

Offen-chirurgische Therapie thorakoabdomineller Aortenaneurysmen und chronisch expandierender Aortendissektionen: Analyse perioperativer Prognosefaktoren

D. Kotelis, M. Riemensperger, E. Jenetzky, Alexander Hyhlik-Dürr, D. Böckler

Angaben zur Veröffentlichung / Publication details:

Kotelis, D., M. Riemensperger, E. Jenetzky, Alexander Hyhlik-Dürr, and D. Böckler. 2010. "Offen-chirurgische Therapie thorakoabdomineller Aortenaneurysmen und chronisch expandierender Aortendissektionen: Analyse perioperativer Prognosefaktoren." *Der Chirurg* 82 (8): 661–69. https://doi.org/10.1007/s00104-010-1989-0.

Nutzungsbedingungen / Terms of use:

D. Kotelis¹ · M. Riemensperger¹ · E. Jenetzky² · A. Hyhlik-Dürr¹ · D. Böckler¹

¹ Klinik für Gefäßchirurgie, Universitätsklinikum, Heidelberg

Offen-chirurgische Therapie thorakoabdomineller Aortenaneurysmen und chronisch expandierender Aortendissektionen

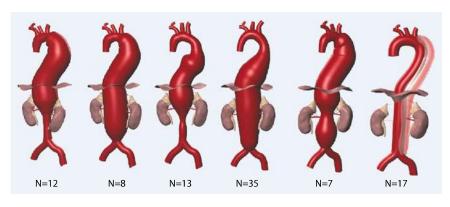
Analyse perioperativer Prognosefaktoren

Der aktuelle Therapiestandard zur Abwendung einer Ruptur thorakoabdomineller Aortenaneurysmen (TAAA) und chronisch expandierender Aortendissektionen (CEAD) ist in Abhängigkeit vom maxima-Ien Aortendurchmesser der konventionell offen-chirurgische prothetische Ersatz (COR,,conventional open repair") des erkranken Aortenabschnitts ggf. mit Reinsertion von Spinal-, Viszeral- und Nierenarterien. Dieses chirurgische Verfahren stellt nicht nur operationstechnisch eine große chirurgische Herausforderung dar, sondern ist zugleich auch mit einer signifikanten Morbidität und Mortalität behaftet. Die Mortalität liegt bei elektiven Eingriffen zwischen 4% und 20%, bei Notfallbehandlungen bei bis zu 64% [2, 7, 12, 21, 25, 32].

Insgesamt gibt es nur wenige Studien, die Prädiktoren für das Langzeitüberleben nach COR untersucht haben. Schepens et al. haben als signifikante unabhängige Faktoren für das Langzeitüberleben eine eingeschränkte linksventrikuläre Pumpfunktion, das postoperative dialysepflichtige Nierenversagen sowie das hohe Alter identifiziert. Bei Crawford et al. waren Alter, Ruptur, renale Dysfunktion, Aneurysmaausdehnung, und das Vorliegen einer Dissektion unabhängige Prognosefaktoren für das Langzeitüberleben [12].

In der vorliegenden klinischen Studie sollen im Rahmen einer retrospektiven Datenanalyse sowie einer klinischen und bildgebenden Nachuntersuchung potenzielle prä-, intra- und postoperative Prädiktoren ermittelt werden, die die 30-Tage-Mortalität und das Langzeitüberleben signifikant beeinflussen. Durch Bestimmung solcher Prognosefaktoren können Behandlungsalgorithmen und Therapiekonzepte modifiziert und angepasst werden, um die chirurgischen Ergebnisse dieses Hochrisikopatientenkollektivs zu verbessern.

Patienten und Methoden


Studiendesign

Retrospektiv wurden die Akten und die bildgebenden Untersuchungen aller Pa-

tienten analysiert, die zwischen März 1993 und Dezember 2005 in unserer Klinik an einem TAAA oder einer CEAD Typ Stanford B offen-chirurgisch operiert wurden.

Von insgesamt 120 Patienten wurden 12 Patienten als "dringlich" und 13 Patienten als "Notfall" eingestuft, sowie 3 Patienten wiederholt elektiv operiert. Diese Fälle wurden ausgeschlossen, sodass es insgesamt 92 elektive Fälle gibt, die analysiert werden.

Alle noch lebenden Patienten wurden in den Jahren 2007 bis 2009 ambulant zur Nachuntersuchung eingeladen. Bei den verstorbenen Patienten oder bei denjenigen, die eine Nachuntersuchung ablehnten, wurde der behandelnde Hausarzt kontaktiert, um Befunde über den klinischen Verlauf zu erhalten.

Abb. 1 ▲ Lokalisation der Pathologien (n=92)

² Institut für medizinische Biometrie und Informatik, Universitätsklinikum, Heidelberg

Tab. 1 Patientencharakteristika (n=92)	
Merkmal	Absolute und relative Häufigkeit bzw. Median und Spannweite
Lebensalter (Jahre)	Median: 64,5 (Min: 20; Max: 79)
Geschlecht (männlich:weiblich)	65:27 (70%:30%)
ASA	Median: 3 (Min: 2; Max: 4)
Diabetes mellitus	8 (8%)
Nikotinabusus	57 (62%)
Arterielle Hypertonie	76 (82%)
Manifeste PAVK	12 (13%)
Adipositas (BMI ≥30)	14 (15%)
COPD (FEV1 <70% des Sollwertes)	20 (21%)
Hyperlipidämie (LDL >160 mg/dl oder Triglyzeride >200 mg/dl)	29 (31%)
Zustand nach Apolpex	8 (9%)
Manifeste KHK	32 (35%)
Niereninsuffizienz (Kreatinin >1,2 mg/dl)	30 (33%)
Aortale Voroperationen	25 (27%)

VB Variationsbreite, **ASA** American Society of Anaesthesiology, **PAVK** periphere arterielle Verschlusskrankheit, **BMI** Body-Mass-Index, **COPD** chronische obstruktive Lungenkrankheit, **FEV1** forciertes exspiratorisches Einsekundenvolumen, **LDH** Laktatdehydrogenase, **KHK** koronare Herzkrankheit.

