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ABSTRACT
The construction of mental objects by learners is a very complex

process and it is desirable to understand it as deeply as possible,

especially to understand domain specific subtleties. In this paper

we will argue that the adaption of the reification theory that has

been used successfully in mathematics education provides new

and important insights into the learning of programming.
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K.3.2 [Computer science education]: Computer science

education
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1. INTRODUCTION
Meaningful statements are often concerned with certain objects.

Language is a referential system that relates objects. We speak

about apples, numbers, objects, classes and protocol stacks. The

theory of radical constructivism (von Glasersfeld [7]), which is

widely accepted in didactics, frees us from the question (which

appears nevertheless to be an interesting question from a

philosophical point of view) whether these things exists in reality

(or, what ‘reality’ should refer to in this sentence to make it true

or at least viable). Mental objects are part of an individual’s

subjective ontology. However, successful communication between

two individuals requires at least a partial mapping of their private

ontologies. Thus, when speaking about mental models we are

directly led to ontological questions. Similarly, formal logic has

found another way to get rid of these ontological questions by

shifting the specification of a domain to possible interpretations of

its formulae. The picture sketched so far is by large compatible

with the framework of Ontological Relativity [10] which will thus

be adopted. Thus we are freed from the necessity to commit

ourselves to decide what really exists. The assumption that certain

objects exists is of hypothetical nature and thus we can focus on

the question how these hypothetical objects come into being. This

question is the important one from an educational point of view

and this article will focus on it.

Students who learn about computers and computer science will

have to create new mental objects. These objects form a very

broad spectrum ranging from such objects which are close to

physical objects build from sensual experience (e.g. the concept of

a pixel), objects which can be located in space although they are

not accessible visibly (e.g. the magnetic sectors on a hard disk that

make up a file) and finally objects that cannot be located in space

such as method or binary tree) Teaching experience suggests that

even the middle category of these objects present problems to

learners. Even more abstract objects must be created by a

demanding mental effort. This process is error-prone and we hope

to shed some light on it.

The next section will introduce the central concept of this paper,

i.e. reification. This concept deals with the creation of mental

objects and is described in several theories which may, due to

their large mutual overlap, be combined (at least for our purpose)

into one theory. The use of reification theory has proved to be

useful in mathematics education and we hope that computer

science education is a similar fruitful ground for its application.

1.1 Reification
As didactics of computer science education is a relatively new

science it can try to learn from more mature disciplines like

mathematics education. Of course, the differences of their

domains should not be ignored, and each idea transferred from

one domain to the other has to be investigated individually to

check if its validity survived the domain change.

Mathematics education has discussed for some time the question

how abstract mathematical objects can be (re)constructed by the

students. In this course a number theories proved to be helpful

that may be combined under the heading of reification theories.

There are some important differences between some of these

theories, but nevertheless we simplify things by presenting them

as one major theory.

The word ‚reification‘ is based on the Latin word ‚res‘ for thing.

A very influential use of this concept was given by Anna Sfard

([12]). She starts from the thesis that the cultural and historical

development on one hand and the individual development on the

other hand show strong similarities. Hence, the study of the

historical genesis of some relevance for didactics and Sfard

looked especially on the development of concepts that took a

longer period before they were cast into their final form.  An

example is given by the complex numbers. Their name hints

already at the difficult genesis they have had. For quite a long

time, mathematicians considered them to be suspicious – in
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contrast to the real numbers they had been used to. One may start 

to learn how to work with the symbol i that shall represent the 

square root of -1 and may get some routine in doing the 

calculations with it, but really seeing i as a number requires a 

conceptual change of what a number is. (see [14] for conceptual 

change). Before the introduction of imaginary numbers, all 

numbers can be represented on the number line and hence can be 

ordered. This useful property is no longer valid in the complex 

number field and hence many operations with numbers lose their 

basis. Sfard looked at this and other examples and studied how the 

process of reification works, i.e. how new mathematical objects 

come into being. 

