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1. Introduction

Biomimetics is a multidisciplinary science that aims at the abstraction of design principles from nature
by mimicking the structural composition and functionality of biological objects (cf., e.g., [1]). An
important new technology in biomimetics is biotemplating which stands for the material synthesis of
biologically grown materials into microcellular ceramic composites.
Biomorphic microcellular silicon carbide (SiC) ceramics with variable pore size, pore morphology,

and strut thickness have been recently manufactured from natural grown plant materials like wood
and various wood products (cf., e.g., [2,3] and the references therein). Experiments show that their
anisotropic porous microstructures are one-to-one pseudomorphous to the original wood material. The
microscopical morphology and the materials properties strongly depend on the used biotemplating
technology: i) liquid Si-infiltration; ii) gaseous SiO-, Si-, and MTS (methyltrichlorosilane)- infiltration;
iii) infiltration of Si-organic polymers (see Fig. 1 for infiltration of pine wood template).
The production of biomorphic SiC ceramics is done in two steps: a preprocessing step involving high-

temperature pyrolysis (800–1800◦C in inert atmosphere) and a subsequent infiltration of the resulting
carbon preform by liquid or gaseous silicon at 1600◦C which reacts with the carbon to result in a porous
SiC ceramic material. A detailed description of the high-temperature synthesis can be found in [2,3].
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Fig. 1. SEM micrographs: a) Si-gas infiltration; b) Si-polymer infiltration.

Biological materials and organic fibres are available on a commercial scale, they are less expensive
and naturally regenerating. Wood and organic fibres can be easily machined, preformed into complex
3-dimensional shapes of different porosity and cellular structure with a large variety in cell diameters
ranging from micrometer (wood structures) up to the millimeter level (e.g., preprocessed papers). The
large variety of natural plantmorphologies facilitate themanufacturing of porous ceramicmicrostructures
with a tailored microstructure and composition.
The optimal design of microstructured devices by homogenization modeling is by now a well es-

tablished technique in structural mechanics (cf., e.g., [4–8]). Homogenization is performed to avoid
a cost-prohibitive resolution of the microstructural details. Optimization methods are applied to the
homogenizedmodel and involve an iterative process where the numerical solution of the discretized state
equation and the optimization routine are handled separately.
This paper is organized as follows. Section 2 deals with the optimal structural design of the ceramic

composites by homogenization technique. Primal-dual interior-point method is proposed to solve the
equality and inequality constrained nonconvex optimization problem. In contrast to traditional design
strategies, this technique represents an all-in-one approach where the numerical solution of the state
equation is an integral part of the optimization routine. Solution technique for the condensed primal-dual
system is proposed in Section 3 by using transforming iterations as iterative procedure. The last section
comments on the choice of merit functions and application of the line-search method to find successful
increments for the unknown primal and dual variables.

2. Structural optimization by homogenization

For the optimal structural design a macroscopic scale model has been provided by the homogenization
approach assuming periodically distributed quadratic microcellsY consisting of an interior part treated as
a weak material surrounded by a layer of SiC and an outer layer of carbon (C). Assuming linear elasticity
for the constituents of our composite material, the homogenized elasticity tensor EH =

(
EH

ijkl

)
is given

(cf., e.g., [9,10]) by

EH
ijkl =

1
|Y |

∫
Y

(
Eijkl(y) − Eijpq(y)

∂ξkl
p

∂yq

)
dy,
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where Eijkl(y) are piecewise constant in Y and ξkl
p ∈ H1

per(Y ) satisfies

∫
Y

(
Eijpq(y)

∂ξkl
p

∂yq

)
∂φi

∂yj
dy =

∫
Y
Eijkl(y)

∂φi

∂yj
dy, ∀φ ∈ VY .

