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1. Introduction

Biomimetics is a multidisciplinary science that aims at the abstraction of design principles from nature
by mimicking the structural composition and functionality of biological objects (cf., e.g., [1]). An
important new technology in biomimetics is biotemplating which stands for the material synthesis of
biologically grown materials into microcellular ceramic composites.

Biomorphic microcellular silicon carbide (SiC) ceramics with variable pore size, pore morphology,
and strut thickness have been recently manufactured from natural grown plant materials like wood
and various wood products (cf., e.g., [2,3] and the references therein). Experiments show that their
anisotropic porous microstructures are one-to-one pseudomorphous to the original wood material. The
microscopical morphology and the materials properties strongly depend on the used biotemplating
technology: 1) liquid Si-infiltration; ii) gaseous SiO-, Si-, and MTS (methyltrichlorosilane)- infiltration;
iii) infiltration of Si-organic polymers (see Fig. 1 for infiltration of pine wood template).

The production of biomorphic SiC ceramics is done in two steps: a preprocessing step involving high-
temperature pyrolysis (800—1800°C in inert atmosphere) and a subsequent infiltration of the resulting
carbon preform by liquid or gaseous silicon at 1600°C which reacts with the carbon to result in a porous
SiC ceramic material. A detailed description of the high-temperature synthesis can be found in [2,3].
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Fig. 1. SEM micrographs: a) Si-gas infiltration; b) Si-polymer infiltration.

Biological materials and organic fibres are available on a commercial scale, they are less expensive
and naturally regenerating. Wood and organic fibres can be easily machined, preformed into complex
3-dimensional shapes of different porosity and cellular structure with a large variety in cell diameters
ranging from micrometer (wood structures) up to the millimeter level (e.g., preprocessed papers). The
large variety of natural plant morphologies facilitate the manufacturing of porous ceramic microstructures
with a tailored microstructure and composition.

The optimal design of microstructured devices by homogenization modeling is by now a well es-
tablished technique in structural mechanics (cf., e.g., [4-8]). Homogenization is performed to avoid
a cost-prohibitive resolution of the microstructural details. Optimization methods are applied to the
homogenized model and involve an iterative process where the numerical solution of the discretized state
equation and the optimization routine are handled separately.

This paper is organized as follows. Section 2 deals with the optimal structural design of the ceramic
composites by homogenization technique. Primal-dual interior-point method is proposed to solve the
equality and inequality constrained nonconvex optimization problem. In contrast to traditional design
strategies, this technique represents an all-in-one approach where the numerical solution of the state
equation is an integral part of the optimization routine. Solution technique for the condensed primal-dual
system is proposed in Section 3 by using transforming iterations as iterative procedure. The last section
comments on the choice of merit functions and application of the line-search method to find successful
increments for the unknown primal and dual variables.

2. Structural optimization by homogenization

For the optimal structural design a macroscopic scale model has been provided by the homogenization
approach assuming periodically distributed quadratic microcells Y consisting of an interior part treated as
a weak material surrounded by a layer of SiC and an outer layer of carbon (C). Assuming linear elasticity
for the constituents of our composite material, the homogenized elasticity tensor E = <E£I kl) is given
(cf, e.g., [9,10]) by
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where E;;1,(y) are piecewise constant in Y and f;fl € Hrl)er(y) satisfies

I\ B, O
E;; —P L d :/E L dy, Vo € Vy.
/Y< ipa(Y) qu> oy, Y . _]kl(y)ayj Yy ¢ eVy

Here, Vy is the set of all admissible Y -periodic virtual displacement fields.

Denote by g = (11, 2)” the vector of the lengths of the silicon carbide and carbon layers in the
microstructure, and by 6 the angle of cell rotation. Note that these variables serve as design parameters
in our structural optimization. The dependence of the homogenized elasticity tensor on these quantities
has been computed on the basis of a conforming P1 discretization. We consider further the rotated
homogenized elasticity tensor

R R R
Ellll E1122 E1112
R _ R R R
E" = E2211 E2222 E2212 )

R R R
E1211 E1222 E1212

where for the components 1?;; of the rotated matrix we have

2
Eiljkl = Z ETI){npq(ru’l’:UQ) le(e) R]TL(G) R/ﬁp(e) qu(‘g)a i, J, k0 =1,2.

m,n,p,q=1

Furthermore, we compute the optimal distribution of our composite material in a given domain Q C R?
where a surface traction t is applied to a part of the boundary I'r C 02 and known displacements g are
specified on the remaining portion I'p (I'p U I'r = 02). We assume a design composite with a square
hole located at the center of the unit microcell Y.