Tab. 2 Eingesetzte Bypassverfahren zur distalen Organperfusion							
Bypass	Patienten (n=92)	Craw- ford I (n=12)	Craw- ford II (n=8)	Craw- ford III (n=13)	Craw- ford IV (n=35)	"Sanduhr- Konfigura- tion" (n=7)	CEAD (n=17)
Gesamt	36 (39%)	7 (58%)	3 (38%)	6 (46%)	9 (26%)	5 (71%)	6 (36%)
Aortoaortal	3	0	0	2	1	0	0
Aortoiliakal	8	0	2	2	3	1	0
Axillofemoral	14	4	1	1	2	3	3
Axilloiliakal	11	3	0	1	3	1	3
CEAD chronisch expandierende Aortendissektion.							

Demographische und präoperative klinische Daten

Die Patientencharakteristika sind in **Tab. 1** zusammengefasst. Der mediane Aneurysmadurchmesser betrug 7 cm (4,5–15 cm). 86% der Aneurysmen (79 Patienten) war arteriosklerotisch und 4% (4 Patienten) inflammatorisch bedingt, während bei den restlichen 9 Patienten (10%) eine Bindegewebskrankheit (Marfan- oder Ehlers-Danlos-Syndrom) vorlag. Die Verteilung der Patienten anhand der Lokalisation der Pathologien ist in der **Abb. 1** dargestellt.

Chirurgische Therapie

Alle Patienten wurden über einen Crawford-Zugang mittels Graft-Inklusion operiert. Rückblutende Interkostalarterien wurden im proximalen thorakalen Abschnitt meist umstochen, während Interkostal-und Lumbalarterien im Bereich der Th $_8$ bis L $_2$ großzügig revaskularisiert wurden.

Wenn möglich, wurden der Truncus coeliacus, die Arteria mesenterica superior und die rechte Nierenarterie gemeinsam auf einem semizirkulär exzidierten "Carrel-Patch" in die Gefäßprothese Endzu-Seit reinseriert. Die linke Niere wurde in den meisten Fällen mit einem 8-mm-Bypass revaskularisiert.

Eine distale Aortenperfusion (DAP) im Sinne eines passageren aortoaortalen, aortoiliakalen, axillofemoralen bzw. axilloiliakalen Bypass kam bei 36 Patienten (39%), insbesondere mit längerstreckigen Pathologien, zum Einsatz (Tab. 2). Bei Patienten mit weniger ausgedehnten Läsionen, wie z. B. Crawford-IV-Aneurysmen, wurde oft auf einen Shunt verzichtet und nach dem Clamp-and-sew-Prinzip operiert.

Als zusätzliche protektive Verfahren zur Verlängerung der Organ- und Rückenmarksischämietoleranz kamen gemäß unserem Protokoll die Kaltperfussion der Nierenarterien mit 4°C Ringer-Laktat-Lösung sowie die zerebrospinale Flüssigkeitsdrainage (CSFD) mit einem zerebrospinalen Druck <12 mmHg zum Einsatz. Während der Abklemmzeit wurde der mittlere arterielle Druck auf >100 mmHg gehalten, um die Kollateralperfusion der Organe zu erhöhen.

Follow-up

Die Nachuntersuchungen im Rahmen der Verlaufskontrolle beinhalteten Anamneseerhebung, klinische Untersuchung, transabdominelle Sonographie und kontrastmittelgestützte CT- oder MR-Angiographie.

Definitionen und Statistik

Die Einteilung der Aneurysmen bzw. Aortendissektionen erfolgte gemäß der Crawford-Typisierung I–IV bzw. Stanford-Klassifikation [12]. Ebenso sind kombinierte thorakale Aneurysmen der deszendierenden Aorta und infrarenale Aneurysmen unter sanduhrförmiger Aussparung des viszeralen Segments in die Studie mit eingeschlossen ("Sanduhr-Konfiguration").

Ein postoperatives neurologisches Defizit (PND) wurde definiert als das postoperative Auftreten einer Paraparese, Paraplegie oder eines Schlaganfalls.

Für die deskriptive Statistik und Analyse wurden das Tabellenkalkulationsprogramm Microsoft® Excel 2000 sowie SPSS (Statistical Package for Social Sciences, Version 15.0.0, LEAD Technologies Inc.) verwendet. 11 präoperative, 12 intraoperative und 13 postoperative Faktoren wurden mit dem Cox-Regressionsmodell sowohl univariat als auch bei den univariat signifikanten multivariat in Bezug auf die postoperative Überlebenszeit untersucht. Hierbei wurde in Vorwärts- und Rückwärtsselektion das gleiche Ergebnis erzielt. Kategoriale Variablen wurden zusätzlich mit dem Log-Rank-Test analysiert. Ein Ergebnis wurde bei p<0,05 als signifikant betrachtet. Die Überlebenswahrscheinlichkeit wurde mit der Kaplan-Meier-Analyse berechnet.

D. Kotelis · M. Riemensperger · E. Jenetzky · A. Hyhlik-Dürr · D. Böckler

Offen-chirurgische Therapie thorakoabdomineller Aortenaneurysmen und chronisch expandierender Aortendissektionen. Analyse perioperativer Prognosefaktoren

Zusammenfassung

Studienziel. Ziel der Studie war es, perioperative Prognosefaktoren für das Kurzund Langzeitüberleben nach offen-chirurgischer Therapie thorakoabdomineller Aortenaneurysmen (TAAA) und chronisch expandierender Aortendissektionen (CEAD) zu identifizieren.

Patienten und Methoden. Zwischen März 1993 und Dezember 2005 wurden 92 Patienten in unserer Klinik elektiv an einem TAAA oder einer CEAD Typ Stanford B offen-chirurgisch operiert. Eine passive distale Aortenperfusion während der Aortenausklemmung kam bei 36 Patienten (39%) zum Einsatz. Die Akten und die bildgebenden Untersuchungen aller Patienten wurden retrospektiv analysiert. Die Nachuntersuchungen im Rahmen der Verlaufskontrolle beinhalteten Anamneseerhebung, klinische Untersuchung, transabdominelle Sonographie und kontrastmittelgestützte CT- oder MR-An-

giographie. Das mediane Follow-up betrug 40 Monate (1–139).

