
Reification and Symbolization
Reinhard Oldenburg

Goethe University Frankfurt

Robert-Mayer-Str. 10, 60325
Frankfurt/M., Germany

0049 69 798 23770

oldenbur@math.uni-frankfurt.de

ABSTRACT
The construction of mental objects by learners is a very complex

process and it is desirable to understand it as deeply as possible,

especially to understand domain specific subtleties. In this paper

we will argue that the adaption of the reification theory that has

been used successfully in mathematics education provides new

and important insights into the learning of programming.

Categories and Subject Descriptors
K.3.2 [Computer science education]: Computer science

education

General Terms
Theory

Keywords
computer science education, construction of mental objects,

genetic teaching method, literals

1. INTRODUCTION
Meaningful statements are often concerned with certain objects.

Language is a referential system that relates objects. We speak

about apples, numbers, objects, classes and protocol stacks. The

theory of radical constructivism (von Glasersfeld [7]), which is

widely accepted in didactics, frees us from the question (which

appears nevertheless to be an interesting question from a

philosophical point of view) whether these things exists in reality

(or, what ‘reality’ should refer to in this sentence to make it true

or at least viable). Mental objects are part of an individual’s

subjective ontology. However, successful communication between

two individuals requires at least a partial mapping of their private

ontologies. Thus, when speaking about mental models we are

directly led to ontological questions. Similarly, formal logic has

found another way to get rid of these ontological questions by

shifting the specification of a domain to possible interpretations of

its formulae. The picture sketched so far is by large compatible

with the framework of Ontological Relativity [10] which will thus

be adopted. Thus we are freed from the necessity to commit

ourselves to decide what really exists. The assumption that certain

objects exists is of hypothetical nature and thus we can focus on

the question how these hypothetical objects come into being. This

question is the important one from an educational point of view

and this article will focus on it.

Students who learn about computers and computer science will

have to create new mental objects. These objects form a very

broad spectrum ranging from such objects which are close to

physical objects build from sensual experience (e.g. the concept of

a pixel), objects which can be located in space although they are

not accessible visibly (e.g. the magnetic sectors on a hard disk that

make up a file) and finally objects that cannot be located in space

such as method or binary tree) Teaching experience suggests that

even the middle category of these objects present problems to

learners. Even more abstract objects must be created by a

demanding mental effort. This process is error-prone and we hope

to shed some light on it.

The next section will introduce the central concept of this paper,

i.e. reification. This concept deals with the creation of mental

objects and is described in several theories which may, due to

their large mutual overlap, be combined (at least for our purpose)

into one theory. The use of reification theory has proved to be

useful in mathematics education and we hope that computer

science education is a similar fruitful ground for its application.

1.1 Reification
As didactics of computer science education is a relatively new

science it can try to learn from more mature disciplines like

mathematics education. Of course, the differences of their

domains should not be ignored, and each idea transferred from

one domain to the other has to be investigated individually to

check if its validity survived the domain change.

Mathematics education has discussed for some time the question

how abstract mathematical objects can be (re)constructed by the

students. In this course a number theories proved to be helpful

that may be combined under the heading of reification theories.

There are some important differences between some of these

theories, but nevertheless we simplify things by presenting them

as one major theory.

The word ‚reification‘ is based on the Latin word ‚res‘ for thing.

A very influential use of this concept was given by Anna Sfard

([12]). She starts from the thesis that the cultural and historical

development on one hand and the individual development on the

other hand show strong similarities. Hence, the study of the

historical genesis of some relevance for didactics and Sfard

looked especially on the development of concepts that took a

longer period before they were cast into their final form. An

example is given by the complex numbers. Their name hints

already at the difficult genesis they have had. For quite a long

time, mathematicians considered them to be suspicious – in

Koli Calling ’11, November 17--20, 2011, Koli, Finland.