As far as the structural optimization is concerned, we consider the mean compliance of the structure

J(u,a):/ﬂf-udﬂc—l—/r ¢ uds )

as the objective functional where f is the external body force applied to 2. The displacement vector
u = (uy,u2)? represents the state variables and the vector o = (p1, po,0)” stands for the design
parameters.

For a given constant M our optimization problem has the form

J(u,a) = inf J(v,3),
(u,a) ‘1;’1,6 (v,B)

subject to the following equality and inequality constraints

2
> /Eﬁ-m(w)%% dx:/f-qbdw*/ 6 pds, Ve Vo @
ijdd=1 [¢) axl (%cj Q 't
2
Q(H) = Z,Ufz =M, Hmine < b < fmaxe, 3)
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for constants pimin = 0, pmax = 0.5. Note that Eq. (2) is the weak form of the rotated homogenized
equilibrium equation. Here, u € Vp = {v € H(Q)|v = gonTp} and Vj = {v € H(Q)|v =
oonTp}.

The state variables are discretized by conforming P1 elements with respect to a simplicial triangulation
of 2 whereas the design variables are approximated by elementwise constants. The discretized nonlinear
constrained minimization problem has the following form

J(u,p0) = inf T (v.0.7), )

subject to

A(p,0) u—b =0, p— lmine >0,
. (5)

g(u,) -M=0, Hmax€ — K

where e = (1,1)7, A(u, 0) is the stiffness matrix corresponding to Eq. (2), b is the discrete load vector.
Note that u; = 0, ¢ = 1, 2, corresponds to a complete void, 111 + p2 = 0.5 corresponds to a complete
solid material, and 0 < w1, 2 < 0.5 and 0 < w1 + po < 0.5 to the porous composite with a void at a
microlevel.

The discretized constrained minimization problem is solved by primal-dual interior-point method
substituting the inequality constraints in Eq. (5) by logarithmic barrier functions. Assuming that g >
Umin € and pmax € > p this substitution results in the following parametrized family of optimization
subproblems

‘](ua M, 9) = ,Ulg.f [J(’U, g, r)/) - P (lOg(O’ - :U‘Hlirle) + IOg(Nmaxe - 0-))] (6)

[l

subject to the equality constraints
A(p,0)u—b=0,  g(p)—-M=0, (7

where p > 0 is a suitably chosen barrier parameter. Coupling the equality constraints by Lagrangian
multipliers we have the following Lagrangian function associated with the problem Eqs (6) and (7)

Ly(w, p,0;A,m) := J(u, u,0) — p (log (1L — pimin €) +10g (Hmax € — 1))
+ AT(A(p,0)u —b) + 1 (9(p) — M),
The first-order Karush-Kuhn-Tucker (KKT) conditions are given by
F?(u, p,0;1,n) =0, ®)
where
Ff =VuL,=VuJ+ Ap,0)"X,
Ff=VuL, =0u(A"A(p,0)u) + V() — pDy e + pDy e,
FY =VyL, = 0s(A\T A(p,0)u), )
Ff:V)\Lp = A(p,0)u —b,
Fff:anp:g(N) - M,
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and Dq := diag(p; — pmin) and Dy := diag(pmax — i), @ = 1,2. Since for p — 0 the expressions
pDT le and pDy le approximate the complementarity conditions associated with Eq. (5) it is standard
to introduce z := pD le>0and w := pDy L' > 0 serving as perturbed complementarity. Then, the
primal-dual Newton-type interior-point method is applied to three sets of variables: primal feasibility
(u, p, 0), dual feasibility (X, n), and perturbed complementarity related to (z, w).

Denote the Lagrangian function of problem Eqs (4) and (5) by

L(u, p, 03 A, m; 2, w) := J (u, p, 0)
+ AT (A, 0) w —b) + 1 (g(p) — M) (10
- ZT(N — Hmin€) — wT(MmaX € — U)'

The Newton method applied to the KKT conditions of Eq. (10) results in

Lpw Lpp Lpo Ly Lpyp =1 1 Ap VulL

Low Loy Lee Lyy 0 0 0 Ab VoL

Lyy Lxy Lxg 0 0 0 0 AX | =—]| V)L |, (11)
0O Ly O 0 0 0 0 An VL
0 Z 0 0 0 Dy O Az VzL
0 -W 0 0 0 0 D Aw VwlL

where I stands for the identity matrix, Z = diag(z;) and W = diag(w;), ¢ = 1,2, are diagonal
matrices. The coefficient matrix Eq. (11) is usually referred to as the primal-dual system. It can be easily
symmetrized since the matrices Z and W are diagonal. We do not use this approach here but instead
perform a block elimination of the increments Az and Aw yielding the condensed primal-dual system