Ergebnisse. Für das Gesamtkollektiv betrug die intraoperative, 30-Tage- und Krankenhausmortalitätsrate 2%, 8% und 12%. Die 5-Jahres-Überlebenswahrscheinlichkeit betrug 70%. 43% aller Todesursachen waren kardial bedingt. Die Paraplegierate betrug 10%, die Rate einer neu aufgetreten dauerhaften dialvsepflichtigen Niereninsuffizienz 3%. Bei 21% der Patienten bestand die Notwendigkeit zu einer Revision. Es konnten als unabhängige Prädiktoren für die 30-Tage-Mortaltät die Notwendigkeit einer Revision (OR: 8,465; CI: 0,802-89,318; p=0,024) und ein postoperativer Transaminasenanstieg (OR: 1,009; CI: 1,002-1,017; p=0,017) identifiziert werden. Für das Langzeitüberleben wurden als unabhängige negative Prognosefaktoren das Vorbestehen einer PAVK (OR: 4,41; CI:1,672-11,611; p=0,003), das Auftreten

einer intraoperativen Komplikation wie disseminierte intravasale Gerinnung und Asystolie (OR: 4,28; Cl: 1,128–16,267; p=0,033), ein postoperativer Bilirubinanstieg >2,5 mg/dl (OR: 1,06; Cl: 1,009–1,112; p=0,019) sowie eine postoperative Nachbeatmungszeit >7 Tage (OR: 7,79; Cl: 2,499–24,246; p<0,0001) identifiziert.

Schlussfolgerung. Postoperativ erhöhte Transaminasen sind ein negativer Prognosefaktor. Ein standardisierter Einsatz aktiver Shuntsysteme für die Organperfusion erscheint sinnvoll.

Schlüsselwörter

Aortenaneurysmen · Thorakoabdominal · Chronisch expandierende Dissektionen · Offen-chirurgische Therapie · Prognosefaktoren

Open surgical therapy of thoracoabdominal aortic aneurysms and chronic expanding aortic dissections. Analysis of perioperative prognostic factors

Abstract

Aim of the stydy. The aim of the study was to investigate perioperative prognostic factors and long-term outcome following conventional open repair (COR) of thoracoabdominal aortic aneurysms (TAAA) and chronic expanding aortic dissections (CEAD). Patients and methods. Between March 1993 and December 2005, 92 patients underwent elective COR for TAAA or CEAD in our institution. Passive distal aortic perfusion during cross-clamping was used in 36 patients (39%). Medical records and imaging studies of all patients were reviewed. Follow-up included history, physical examination and CT or MR angiography. Median follow-up was 40 months (range 1-139 months).

Results. Intraoperative, 30-day and in-hospital mortality rates were 2%, 8% and 12%, respectively. The estimated survival rate after 5 years was 70% and 43% of all deaths were cardiac related. The paraplegia rate was 10%, the rate of patients developing chronic renal failure requiring hemodialysis was 3% and 21% of patients required surgical revision. In multivariate analyses the need for surgical revision (OR: 8.465; Cl: 0.802-89.318; p=0.024) and postoperative elevated serum transaminase values (OR: 1.009; CI: 1.002-1.017; p=0.017) independently predicted 30day mortality. Peripheral arterial disease (OR: 4.41; CI:1.672-11.611; p=0.003), intraoperative complications such as disseminated intravasal coagulation and asystole (OR: 4.28; Cl: 1.128–16.267; p=0.033), postoperative elevated bilirubin values >2.5 mg/dl (OR: 1.06; Cl: 1.009–1.112; p=0.019), and postoperative ventilation >7 days (OR: 7.79; Cl: 2.499–24.246; p<0,0001) independently predicted long-term mortality.

Conclusion. Postoperative elevated liver values represent negative prognostic factors and may indicate a more standardized use of active shunt systems for organ perfusion.

Keywords

Aortic aneurysms · Thoracoabdominal · Chronic expanding aortic dissections · Open surgical therapy · Prognostic factors

Tab. 3 Perioperative (In-hospital-)Morbio	dität und Mortalität im Ge	samtkollektiv (n=92)
Parameter	Anzahl (ohne Median)	Prozent (ohne VB)
Mortalität	11	12
Intraoperativ	2	3
30-Tage	7	8
Krankenhaus ("in-hospita l ")	11	12
Kardial	6	6,5
Hämorrhagischer Schock	3	3
Multiorganversagen	2	2
PND	13	14
Parap l egie	9	10
Paraparese	4	4
Schlaganfall	0	0
Dialysepflichtigkeit	10	11
Dauerhaft	3	3
Temporär	7	8
Pulmonale Komplikationa	15	16
Tracheotomie	11	12
Hepatische Komplikationb	4	4
Reanimation	5	5
Revision	19	21
Hb-Abfall ohne eindeutige Blutungsquelle	1	1
Chylothorax	1	1
Dissektion mit peripherer Ischämie	2	2
Peripherer embolischer Gefäßverschluss	1	1
Nachblutung bei Anastomoseninsuffizienz	3	3
Nachblutung bei Milzruptur	2	2
Retroperitoneales Hämatom	9	10
Krankenhausverweildauer (Tage)	23,5	14–51
Intensivverweildauer (Tage)	6	4–48
241 11	500 (II Bili 1 0 (0 1 7 .

^a Nachbeatmung >7 Tage oder Reintubation; ^bLDH >500 mg/dl und Bilirubin >3 mg/dl oder Transaminasen >200 mg/dl. **VB** Variationsbreite, **PND** postoperatives neurologisches Defizit, **Hb** Hämoglobin.

Tab. 4 Periopera	ative (In-ho	spital-)Mo	rbidität und	Morta l ität in o	den Subgrupp	oen
Parameter	Craw- ford I (%)	Craw- ford II (%)	Craw- ford III (%)	Crawford IV (%)	"Sanduhr- Konfigura- tion" (%)	CEAD (%)
Häufigkeit	12 (13)	8 (8,7)	13 (14,1)	35 (38)	7 (7,6)	17 (18,5)
30-Tage-Mortalität	3/12 (25)	2/8 (25)	8/13 (61,5)	11/35 (31,4)	2/7 (28,6)	4/17 (23,5)
PND	1/12 (8,3)	3/8 (37,5)	5/13 (38,5)	2/35 (5,7)	1/7 (14,3)	1/17 (5,9)
Parap l egie	1/12 (8,3)	2/8 (25)	5/13 (38,5)	0/35 (0)	1/7 (14,3)	0/17 (0)
Paraparese	0/12 (0)	1/8 (12,5)	0/13 (0)	2/35 (5,7)	0/7 (0)	1/17 (5,9)
Dialysepflichtigkeit	1/12 (8,3)	0/8 (0)	6/13 (46,2)	3/35 (8,6)	0/7 (0)	0/17 (0)
Pulmonale Kompli- kation ^a	0/12 (0)	2/8 (25)	8/13 (61,5)	5/35 (14,3)	0/7 (0)	0/17 (0)
Revision	3/12 (25)	2/8 (25)	4/13 (30,8)	6/35 (17,1)	2/7 (28,6)	2/17 (11,8)
		, ,	, , ,	, ,	. , ,	• ,

^a Nachbeatmung >7 Tage oder Reintubation. **CEAD** chronisch expandierende Aortendissektion, **PND** postoperatives neurologisches Defizit.