Author's own postprint version. All rights reserved. Copyright 2011

ACM

contrast to the real numbers they had been used to. One may start

to learn how to work with the symbol i that shall represent the

square root of -1 and may get some routine in doing the

calculations with it, but really seeing i as a number requires a

conceptual change of what a number is. (see [14] for conceptual

change). Before the introduction of imaginary numbers, all

numbers can be represented on the number line and hence can be

ordered. This useful property is no longer valid in the complex

number field and hence many operations with numbers lose their

basis. Sfard looked at this and other examples and studied how the

process of reification works, i.e. how new mathematical objects

come into being.

A geometric concept, e.g. the concept of circle, may be learned

more or less directly by ostension, i.e. by exposing examples and

abstraction [12, p. 10], most concept formations however, start

with processes. E.g. the natural numbers develop from the process

of counting. Fractions have historically been introduced as means

for measuring, i.e. a/b meant the number of times b is used to

form a. This measuring process is likely not to work out in the

most simple form that there is a natural number n such that b=n∙a,

but more generally ancient Greeks allowed the understanding that

there is a common measure e such that a=n∙e and b=m∙e, thus this

measurement process is condensed and forms a rational number

[12, p. 11]. Consequently, the Greeks interpreted irrationality of

2 as the sign that measuring process cannot be carried out. But

even processes that cannot be carried out can be reified to become

an object. This development, however, took very much time in the

history of mathematics. Learners as well need some time to make

the double passage, first transforming the measurement process

into the objects of rational numbers and then transforming even

more measurements into irrational numbers.

Sfard looked closely at this development from processes to

objects and found three steps which we illustrate with examples

from computer education:

 Internalization: A process on objects that already exists

is carried out and internalized so that it can be re-played

mentally.

o Example: Within an image manipulation

program students repeatedly select subsets of

pixels by using various tools.

 Condensation: The process is condensed so that it forms

a new autonomous unit. This can be supported by a new

form of notation.

o Example: The students realize that,

independent of the method of selection, the

result is just a subset of all pixels. This set

may be denoted by S – the current selection.

 Reification: The description of the process turns into

one mental object that can be manipulated and handled

in thought processes

o A selection is a mental object that can be

operated on, e.g. extended or reversed.

In this setup Sfard says that processes and objects are dual to each

other. This is a step from the Piagetian Framework which clearly

identified the role of internalization of operations in developing

schemata but gave little attention to the dual picture. Even more

emphasis on the connection between these kinds of mental entities

is given by Gray&Tall [8]. They have coined the term procept to

denote the combination of a process and an object. This makes

clear that the newly born objects still contain the process and the

precise meaning of the objects is defined by this process. At times

it may be necessary to go back and invoke the process again, e.g.

it after having being reified fractions are objects but they still

contain the process of division and maybe this process will be

evoked in certain situations.

The point of view that processes lead to objects is by no means

new to computer science.

 Procedural abstraction turns processes into procedures.

Example: When working with the Logo programming

language, a child may discover that a certain process,

such as drawing a regular polygon is useful over and

over again and thus may write down a generic copy of

this process in the body of a function definition.

 Abelson/Sussman [1] show how the data type of a list

may be implemented on the basis of lambda

expressions. This illustrates that the distinction between

(static) data and (dynamic) procedures is blurred by

little more than the most basic understanding of a

programming language.

 Consider the example of the meta-circular

implementation of a Lisp interpreter as is done in most

Lisp books. This interpreter may be seen as an abstract

machine that can do arithmetic and list processing.

Variables in such an interpreter are symbols that are

looked up in environments, i.e. variables initiate the

lookup-process that determines their value. Usually, the

lookup process will signal an error, if there is no value

stored in the environment for a given symbol.

Interestingly, the simple modification that does not

carry out this process where it is not possible, i.e. simple

taking the symbol itself as result in this case and

allowing arithmetic operations as well to reproduce

themselves if not all operands are numbers, turns the

interpreter into the basis of a computer algebra system.