A geometric concept, e.g. the concept of circle, may be learned 

more or less directly by ostension, i.e. by exposing examples and 

abstraction [12, p. 10], most concept formations however, start 

with processes. E.g. the natural numbers develop from the process 

of counting. Fractions have historically been introduced as means 

for measuring, i.e. a/b meant the number of times b is used to 

form a. This measuring process is likely not to work out in the 

most simple form that there is a natural number n such that b=n∙a, 

but more generally ancient Greeks allowed the understanding that 

there is a common measure e such that a=n∙e and b=m∙e, thus this 

measurement process is condensed and forms a rational number 

[12, p. 11].  Consequently, the Greeks interpreted irrationality of 

2 as the sign that measuring process cannot be carried out. But 

even processes that cannot be carried out can be reified to become 

an object. This development, however, took very much time in the 

history of mathematics. Learners as well need some time to make 

the double passage, first transforming the measurement process 

into the objects of rational numbers and then transforming even 

more measurements into irrational numbers.  

Sfard looked closely at this development from processes to 

objects and found three steps which we illustrate with examples 

from computer education: 

 Internalization: A process on objects that already exists 

is carried out and internalized so that it can be re-played 

mentally.  

o Example: Within an image manipulation 

program students repeatedly select subsets of 

pixels by using various tools. 

 Condensation: The process is condensed so that it forms 

a new autonomous unit. This can be supported by a new 

form of notation.  

o Example: The students realize that, 

independent of the method of selection, the 

result is just a subset of all pixels. This set 

may be denoted by S – the current selection. 

 Reification: The description of the process turns into 

one mental object that can be manipulated and handled 

in thought processes  

o A selection is a mental object that can be 

operated on, e.g. extended or reversed.  

In this setup Sfard says that processes and objects are dual to each 

other. This is a step from the Piagetian Framework which clearly 

identified the role of internalization of operations in developing 

schemata but gave little attention to the dual picture. Even more 

emphasis on the connection between these kinds of mental entities 

is given by Gray&Tall [8]. They have coined the term procept to 

denote the combination of a process and an object. This makes 

clear that the newly born objects still contain the process and the 

precise meaning of the objects is defined by this process. At times 

it may be necessary to go back and invoke the process again, e.g. 

it after having being reified fractions are objects but they still 

contain the process of division and maybe this process will be 

evoked in certain situations. 

The point of view that processes lead to objects is by no means 

new to computer science.  

 Procedural abstraction turns processes into procedures. 

Example: When working with the Logo programming 

language, a child may discover that a certain process, 

such as drawing a regular polygon is useful over and 

over again and thus may write down a generic copy of 

this process in the body of a function definition.     

 Abelson/Sussman [1] show how the data type of a list 

may be implemented on the basis of lambda 

expressions. This illustrates that the distinction between 

(static) data and (dynamic) procedures is blurred by 

little more than the most basic understanding of a 

programming language.  

 Consider the example of the meta-circular 

implementation of a Lisp interpreter as is done in most 

Lisp books. This interpreter may be seen as an abstract 

machine that can do arithmetic and list processing. 

Variables in such an interpreter are symbols that are 

looked up in environments, i.e. variables initiate the 

lookup-process that determines their value. Usually, the 

lookup process will signal an error, if there is no value 

stored in the environment for a given symbol. 

Interestingly, the simple modification that does not 

carry out this process where it is not possible, i.e. simple 

taking the symbol itself as result in this case and 

allowing arithmetic operations as well to reproduce 

themselves if not all operands are numbers, turns the 

interpreter into the basis of a computer algebra system. 

This shows that the passage from arithmetic to algebra 

may be taken – on a technical level – by not-carrying 

out certain processes. The computer algebra system 

muSIMP/muMATH (The Softwarehouse / Microsoft) 

used essentially this implementation strategy. 

At this stage we can draw the first conclusions for the realm of 

education. When students are expected to construct new mental 

objects, they need to have enough time to carry out the relevant 

processes many times so that internalization and condensation can 

take place and prepare for the final reification step. It seems 

plausible that a better understanding of reification and of mental 

tools that support it may help in designing better learning 

environments and teaching strategies. To us it seems that 

symbolization (compare the role of notation in the step of 

condensation) is crucial.  

1.2 Symbolization 
The importance of symbols for thinking is obvious. Proper 

symbols help to reduce complexity and facilitate a playful 

interaction. Hence there is a long standing tradition of didactics in 

the use of symbols and especially in semiotics as the discipline 

that is crucial for the understanding of symbols. The following 

short exposition follows Filloy et al. [5]. A simplified 

understanding of symbolization may suggest that one has a sign S 

that refers to an object O, symbolically S→O. This simple form is 

useful in many places but not in all. The extension of this to the 

semiotic triangle introduced by Peirce gives room for the 



individual person that makes the connection between sign and 

object: 

 

A sign (Symbol) refers to an object and is directed to a person. In 

the mind of this person a new mental sign is established that 

points to the objects as well, it is called the interpretant. This 

model gets its power but also its complexity from the fact that the 

relation can be iterated. I.e. the interpretant can turn into a sign as 

well, e.g. when written down. The French philosopher Lacan has 

considered the other direction as well: A sign turns into the object 

for another sign. Luckily, for the rather simple applications we 

have in mind this is not strictly necessary but it should be kept in 

mind that one gets involved in a non-trivial net of relations.  

