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Abstract

The cost-effective design of electronic microstructures requires an advanced mod-
eling and coupled simulation of various physical effects. The classical isothermal
approach leads to the basic drift-diffusion model for semiconductor device simula-
tion. In the stationary case, it represents a coupled nonlinear system consisting of
a Poisson equation for the electric potential and two continuity equations for the
electron and hole flow. We discuss various discretization schemes with special em-
phasis on mixed finite element methods and we further address efficient numerical
solution techniques including adaptive multilevel methods. Finally, to allow for am-
bient conditions such as external magnetic fields we consider consistent extensions
of the classical model and discuss perspectives for their numerical treatment.

1. Introduction

The numerical simulation of microelectronic devices is an integral part of the Computer
Aided Design of integrated microsystems. It consists of three main stages: The first
stage is concerned with the simulation of the fabrication processes and comprises struc-
ture defining processing steps such as lithography, etching, decomposition and thermal
oxidation as well as the processing steps of ion implantation and dopand diffusion (cf. e.g.
23]).

The second stage deals with the simulation of the physical behavior of the devices within
a unified framework which takes into account not only the electrical behavior but also
thermal, magnetic and optical effects depending on what the device is aimed for (cf. e.g.
[30], [31]).

The third stage represents the simulation of the global behavior of networks of microstruc-
tures under operating conditions of interest (cf. e.g. [19]).

In this paper, the emphasis is on concepts for microelectronic device simulation allowing an
efficient and reliable numerical solution of the underlying physical equations. A common
feature of the physical modeling is the coupled simulation of carrier and energy transport
and the proper incorporation of ambient conditions such as electromagnetic radiation
fields (power laser diodes) or galvanomagnetic efforts in the presence of an external quasi-
static magnetic field (magnetotransistors).

It has to be noted that in the modeling community there is a controversial debate what
such advanced device models should be based on. One common approach uses the so-
called hydrodynamic model resulting from a momentum expansion of the Boltzmann
equation truncated after the second-order moments (cf. e.g. [20]). Another approach,
advocated for example by Wachutka [30], uses the principles of irreversible phenomenolog-
ical thermodynamics to provide an extended thermodynamic model as a comprehensive
framework for a unified treatment which allows a tailored modeling of specific microelec-
tronic devices. The model is such that in the absence of mechanical, thermal, magnetic
and optical effects it reduces to the description of the interaction between the electric field

le mail: hoppe@math.uni-augsburg.de, address: Math.-Nat. Fakultit der Universitit Augsburg,

Universitatsstr. 14, D 86 159 Augsburg. The first and third author were supported by FORTWIHR,
Bavarian Consortium for High Performance Scientific Computing.



and the particle transport as given by the classical drift-diffusion model in semiconductor
device simulation. In this sense the drift-diffusion model represents, so-to-say, the kernel
of the extended model and any numerical approach for the extended model has to rely on
an efficient solution of the drift-diffusion equations.

In this paper, we will advocate the use of mixed finite elements with special emphasis
on a technique called mixed hybridization allowing the simultaneous computation of the
current densities and the carrier concentrations. We will also indicate its relationship
to other widely used discretization techniques with the celebrated Scharfetter-Gummel
scheme at prominent place. Further, we will present tools for adaptive grid generation
within a mixed finite element approach and give some numerical results for a MOSFET.
Finally, we will shortly address the numerical treatment of an extended model incorpo-
rating external magnetic fields.

2. Mixed finite element discretization of the drift-diffusion model

In the stationary case, the classical drift-diffusion model describing the distribution of the
electron and hole densities n and p under the influence of an electric field consists of two
continuity equations for the current densities j, and j, coupled with a Poisson equation
for the electric potential W.

