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1. Introduction

Amorphous surface growth problems have been considered by Barabasi and Stanley [4] from
a physical point of view. Particles leave from a source and impinge on a substrate perpendicularly,
which causes a buildup in the profile. Consider an interface characterized by its height h(x, t),
and assume that h(x, t) is a single-valued function, i.e., there are no “overhangs”. The equation
has the form (see also [12]).

∂h(x, t)

∂ t
= a1∇2h + a2∇4h + a3∇2(∇h)2 + a4(∇h)2 + a5(∇2h)2 + F + η,

where F is the constant mean deposition flux, ai , 1 ≤ i ≤ 5, are experimentally determined
coefficient functions, and η(x, t) represents spatio-temporal Gaussian white noise as given by

〈η(x, t)〉η = 0,
〈
η(x, t)η(x ′, t ′)

〉
η

= 2Dδ(x − x ′)δ(t − t ′).

Here 〈.〉η denotes the ensemble average. Note that the equation of the surface growth was
obtained by standard symmetry principles (cf. [4]).
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Fig. 1. Deposition process.

In the present paper, we consider the amorphous surface growth by the level set approach
in case the deposition direction is not perpendicular to the substrate. Also, the substrate will
be considered as an initial hypersurface and therefore, the height function h(x, t) is no longer
a single-valued function. The surface Γt at time t is considered as the zero-level set of some
function u (cf. [3,8,9]), i.e.,

Γt := {x ∈ R
d | u(x, t) = 0}.

The problem is as follows:
Let Γ0 be a smooth hypersurface in R

d , d ≥ 2. Let U0 be a bounded open set in R
d whose

boundary is given by Γ0. As time progresses we allow the surface to evolve by moving each point
at a velocity depending on some physical effects which will be called “deposition”. Assuming
this evolution is smooth, for each {Γt }t>0 we thereby define a new hypersurface Γt . The primary
problem is then to study geometric properties of {Γt }t>0.

The uniformly parallel stream of particles impinges on the hypersurface {Γt }t≥0 from a source
with the unit direction e (cf. Fig. 1). We denote by β > 0 the strength of this source and define
the vector b := βe.

Let ν = ν(x, t) denote the unit outward normal vector field to Γt , t ≥ 0. Consider the point
A ∈ Γt in Fig. 1. The rate of milling of Γt at A is −b.ν > 0, the direction of ν is the direction
of −b. Therefore, the deposition velocity of Γt at A is −b.ν. Next, we observe that at the point
B ∈ Γt , we have −b.ν < 0 but the deposition velocity of the surface there is zero, as the point
B is screened from the source. We can combine these cases to note that the deposition velocity
of the surface at both points A, B is given by (−b.ν)+, the subscript + denoting the positive
part. However, at the point C we have −b.ν > 0. Since there are no particles depositing on this
position, the deposition velocity at this point is zero. Consequently, let us introduce a parameter
χ which is zero, if a given point is not visible from the source with direction e, and 1 otherwise.
Then, at each of the points A, B,C , and therefore everywhere on Γt , we obtain the deposition
velocity of the motion by

χ(−b.ν)+. (1)

On the other hand, the velocity of the motion of a hypersurface depends on the surface diffusion
(see, e.g., [4]). For instance, the Edwards–Wilkinson equation describes deposition processes
with surface relaxation. The arriving particles from the source do not deposit perpendicularly to
the substrate orientation. This implies that there are more particles arriving at positions, where
we have negative mean curvature, than at positions with positive mean curvature. This can be
understood in the sense that the motion of a particle does not depend on the local position of
the surface, but only on the number of bonds that must be broken for diffusion to take place. If
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the mean curvature is negative, the particle has a large number of neighbors, and moving away
from the site will be difficult. In contrast, if the mean curvature is positive, the particle has a
few neighbors, and is able to diffuse easily. Therefore, the velocity of the surface diffusion is
proportional to the negative mean curvature

−λH, (2)

where H denotes the mean curvature of the surface and λ > 0. We combine (1) and (2) to find
that the velocity V of the interface is given by

V = χ(−b.ν)+ − λH. (3)

Our paper is organized as follows:
In Section 2, we formalize a level set method [1–3,8,9] to the surface evolution equations.
In Section 3, we define the notion of a viscosity solution, state some properties of viscosity
solutions, and prove the existence and uniqueness of a viscosity solution to the surface deposition
equation.