Ergebnisse

Perioperative Mortalität

Die intraoperative, 30-Tage- und Krankenhausmortalitätsraten betrugen 2% (2 Patienten), 8% (7 Patienten) und 12% (11 Patienten). Davon starben 6 Patienten an einer kardialen Ursache, 3 Patienten im hämorrhagischen Schock und 2 Patienten im Multiorganversagen. Die Zeitdauer vom operativen Eingriff bis zum Eintritt

des Todes betrug median 21 Tage (0−91). In ■ Tab. 3 und 4 werden die perioperative Morbidität und Mortalität im Gesamtkollektiv bzw. in den einzelnen Subgruppen zusammengefasst. ■ Tab. 5 fasst die intraoperativen Parameter wie z. B. Blutverlust und Abklemmzeiten zusammen.

Prädiktoren für die 30-Tage-Mortalität

Es wurden mittels univariater Analyse 6 Faktoren identifiziert, welche einen signifikanten Einfluss auf die 30-Tage-Mortalität unseres Patientenkollektivs hatten (Tab. 6). In der multivariaten Analyse konnten Revisionspfichtigkeit und postoperativer Transaminasenanstieg (GOT>40 U/l) als signifikante negative Einflussparameter auf das 30-Tage-Überleben identifiziert werden.

Vier weitere Parameter erreichten keine Signifikanz, zeigen aber einen Trend, die 30-Tage Letalität zu beeinflussen:

- COPD (p=0,163),
- Aortenabklemmzeit >60 min (p=0,195, OR=1,017),
- postoperative Kreatininerhöhung>2,4 mg/dl (p=0,089, OR=1,269)sowie
- eine Nachbeatmungszeit >7 Tage (p=0,057).

Postoperatives neurologisches Defizit

Bei 7 (8%) Patienten bestand ein temporäres postoperatives neurologisches Defizit (PND), welches sich bis zur Entlassung als voll reversibel herausstellte. 13 Patienten (14%) zeigten hingegen noch bei Entlassung ein neurologisches Defizit. Hierunter befanden sich 9 Patienten (10%) mit einer permanenten Paraplegie und 4 Patienten (4%) mit einer permanenten Paraparese. Kein Patient erlitt einen Schlaganfall.

Postoperative Nierenfunktionsstörung

Zehn Patienten (11%) zeigten postoperativ ein akutes, dialysepflichtiges Nierenversagen, 3 Patienten (3%) blieben dauerhaft dialysepflichtig. Einer der 3 Patienten, die dauerhaft dialysepflichtig wurden, hatte präoperativ eine Einzelniere bei Zustand nach Tumornephrektomie.

Langzeitmortalität und -morbidität

Für 84 der 92 operierten Patienten (91%) konnte ein Follow-up erhoben werden, 8 Patienten (9%) waren "lost to follow up". Der mediane Nachuntersuchungszeitraum betrug 40 Monate (Spannweite: 1–139).

Für das Gesamtkollektiv betrug die mediane kumulative Überlebenszeit 8,5 Jahre (102 Monate, 95%-CI: 51,7–152,3 Monate). Die Einmonats- und 3-Monats-Überlebensraten betrugen 90% und 89%. Nach 12 Monaten lebten statistisch 84%, nach 24 Monaten 80%, nach 60 Monaten 70% und nach 120 Monaten 48% der Patienten (Abb. 2).

Insgesamt 23 Patienten (27%) starben nach Entlassung aus der Klinik. Dabei gab es keine weiteren prozedurassoziierten Todesfälle. 2 Patienten verstarben an aortaassoziierten Ursachen, der eine an einer Aortenruptur im Bereich des Aortenbogens ca. 3 Jahre postoperativ und der andere Patient an einer spontanen Stanford-A-Dissektion ca. 5 Jahre postoperativ. 9 der restlichen 21 Patienten verstarben an kardialen Ursachen.

Acht Patienten (9,5%) mussten sich einer Reoperation wegen Anschluss-bzw. Rezidivaneurysmen an der Aorta unterziehen, median 38 Monate (6–123) nach der primären Operation. 5 Patienten (6%) hatten im Bereich des Crawford-Zugangs eine nicht revisionspflichtige Narbenhernie ausgebildet.

Prädiktoren für das Langzeitüberleben

Es wurden mittels univariater Analyse 12 Faktoren identifiziert, welche einen signifikanten Einfluss auf das Gesamtüberleben unseres Patientenkollektivs hatten (• Tab. 7). In der multivariaten Analyse bestätigten die Faktoren PAVK, intraoperative Komplikation, postoperative pulmonale Komplikation (Langzeitnachbeatmung) sowie ein postoperativer Bilirubinwert >2,5 mg/dl ihren signifikanten Einfluss auf das Langzeitüberleben.

Der TAAA-Typ (p=0,0797, Log-Rank=9,85) und die Anzahl der EK-Trans-

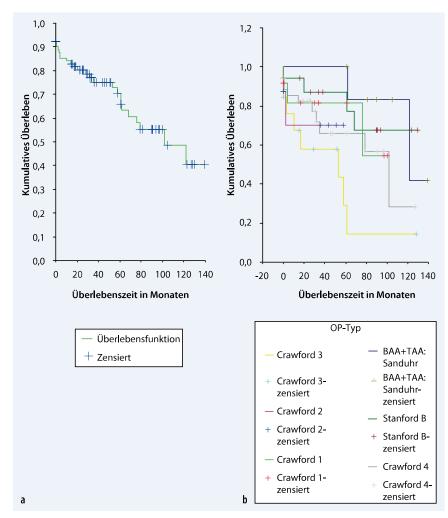
Tab. 5 Intraoperative Parameter (n=92)						
Parameter	Median	Variationsbreite				
Operationsdauer (min)	320	150–810				
Blutverlust (ml)	3850	1000–70.000				
AKZ aortal (min)	55	25–165				
AKZTC (min)	37	0–110				
AKZ Niere links (min)	37	0–170				
AKZ Niere rechts (min)	35	0–127				
EK-Anzahl	8	0–74				
FFP-Anzahl	12	0–81				
TK-Anzahl	0	0–17				
Autotransfusion (ml)	1200	0-90.000				
Intraoperative Diurese (ml)	1550	150–5000				

AKZ Abklemmzeit, **TC** Truncus coeliacus, **EK** Erythrozytenkonzentrat, **FFP** "fresh frozen plasma", **TK** Thrombozytenkonzentrat.