Here, VY is the set of all admissible Y -periodic virtual displacement fields.
Denote by µ = (µ1, µ2)T the vector of the lengths of the silicon carbide and carbon layers in the

microstructure, and by θ the angle of cell rotation. Note that these variables serve as design parameters
in our structural optimization. The dependence of the homogenized elasticity tensor on these quantities
has been computed on the basis of a conforming P1 discretization. We consider further the rotated
homogenized elasticity tensor

ER =



ER

1111 ER
1122 ER

1112

ER
2211 ER

2222 ER
2212

ER
1211 ER

1222 ER
1212


 ,

where for the componentsRij of the rotated matrix we have

ER
ijkl =

2∑
m,n,p,q=1

EH
mnpq(µ1, µ2)Rim(θ)Rjn(θ)Rkp(θ)Rlq(θ), i, j, k, l = 1, 2.

Furthermore, we compute the optimal distribution of our compositematerial in a given domainΩ ⊂ R2

where a surface traction t is applied to a part of the boundary ΓT ⊂ ∂Ω and known displacements g are
specified on the remaining portion ΓD (ΓD ∪ ΓT = ∂Ω). We assume a design composite with a square
hole located at the center of the unit microcell Y .
As far as the structural optimization is concerned, we consider the mean compliance of the structure

J(u, α) =
∫

Ω
f · u dx+

∫
ΓT

t · u ds (1)

as the objective functional where f is the external body force applied to Ω. The displacement vector
u = (u1, u2)T represents the state variables and the vector α = (µ1, µ2, θ)T stands for the design
parameters.
For a given constantM our optimization problem has the form

J(u, α) = inf
v,β

J(v,β),

subject to the following equality and inequality constraints

2∑
i,j,k,l=1

∫
Ω
ER

ijkl(x)
∂uk

∂xl

∂φi

∂xj
dx =

∫
Ω

f · φ dx+
∫

ΓT

t · φ ds, ∀φ ∈ V0 (2)

g(µ) :=
2∑

i=1

µi = M , µmine ≤ µ ≤ µmaxe, (3)
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for constants µmin = 0, µmax = 0.5. Note that Eq. (2) is the weak form of the rotated homogenized
equilibrium equation. Here, u ∈ VD = {v ∈ H1(Ω)|v = g on ΓD} and V0 = {v ∈ H1(Ω)|v =
0 on ΓD}.
The state variables are discretized by conforming P1 elements with respect to a simplicial triangulation

of Ωwhereas the design variables are approximated by elementwise constants. The discretized nonlinear
constrained minimization problem has the following form

J(u,µ, θ) = inf
v,σ,γ

J(v,σ, γ), (4)

subject to

A(µ, θ)u− b = 0, µ− µmine � 0,
(5)

g(µ) − M = 0, µmaxe − µ � 0,

where e = (1, 1)T , A(µ, θ) is the stiffness matrix corresponding to Eq. (2), b is the discrete load vector.
Note that µi = 0, i = 1, 2, corresponds to a complete void, µ1 + µ2 = 0.5 corresponds to a complete
solid material, and 0 < µ1, µ2 < 0.5 and 0 < µ1 + µ2 < 0.5 to the porous composite with a void at a
microlevel.
The discretized constrained minimization problem is solved by primal-dual interior-point method

substituting the inequality constraints in Eq. (5) by logarithmic barrier functions. Assuming that µ >
µmin e and µmax e > µ this substitution results in the following parametrized family of optimization
subproblems

J̃(u,µ, θ) = inf
v,σ,γ

[J(v,σ, γ) − ρ (log(σ − µmine) + log(µmaxe − σ))] (6)

subject to the equality constraints

A(µ, θ)u− b = 0, g(µ) − M = 0, (7)

where ρ > 0 is a suitably chosen barrier parameter. Coupling the equality constraints by Lagrangian
multipliers we have the following Lagrangian function associated with the problem Eqs (6) and (7)

Lρ(u,µ, θ;λ, η) := J(u,µ, θ) − ρ (log (µ− µmin e) + log (µmax e − µ))

+ λT (A(µ, θ)u− b) + η (g(µ) − M).