Hereafter, R
d denotes the d-dimensional Euclidean space, for x ∈ R

d , x = (x1, . . . , xd),

xi ∈ R, i = 1, . . . , d . We denote |x | = (x2
1 + · · · + x2

d )
1
2 , x ∈ R

d the norm of x in R
d , and x .y

the inner scalar product of x and y in R
d . B(x, r) and B[x, r ] denote the open and closed ball

of radius r centered at x in R
d , Br := B(0, r). Sd×d denotes the set of all symmetric (d × d)-

matrices. ∇u and ∇2u stand for the gradient and the Hessian of u, while Du and D2u stand for
the first order and the second order distributional derivatives.

2. The level set method

From an initial hypersurface Γ0 := Γ (t = 0), the hypersurface Γt (t ≥ 0) evolves according
to its normal vector field with velocity given by (3). The main idea is to express this propagating
interface as the zero-level set of a higher dimensional function u. Namely, we determine an
equation for the evolving function u(x, t) which contains the embedded motion of Γt as the
zero-level set {u = 0}. Let (x(t), t) be the path of a point on the propagating front, i.e., x (t = 0)
is a point on the initial front Γ0. Since the evolving function u is always zero on the propagating
hypersurface, we must have

u(x(t), t) = 0, t ≥ 0. (4)

By the chain rule,

ut + ∇u(x(t), t).x ′(t) = 0. (5)

Since x ′(t).ν = V , where ν := ∇u
|∇u| , we then have

ut + V |∇u| = 0, (6)

with the initial condition

u(x, 0) = u0. (7)

As we have mentioned before, the interface Γt (t ≥ 0) is considered as the zero-level set of u,
i.e.,

Γt = {x ∈ R
d | u(x, t) = 0}. (8)
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Fig. 2. The level set approach.

Let us initialize u by selecting any smooth function u0 : R
d −→ R so that

Γ0 := {x ∈ R
d | u0(x) = 0}, U0 := {x ∈ R

d | u0(x) > 0}. (9)

This level set approach is illustrated by Fig. 2.
Since Γt is a zero-level set of u for t ≥ 0,

ν = ∇u

|∇u| ,

and the mean curvature of Γt is

H = −div(ν) = −div

( ∇u

|∇u|
)
.

On the other hand, the normal velocity of the level set Γt is

− ut

|∇u| .

Thus, we have

− ut

|∇u| = −λ div

( ∇u

|∇u|
)

+ χ

(
b.∇u

|∇u|
)

+
,

and so

ut = λ

(
δi j − uxi ux j

|∇u|2
)

uxi x j − χ(b.∇u)+.

We wish to write χ in terms of u by setting

χ = χ(x, t, u) =
{

1 if u(x − sb, t) < u(x, t) for all s > 0
0 if u(x − sb, t) > u(x, t) for some s > 0.

(10)
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Without loss of generality, we may assume that λ = 1 and finally have the equation of motion

ut =
(
δi j − uxi ux j

|∇u|2
)

uxi x j − χ(x, t, u)(b.∇u)+ in R
d × [0, T ], (11)

where T denotes some fixed positive time and the initial condition is

u = u0 on R
d × {t = 0}. (12)

3. Viscosity solutions

We are going to define the notion of a viscosity solution (see [5–10]). In particular, we will
follow Evans and Spruck [8] as well as Jensen [10] and define our viscosity solution in terms of
its pointwise behavior with respect to a smooth test function. We further follow Adalsteinsson
et al. [3] to introduce the following functions which we need to define our viscosity solutions

χ+(x, t, u) =
{

1 if u(x − sb, t) ≤ u(x, t) for all s > 0
0 if u(x − sb, t) > u(x, t) for some s > 0,

(13)

χ−(x, t, u) =
{

1 if u(x − sb, t) < u(x, t) for all s > 0
0 if u(x − sb, t) ≥ u(x, t) for some s > 0.