—eAV = ¢(D+n—p),
div j, qR(n,p) + fi, (2.1)
divj, = —qR(n.p)+ f2

where

Jn = qu.(Upgradn — ngrad W),

iy = —qu,(Urgradp + pgrad V).
Here, D stands for the dopand profile, R(n,p) for the recombination/generation rate and
f1, f2 are the source terms. Further, €, ¢, Up and p,,, p1, denote the dielectric permittivity,
the elementary charge, the thermal voltage and the mobilities, respectively. We consider
(2.1) in a bounded polyhedral domain € R* with boundary conditions of Dirichlet type
at the Ohmic contacts I'p and of homogeneous Neumann type at the isolating part 'y

of the device.
V=W¥p n=mnp, p=pp onlp,
oW

5, =0, v-j,=0, v-j,=0 only.

(2.2)

Typically, the dopand profile D is strongly varying causing a pronounced layer behavior
of the electric potential W. Consequently, we may expect local areas with significant
change in magnitude of the gradient of W. In view of the constitutive relations for the
current densities, the convective transport is dominant in such areas so that the continuity
equations represent convection-dominated diffusion-convection problems. It is well known
that the numerical solution of such problems requires utmost care in the discretization
process. Apart from upwinding techniques for methods based on the primal variational
approach (cf. e.g. [4]), finite volume techniques are widely used, because they are based
on the principle of current conservation. Related techniques are provided by mixed finite
element discretizations allowing the simultaneous computation of the current densities
and the carrier concentrations. For simplicity, we consider the continuity equation for
only one minority carrier in the following scaled and linearized form

div (exp(V)grad u) — exp(V)Ru = f



where we have introduced the Slothoom variable u = exp(—W¥)n and R stands for the
differential net recombination/generation rate. The mixed approach is based on the dual
formulation of the problem which can be obtained by introducing the current density
j =exp(¥)grad u as an additional unknown. In this way, the second order elliptic partial
differential equation can be formally written as a first order system. In contrast to the
primal approach we rely on the weak formulation of the relationship between he current
density j and the Slotboom variable u whereas the continuity equation is treated in the
strong L*-sense. This gives rise to a system of two variational equations:

Find (j,u) € Hr, (div;Q) x L*(Q) such that
[exp(=V)j-qdx + [divqudx = [ exp(=¥)npv-qdo, q € Hy, (div;Q)
) O r

D
[divjvde — [exp(W)Ruvdx = [ fuodx, ve L*(Q) (2:3)
) 0 0

where Hp (div:Q) = {q € (L*(Q))* | divq € L*(Q), v - q|p, = 0}.

In the following we will focus on an approach called dual or mixed hybridization which
takes advantage of ideas from domain decomposition and can be carried out both in
the continuous and discrete setting of the problem. We will concentrate on the discrete
setting and refer to [16] for a treatment of the continuous case. For that purpose we
consider the standard mixed discretization by means of the lowest order Raviart-Thomas
approximation. Given a simplicial triangulation 7, of €2, the Slotboom variable u will be
approximated by piecewise constants resulting in the ansatz space

Wo(Q,%) = {Uh € LQ(Q) | Vp,

xk € P(K), K e T,}

where Py(K), k > 0, denotes the polynomials of degree < k on K. An associated
approximation of the dual variable j can be obtained by requiring the divergence of the
discrete flux to be piecewise constant, too. This requirement leads in a natural way to the
lowest order Raviart-Thomas element RTy(K) = Po(K)? +xPy(K), x = (21, 29, 23)". We
note that any vector field from RTy(K) is uniquely determined by 4 degrees of freedom
which can be chosen as the normal component of the flux in the center of gravity of the
faces of K. Setting

RTyr,(Q2;7,) ={an € Hr,(div;Q) | anlx € RTy(K), K € T},

the mixed discretization requires the computation of a pair (jn,un) € RTor,(Q;7,) X
Wo(82; 7,) as the solution of (2.3) when restricted to RTo.r,(Q2;7,) and Wy(Q; 7p,), re-
spectively. The concept of mixed hybridization originally due to Fraeijs de Veubeke [11]
(cf. also [7]) is to decompose the saddle point problem arising from the standard mixed
approach into less bulky pieces by considering the “broken” Raviart-Thomas ansatz space