Tab. 6 Univariate und multivariate Risikofaktorenanalyse für das 30-Tage-Überleben							
Signifikante Parameter	Univaria	ate Analyse	Multivariate Analyse				
	p-Wert	OR (95%-CI)	p-Wert	OR (95%-CI)			
Notwendigkeit einer Revision	0,012	16,799 (1,875–150,481)	0,076	8,465 (0,802–89,318)			
LDH postoperativ (U/I)	0,047	1,002 (1.000–1.007)	n.s.				
GOT postoperativ (U/I)	<0,001	1,014 (1,007-1,021)	0,017	1,009 (1,002–1,017)			
GPT postoperativ (U/I)	0,001	1,024 (1,010-1,038)	n.s.				
Postoperative Leberdysfunktiona	0,002	17,010 (2,802–103,267)	n.s.				
Postoperative pulmonale Dys- funktion ^b	0,026	7,680 (1,283–45,991)	n.s.				

 a LDH>500 mg/dl + Bilirubin>3 mg/d oder LDH>500 mg/dl + GOT + GPT>200 mg/dl, b Langzeitbeatmung >7 d oder Reintubation. **OR** Odds Ratio, **CI** Konfidenzintervall, **LDH** Laktatdehydrogenase, **GOT** Glutamat-Oxalazetat-Transaminase, **GPT** Glutamat-Pyruvat-Transaminase, **n.s.** nicht signifikant.

Tab. 7 Univariate und multiva	riate Risi	kofaktorenanalyse für	das Gesa	amtüberleben	
Signifikante Parameter	Univaria	ite Analyse	Multivariate Analyse		
	p-Wert	OR (95%-CI)	p-Wert	OR (95%-CI)	
Diabetes mellitus	0,061	2,839 (0,952–8.467)	n.s.		
PAVK	0,003	3,925 (1,578–9.762)	0,003	4,41 (1,672–11,611)	
COPD	0,006	2,861 (1,146–7,140)	n.s.		
Intraoperative Komplikationa	0,046	3,483 (1,023–11.866)	0,033	4,28 (1,128–16,267)	
Bilirubin postoperativ (mg/dl)	0,001	1,074 (1,031–1,118)	0,019	1,06 (1,009–1,112)	
GOT postoperativ (U/I)	0,044	1,011 (1,000–1,022)	n.s.		
GGT postoperativ (U/I)	0,016	1,004 (1,001–1,007)	n.s.		
Kreatinin ≥2 mg/dl postoperativ	0,079	2,103 (0,918–4.816)	n.s.		
Dialysepflichtige postoperative NI	0,018	4,665 (1,301–16,725)	n.s.		
Langzeitbeatmung (>7 Tage)	<0,001	9,425 (3,492–25,440)	<0,001	7,79 (2,499–24,246)	
Paraplegie	0,003	4,810 (1,697–13,632)	n.s.		
Revision	0,278	1,733 (0,641–4,686)	n.s.		
36		(2.10)	141	0	


^aPeriphere Embolie, disseminierte intravasale Gerinnung (DIC), neuaufgetretene medikamentenpflichtige Arrythmie, Asystolie.

OR Odds Ratio, CI Konfidenzintervall, PAVK periphere arterielle Verschlusskrankheit, COPD chronischobstruktive Lungenerkrankung, GOT Glutamat-Oxalazetat-Transaminase, GPT Glutamat-Pyruvat-Transaminase, NI Niereninsuffizienz, n.s. nicht signifikant.

fusionen (p=0,095, OR=1,045) erreichten zwar nicht das gewählte explorative Signifikanzniveau, scheinen aber tendenziell einen Einfluss auf das Langzeitüberleben des untersuchten Kollektivs auszuüben.

Diskussion

In den letzten Jahrzehnten konnte die perioperative Komplikationsrate in der thorakoabdominellen Aortenchirurgie

Abb. 2 ▲ Die Kaplan-Meier-Überlebenskurve zeigt die Überlebenswahrscheinlichkeit für **a** das Gesamtkollektiv und **b** die einzelnen Gruppen. *Zensiert* Todesfall

durch Etablierung sog. protektiver Verfahren zur Reduzierung von Organ- und Rückenmarksischämiezeit sukzessive gesenkt werden. Die sog. "major complications" (30-Tage-Letaltät, Paraplegie/Paraparese, dialysepflichtige Niereninsuffizienz) und deren Inzidenz in großen Studien werden mit den hier ausgewerteten Daten in • Tab. 6 verglichen.

In hochspezialisierten "High-volume-Zentren" der Arbeitsgruppen von Coselli, Svensson, Jacobs, Sandmann et al. wurde eine 30-Tage-Letalität zwischen 5 und 12% angegeben. Durch die hohe Abhängigkeit des Kurzzeitüberlebens von der Indikationsstellung des Eingriffs (elektiv, dringlich, Notfall) wurden die eigenen Ergebnisse mit anderen Untersuchungen verglichen, in denen ebenfalls nur elektive Eingriffe das Kollektiv bilden bzw. getrennte Daten für diese Fälle aufführen. Wie in

denen Arbeitsgruppen eine 30-Tage-Letalität zwischen 6,8 und 15% angegeben. Ein 2003 von Cowan et al. veröffentlichter Review repräsentativ für 20% aller US-Kliniken beschreibt eine Letalitätsrate für elektive Eingriffe von 22,3% [9]. Dies veranschaulicht die teilweise immer noch sehr hohen Letalitätsraten, selbst für elektive Fälle, außerhalb der großen Gefäßzentren. Dies muss bei Betrachtung der überwiegend sehr guten Ergebnisse von "Highvolume-Zentren", die auf Jahrzehnte lange Erfahrungswerte zurückgreifen können, stets berücksichtigt werden.