(14)

We note that χ− ≤ χ+.

Definition 3.1. A function u ∈ C(Rd × [0, T ]) is a viscosity subsolution of (11) provided there
holds:

If for each φ ∈ R
d+1 the function u−φ has a local maximum at a point (x0, t0) ∈ R

d ×(0, T ],
then ⎧⎨

⎩φt (x0, t0) ≤
(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0)− χ−(x0, t0, u)(b.∇φ(x0, t0))+

if ∇φ(x0, t0) �= 0,
(15)

and {
φt (x0, t0) ≤ (δi j − ηiη j )φxi x j (x0, t0)
for some η ∈ R

d with |η| ≤ 1, if ∇φ(x0, t0) = 0.
(16)

Definition 3.2. A function u ∈ C(Rd ×[0, T ]) is a viscosity supersolution of (11) provided there
holds:

If for each φ ∈ R
d+1 the function u −φ has a local minimum at a point (x0, t0) ∈ R

d ×(0, T ],
then ⎧⎨

⎩φt (x0, t0) ≥
(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0)− χ+(x0, t0, u)(b.∇φ(x0, t0))+

if ∇φ(x0, t0) �= 0,
(17)

and {
φt (x0, t0) ≥ (δi j − ηiη j )φxi x j (x0, t0)
for some η ∈ R

d with |η| ≤ 1, if ∇φ(x0, t0) = 0.
(18)
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Definition 3.3. A function u ∈ C(Rd × [0, T ]) is a viscosity solution of (11) provided u is both
a viscosity subsolution and a viscosity supersolution.

Remark. (i) It is easy to see that a classical solution of (11) is a viscosity solution of (11) (cf.
[8]), and:

(ii) If u is a viscosity solution of (11) and u is twice differentiable at a point (x0, t0), then u
satisfies Eq. (11) at (x0, t0).

We derive an equivalent definition of viscosity solutions by the notions of sub-differential and
super-differential. We use the following notations: z := (x, t), z0 := (x0, t0), and S(d+1)×(d+1)

is the set of all symmetric (d + 1)× (d + 1)-matrices.

Definition 3.4. A function u ∈ C(Rd × [0, T ]) is a viscosity subsolution of (11) provided that if
whenever (x0, t0) ∈ R

d × (0, T ] and

u(x, t) ≤ u(x0, t0)+ p.(x − x0)+ q(t − t0)

+ 1

2
(z − z0)

T M(z − z0)+ o(|z − z0|2) as z → z0, (19)

for some p ∈ R
d , q ∈ R,M = (mi j ) ∈ S(d+1)×(d+1), then

q ≤
(
δi j − pi p j

|p|2
)

mi j − χ−(x0, t0, u)(b.p)+ if p �= 0, (20)

and

q ≤ (δi j − ηiη j )mi j , (21)

for some η ∈ R
d , |η| ≤ 1, if p = 0.

Definition 3.5. A function u ∈ C(Rd × [0, T ]) is a viscosity supersolution of (11) provided that
if whenever (x0, t0) ∈ R

d × (0, T ] and

u(x, t) ≥ u(x0, t0)+ p.(x − x0)+ q(t − t0)

+ 1

2
(z − z0)

T M(z − z0)+ o(|z − z0|2) as z → z0, (22)

for some p ∈ R
d , q ∈ R,M = (mi j ) ∈ S(d+1)×(d+1), then

q ≥
(
δi j − pi p j

|p|2
)

mi j − χ+(x0, t0, u)(b.p)+, if p �= 0, (23)

and

q ≥ (δi j − ηiη j )mi j (24)

for some η ∈ R
d , |η| ≤ 1, if p = 0.