Signs, objects and interpretants in this semiotic triangle can be of 

different kinds. Peirce distinguishes between different kinds of 

signs, e.g. between signs that are similar to the referred objects 

and signs that are purely conventional. Signs may be compound 

signs that are composed of other, more elementary signs. 

Compound signs are expressions, UML diagrams and much more. 

This fact will be important for us. Similarly, the objects can be 

specific ones (a table, the number 5, memory cell $ffaa7b,…) or 

generic ones (strings, classes,…). The nature of interpretants is 

consequently very diverse as well. It seems to be reasonable to 

view certain compound signs as mental models [9] but this point 

of view seems to be present in the literature and we won’t rely on 

it. 

Sfard [13] takes semiotics as a basis for understanding the 

creation of mental objects. To understand this, the following facts 

must be understood: Signs can be names, symbols or graphical 

representations. Compound signs are allowed to make up 

structures containing other signs, possibly compound as well. 

Special compound signs are those that refer to on an object that 

structured in way similar to the sign. They are called ‚structural 

signifier‘. Such signifiers are the plus sign in n+1 or operators in 

programming languages.  

Sfard claims that the development of a new structural signifier 

means the development of a new mathematical object. The 

character string ‚3+4‘ can be read as prompt to do a calculation. 

Reification means however, that this process is not carried out but 

condensed to a new form. This new form, which may be written 

with help of the structural signifier ‘+’, is an arithmetical 

expression – a kind of object that may not have existed in the 

individuals mind before. Maybe even more enlightening is the 

structural signifier that denotes surds and especially the root of -1. 

The structural signifier  defines new numbers out of known ones.  

Structural signifiers allow one to write down composed objects 

and operate on them or their parts on paper. This can be used to 

execute processes on these objects and these can in turn be the 

starting point of a new reification cycle. This point of view 

coincides with that of W. Dörfler [4]. From a semiotic point of 

view he points out that making meaning from diagrams creates 

mathematics. In this sense, the signs on paper don’t refer to 

mathematical objects that exist independently but these 

inscriptions are the mathematical objects.  

The above subsections should have made clear that within the 

mathematics education research community it is consensus that 

inscriptions and especially structural signifiers create 

mathematical objects at least mentally if not in every sense of 

existence. The relevant point is that inscriptions allow one to carry 

out processes more complex than processes that can be completely 

simulated in mind. 

2. Reification and Symbolization in the 

learning of programming 
Based on the understanding of learning processed outlined above 

one can easily justify well-known principle of good software 

design, i.e. one may explain why certain design properties eases 

the user’s learning experience. Graphical user interfaces provide a 

multitude of structured symbols (e.g. the directory tree) and these 

generate their interpretants. The same holds true for the blocks in 

the Scratch programming language. However, the example of 

mathematics shows that textual representations can be the starting 

point of successful reifications as well. This has a lot of in 

common with the learning of programming and we will explore 

this connection in more detail in the following sections. 

2.1 From processes to objects 
There are so many examples for the creation of objects from 

processes that we restrict ourselves to some examples.  

Example Design Patterns: During programming students will 

notice that several situations appear over and over again and that 

similar situations trigger similar processes. E.g. if the collection of 

data (a list, set, tree,…) is given, this data structure is to be 

traversed, i.e. an index variable is defined and used to walk thru 

the dataset. Repeating this design-time-process several times may 

lead to create the iterator design pattern as its object. Other design 

patterns from [6] can be understood in a similar fashion. 

When drawing figures with turtle graphics one first has drawing 

processes that are repeated all over and finally a mental object 

„square“ and a procure realizing it are constructed. 

Queries into a database are at first a process that takes place, but 

step by step they get reified, one can talk about former queries 

that are repeated or queries that are stored in a queue to be 

processed. 

2.2 The role of literals 
A literal is a way to write down in source code a description of an 

object which is constructed from this description. (cf. [11]), i.e. it 

is an alternative to using the constructor of a class.  