In der multivariaten Analyse waren 2 Faktoren mit einer höheren 30-Tage-Letalitätsrate assoziiert:

- GOT-Level >40 U/l und
- die Notwendigkeit einer Revision.

Da bei keinem der Studienpatienten präoperativ ein bekannter Leberparenchymschaden bestand (z. B. chronische Hepatitis, langjähriger Alkoholabusus), muss ein postoperativ erhöhter GOT-Wert als Indikator für einen ischämisch bedingten Leberzellschaden während der Abklemmphase gewertet werden. Die erhöhte GOT als unabhängiger Prädiktor als auch die im univariaten Test ermittelten erhöhten GPT und LDH implizieren eine schlechtere 30-Tage-Prognose für Patienten mit verlängerter Organischämiezeit. Um die Organischämiezeit in der Aortenrekonstruktionsphase gering zu halten, wurde in dieser Serie eine passive distale Aortenperfusion (DAP) durchgeführt. Musste auch das Viszeralsegment der Aorta rekonstruiert werden - meist en bloc als Carell-Patch - wurden die Gefäßostien im Bereich des Truncus coeliacus mittels Fogarty-Kathetern geblockt. Durch den Einsatz einer aktiven DAP mittels Pumpe und eine selektive Katheterperfusion der Viszeralarterien lässt sich die Viszeralischämiezeit weiter reduzieren. Jacobs et al. haben dieses Verfahren standardisiert für alle Crawford-II- und -III-Typen erfolgreich angewandt [20]. Auch in der Arbeitsgruppe Conrad et al. kamen beide angesprochenen Verfahren für komplexe Aneurysmarekonstruktionen erfolgreich zum Einsatz [4].

Als zweiter unabhängiger Prädiktor für eine erhöhte 30-Tage-Letalität wurde im untersuchten Patientenkollektiv die Notwendigkeit zu einer Revision identifiziert. Dies scheint nicht weiter überraschend, da ein zweites Operationstrauma und erneuter perioperativer Stress innerhalb kurzer Zeit die postoperative Komplikationsrate und Operationsletalität für dieses multimorbide Patientenkollektiv nachvollziehbar erhöht. Die in dieser Serie bestehende Revisionsrate von 21% ist vergleichbar mit Daten von anderen Zentren [7, 25, 32]. Die häufigste Indikation für einen erneuten Eingriff war die retroperitoneale Hämatomausräumung. Nachblutungen können durch eine derangierte plasmatische Gerinnung verursacht werden; diese wiederum ist abhängig von der Körpertemperatur und dem Blutverlust, beides Einflussfaktoren, die durch die Länge und die Invasivität des operativen Eingriffs bestimmt werden.

Das Auftreten einer postoperativen Paraparese oder Paraplegie war in dieser Serie im Gegensatz zu anderen Untersuchungen kein unabhängiger Prädiktor für die 30-Tage-Letalität [2, 4, 5, 6]. Vor dem Hintergrund der multifaktoriellen Pathophysiologie der zugrunde liegenden spinalen Ischämie wurden in vielen Studien verschiedene neuroprotektive Strategien überprüft. Bekannte Parameter, die mit der Ausbildung eines postoperativen Defizits in Zusammenhang stehen, sind Aneurysmaausdehnung (Crawford Typ II/III), Aortenabklemmzeit bzw. Rückenmarksischämiezeit, Ischämiereperfusion und Verlust der für die Rückenmarksperfusion wichtigen Interkostalund Lumbalarterien [8, 32]. In der vorliegenden Studie beträgt die Inzidenz eines persistierenden postoperativen neurologischen Defizits 14%. Die hier angewandte Reinsertion von Interkostal- und Lumbalarterien, vor allem zwischen T₈ und L₁, die Liquordruckmessung und Drainage, und die DAP sind rückenmarksprotektive Verfahren, die die Häufigkeit postoperativer neurologischer Defizite nach TAAA-Eingriffen drastisch senken [23]. Der Einsatz motorisch evozierter Potenziale (MEP) kann nach Jacobs et al. wesentlich dazu beitragen, exakt die Lumbalund Beckenarterien zu identifizieren, die für die Rückenmarksperfusion essenziell sind.

Renale Komplikationen stellen ebenfalls ein zentrales Problem der postoperativen Phase des offen-chirurgischen thorakoabdominellen Aortenersatzes dar, insbesondere in einem Patientenkollek-

Tab. 8 Literaturübersicht großer Studien über den offen-chirurgischen thorakoabdominellen Aortenersatz

Autor	Jahr	Patienten- zahl	30-Tage-Letalität (Elektiveingriffe)	PND (Paraplegie/ Paraparese)	Dialyse
Crawford et al. [12]	1986	605	8,9%	11,4% (6,6/4,8%)	17%
Cox [11]	1992	129	35% (15%)	21% (15,8/5,2%)	27%
Svensson et al. [32]	1993	1509	8%	16%	9%
Schepens et al. [29]	1994	88	5,9%	13,8% (5,8/8%)	14,1%
Grabitz et al. [18]	1996	222	12,2%	15,8% (4,5%/11,3%)	10,4%
Cina et a l . [3]	2002	121	21,4% (12%)	6,2% (4,4%/1,8%)	15%
Cambria et al. [2]	2002	337	8,3% (6,7%)	11,4% (6,6%/4,8%)	4,8%
Rectenwald et al. [24]	2002	101	17,8% ^a (10,3% ^a)	10,3%	k.A.
Jakobs et al. [20]	2002	184	10,8%	2,7%	k.A.
Schepens et al. [29]	2004	402	10,9% ^a	11,3%	6,1
Sandmann et al. [28]	2005	673	12,5%	14,1% (7,5%/6,6%)	4,6%
Rigberg et al. [25]	2006	1010	25% (19%)	k.A.	k.A.
Coselli et al. [7]	2007	2286	5%	3,8%	5,6%
Conrad et al. [5]	2007	445	8,2% (6,8%)	13,7% (9,5%/3,7%)	4,6%
Heidelberg (Ergebnisse aus dieser Studie)	2009	92	7,6%	14,1% (9,8%/4,3%)	11%

^aKrankenhausmortalität

PND postoperatives neurologisches Defizit. k.A. keine Angaben.