The proof of the equivalences is standard.
Hereafter, our smooth initial function u0 is assumed to satisfy the following condition:{

u0 ≥ −1 on R
d

u0 = −1 on R
d − B(0, R) for some R > 0.

(25)
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Moreover, we will be mostly interested in tracking the evolution of certain bounded level set of
viscosity solutions of (11) and (12). Therefore, we may assume without loss of generality that:{

u ≥ −1 on R
d × [0, T ]

u = −1 on (Rd − B(0, R))× [0, T ]. (26)

3.1. Some properties of viscosity solutions

Theorem 3.1. Assume uk is a viscosity subsolution of (11) for k = 1, 2, . . . and uk → u
bounded and locally uniformly on R

d × [0, T ]. Then u is a viscosity subsolution of (11).
An analogous assertion holds for viscosity supersolutions and solutions.

Remark. By means of (26) we may always assume that{
u, uk ≥ −1 on R

d × [0, T ]
u, uk = −1 on (Rd − B(0, R))× [0, T ], k = 1, 2, . . . .

(27)

Proof. Choose φ ∈ C∞(Rd+1) and suppose first that u − φ has a strict local maximum at some
point (x0, t0) ∈ R

d × (0, T ]. Since uk → u uniformly near (x0, t0), there exists a sequence of
points {(xk, tk)}∞k=1 ⊂ R

d × (0, T ] satisfying⎧⎨
⎩
(xk, tk) → (x0, t0) as k → ∞
uk − φ has a local maximum at (xk, tk)
uk(xk, tk) → u(x0, t0) as k → ∞.

(28)

Since each uk is a viscosity subsolution of (11), by Definition 3.1 of viscosity subsolutions we
either have⎧⎨

⎩φt (xk, tk) ≤
(
δi j − φxiφx j

|∇φ|2
)
φxi x j (xk, tk)− χ−(xk, tk , u)(b.∇φ(xk, tk))+

if ∇φ(xk, tk) �= 0,
(29)

or {
φt (xk, tk) ≤ (δi j − ηiη j )φxi x j (xk, tk)
for some η ∈ R

d with |η| ≤ 1, if ∇φ(xk, tk) = 0.
(30)

Assume next that ∇φ(x0, t0) �= 0. Then ∇φ(xk, tk) �= 0 for all sufficiently large k. Hence, the
left hand side and the first term on the right hand side of the inequality (29) converge to

φt (x0, t0) and

(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0),

respectively. We wish to prove that

χ−(x0, t0, u) ≤ lim inf
k→∞ χ−(xk, tk, uk). (31)

Indeed, if the right-hand side of (31) equals 1, then there is nothing to prove. Otherwise, we may
assume that

χ−(xk, tk, u) = 0, k = 1, 2, . . . . (32)
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According to (14), we have

uk(xk − skb, tk) ≥ uk(xk, tk) for some sk > 0, k = 1, 2, . . . . (33)

From (27), we may suppose that {sk}∞k=1 is bounded and

sk → s ≥ 0.

In view of (33) and (28), we deduce

u(x0 − sb, t0) ≥ u(x0, t0).

Now, if s > 0, this implies χ−(x0, t0, u) = 0 and assertion (31) follows. Suppose instead s = 0.
Since uk − φ has a maximum at (xk, tk) and sk → 0, we get

(uk − φ)(xk, tk) ≥ (uk − φ)(xk − skb, tk).

But then

φ(xk − skb, tk, )− φ(xk, tk) ≥ uk(xk − skb, tk)− uk(xk, tk) ≥ 0.

Dividing by sk and letting k → ∞ (note that sk → 0), we deduce

b.∇φ(x0, t0) ≤ 0. (34)

This inequality yields

χ−(x0, t0, u)(b.∇φ(x0, t0))+ = 0. (35)

Letting k → ∞, we obtain

φt (x0, t0) ≤
(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0)− χ−(x0, t0, u)(b.∇φ(x0, t0))+.