This shows that the passage from arithmetic to algebra

may be taken – on a technical level – by not-carrying

out certain processes. The computer algebra system

muSIMP/muMATH (The Softwarehouse / Microsoft)

used essentially this implementation strategy.

At this stage we can draw the first conclusions for the realm of

education. When students are expected to construct new mental

objects, they need to have enough time to carry out the relevant

processes many times so that internalization and condensation can

take place and prepare for the final reification step. It seems

plausible that a better understanding of reification and of mental

tools that support it may help in designing better learning

environments and teaching strategies. To us it seems that

symbolization (compare the role of notation in the step of

condensation) is crucial.

1.2 Symbolization
The importance of symbols for thinking is obvious. Proper

symbols help to reduce complexity and facilitate a playful

interaction. Hence there is a long standing tradition of didactics in

the use of symbols and especially in semiotics as the discipline

that is crucial for the understanding of symbols. The following

short exposition follows Filloy et al. [5]. A simplified

understanding of symbolization may suggest that one has a sign S

that refers to an object O, symbolically S→O. This simple form is

useful in many places but not in all. The extension of this to the

semiotic triangle introduced by Peirce gives room for the

individual person that makes the connection between sign and

object:

A sign (Symbol) refers to an object and is directed to a person. In

the mind of this person a new mental sign is established that

points to the objects as well, it is called the interpretant. This

model gets its power but also its complexity from the fact that the

relation can be iterated. I.e. the interpretant can turn into a sign as

well, e.g. when written down. The French philosopher Lacan has

considered the other direction as well: A sign turns into the object

for another sign. Luckily, for the rather simple applications we

have in mind this is not strictly necessary but it should be kept in

mind that one gets involved in a non-trivial net of relations.

Signs, objects and interpretants in this semiotic triangle can be of

different kinds. Peirce distinguishes between different kinds of

signs, e.g. between signs that are similar to the referred objects

and signs that are purely conventional. Signs may be compound

signs that are composed of other, more elementary signs.

Compound signs are expressions, UML diagrams and much more.

This fact will be important for us. Similarly, the objects can be

specific ones (a table, the number 5, memory cell $ffaa7b,…) or

generic ones (strings, classes,…). The nature of interpretants is

consequently very diverse as well. It seems to be reasonable to

view certain compound signs as mental models [9] but this point

of view seems to be present in the literature and we won’t rely on

it.

Sfard [13] takes semiotics as a basis for understanding the

creation of mental objects. To understand this, the following facts

must be understood: Signs can be names, symbols or graphical

representations. Compound signs are allowed to make up

structures containing other signs, possibly compound as well.

Special compound signs are those that refer to on an object that

structured in way similar to the sign. They are called ‚structural

signifier‘. Such signifiers are the plus sign in n+1 or operators in

programming languages.

Sfard claims that the development of a new structural signifier

means the development of a new mathematical object. The

character string ‚3+4‘ can be read as prompt to do a calculation.

Reification means however, that this process is not carried out but

condensed to a new form. This new form, which may be written

with help of the structural signifier ‘+’, is an arithmetical

expression – a kind of object that may not have existed in the

individuals mind before. Maybe even more enlightening is the

structural signifier that denotes surds and especially the root of -1.

The structural signifier  defines new numbers out of known ones.

Structural signifiers allow one to write down composed objects

and operate on them or their parts on paper. This can be used to

execute processes on these objects and these can in turn be the

starting point of a new reification cycle. This point of view

coincides with that of W. Dörfler [4]. From a semiotic point of

view he points out that making meaning from diagrams creates

mathematics. In this sense, the signs on paper don’t refer to

mathematical objects that exist independently but these

inscriptions are the mathematical objects.

The above subsections should have made clear that within the

mathematics education research community it is consensus that

inscriptions and especially structural signifiers create

mathematical objects at least mentally if not in every sense of

existence. The relevant point is that inscriptions allow one to carry

out processes more complex than processes that can be completely

simulated in mind.