RTor, (7)) = {an € [ RIo(K) |v-aulr, = 0}.
KeT,
We note that RTy; (Q;7,) is not a subspace of Hp,(div;€2), since the continuity of
the normal components v - q, of vector fields q;, € RTOTFIN(Q; 75) across the interelement
boundaries of the triangulation is no longer guaranteed. Instead, the continuity con-
straints are taken care of by appropriate Lagrangian multipliers. Denoting by Fj, the set
of faces of 7;, an appropriate multiplier space is given by

Mor, (0T) = {un € L*(F) | pnlr € Po(F), F € Fu, un|r =0, F € F,NTp}.



Then, in terms of the original primal variable n;, the mixed hybridization requires the
computation of a triple (ju, nn, An) € RTy (4 Ty) x Wo(Q; T1,) X My, (€2 T) such that

> Jexp(—¥)jn-andr + X [diva,exp(—V)n, dx

KeT, K KeT, K

— % [exp(=V)\v-apdo = Y [ exp(=V)npr-apdo, a5 € RTyp (4T),
KeT, 0K KET, OKNT

> [divjyopde — Y [ Rnpupde = ffvh dx, vy, € Wo(;Ty),

KeT, K KeT, K

> S upv-judo =0, py € Mo;rD(Q;ﬂ)-

KET, 0K

(2.4)
The purely local character of the bases of RTyp (€2:7,) and Wy(€2; T,,) strongly suggests
static condensation of both the discrete flux j, and the discrete carrier concentration ny,
resulting in the Schur complement system

Sh)\h = tp. (25)

Theorem 2.1 The Schur complement S, can be assembled from its local contributions
SK. K € Ty, resulting from static condensation on the elements’ level. For interior
elements K € T, N Q we obtain

S,{( = —D}\ (CICKIU]\ + ﬁKTK) (26)

where D}, D3, Uy and Ty are the 4 X 4 matrices

4

Dle = (FIa)yae Dk = ([ o 0ol . U = -1

ij=1
Tk = 771(77%7 NKi: =P Vi — a;}l fexp(—\Il)x ypde, peF;,1<1<4
K

and the constants oy, B are given by

g = [G‘Xp( )dT, ﬁ](: (’7[( [RdT—FgO/[( K )71 fR(]T,
K K
¢ = fexp( W)y - da, k() = x — agt [ exp(—W)x' da'.
K

For elements K € T, attached to the boundary I'p obvious modifications apply.

Proof:  Since the Schur complement does not depend on the choice of the bases in
RTO}IN(Q;%) and Wy(Q; 7,), we pick a local basis q(,l(), 1 < i < 4, of the discrete flux

space according to q(;? =e;, 1 <i<3, q(,? = & where e; stands for the i-th canonical

basis vector of R®. Observing that the q(,? are orthogonal with respect to the inner
product (px,drx) = [k exp(—¥)px - dx dv and that div q(ﬁ) =0,1<: <3, div q(zﬁ) =3,

the representation (2.6) follows from straightforward, but tedious computations. O

It can be immediately seen from (2.6) that the matrix —S/X is an M-matrix provided the
element K has no obtuse angle. Obviously, this property carries over to the global Schur
complement —.S,.

Following the same line of arguments as in the previous theorem, the right hand side of the
Schur complement system can be similarly assembled from local load vectors t&, K € T,.



Moreover, the inhomogeneous Dirichlet data can be incorporated into the multiplier by
setting A\p|p = ([pexp(=W)do)™" [pexp(—W)npdo, F € F, NTp.