Next, suppose that ∇φ(x0, t0) = 0. We set

ξ k :=
⎧⎨
⎩

∇φ
|∇φ| (xk, tk) if ∇φ(xk, tk) �= 0

ηk if ∇φ(xk, tk) = 0.

Passing, if necessary, to a subsequence we may assume ξ k → η. Then |η| ≤ 1. Utilizing now
(30), we deduce as well

φt (x0, t0) ≤ (δi j − ηiη j )φxi x j (x0, t0).

The requirement that u − φ has a strict local maximum at (x0, t0) can be removed by an
approximation. Hence, u is a viscosity subsolution of (11). �

Theorem 3.2. Assume θ : R → R is C1 with θ ′ > 0. If u is a viscosity subsolution (resp.
viscosity supersolution) of (11), then û = θ(u) is a viscosity subsolution (resp. viscosity
supersolution) of (11).

The proof of this theorem is standard (cf., e.g., [3,8]).
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3.2. Uniqueness of viscosity solutions

Definition 3.6. Let w : ΩT := R
d × [0, T ] −→ R be a continuous function. For each ε > 0, we

write

wε(x, t) := sup
(y,s)∈ΩT

{
w(y, s)− 1

ε
(|x − y|2 + (t − s)2)

}
, (36)

and

wε(x, t) := inf
(y,s)∈ΩT

{
w(y, s)+ 1

ε
(|x − y|2 + (t − s)2)

}
(37)

for (x, t) ∈ ΩT .
wε and wε are called Sup and Inf convolution of w, respectively. Note that if w is continuous

and bounded, the “sup” and “inf” above can be replaced by “max” and “min”. We follow Evans
and Spruck (see [8]) to introduce some properties of the inf and sup convolution:

Lemma 3.3. Let w : ΩT −→ R be a bounded continuous function. Then we have

(i) wε ≤ w ≤ wε on ΩT .
(ii) If (y, s) ∈ ΩT , and wε(x, t) = w(y, s)− 1

ε
(|x − y|2 + (t − s)2), then

|x − y|, |t − s| ≤ Cε
1
2 =: σ(ε). (38)

A similar assertion holds for wε .
(iii) wε , wε → w as ε → 0+, locally uniformly on ΩT .
(iv) The mapping

(x, t) �→ wε(x, t)+ 1

ε
(|x |2 + t2) (39)

is convex, and the mapping

(x, t) �→ wε(x, t)− 1

ε
(|x |2 + t2) (40)

is concave.
(v) Assume u is a viscosity subsolution of (11) in ΩT . Then uε is a viscosity subsolution of (11)

on R
d × (σ (ε), T ]. Similarly, if u is a viscosity supersolution of (11) in ΩT then uε is a

viscosity supersolution of (11) on R
d × (σ (ε), T ].

Proof. Assertions (i)–(iv) are standard. We only prove (v):
For φ ∈ C∞(Rd+1), assume that uε−φ has a local maximum at point (x0, t0) with t0 > σ(ε).

We then employ (26) and (36) to choose (y0, s0) ∈ ΩT so that

uε(x0, t0) = w(y0, s0)− 1

ε
(|x0 − y0|2 + (t0 − s0)

2).

Set

ψ(x, t) := φ(x + x0 − y0, t + t0 − s0). (41)

Since uε − φ has a local maximum at (x0, t0), we compute

w(y0, s0)− 1

ε
(|x0 − y0|2 + (t0 − s0)

2)− φ(x0, t0)
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= uε(x0, t0)− φ(x0, t0) ≥ uε(x, t)− φ(x, t)

≥ u(y, s)− 1

ε
(|x − y|2 + (t − s)2)− φ(x, t)

for all (x, t) near (x0, t0) and all (y, s) ∈ ΩT . Fix (y, s) close to (y0, s0) and set x :=
y + x0 − y0, t := s + t0 − s0 as above, we have

u(y0, s0)− φ(x0, t0) ≥ u(y, s)− φ(y + x0 − y0, s + t0 − s0).