The first-order Karush-Kuhn-Tucker (KKT) conditions are given by

Fρ(u,µ, θ;λ, η) = 0 , (8)

where

F ρ
1 = ∇uLρ = ∇u J +A(µ, θ)Tλ ,

F ρ
2 = ∇µLρ = ∂µ(λTA(µ, θ)u) + η∇g(µ) − ρD−1

1 e + ρD−1
2 e ,

F ρ
3 = ∇θLρ = ∂θ(λTA(µ, θ)u) , (9)

F ρ
4 = ∇λLρ = A(µ, θ)u− b ,

F ρ
5 = ∇ηLρ = g(µ) − M ,
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and D1 := diag(µi − µmin) and D2 := diag(µmax − µi), i = 1, 2. Since for ρ → 0 the expressions
ρD−1

1 e and ρD−1
2 e approximate the complementarity conditions associated with Eq. (5) it is standard

to introduce z := ρD−1
1 e � 0 and w := ρD−1

2 � 0 serving as perturbed complementarity. Then, the
primal-dual Newton-type interior-point method is applied to three sets of variables: primal feasibility
(u,µ, θ), dual feasibility (λ, η), and perturbed complementarity related to (z,w).
Denote the Lagrangian function of problem Eqs (4) and (5) by

L(u,µ, θ;λ, η;z,w) := J(u,µ, θ)

+ λT (A(µ, θ)u− b) + η (g(µ) − M) (10)

− zT (µ− µmin e) −wT (µmax e − µ).

The Newton method applied to the KKT conditions of Eq. (10) results in



0 Luµ Luθ Luλ 0 0 0
Lµu Lµµ Lµθ Lµλ Lµη −I I
Lθu Lθµ Lθθ Lθλ 0 0 0
Lλu Lλµ Lλθ 0 0 0 0

0 Lηµ 0 0 0 0 0
0 Z 0 0 0 D1 0
0 −W 0 0 0 0 D2







�u
�µ
�θ
�λ
�η
�z
�w




= −




∇uL
∇µL
∇θL
∇λL∇ηL
∇zL
∇wL



, (11)

where I stands for the identity matrix, Z = diag(zi) and W = diag(wi), i = 1, 2, are diagonal
matrices. The coefficient matrix Eq. (11) is usually referred to as the primal-dual system. It can be easily
symmetrized since the matrices Z and W are diagonal. We do not use this approach here but instead
perform a block elimination of the increments�z and�w yielding the condensed primal-dual system




0 Luµ Luθ Luλ 0
Lµu L̃µµ Lµθ Lµλ Lµη

Lθu Lθµ Lθθ Lθλ 0
Lλu Lλµ Lλθ 0 0

0 Lηµ 0 0 0






�u
�µ
�θ
�λ
�η


 = −



∇uL
∇̃µL
∇θL
∇λL∇ηL


 , (12)

where

L̃µµ := Lµµ +D−1
1 Z +D−1

2 W

and the modified entry for the right-hand side is

∇̃µL := ∇µL+D−1
1 ∇zL−D−1

2 ∇wL.

In the case of structural optimization of electromagnetic devices some details of solving the condensed
primal-dual system by primal-dual interior-point method using damped Newton iterations can be found
in [11].
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3. Solution technique

In this section, we consider the null space decomposition of the condensed primal-dual system Eq. (12)
interchanging the second and the forth rows and columns. The resulting matrix can be written according
to

K =
(
A BT

B D

)
=




0 Luλ Luµ Luθ 0
Lλu 0 Lλµ Lλθ 0

Lµu Lµλ L̃µµ Lµθ Lµη

Lθu Lθλ Lθµ Lθθ 0
0 0 Lηµ 0 0


 , (13)

where the first diagonal block

A =
(

0 Luλ
Lλu 0

)
(14)

is now an indefinite, but nonsingular matrix. We remind that Lλu = A(µ, θ) is exactly the stiffness
matrix corresponding to the rotated homogenized state equation. Hence, A−1 exists, and the Schur
complement S := D −BA−1BT is correctly defined.
We use now the following regular splitting ofK

KLKKR = M1 −M2 (15)

with left and right factors givenbelow and reasonablematricesM1 andM2 ∼ 0. For solving systemof the
form K�ψ = ξ, starting with an initial guess for �ψ := (�u,�λ,�µ,�θ,�η)T , the transforming
iteration proposed in [12] is described by

�ψν+1 := �ψν +KRM−1
1 KL(ξ −K�ψν), (16)

where the new iterate ψnew is obtained by a line-search in the direction �ψ, namely

ψnew
i = ψold

i + si(�ψ)i, 1 ≤ i ≤ 5.