Though in the process of mixed hybridization we have discarded the discrete current
densities j, and the discrete carrier concentrations np, they can be easily retrieved from
the values of the Lagrangian multiplier \,. In particular, denoting by j& the vector of
fluxes through the faces of K € 7, we find that j is readily available as the residual of
the local Schur complement equation:

=t - SIAE KeT,

Note that the residual in general does not vanish, since the actual value of \j, results from
the solution of the global Schur complement system and thus inherits contributions from
the other elements.

An important implementational aspect of mixed hybridization - in particular with respect
to the construction of iterative solvers - is that the Schur complement system can be shown
to be equivalent to a nonconforming Petrov-Galerkin scheme of inverse average type. That
equivalence has been observed, among others, by Brezzi, Marini and Pietra [8], [9] and has
been exploited, for example, by Bachmann [2] and Reusken [24] in a multigrid approach
to the continuity equation. To be more precise, let us denote by W%, 1 < i < 4, the local
canonical basis of the lowest order nonconforming Crouzeix-Raviart element C'R;(K') and

by Wi the scaled basis functions
Ul = 5,0, 5= |Fy| ™! /exp(—\ll) do, 1 <i<4
F;
spanning the scaled element C'R;(K). We choose

CRyr, (7)) = {vn € L*(Q) | vn|x € OR\(K), K € Ty,
ro=s; texp(—=W)np, F; € F,nTp}

Un
as the ansatz space and
OR?;FD(Q;ZI) = {Uh € L2(Q) ‘ Uh|K € CRl(](), K e 7;1, Uh‘l“n = 0}

as the test space in a modified nonconforming Petrov-Galerkin approach to the primal vari-
ational formulation of the continuity equation where the modification consists in replac-
ing the coefficient function exp(W)|x by its harmonic average over an individual element
K € 7). Then, the following result can be established where for notational convenience
we only consider the case R = 0.

Theorem 2.2 Let u;, € 6}/21;%((2;771) be the solution of the nonconforming Petrov-
Galerkin scheme
an(un,vn) = lp(vy), vy € CRYL (T5) (2.7)

where

KeT, K

1
ap(up,vp) = X [ (Kl [ exp(—U) dT) grad uy, - grad vy, dx,
K

lh(Y)h) = Z (3 K

KeT,

) fda | (exp(‘lf) (Kl [ exp(—¥) dT) 4) vn d
K K K

Then, if A, is the solution of the Schur complement system (2.5) in case R = 0 and 11,
denotes the L*-projection onto the multiplier space, we have \, = Iuy,.



Proof: The proof is the 3D analogue of that one given in [16; Thm. 4.2] in the 2D case
(cf. also [15; Satz 3.2.2]). 0

As said before, the equivalence with the nonconforming Petrov-Galerkin scheme (2.7) can
be used by taking advantage of efficient multilevel iterative solvers designed for noncon-
forming finite element discretizations (cf. e.g. [6]). In the sequel, we will not follow
this aspect but instead elaborate on the relationship between mixed methods and the
Scharfetter-Gummel box method widely used in device simulation.

3. Mixed discretization and the Scharfetter-Gummel scheme

It is well known that mixed finite element methods are closely related to finite volume
techniques. Such box methods are also appropriate candidates for the discretization of
the drift-diffusion model, since they are based on the principle of current conservation.
The most prominent box method in device simulation is the Scharfetter-Gummel scheme
which is used in many existent program packages (cf. e.g. [10], [27], [28]). In order to
establish the relationship between mixed methods and the Scharfetter-Gummel scheme,
let us consider the mixed discretization of the continuity equation by means of the lowest
order Raviart-Thomas approximation with respect to a hexahedral triangulation. In this
case, the Raviart-Thomas element RT'q(K), K € T, is given by