tiv mit einer hohen Inzidenz an präoperativ eingeschränkter Nierenfunktion. Zur Erhöhung der Ischämietoleranz der Nieren kamen die passive DAP und die Kaltperfusion der Nieren mit 4°C kalter Ringer-Laktat-Lösung zum Einsatz. Safi et al. zeigten dass der alleinige Einsatz der Clamp-and-sew-Technik mit Verzicht von Bypassverfahren zur Viszeralperfusion ein unabhängiger Prädiktor für postoperatives Nierenversagen darstellte [26]. Auch fortgeschrittenes Lebensalter und die Aortenabklemmzeit wurde in zwei großen Studien von Coselli et al.

und Svensson et al. als Prädiktoren für ein Nierenversagen identifiziert [6, 32]. Crawford et al., Svensson et al. und Coselli et al. zeigen in ihren Untersuchungen, dass der stärkste unabhängigste Prädiktor für eine postoperative dialysepflichtige Niereninsuffizienz die schon präoperativ bestehende Nierenfunktionsstörung darstellt [6, 12, 32]. Demnach ist die präoperative Optimierung der Nierenfunktion aufgrund der Studienlage obligat, wohingegen der Einsatz und Umfang protektiver Verfahren von Autoren unterschiedlich bewertet wird.

Die Überlebenswahrscheinlichkeit unseres Gesamtkollektivs betrug 70% nach 5 Jahren. Ähnliche Ergebnisse für das 5-Jahres-Überleben haben auch Crawford et al., Cambria et al. und Coselli et al. publiziert, sie liegen zwischen 60% und 74% [2, 7, 12].

Für den Spontanverlauf von TAAAs und Dissektionen liegen wenig verlässliche Daten vor. Crawford et al. ermittelten für den sog. "natural course of disease" bei 94 unoperierten Patienten eine 2-Jahres-Überlebensrate von 24%, wovon 52% innerhalb des Zeitraums an einer Ruptur des Aneurysmas verstarb. Bei zusätzlichem Vorliegen einer Dissektion war die Rupturrate und die rupturbedingte Mortalität deutlich höher [13]. In dieser Serie fiel deutlich auf, dass bei 43% aller Todesursachen eine kardiale Genese zugrunde lag. Diese ist für die überwiegende Mehrheit aller anderen Publikationen zu diesem Thema ebenso vorzufinden und ein typisches Merkmal dieses komorbiden Patientenkollektivs.

Eine Erklärung hierfür liefert die der Aneurysmaerkrankung zugrunde liegende Arteriosklerose als Systemerkrankung. Aneurysmaträger weisen häufig eine KHK, PAVK oder eine zerebrovaskuläre Erkrankung auf. Häufig koexistieren auch diese Krankheitsbilder im asymptomatischen Stadium. Bei Vorliegen einer PAVK zeigte der multivariate Test für das vorliegende Kollektiv ein signifikant schlechteres Langzeitüberleben. Durch zahlreiche Untersuchungen ist bekannt, dass das Auftreten einer PAVK signifikant mit kardiovaskulärem und zerebrovaskulärem Tod korreliert [14, 15, 16, 22]. Dem kardialen Risikoprofil eines gefäßchirurgischen Patientenklientels muss also gerade auch in der postoperativen Nachbetreuung einen zentralen Stellenwert zugeschrieben werden, um die Inzidenz tödlicher kardialer Ereignisse zu senken.

Neben dem Merkmal PAVK ist das Auftreten intraoperativer Komplikationen (in dieser Analyse definiert als disseminerte intravasalen Gerinnung, periphere Embolie, Asystolie, neu aufgetretene medikamentenpflichtige Arrhythmie) ein weiterer unabhängiger Prädiktor für das Langzeitüberleben der untersuchten Population. Patienten mit einer intraoperativen Komplikation zeigten eine Einmo-

natsüberlebenswahrscheinlichkeit von lediglich 50%. Alle genannten Komplikationen sind Situationen, bei denen das Auftreten, insbesondere intraoperativ, eine Notfallsituation darstellt und eine rasche Diagnose und Therapie angezeigt ist. Hier ist eine reibungslose Kommunikation und Entscheidungsfindung zwischen Chirurgen und Anästhesisten Voraussetzung für eine schnelle Problemlösung. Solche Situationen sind intraoperativ schlecht vorhersehbar, viel mehr muss sichergestellt werden, dass ein Patient präoperativ optimal auf diesen belastenden Eingriff eingestellt wird.

Auch eine durchgeführte Langzeitbeatmung (Nachbeatmung >7 Tage) war ein unabhängiger Prognosefaktor für das Langzeitüberleben in der untersuchten Patientenpopulation. Dies kann beispielsweise mit beatmungsassoziierten bronchopulmonalen Infektionen, Abnahme der Durchblutung von Nieren, Leber, ZNS und des Splanchnikusgebiets aufgrund beatmungsbedingter Drosselung des venösen Rückstroms, Trachealund Kehlkopfschäden, Druck- und Stressulzera, Barotrauma, Atrophie der Atemmuskulatur, ösophagotracheale Fisteln und Weaning-Probleme zusammenhängen. Besonders Infektionen mit resistenten Keimspektren können bei frisch operierten beatmeten Patienten schnell in einen Circulus vitiosus münden, der zu einer Sepsis mit Multiorganversagen führen kann. Eine möglichst frühe Extubation ist demnach stets anzustreben.

Ähnlich dem GOT war das postoperative Bilirubin ebenfalls als Marker für einen Leberparenchymschaden im Zuge der Abklemmphasen von Aorta bzw. Truncus coeliacus anzusehen und stellte einen unabhängigen negativen Prädiktor für das Langzeitüberleben dar. Auch hier scheint es also von Bedeutung zu sein, die Viszeralischämiezeit während des Eingriffs möglichst gering zu halten. Passive Bypasssysteme zur retrograden distalen Aortenperfusion scheinen gegenüber den aktiven Pumpensystemen mit selektiver Katheterperfusion hier im Nachteil zu sein [31].

Gerade für die erwähnten Hochrisikopatienten können bei entsprechend vorliegender Pathoanatomie des TAAAs, die weniger invasiven endovaskulären Operationsverfahren eine Alternative zu dem 2-Höhlen-Eingriff darstellen. Auch wenn Publikationen mit Langzeitergebnissen fehlen, sind nach Meinung vieler Autoren in selektionierten Fällen mit hohem perioperativem Risikoprofil solche Verfahren gerechtfertigt [1, 17]. Schon heute ist ersichtlich, dass sowohl durch ständige Weiterentwicklung und Optimierung des Behandlungskonzepts als auch durch Verbesserung von Design und Material der Endoprothesen die endovaskuläre Aneurysmaausschaltung die Operationsindikation erweitert hat und eine zunehmend wichtige Therapiealternative zum offenen Verfahren darstellt [19].