Interactive programming languages typically support literals for a 

rich range of object classes. In Python one has literals for numbers 

(integers, long integers, floats, fractions, complex numbers), 

strings (e.g. ‘Text‘), lists [1,2,3],[[ “a“,1],[“b“,3]]), hash tables 

(dictionaries, {„a“:1, „b“:2}), tupel and (with some restrictions) 

anonymous functions (e.g. lambda x: x+1).  

Without the above explained background theory it may appear 

that literals are simply a way to make life easier for the 

programmer, but in the light of this theory it should be clear that 

literals have an important role in forming mental models of the 

objects they describe. 

Bennedsen&Schulte [2] describe a competence test on 

understanding of object oriented program constructs. One item in 

this test asks students to predict what the output of a loop will be 

that iterates over the list constructed in the following lines::  

Interpretant 

Sign Object 

Mind 



Interpretant 

Sign: Literal, e.g. 

[1,2,3] Object 

Mind 

Computer 

memory 

Object representation 

in memory 

Behavior of 

the object 

List<A> l= new ArrayList<A>(); 

l.add(new A(76)); 

l.add(new A(-10)); 

l.add(new A(6)); 

l.add(new A(43)); 

The isomorphic structure as a literal is just l= [76, -10, 6, 

43], which is not only shorter but can be interpreted more easily. 

as a compound sign that consists of structural identifiers (brackets 

and commas) and inner objects (numbers). The structure of this 

compound sign can be takes as the template of the mental model 

of a list. It clearly suggests what can be done with objects of this 

kind (e.g. determine the number of objects contained in it or 

determine whether a certain object is contained in it.) These 

operations can be carried out even on paper using the inscriptions. 

With a bit of flexibility this extends to destructive list operations 

such as deleting an element from the list. Thus all processes 

typical for lists can be carried out on this paper model and hence 

the paper model can be reified easily to the mental object of a list. 

It should be emphasized that this works out so well because of the 

use of structural signifiers that have already got a meaning from 

different contexts: The comma as a separator signals that the 

individuals objects are just grouped not joined tightly. Without 

such helping knowledge learning is harder but not impossible as 

Sfard has shown in Sfard [13]. She conducted an experiment 

where a test person was confronted with strange meaningless 

symbols that where manipulated according to certain –at first 

sight – strange rules. Nevertheless the test person readily came up 

with a meaningful (hypothetical) interpretation. This shows that 

human minds a preconfigured to make sense out of symbols. 

2.3 The extended semiotic triangle 
When working with a computer the above described semiotic 

triangle is no longer an adequate description. The computer is 

another medium with its own inscriptions and with an own 

internal state. The following figure is a suggestion how this may 

be taken into account. The symmetry of this figure shall indicate a 

rough analogy but by no means shall it express equality between 

these two areas.  

 

The literal creates an interpretant in the user’s mind an as well an 

internal representation in the computer’s memory. The latter 

representation is not passive but may be acted upon by processes. 

This shows a non-trivial behavior of the object that can be 

observed by the user. The user can draw conclusion about the 

object both from its mental interpretant as well as from the 

behavior displayed in the work with the computer. These two 

lines of conclusions are bound to yield the same result. Otherwise 

a misconception of the user (or a bug of the computer system) has 

been detected. Thus one has a very quick and effective way to 

synchronize the mental model and the computer model.  

One may ask, if in the above diagram the object in the center is 

necessary at all. Wouldn’t it be possible to say that the user’s 

interpretant refers to the object in the computer (resp. to the 

representation there)? However, I feel that this would not be really 

useful: When a list is created from the literal [1,2,3] in Python and 

in Ruby then it is sensible to say that the internal representations 

created by reading in these literals (as different as they might be) 

represent the same object. And to do this, one should assume the 

existence of an abstract object ‘list’. This point of view highlights 

the hypothetical and theory-loaden status of objects. Objects do 

not merely exists but emerge from a complex process of building 

an ontology that is rich enough to support all things we want to 

say over the world, without being too rich.  

2.4 Diagrammatic thinking 
Literals for lists are a notation form that is rich enough to support 

diagrammatic thinking in the sense of Dörfler. One may say that 

literals offer a way to create inscriptions that is rich enough to 

model universal structured data (e.g. stack, queues, association 

lists, trees, …).  