RT10)(K) = Q1,00(K) X Qo1.0(K) x Qoo (K)

where Qo vy, (K) = {p | p(7) = X4, 1<, VarT 23725, x € K}. Any vector field from
RT(K) is uniquely determined by six degrees of freedom which are again chosen as
the normal components in the centers of gravity of the faces of K. As for simplicial
triangulations the primal variable is approximated by piecewise constants. Denoting by
RTyry (23 7;,) and Wy(€2; 7,) the associated global ansatz spaces, we have to compute
(3nsnn) € RTjopry (S T,) x Wo(Q;7,,) as the solution of

[exp(—U)js - qp dr + [exp(—V)divq,n, dz = [ exp(—¥)npr - qp do,
Q Q T'p

. (3.8)

({dlv.]h vy, dx _S{Rnhvh dr = ({ fondx, v, € WO(Qi, 771): qn € RT[O};FN(QI, 771)
By regular refinement we subdivide each element K € 7, with vertices P,, 1 < v < 8§,
into eight subelements K,, 1 < v < 8, and evaluate the integrals [, exp(—=W)j;, - q5 dz in
(3.8) by means of the quadrature formula

8

(P @i)(P) [ exp(-W) d. (3.9)

v=1 K

Theorem 3.3 The mized method (3.8) in combination with the quadrature formula (3.9)
18 equivalent to the Scharfetter-Gummel discretization of the continuity equation.

Proof: Considering the 2 x 2 block coefficient matrix which represents the algebraic
formulation of (3.8), the first diagonal block obviously reduces to a diagonal matrix when
using (3.9). Then, the equivalence can be easily established by static condensation of the
discrete fluxes. O

Another finite volume technique that has been proposed for device simulation is the
Baliga-Patankar scheme (cf. e.g. [3], [29]). However, as has been shown in [21], small car-
rier concentrations cannot be computed in a numerically stable way due to the influence



of rounding-off errors.

4. Adaptive grid refinement

As we have already pointed out, for most devices the dopand profile is such that we
are faced with a pronounced layer behavior of both the electric potential and the carrier
concentrations. An efficient resolution of such layers requires the use of highly nonuniform
grids which can be generated by means of adaptive grid refinement. For mixed finite
element discretizations of the drift-diffusion model, more or less heuristic criteria for
grid refinement based on the gradient of the solutions have been used by Hemker and
Molenaar [14] and by van Nooyen [22]. However, for mixed hybridization an efficient and
reliable a posteriori error estimator is at hand which can be implemented very cheaply
(cf. [17], [18]). This estimator is motivated by a superconvergence result for mixed
hybridization due to Arnold and Brezzi [1] which states that under the same regularity
assumptions the nonconforming extension n; of the Lagrangian multiplier A, from the
mixed hybrid approach approximates the primal variable n of a higher order than does
ny,. This superconvergence result supports the following saturation assumption

In = nllo < Blln — nalle, 0<f<1 (4.10)

where ||-||g stands for the standard L*-norm. In practice, instead of A, and n;, we only have
some iterative approximations An and ny, at hand. If we denote by n; the nonconforming
extension of A\, and further assume

ln—npllo < olln —npllo, 0<0, o<1, (4.11)

then from (4.10) and (4.11) we can easily deduce the following two-sided estimate of the
total error ||n — 7]|0:
ln—inlle > (14 80) " (Ilitn — iinllo = Cllnn = 7inllo) -

A 4.12
(1 = 80" (Iin — fnllo + Clln — il 412

>
I = nnllo <

For adaptive grid refinement we use the easily computable elementwise contributions of
|72, — 72n]|0, determine the mean value and mark an element for refinement, if the local
contribution exceeds the mean value by a certain problem-dependent margin. The refine-
ment process itself is performed according to the strategy proposed by Bornemann et al.
[5].

5. Numerical results for a MOSFET

For an illustration of the application of adaptive grid refinement in device simulation let
us consider the results of the mixed hybrid approach to the drift-diffusion model in case
of a MOSFET.