0 Lup Luo Lyy O Au Vul
Lpw Lpp Lpe Lyx Lpn | | Ap VuL
Low Lep Leo Lyy O AD | =—|wveL |, (12)
Lyy Lag Lxg 0 0 AX VL

0O Ly 0 0 0 An VL

where
Lyp = Lpp+ Dy Z + Dy W
and the modified entry for the right-hand side is
VuL :=VyuL+D;'V,L — Dy'VyL.
In the case of structural optimization of electromagnetic devices some details of solving the condensed

primal-dual system by primal-dual interior-point method using damped Newton iterations can be found
in[11].
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3. Solution technique

In this section, we consider the null space decomposition of the condensed primal-dual system Eq. (12)
interchanging the second and the forth rows and columns. The resulting matrix can be written according
to

0 Lyx |Lup Lus O
L Iy 0 |Iag Lag O
K:(BD>: Lpw Lyx |Lpp Lpe Ly | (13)

Low Lyx |Lopw Les O
0 0 |Lyp 0 0

where the first diagonal block
A= (Y Fux (14)
Ly, O

is now an indefinite, but nonsingular matrix. We remind that Ly,, = A(u, 0) is exactly the stiffness
matrix corresponding to the rotated homogenized state equation. Hence, A ! exists, and the Schur
complement S := D — BA™' BT is correctly defined.

We use now the following regular splitting of K

KYKKE = M — M, (15)

with left and right factors given below and reasonable matrices M1 and M2 ~ 0. For solving system of the
form K Ap = &, starting with an initial guess for A := (Au, AN, A, NG, An)T, the transforming
iteration proposed in [12] is described by

A= ApY + KREMTIKE (€ — KAYY), (16)
where the new iterate 1"V is obtained by a line-search in the direction A, namely
P =P b si(Ag)i, 1<i<.

The line-search approach and the choice of the steplengths parameters s; is discussed in detail in
Section 4.

Using an appropriate preconditioner for the stiffness matrix we approximate the first diagonal block
Eq. (14) as follows

0 L 0 L .
A= < uA) ~ < uA> —: A. (17)
Lyy O Lyy O

Usually applied left and right transformations are of the form

7—1 7—1
I 0 |[=LyyIap —LyuLxe O
F—1 7—1
- 0 I |-L \Lup —L \Lus O
Kt =1, KR:(O 7 >: 0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
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In this case, the regular splitting Eq. (15) becomes K K ¥ = M; — M, where

0 Lyx|0 0 0
Lygy 0 [0 0 0

A 0
M= | Ty Ton [50 Ty :(R Q) (1)
Loy LO}\ Sy Sy 0
0 0 |Lyu 0 0

and M, ~ 0 if we have a good preconditioner for the stiffness matrix. In our numerical experiments we
choose a Cholesky decomposition of L, 4.
The second diagonal block () in Eq. (18) is symmetric and indefinite given by

S Sy Ly
Q=1 S¢ S 0 |,
Lyp 0 0

where S and S5 defined below are symmetric matrices and S5 = S4T, namely

S1=Lypp — LpuLy\Lay, — LyaLyg, Lup
Sy = Log — LouL N Lx g — LonLyp, Lo,
S3=Lyo — LpuLy N\ Ly g — LyaLyy Luo.
Sa=Lop — LouLy \ Ly, — LoaLyy, Lup-

We denote the defect in Eq. (16) by d = &€ — K At)” and compute the corresponding entries
du =—VulL — Ly \AX = LupSp — Ly g A0,
dy =—V\L— Ly, u— L)\HA;L — Ly ,A0,
dp=-VpuL — LpuSu— Ly \AX = LppSp — Lpg A0 — Ly M,
dg =—VoL — Loy Au — Lyy AN — LopAp — Log A0,
dy =—=VyL — LypAp.

Taking into account Eq. (16) one needs to compute
6 =M;'d, ie, M6 =d.

