complement system can be shownto be equivalent to a nonconforming Petrov-Galerkin scheme of inverse average type. Thatequivalence has been observed, among others, by Brezzi, Marini and Pietra [8], [9] and hasbeen exploited, for example, by Bachmann [2] and Reusken [24] in a multigrid approachto the continuity equation. To be more precise, let us denote by 	iK, 1 � i � 4, the localcanonical basis of the lowest order nonconforming Crouzeix-Raviart element CR1(K) andby ~	iK the scaled basis functions~	iK = si	iK; si = jFij�1 ZFi exp(�	) d�; 1 � i � 4spanning the scaled element gCR1(K). We choosegCR1;�D(
; Th) = fvh 2 L2(
) j vhjK 2 gCR1(K); K 2 Th;vhjFi = s�1i exp(�	)nD; Fi 2 Fh \ �Dgas the ansatz space andCR01;�D(
; Th) = fvh 2 L2(
) j vhjK 2 CR1(K); K 2 Th; vhj�D = 0gas the test space in a modi�ed nonconforming Petrov-Galerkin approach to the primal vari-ational formulation of the continuity equation where the modi�cation consists in replac-ing the coe�cient function exp(	)jK by its harmonic average over an individual elementK 2 Th. Then, the following result can be established where for notational conveniencewe only consider the case R = 0.Theorem 2.2 Let uh 2 gCR1;�D(
; Th) be the solution of the nonconforming Petrov-Galerkin scheme ah(uh; vh) = lh(vh); vh 2 CR01;�D(
; Th) (2.7)whereah(uh; vh) = PK2Th RK  jKj�1 RK exp(�	) dx!�1 grad uh � grad vh dx;lh(vh) = PK2Th (3jKj)�1 RK f dx RK 0@exp(�	) jKj�1 RK exp(�	) dx0!�1 � 41A vh dxThen, if �h is the solution of the Schur complement system (2.5) in case R = 0 and �hdenotes the L2-projection onto the multiplier space, we have �h = �huh.



Proof: The proof is the 3D analogue of that one given in [16; Thm. 4.2] in the 2D case(cf. also [15; Satz 3.2.2]). 2As said before, the equivalence with the nonconforming Petrov-Galerkin scheme (2.7) canbe used by taking advantage of e�cient multilevel iterative solvers designed for noncon-forming �nite element discretizations (cf. e.g. [6]). In the sequel, we will not followthis aspect but instead elaborate on the relationship between mixed methods and theScharfetter-Gummel box method widely used in device simulation.3. Mixed discretization and the Scharfetter-Gummel schemeIt is well known that mixed �nite element methods are closely related to �nite volumetechniques. Such box methods are also appropriate candidates for the discretization ofthe drift-di�usion model, since they are based on the principle of current conservation.The most prominent box method in device simulation is the Scharfetter-Gummel schemewhich is used in many existent program packages (cf. e.g. [10], [27], [28]). In order toestablish the relationship between mixed methods and the Scharfetter-Gummel scheme,let us consider the mixed discretization of the continuity equation by means of the lowestorder Raviart-Thomas approximation with respect to a hexahedral triangulation. In thiscase, the Raviart-Thomas element RT [0](K), K 2 Th, is given byRT [0](K) = Q1;0;0(K)�Q0;1;0(K)�Q0;0;1(K)where Q�1;�2;�3(K) = fp j p(x) = Pj�ij��i 
�x�11 x�22 x�33 ; x 2 Kg. Any vector �eld fromRT [0](K) is uniquely determined by six degrees of freedom which are again chosen asthe normal components in the centers of gravity of the faces of K. As for simplicialtriangulations the primal variable is approximated by piecewise constants. Denoting byRT[0];�N (
; Th) and W0(
; Th) the associated global ansatz spaces, we have to compute(jh; nh) 2 RT[0];�N (
; Th)�W0(
; Th) as the solution ofR
 exp(�	)jh � qh dx+ R
 exp(�	)div qh nh dx = R�D exp(�	)nD� � qh d�;R
 div jh vh dx� R
 Rnhvh dx = R
 fvh dx; vh 2 W0(
; Th); qh 2 RT[0];�N (