As shown in Figure 1, the MOSFET is a three layer device consisting of two highly doped
n regions equipped with the source and drain contacts and a lower doped p region called
bulk. Between source and drain the semiconductor material is coated with a thin oxide
layer equipped with the gate contact. If a sufficiently high voltage is applied to the gate,
an inversion layer is created in the bulk region close to the interface between the silicon
and the oxide. In case of a potential difference between source and drain there is a current
from source to drain in the n-channel whose magnitude can be controlled by the voltage



applied at the gate.

Silicon

3 /

0 . °in |um
Bulk 2 ]

Fig. 1: Typical geometry of a MOSFET Fig. 2: Scaled electron density in a vicinity
of an n-channel MOSFET

The drift-diffusion equations have been solved by an approximate Newton method, namely
the well-known Gummel iteration. The resulting linearized problems have been treated
by mixed hybridization with respect to an adaptively generated hierarchy of simplicial
triangulations along the lines described in the previous sections.

Figure 2 represents a visualization of the electron density and the underlying triangulation
in a vicinity of the n-channel. The layer behavior is clearly visible as it is the pinch-off
point close to the drain region. Moreover, we observe that the layer is neatly resolved by
the adaptively generated triangulation.

6. Extended model for galvanomagnetic carrier transport

Integrated bipolar magnetotransistors are semiconductor devices that are used as mag-
netosensors converting a magnetic field into an electronic signal. The magnetic field
sensitivity is caused by galvanomagnetic phenomena which have to be modeled on the
basis of the galvanomagnetic carrier transport in semiconductors. The physical modeling
of the transport equations describing the flow of the electrons and holes has to incorpo-
rate the deflection of the carriers by the Lorentz force in the interior of the device (cf.
e.g. [25], [26]). In particular, the constitutive equations for the electron and hole current
densities must be augmented by appropriate magnetic field dependent terms. Denoting
by j%, @ = n or a = p, the current densities without magnetic field, by b the magnetic
field vector and by p the Hall mobilities, we use

jo =30+ (1 (uafbD?) (uib x 32 4 b x (b x §2)) (6.13)

The extended model then consists of the system (2.1) with j,, j, given by (6.13). Further,
the boundary conditions (2.2) have to be modified slightly for taking into account the
action of the magnetic field on the device (see e.g. [25] for details).



The existence and uniqueness of weak solutions and the stability of the thermal equilib-
rium have been established by Gajewski and Groger [12] and by Gajewski and Gértner
[13], respectively. Moreover, as far as the numerical solution by the Scharfetter-Gummel
scheme is concerned, for a magnetic field of the form b = (0,0,5.)7, in [13] sufficient
conditions in terms of the grid geometry and the modulus of the magnetic field have been
derived guaranteeing that the scheme is still dissipative and leads to positive solutions. A
similar analysis can be carried out for the mixed finite element approach. Observing that
for b = (0,0,0.)" the action of the magnetic field can be described by a 3 x 3 matrix B,
according to j, = B,j2,

— 1 *#sz 0
Bo = (14 (u3b.)?) US| 0 ,
0 0 1+ (upb.)?

the mixed discretization of the continuity equation for e.g. the electron flux requires the
computation of (j,,ns) € RTyr, (2;7,) x Wo(2; 7,) such that

[exp(=W)B, 'ji - qndx + [exp(—=W)divqun, de = [ exp(—¥)npr - qy do,
Q Q I'p

[divjyon de — [ Rnpop de = [ fo,de, v, € Wo(S 7). an € RTor,, (S5 7h).
Q Q Q

Then, if we perform mixed hybridization, in the process of static condensation of the dis-
crete current densities and the discrete carrier concentrations the local Schur complement
can be explicitly computed in terms of the local grid geometry and the modulus of the
magnetic field. This allows to state conditions under which the M-matrix property of
— S}, is retained. Details will be given in a forthcoming paper.

Acknowledgments: The authors wish to thank G. Wachutka for fruitful discussions on
the subject.
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