As an example we suppose the task set for the students is to 

describe the books in the school’s library. For this purpose one 

has to invent data structures and using literals this process can be 

done simple by tentatively writing down – and eventually 

adjusting – what might be a prototype of the data. It may look like 

this: 

Books= [ [“Author“, “Title“,“ISBN“,“Publisher“, 

…], 

  [“Frisch“, „Stiller“,988353, “Insel“,…], 

  [“Eco“, „The name of…”, 778353, “BI“,…], 

… 

  ] 

The operations that can be performed on data like this can be 

mentally tried out on tis prototype and subsequently can be 

programmed. We expect that students who are used to writing 

down structures in lists and who have mastered basic algorithms 

can come with basically all the 

operations that make up relational 

algebra in such a context. 

Furthermore we suppose that the use 

of literals mediates between formal 

understanding of concepts and their 

application. In interviews with 

students we have observed the 

following counter-example of this 

hypothesis: The students had just 

completed a unit on simply-chained 

lists which had been implemented in 

an OO style as compose of objects 

from a class „Pair“ that holds a data 

element and the rest of the list. The interview showed that all 

students had understood this structure, could explain it and could 

work with it. However, none of the students was able to apply this 

knowledge to the following modeling task: “During a jumping 

contest each students of a class is allowed to jump three times. 

The values are recorded and stored in a computer together with 

the name of the student. Can you design data structures that can 

handle this kind of data?“ Obviously, students did not fail because 

they had not learned their unit well enough, but because the 

formal description of lists is not useful in application contexts, i.e. 

it does not provide an adequate mental model that can be used to 



judge here this concept is sensible. We strongly expect that 

students who use literals for lists can more easily adopt this tool to 

model such situations. A teaching experiment to test this 

hypothesis is underway. 

2.5 Pseudo literals 
The positive effect of literals is not restricted to lists. However, we 

will not go on to discuss dictionaries which are rather similar, 

instead we’ll take a look at anonymous functions. 

Python allows one to write down anonymous functions using the 

lambda notation as lambda x: x+1. This describes the 

function that adds one to its argument, i.e. (lambda x: 

x+1)(7) yields 8, just like f=lambda x: x+1; f(7). This 

is an example of a literal that encapsulates a process in the sense 

of reification theory (the addition) into a new object (the 

function). The advantage of this function is that it is a first-class 

object in the programming language, i.e. it can be stored in data 

structures and passed to and from other functions. It is an 

important goal to achieve the same flexibility with mental objects 

as well! 

In general one has to be cautions because here we don’t have 

literals in the same sense that we used before. The written form 

does not encode all information captured in a lambda function: 

The literal lambda x: x+a describes different functions 

depending on the context in which it has been written down. This 

context defines the reference of a that is used when evaluating the 

function body. (lexical scoping). This is the reason we prefer to 

call this a kind of literals pseudo literals.  

2.6 Misconceptions 
The hypothesis that the written expression determines the 

structure of the mental object explains some misconceptions of 

students. 

Students often have difficulties to grasp semantic differences if 

they are not represented visually. As an example we look at 

programming JavaScript in web pages. : When a number is 

entered into an input text field, students typically expect that 

name_of_the_form.field_name.value is a number (o 

refers to a number) that can be used in calculations. However, the 

value of this value-attribute is string in this case which must first 

be converted into a number. The difference between string and 

number is not made clear enough by the notation in this example 

and hence students don’t get the right picture.  

One may observe that objects that cannot be described by literals 

are especially hard to learn. Without literals the mental 

construction has to rely directly on processes carried out with 

these kinds of objects. Examples are cyclic lists or sets of objects 

with mutual associations. 

3. Conclusion 
We presented some ideas from semiotics and mathematics 

education and applied them to computer science education. We 

hope that the resulting improved understanding of the learning 

process will open up the way for a teaching style that takes the 

learning trajectory into the focus. An on-going teaching project on 

‘genetic computer science education’ tries out these ideas in 

practice. First results are encouraging and we hope that teaching 

when based on these ideas will give students more confidence that 

they can master the complexity of computers and the science 

behind them. 

Among the very concrete suggestions we make based on the 

outlined theory are the use of languages like Python or Ruby that 

support a large class of literals and allow interactivity. Moreover, 

we see strong support for the hypothesis that symbolization using 

literals can be understood as a form of diagrammatic thinking that 

eases modeling tasks. The empirical investigation of this is 

underway. 
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