; Th): (3.8)By regular re�nement we subdivide each element K 2 Th with vertices P�, 1 � � � 8,into eight subelements K� , 1 � � � 8, and evaluate the integrals RK exp(�	)jh � qh dx in(3.8) by means of the quadrature formula8X�=1(ph � qh)(P�) ZK exp(�	) dx: (3.9)Theorem 3.3 The mixed method (3.8) in combination with the quadrature formula (3.9)is equivalent to the Scharfetter-Gummel discretization of the continuity equation.Proof: Considering the 2 � 2 block coe�cient matrix which represents the algebraicformulation of (3.8), the �rst diagonal block obviously reduces to a diagonal matrix whenusing (3.9). Then, the equivalence can be easily established by static condensation of thediscrete 
uxes. 2Another �nite volume technique that has been proposed for device simulation is theBaliga-Patankar scheme (cf. e.g. [3], [29]). However, as has been shown in [21], small car-rier concentrations cannot be computed in a numerically stable way due to the in
uence



of rounding-o� errors. 4. Adaptive grid re�nementAs we have already pointed out, for most devices the dopand pro�le is such that weare faced with a pronounced layer behavior of both the electric potential and the carrierconcentrations. An e�cient resolution of such layers requires the use of highly nonuniformgrids which can be generated by means of adaptive grid re�nement. For mixed �niteelement discretizations of the drift-di�usion model, more or less heuristic criteria forgrid re�nement based on the gradient of the solutions have been used by Hemker andMolenaar [14] and by van Nooyen [22]. However, for mixed hybridization an e�cient andreliable a posteriori error estimator is at hand which can be implemented very cheaply(cf. [17], [18]). This estimator is motivated by a superconvergence result for mixedhybridization due to Arnold and Brezzi [1] which states that under the same regularityassumptions the nonconforming extension n̂h of the Lagrangian multiplier �h from themixed hybrid approach approximates the primal variable n of a higher order than doesnh. This superconvergence result supports the following saturation assumptionkn� n̂hk0 � �kn� nhk0; 0 � � < 1 (4.10)where k�k0 stands for the standard L2-norm. In practice, instead of �h and nh we only havesome iterative approximations ~�h and ~nh at hand. If we denote by ~̂nh the nonconformingextension of ~�h and further assumekn� nhk0 � �kn� ~nhk0; 0 � �; �� < 1; (4.11)then from (4.10) and (4.11) we can easily deduce the following two-sided estimate of thetotal error kn� ~nhk0:kn� ~nhk0 � (1 + ��)�1 �k~̂nh � ~nhk0 � Cknh � ~nhk0� ;kn� ~nhk0 � (1� ��)�1 �k~̂nh � ~nhk0 + Cknh � ~nhk0� : (4.12)For adaptive grid re�nement we use the easily computable elementwise contributions ofk~̂nh � ~nhk0, determine the mean value and mark an element for re�nement, if the localcontribution exceeds the mean value by a certain problem-dependent margin. The re�ne-ment process itself is performed according to the strategy proposed by Bornemann et al.[5]. 5. Numerical results for a MOSFETFor an illustration of the application of adaptive grid re�nement in device simulation letus consider the results of the mixed hybrid approach to the drift-di�usion model in caseof a MOSFET.As shown in Figure 1, the MOSFET is a three layer device consisting of two highly dopedn regions equipped with the source and drain contacts and a lower doped p region calledbulk. Between source and drain the semiconductor material is coated with a thin oxidelayer equipped with the gate contact. If a su�ciently high voltage is applied to the gate,an inversion layer is created in the bulk region close to the interface between the siliconand the oxide. In case of a potential di�erence between source and drain there is a currentfrom source to drain in the n-channel whose magnitude can be controlled by the voltage



applied at the gate.