2. Reification and Symbolization in the

learning of programming
Based on the understanding of learning processed outlined above

one can easily justify well-known principle of good software

design, i.e. one may explain why certain design properties eases

the user’s learning experience. Graphical user interfaces provide a

multitude of structured symbols (e.g. the directory tree) and these

generate their interpretants. The same holds true for the blocks in

the Scratch programming language. However, the example of

mathematics shows that textual representations can be the starting

point of successful reifications as well. This has a lot of in

common with the learning of programming and we will explore

this connection in more detail in the following sections.

2.1 From processes to objects
There are so many examples for the creation of objects from

processes that we restrict ourselves to some examples.

Example Design Patterns: During programming students will

notice that several situations appear over and over again and that

similar situations trigger similar processes. E.g. if the collection of

data (a list, set, tree,…) is given, this data structure is to be

traversed, i.e. an index variable is defined and used to walk thru

the dataset. Repeating this design-time-process several times may

lead to create the iterator design pattern as its object. Other design

patterns from [6] can be understood in a similar fashion.

When drawing figures with turtle graphics one first has drawing

processes that are repeated all over and finally a mental object

„square“ and a procure realizing it are constructed.

Queries into a database are at first a process that takes place, but

step by step they get reified, one can talk about former queries

that are repeated or queries that are stored in a queue to be

processed.

2.2 The role of literals
A literal is a way to write down in source code a description of an

object which is constructed from this description. (cf. [11]), i.e. it

is an alternative to using the constructor of a class.

Interactive programming languages typically support literals for a

rich range of object classes. In Python one has literals for numbers

(integers, long integers, floats, fractions, complex numbers),

strings (e.g. ‘Text‘), lists [1,2,3],[[“a“,1],[“b“,3]]), hash tables

(dictionaries, {„a“:1, „b“:2}), tupel and (with some restrictions)

anonymous functions (e.g. lambda x: x+1).

Without the above explained background theory it may appear

that literals are simply a way to make life easier for the

programmer, but in the light of this theory it should be clear that

literals have an important role in forming mental models of the

objects they describe.

Bennedsen&Schulte [2] describe a competence test on

understanding of object oriented program constructs. One item in

this test asks students to predict what the output of a loop will be

that iterates over the list constructed in the following lines::

Interpretant

Sign Object

Mind

Interpretant

Sign: Literal, e.g.

[1,2,3] Object

Mind

Computer

memory

Object representation

in memory

Behavior of

the object

List<A> l= new ArrayList<A>();

l.add(new A(76));

l.add(new A(-10));

l.add(new A(6));

l.add(new A(43));

The isomorphic structure as a literal is just l= [76, -10, 6,

43], which is not only shorter but can be interpreted more easily.

as a compound sign that consists of structural identifiers (brackets

and commas) and inner objects (numbers). The structure of this

compound sign can be takes as the template of the mental model

of a list. It clearly suggests what can be done with objects of this

kind (e.g. determine the number of objects contained in it or

determine whether a certain object is contained in it.) These

operations can be carried out even on paper using the inscriptions.

With a bit of flexibility this extends to destructive list operations

such as deleting an element from the list. Thus all processes

typical for lists can be carried out on this paper model and hence

the paper model can be reified easily to the mental object of a list.

It should be emphasized that this works out so well because of the

use of structural signifiers that have already got a meaning from

different contexts: The comma as a separator signals that the

individuals objects are just grouped not joined tightly. Without

such helping knowledge learning is harder but not impossible as

Sfard has shown in Sfard [13]. She conducted an experiment

where a test person was confronted with strange meaningless

symbols that where manipulated according to certain –at first

sight – strange rules. Nevertheless the test person readily came up

with a meaningful (hypothetical) interpretation. This shows that

human minds a preconfigured to make sense out of symbols.

2.3 The extended semiotic triangle
When working with a computer the above described semiotic

triangle is no longer an adequate description. The computer is

another medium with its own inscriptions and with an own

internal state. The following figure is a suggestion how this may

be taken into account. The symmetry of this figure shall indicate a

rough analogy but by no means shall it express equality between

these two areas.