The line-search approach and the choice of the steplengths parameters s i is discussed in detail in
Section 4.
Using an appropriate preconditioner for the stiffness matrix we approximate the first diagonal block

Eq. (14) as follows

A =
(

0 Luλ
Lλu 0

)
∼
(

0 L̃uλ
L̃λu 0

)
=: Ã. (17)

Usually applied left and right transformations are of the form

KL = I, KR =
(
I −Ã−1BT

0 I

)
=




I 0 −L̃−1

λu
Lλµ −L̃−1

λu
Lλθ 0

0 I −L̃−1

uλ
Luµ −L̃−1

uλ
Luθ 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



.
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In this case, the regular splitting Eq. (15) becomesKKR = M1 −M2 where

M1 =




0 Luλ 0 0 0
Lλu 0 0 0 0

Lµu Lµλ S1 S3 Lµη

Lθu Lθλ S4 S2 0
0 0 Lηµ 0 0


 =

(
A 0
R Q

)
(18)

andM2 ∼ 0 if we have a good preconditioner for the stiffness matrix. In our numerical experiments we
choose a Cholesky decomposition of Luλ.
The second diagonal blockQ in Eq. (18) is symmetric and indefinite given by

Q =


 S1 S3 Lµη

S4 S2 0
Lηµ 0 0


 ,

where S1 and S2 defined below are symmetric matrices and S3 = ST
4 , namely

S1 = L̃µµ − LµuL̃
−1

uλ
Lλµ − LµλL̃

−1

λu
Luµ,

S2 = Lθθ − LθuL̃
−1

uλ
Lλ θ − LθλL̃

−1

λu
Lu θ,

S3 = Lµθ − LµuL̃
−1

uλ
Lλ θ − LµλL̃

−1

λu
Lu θ,

S4 = Lθµ − LθuL̃
−1

uλ
Lλµ − LθλL̃

−1

λu
Luµ.

We denote the defect in Eq. (16) by d = ξ −K�ψν and compute the corresponding entries

du = −∇uL− Luλ�λ− Luµ�µ− Lu θ�θ,
dλ = −∇λL− Lλu�u− Lλµ�µ− Lλθ�θ,
dµ = −∇̃µL− Lµu�u− Lµλ�λ− L̃µµ�µ− Lµθ�θ − Lµη�η,
dθ = −∇θL− Lθu�u− Lθλ�λ− Lθµ�µ− Lθθ�θ,
dη = −∇ηL− Lηµ�µ.

Taking into account Eq. (16) one needs to compute

δ = M−1
1 d, i.e., M1δ = d.

Consequently, we find δλ = L̃−1

uλ
du and δu = L̃−1

λu
dλ. To compute the remaining components of

δ we have to solve systems of the form Qx = f with the indefinite matrix Q where

f = (dµ − Lµuδu − Lµλδλ, dθ − Lθuδu − Lθλδλ, dη)T .

Iterative procedures as MINRES or Bi-CGSTAB (see [13]) with appropriate stopping criteria can be
applied in this case.

MINRES method without preconditioning:
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k = 0; Compute r0 = f −Q x0 for some initial guess x0; g0 = Q r0;

while (‖rk‖ accurate enough)
if (k > 0) gk = Q rk;
α = rT

k gk/gT
k gk; xk+1 = xk + α rk; rk+1 = rk − α gk;

check convergence; continue if necessary;
y = Q gk; β = gT

k y/gT
k gk;

if (k = 0) γ = 0;
else γ = gT

k−1 y/gT
k−1 gk−1;

endif;
if (k = 0) rk+1 = gk − β rk; gk+1 = y − β gk;
else rk+1 = gk − β rk − γ rk−1; gk+1 = y − β gk − γ gk−1;
endif;
gk−1 = gk, gk = gk+1; rk−1 = rk, rk = rk+1;
k = k + 1;

end;