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The drift-di�usion equations have been solved by an approximate Newton method, namelythe well-known Gummel iteration. The resulting linearized problems have been treatedby mixed hybridization with respect to an adaptively generated hierarchy of simplicialtriangulations along the lines described in the previous sections.Figure 2 represents a visualization of the electron density and the underlying triangulationin a vicinity of the n-channel. The layer behavior is clearly visible as it is the pinch-o�point close to the drain region. Moreover, we observe that the layer is neatly resolved bythe adaptively generated triangulation.6. Extended model for galvanomagnetic carrier transportIntegrated bipolar magnetotransistors are semiconductor devices that are used as mag-netosensors converting a magnetic �eld into an electronic signal. The magnetic �eldsensitivity is caused by galvanomagnetic phenomena which have to be modeled on thebasis of the galvanomagnetic carrier transport in semiconductors. The physical modelingof the transport equations describing the 
ow of the electrons and holes has to incorpo-rate the de
ection of the carriers by the Lorentz force in the interior of the device (cf.e.g. [25], [26]). In particular, the constitutive equations for the electron and hole currentdensities must be augmented by appropriate magnetic �eld dependent terms. Denotingby j0�, � = n or � = p, the current densities without magnetic �eld, by b the magnetic�eld vector and by ��� the Hall mobilities, we usej� = j0� + �1 + (���jbj)2��1 ����b� j0� + ���b� (���b� j0�)� : (6.13)The extended model then consists of the system (2.1) with jn, jp given by (6.13). Further,the boundary conditions (2.2) have to be modi�ed slightly for taking into account theaction of the magnetic �eld on the device (see e.g. [25] for details).



The existence and uniqueness of weak solutions and the stability of the thermal equilib-rium have been established by Gajewski and Gr�oger [12] and by Gajewski and G�artner[13], respectively. Moreover, as far as the numerical solution by the Scharfetter-Gummelscheme is concerned, for a magnetic �eld of the form b = (0; 0; bz)T , in [13] su�cientconditions in terms of the grid geometry and the modulus of the magnetic �eld have beenderived guaranteeing that the scheme is still dissipative and leads to positive solutions. Asimilar analysis can be carried out for the mixed �nite element approach. Observing thatfor b = (0; 0; bz)T the action of the magnetic �eld can be described by a 3� 3 matrix B�according to j� = B�j0�,B� = �1 + (���bz)2��10B@ 1 ����bz 0���bz 1 00 0 1 + (���bz)2 1CA ;the mixed discretization of the continuity equation for e.g. the electron 
ux requires thecomputation of (jh; nh) 2 RT0;�N (
; Th)�W0(
; Th) such thatR
 exp(�	)B�1n jh � qh dx + R
 exp(�	)div qhnh dx = R�D exp(�	)nD� � qh d�;R
 div jhvh dx� R
 Rnhvh dx = R
 fvh dx; vh 2 W0(
; Th); qh 2 RT0;�N (
; Th):Then, if we perform mixed hybridization, in the process of static condensation of the dis-crete current densities and the discrete carrier concentrations the local Schur complementcan be explicitly computed in terms of the local grid geometry and the modulus of themagnetic �eld. This allows to state conditions under which the M -matrix property of�Sh is retained. Details will be given in a forthcoming paper.Acknowledgments: The authors wish to thank G. Wachutka for fruitful discussions onthe subject.References[1] D.N. Arnold and F. Brezzi, Mixed and nonconforming �nite element methods: implementa-tion, post{processing and error estimates. M2AN Math. Modelling Numer. Anal. 19, 7-35(1985)[2] B. Bachmann, Adaptive Mehrgitterverfahren zur L�osung der station�aren Halbleitergleichun-gen. Dissertation, Universit�at Z�urich (1993)[3] B.R. Baliga and S.V. Patankar, A new �nite-element formulation for convection-di�usionproblems. Numer. Heat Transfer 3, 393-409 (1980)[4] R. Bank, J.F. B�urgler, W. Fichtner and R.K. Smith, Some upwinding techniques for �niteelement approximations of convection-di�usion equations. Numer. Math. 58, 185-202 (1990)[5] F. Bornemann, B. Erdmann and Kornhuber, Adaptive multilevel methods in three spacedimensions. Int. J. Numer. Methods Eng. 36, 3187-3203 (1993)[6] D. Braess and R. Verf�urth, Multigrid methods for nonconforming �nite element methods.SIAM J. Numer. Anal. 27, No. 4, 979-986 (1990)[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, Berlin{Heidelberg{New York, 1991[8] F. Brezzi, L.D. Marini and P. Pietra, Two dimensional exponential �tting and applicationto drift-di�usion models. SIAM J. Numer. Anal. 26, 1347-1355 (1989)[9] F. Brezzi, L.D. Marini and P. Pietra, Numerical simulation of semiconductor devices. Comp.Math. Appl. Mech. Eng. 75, 493-514 (1989)
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