The literal creates an interpretant in the user’s mind an as well an

internal representation in the computer’s memory. The latter

representation is not passive but may be acted upon by processes.

This shows a non-trivial behavior of the object that can be

observed by the user. The user can draw conclusion about the

object both from its mental interpretant as well as from the

behavior displayed in the work with the computer. These two

lines of conclusions are bound to yield the same result. Otherwise

a misconception of the user (or a bug of the computer system) has

been detected. Thus one has a very quick and effective way to

synchronize the mental model and the computer model.

One may ask, if in the above diagram the object in the center is

necessary at all. Wouldn’t it be possible to say that the user’s

interpretant refers to the object in the computer (resp. to the

representation there)? However, I feel that this would not be really

useful: When a list is created from the literal [1,2,3] in Python and

in Ruby then it is sensible to say that the internal representations

created by reading in these literals (as different as they might be)

represent the same object. And to do this, one should assume the

existence of an abstract object ‘list’. This point of view highlights

the hypothetical and theory-loaden status of objects. Objects do

not merely exists but emerge from a complex process of building

an ontology that is rich enough to support all things we want to

say over the world, without being too rich.

2.4 Diagrammatic thinking
Literals for lists are a notation form that is rich enough to support

diagrammatic thinking in the sense of Dörfler. One may say that

literals offer a way to create inscriptions that is rich enough to

model universal structured data (e.g. stack, queues, association

lists, trees, …).

As an example we suppose the task set for the students is to

describe the books in the school’s library. For this purpose one

has to invent data structures and using literals this process can be

done simple by tentatively writing down – and eventually

adjusting – what might be a prototype of the data. It may look like

this:

Books= [[“Author“, “Title“,“ISBN“,“Publisher“,

…],

 [“Frisch“, „Stiller“,988353, “Insel“,…],

 [“Eco“, „The name of…”, 778353, “BI“,…],

…

]

The operations that can be performed on data like this can be

mentally tried out on tis prototype and subsequently can be

programmed. We expect that students who are used to writing

down structures in lists and who have mastered basic algorithms

can come with basically all the

operations that make up relational

algebra in such a context.

Furthermore we suppose that the use

of literals mediates between formal

understanding of concepts and their

application. In interviews with

students we have observed the

following counter-example of this

hypothesis: The students had just

completed a unit on simply-chained

lists which had been implemented in

an OO style as compose of objects

from a class „Pair“ that holds a data

element and the rest of the list. The interview showed that all

students had understood this structure, could explain it and could

work with it. However, none of the students was able to apply this

knowledge to the following modeling task: “During a jumping

contest each students of a class is allowed to jump three times.

The values are recorded and stored in a computer together with

the name of the student. Can you design data structures that can

handle this kind of data?“ Obviously, students did not fail because

they had not learned their unit well enough, but because the

formal description of lists is not useful in application contexts, i.e.

it does not provide an adequate mental model that can be used to

judge here this concept is sensible. We strongly expect that

students who use literals for lists can more easily adopt this tool to

model such situations. A teaching experiment to test this

hypothesis is underway.

2.5 Pseudo literals
The positive effect of literals is not restricted to lists. However, we

will not go on to discuss dictionaries which are rather similar,

instead we’ll take a look at anonymous functions.

Python allows one to write down anonymous functions using the

lambda notation as lambda x: x+1. This describes the

function that adds one to its argument, i.e. (lambda x:

x+1)(7) yields 8, just like f=lambda x: x+1; f(7). This

is an example of a literal that encapsulates a process in the sense

of reification theory (the addition) into a new object (the

function). The advantage of this function is that it is a first-class

object in the programming language, i.e. it can be stored in data

structures and passed to and from other functions. It is an

important goal to achieve the same flexibility with mental objects

as well!