Bi-CGSTAB method without preconditioning:

Select starting vector x0 ∈ Rn, r̃0 ∈ Rn

r0 = f −Qx0; ρ0 = α = ω0 := 1;

v0 = p0 = 0;

For k = 1,2,3, . . .
ρk = r̃T

0 rk−1; β = (ρk/ρk−1)(α/ωk−1)
pk = rk−1 + β(pk−1 − ωk−1vk−1);
vk = Qpk;
α = ρk/r̃

T
0 vk;

s = rk−1 − αvk;
t = Qs;
ωk = tTs/tT t;
xk = xk−1 + αpk + ωks;
if xk is accurate enough then quit;
rk = s− ωkt.

4. Merit functions and line-search approach

For simplicity we denote in this section the primal variables by x = (u,µ, θ), the dual variables
by y = (λ, η), and the complementarity variables by v = (z,w). A standard approach to choose a
merit function for convergence is the l2-norm ‖Fρ(u,µ, θ;λ, η)‖ of the residual resulting from the KKT
conditions Eq. (8). A more realiable approach (cf., e.g. [11,14]) is to use two merit functions. Our
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primary merit function is based on the logarithmic barrier function and the augmented Lagrangian term
concerning only the equality constraints

M := M(x,y, ρ, ρA) = J(x) − ρ

2∑
i=1

log di(x) + yTc(x) +
1
2
ρA c(x)Tc(x), (19)

where c(x) = (c1(x), c2(x)) and

c1(x) = c1(u,µ, θ) = A(µ, θ)u− b, d1(x) = d1(µ) = µ− µmine,
(20)

c2(x) = c2(µ) = g(µ) − M, d2(x) = d2(µ) = µmaxe − µ.
The parameter ρA is a positive scalar which can be changed during the iteration in the case when

�x = (�u,�µ,�θ)T is not a descent direction for the primary merit function, i.e., �xT∇xM < 0.
The gradient of M with respect to x is

∇xM := ∇xM(x,y, ρ, ρA) = ∇J(x) − ρJT
inD

−1e+ JT
eq y + ρAJ

T
eq c(x), (21)

where

Jeq =
(
Lλu Lλµ Lλθ

0 Lηµ 0

)
and Jin =

(
0 I 0
0 −I 0

)

with Jeq and Jin the Jacobian matrices corresponding to the equality and inequality constraints, respec-
tively. Then we have

�xT∇xM = �xT (∇J − ρJT
inD

−1e) + �xTJT
eq y + ρA�xTJT

eq c(x)
(22)

= �xT (∇J − ρJT
inD

−1e) − c(x)Ty − ρAc(x)Tc(x),

taking into account that Jeq�x = −c(x) according to the forth and fifth rows of the system Eq. (11).
One can see from Eq. (22) that �xT∇xM < 0 if

ρA >
�xT (∇J − ρJT

inD
−1e) − c(x)Ty

c(x)T c(x)
.

However, when �xT∇xM � 0, ρA could achieve extreme large values for ‖c‖ being small. In this
case, the following choice of ρA has been proposed (see, e.g., [14,11])

ρA = min
(

5
cTc

(�xT (∇J − ρJT
inD

−1e) − c(x)Ty
)
, 100

)
. (23)

Our secondary merit function used for the line-search method is ‖Fρ(u,µ, θ;λ, η)‖. We consider
only two parameters α and γ serving as steplengths for the primal variables and the complementarity
conditions. Let α̂µ, γ̂z, and γ̂w be defined as

α̂µ = max {α |µmine � µ+ α�µ � µmaxe} ,
γ̂z = max {γ | z + γ�z � 0} , (24)

γ̂w = max {γ |w + γ�w � 0} .
To ensure a strict feasibility, we define α̂ = α̂µ and γ̂ = min(γ̂z , γ̂w) and choose a positive parameter

τ < 1. The following steplengths then have been used

α = min(1, τ α̂) and γ = min(1, τ γ̂).
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