Fazit

Postoperativ erhöhte Leberwerte als negative Prognosefaktoren sind eventuell ein Indiz für einen mehr standardisierten Einsatz aktiver Shuntsysteme für die Endorganperfusion. Der Patientenvorbereitung zur kardiopulmonalen und renalen Funktionsoptimierung sowie der Behandlung kardiovaskulärer Risikofaktoren sollten große Aufmerksamkeit geschenkt werden, da hier mit einer hohen Komplikationsrate gerechnet werden muss.

Korrespondenzadresse

Dr. D. Kotelis

Klinik für Gefäßchirurgie, Universitätsklinikum, Im Neuenheimer Feld 110, 69120 Heidelberg Drosos.Kotelis@med.uni-heidelberg.de

Interessenkonflikt. Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

- Böckler D, Nassar J, Kotelis D et al (2009) Hybrid approach for arch and thoracoabdominal pathologies. J Cardiovasc Surg (Torino) 50:461–474
- Cambria RP, Clouse WD, Davison JK et al (2002)
 Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval.
 Ann Surg 236:471–479
- Cina CS, Lagana A, Bruin G et al (2002) Thoracoabdominal aortic aneurysm repair: a prospective cohort study of 121 cases. Ann Vasc Surg 16:631–638
- Conrad MF, Crawford RS, Davison JK, Cambria RP (2007) Thoracoabdominal aneurysm repair: a 20-year perspective. Ann Thorac Surg 83:856–861
- Conrad MF, Ye JY, Chung TK et al (2008) Spinal cord complications after thoracic aortic surgery: longterm survival and functional status varies with deficit severity. J Vasc Surg 48:47–53

- Coselli JS (1994) Thoracoabdominal aortic aneurysms: experience with 372 patients. J Card Surg 9:638–647
- 7. Coselli JS, Bozinovski J, LeMaire SA (2007) Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg 83:862–892
- Coselli JS, LeMaire SA, Schmittling ZC, Koksoy C (2000) Cerebrospinal fluid drainage in thoracoabdominal aortic surgery. Semin Vasc Surg 13:308– 314
- Cowan JA Jr, Dimick JB, Henke PK et al (2003) Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: hospital and surgeon volume-related outcomes. J Vasc Surg 37:1169–1174
- 10. Cox D (1972) Regression models and life tabels. J Roy Stat Soc B 34:187–220
- Cox GS, O'Hara PJ, Hertzer NR et al (1992) Thoracoabdominal aneurysm repair: a representative experience. J Vasc Surg 15:780–788
- Crawford ES, Crawford JL, Safi HJ et al (1986) Thoracoabdominal aortic aneurysms: preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg 3:389–404
- Crawford ES, DeNatale RW (1986) Thoracoabdominal aortic aneurysm: observations regarding the natural course of the disease. J Vasc Surg 3:578– 582
- Criqui MH (1990) Peripheral arterial disease and subsequent cardiovascular mortality. A strong and consistent association. Circulation 82:2246–2247
- Criqui MH, Langer RD, Fronek A et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386
- Dormandy J, Heeck L, Vig S (1999) The natural history of claudication: risk to life and limb. Semin Vasc Surg 12:123–137
- Drinkwater SL, Böckler D, Eckstein H et al (2009)
 The visceral hybrid repair of thoraco-abdominal aortic aneurysms—a collaborative approach. Eur J Vasc Endovasc Surg 38:578—585
- Grabitz K, Sandmann W, Stuhmeier K et al (1996)
 The risk of ischemic spinal cord injury in patients undergoing graft replacement for thoracoabdominal aortic aneurysms. J Vasc Surg 23:230–240
- Hinchliffe RJ, Hopkinson BR (2007) Development of endovascular stent-grafts. Proc Inst Mech Eng H 221:547–560
- Jacobs MJ, Mol BA de, Elenbaas T et al (2002) Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg 35:30–37
- Mastroroberto P, Chello M (1999) Emergency thoracoabdominal aortic aneurysm repair: clinical outcome. J Thorac Cardiovasc Surg 118:477–482
- Muluk SC, Muluk VS, Kelley ME et al (2001) Outcome events in patients with claudication: a 15-year study in 2777 patients. J Vasc Surg 33:251–258
- Panneton JM, Hollier LH (1995) Nondissecting thoracoabdominal aortic aneurysms: Part I + II. Ann Vasc Surg 9:503–514, 596–605
- Rectenwald JE, Huber TS, Martin TD et al (2002)
 Functional outcome after thoracoabdominal aortic
 aneurysm repair. J Vasc Surg 35:640–647
- Rigberg DA, McGory ML, Zingmond DS et al (2006)
 Thirty-day mortality statistics underestimate the risk of repair of thoracoabdominal aortic aneurysms: a statewide experience. J Vasc Surg 43:217–223
- Safi HJ, Harlin SA, Miller CC et al (1996) Predictive factors for acute renal failure in thoracic and thoracoabdominal aortic aneurysm surgery. J Vasc Surg 24:338–345

- Safi HJ, Miller CC 3rd, Subramaniam MH et al (1998) Thoracic and thoracoabdominal aortic aneurysm repair using cardiopulmonary bypass, profound hypothermia, and circulatory arrest via left side of the chest incision. J Vasc Surg 28:591–598
- Sandmann W, Grabitz K, Pfeiffer T, MBT (2005) Indikation, Technik und Ergebnisse des konventionellen thorakoabdominalen Aortenersatzes. Gefaesschirurgie 10:7–22
- Schepens M, Dossche K, Morshuis W et al (2004) Introduction of adjuncts and their influence on changing results in 402 consecutive thoracoabdominal aortic aneurysm repairs. Eur J Cardiothorac Surg 25:701–707
- Schepens MA, Defauw JJ, Hamerlijnck RP et al (1994) Surgical treatment of thoracoabdominal aortic aneurysms by simple crossclamping. Risk factors and late results. J Thorac Cardiovasc Surg 107:134–142
- Schepens MA, Kelder JC, Morshuis WJ et al (2007) Long-term follow-up after thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 83:851–855; 890–892
- Svensson LG, Crawford ES, Hess KR et al (1993) Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 17:357– 370