In general one has to be cautions because here we don’t have

literals in the same sense that we used before. The written form

does not encode all information captured in a lambda function:

The literal lambda x: x+a describes different functions

depending on the context in which it has been written down. This

context defines the reference of a that is used when evaluating the

function body. (lexical scoping). This is the reason we prefer to

call this a kind of literals pseudo literals.

2.6 Misconceptions
The hypothesis that the written expression determines the

structure of the mental object explains some misconceptions of

students.

Students often have difficulties to grasp semantic differences if

they are not represented visually. As an example we look at

programming JavaScript in web pages. : When a number is

entered into an input text field, students typically expect that

name_of_the_form.field_name.value is a number (o

refers to a number) that can be used in calculations. However, the

value of this value-attribute is string in this case which must first

be converted into a number. The difference between string and

number is not made clear enough by the notation in this example

and hence students don’t get the right picture.

One may observe that objects that cannot be described by literals

are especially hard to learn. Without literals the mental

construction has to rely directly on processes carried out with

these kinds of objects. Examples are cyclic lists or sets of objects

with mutual associations.

3. Conclusion
We presented some ideas from semiotics and mathematics

education and applied them to computer science education. We

hope that the resulting improved understanding of the learning

process will open up the way for a teaching style that takes the

learning trajectory into the focus. An on-going teaching project on

‘genetic computer science education’ tries out these ideas in

practice. First results are encouraging and we hope that teaching

when based on these ideas will give students more confidence that

they can master the complexity of computers and the science

behind them.

Among the very concrete suggestions we make based on the

outlined theory are the use of languages like Python or Ruby that

support a large class of literals and allow interactivity. Moreover,

we see strong support for the hypothesis that symbolization using

literals can be understood as a form of diagrammatic thinking that

eases modeling tasks. The empirical investigation of this is

underway.

4. REFERENCES
[1] Abelson, H.; Sussman, G. J.: Structure and Interpretation

of Computer Programs. MIT Press 1996.

[2] Bennedsen, J.; Schulte, C.: A Competence Model for

Object-Interaction in Introductory Programming In: 18th

Workshop of the Psychology of Programming Interest

Group, University of Sussex, September 2006, PPIG 2006

[3] Cobb, V. M.; Cobb. P.; McClain, K. (Hrsg.): Symbolizing

and Communicating in Mathematics Classrooms:

Perspectives on Discourse, Tools, and Instructional

Design. Lawrence Erlbaum, 2000.

[4] Dörfler, W.: Diagrammatic Thinking. In: M. Hoffmann et

al.: Activity and sign – Grounding mathematics education.

Springer 2005.

[5] Filloy, E.; Puig, L.; Rojano, T.: Educational Algebra.

Springer 2008.

[6] Gamma, E. et al.: Design Patterns. Elements of Reusable

Object-Oriented Software. Addison Wesley, 1995

[7] Glasersfeld, E. von (1995) Radical constructivism: A way

of knowing and learning. Falmer Press: London.

[8] Gray, E.; Tall, D.: Duality, Ambiguity and Flexibility: A

Proceptual View of Simple Arithmetic, The Journal for

Research in Mathematics Education, 26 (2), 1994, 115-

141.

[9] Johnson-Laird, P.: Mental models. Towards a cognitive

science of language, inference, and consciousness. 6th

print. Cambridge: Harvard Univ. Press, 1995.

[10] Quine, W. v. O.: Ontological Relativity. New York 1969.

[11] Schneider, U.; Werner, D.: Taschenbuch der Informatik.

Hanser 2007.

[12] Sfard, A.: On the dual nature of mathematical conceptions.

Educational Studies in Mathematics 22, 1991, 1-26.

[13] Sfard, A.: Symbolizing Mathematical Reality into being –

or how mathematical discourse and mathematical objects

create each other. In: [3]

[14] Vosniadou, S. (Hrsg.): International Handbook of

Research on Conceptual Change. Lawrence Erlbaum,

2008.

http://www.amazon.de/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&search-alias=books-de-intl-us&field-author=Stella%20Vosniadou