Consequently, we find 0y = f/;l}\du and dy = i;‘}ud - To compute the remaining components of
d we have to solve systems of the form Qa = f with the indefinite matrix () where

f = (dp — Lpudu — Ly \Ox. do — Loudu — Lypdy, dy)"

Iterative procedures as MINRES or Bi-CGSTAB (see [13]) with appropriate stopping criteria can be
applied in this case.

MINRES method without preconditioning:
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k = 0; Compute rg = f — @) xo for some initial guess xg; go = @ ro;

while (||r%|| accurate enough)
if (k> 0) g = Qry;
o =] 8L/8} ki Xkil =Xk T ATk Thyl =T — QG
check convergence; continue if necessary;
y = Qe 5 =gl v/el e

if (k=0)~y=0;
else v = g£71 y/gf,l k-1,
endif;

if(k=0)rp11 =8 —Or; 81 =y — B8k
elserpi1 =gr — Bry —Yre—1; Sy1 =y — B8k — Y 8h—1;

endif;
8k—1 = 8k) Bk = Bk+1; Tk—1 =Tk, Tk = Tk41,
k=k+1;

end,

Bi-CGSTAB method without preconditioning:
Select starting vector xg € R", 7o € R"
ro="f—Qxy; po=a=wy:=1;

vo =py = 0;

Fork=123,...
pr =T Te-1; 8= (pr/pr-1)(/wi—1)
Pr = Tk-1+ B(Pr_1 — Wr-1Vk-1);
v = Qpy;
o = p/TE vk
§ =Tg—1 — QUg;
t=Qs;
wp = tT's/tTt;
T = Tp—1 + apg + Wi,
if &, is accurate enough then quit;
rr =8 — wit.

4. Merit functions and line-search approach

For simplicity we denote in this section the primal variables by x = (u, u,0), the dual variables
by y = (A,n), and the complementarity variables by v = (z,w). A standard approach to choose a
merit function for convergence is the lo-norm ||F”(u, p, 6; X, n)|| of the residual resulting from the KKT
conditions Eq. (8). A more realiable approach (cf., e.g. [11,14]) is to use two merit functions. Our



95

primary merit function is based on the logarithmic barrier function and the augmented Lagrangian term
concerning only the equality constraints

2
M := M(z,y,p,pa) = J(x) — p»_logdi(x) + y c(z) + %pA c(z)"c(), (19)
i=1
where c(x) = (c1(x), c2(x)) and
a1 (X) - cl(u” K, 0) - A(/”’v 0)“’ —b, dl(x) =dy (l"’) = K — Umin€,
c2(x) = c2(p) = g(p) — M, da(x) = da(p) = pimaxe — p.

The parameter p4 is a positive scalar which can be changed during the iteration in the case when
Ax = (Au, Ap, AG)T is not a descent direction for the primary merit function, i.e., Az’ Vg M < 0.
The gradient of M with respect to x is

(20)

VM = va(way’papA) = VJ(.’L') - p‘]iEDile + ‘](Z;]y + PAJej;l C(.’L‘), (21)
where
Linag Inp Lx 010
Jea ( 0 Ly 0 ) ™7 =1{0-10

with J.q and Ji, the Jacobian matrices corresponding to the equality and inequality constraints, respec-
tively. Then we have

AxtVgeM = AT (VJ - pJED te) + A:cTJg;l Y+ pAA:L'TJg;l c(x)
= AzT(VJ - pJID e) — c(x)Ty — pac(x) e(x),

taking into account that JoqAx = —c(x) according to the forth and fifth rows of the system Eq. (11).
One can see from Eq. (22) that Ax"VM < 0 if

AxT(VJ — pJl D te) — c(z)ly
pA > T .
c(x)"c(x)

However, when Ax” VM > 0, p4 could achieve extreme large values for ||c|| being small. In this
case, the following choice of p 4 has been proposed (see, e.g., [14,11])

(22)

pA = min (% (AxT(VJ - pJiD7te) — c(x)y), 100) . (23)

Our secondary merit function used for the line-search method is ||F”(u, p,0; A, n)||. We consider
only two parameters « and ~ serving as steplengths for the primal variables and the complementarity
conditions. Let &vy, Yz, and 4w be defined as

du = Inax {Oé | Mmine < @+ alAp < Mmaxe}’
Yz =max {y|z +yAz > 0}, (24)
Aw =max {y|w +yAw > 0} .

To ensure a strict feasibility, we define & = &y, and 4 = min(9z, Jaw ) and choose a positive parameter
7 < 1. The following steplengths then have been used

a =min(l,7&) and v = min(1,779).
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