Using (41), we get

u(y0, s0)− ψ(y0, s0) ≥ u(y, s)− ψ(y, s) (42)

for all (y, s) near (y0, s0). Hence, u − ψ has a local maximum at (y0, s0).
Since u is a viscosity subsolution of (11),⎧⎨
⎩ψt (y0, s0) ≤

(
δi j − ψxiψx j

|∇ψ|2
)
ψxi x j (y0, s0)− χ−(y0, s0, u)(b.∇ψ(y0, s0))+

if ∇ψ(y0, s0) �= 0,

and {
ψt (y0, s0) ≤ (δi j − ηiη j )ψxi x j (y0, s0)

for some η ∈ R
d with |η| ≤ 1, if ∇ψ(y0, s0) = 0.

Moreover,

∇ψ(y0, s0) = ∇φ(x0, t0), ψt (y0, s0) = φt (x0, t0),

D2ψ(y0, s0) = D2φ(x0, t0).

It remains to prove that

χ−(y0, s0, u) ≥ χ−(x0, t0, uε). (43)

If χ−(y0, s0, u) = 1, then there is nothing to prove. Otherwise, χ−(y0, s0, u) = 0. By definition
(14), there exists α > 0 such that

u(y0 − αb, s0) ≥ u(y0, s0).

From (36), we see that

uε(x0 − αb, t0) ≥ u(y0 − αb, s0)− 1

ε
(|x0 − y0|2 + (t0 − s0)

2)

≥ u(y0, s0)− 1

ε
(|x0 − y0|2 + (t0 − s0)

2)

= uε(x0, t0).

By definition (14), we have

χ−(x0, t0, uε) = 0.

Therefore, we finally obtain⎧⎨
⎩φt (x0, t0) ≤

(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0)− χ−(x0, t0, uε)(b.∇φ(x0, t0))+

if ∇φ(x0, t0) �= 0,
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and {
φt (x0, t0) ≤ (δi j − ηiη j )φxi x j (x0, t0)
for some η ∈ R

d with |η| ≤ 1, if ∇φ(x0, t0) = 0.

Thus, uε is a viscosity subsolution of (11). �

Theorem 3.4. Assume that u is a viscosity subsolution and v is a viscosity supersolution of (11)
in ΩT = R

d × [0, T ]. Suppose further that

u ≤ v on R
d × {t = 0}. (44)

Then

u ≤ v in ΩT . (45)

Remark. Recall that we always assume{
u, v ≥ −1 on R

d × [0, T ],
u, v = −1 on (Rd − B(0, R))× [0, T ]. (46)

Proof. As a contradiction to the assertion, we assume that

max
ΩT

(u − v) =: a > 0.

Consequently, for α small enough,

max
ΩT

(u − v − αt) ≥ a

2
> 0.

We further note that uε = u, vε = v on (Rd − B(0, R)) × [0, T ], and uε → u, vε → v as
ε → 0+ uniformly on ΩT . Hence, for sufficiently small ε > 0

max
ΩT

(uε − vε − αt) ≥ a

4
> 0. (47)

Given δ > 0, for x, y ∈ R
d and t, t + s ∈ [0, T ] we define

Φ(x, y, t, s) := uε(x + y, t + s)− vε(x, t)− αt − 1

δ
(|y|4 + s4). (48)

In view of (47), we see that

max
(x,t),(x+y,t+s)∈ΩT

Φ(x, y, t, s) ≥ a

4
. (49)

We now choose (x1, t1), (x1 + y1, t1 + s1) ∈ ΩT so that

Φ(x1, y1, t1, s1) = max
(x,t),(x+y,t+s)∈ΩT

Φ(x, y, t, s) > 0. (50)

Moreover, (x1, y1, t1, s1) can be chosen from the set of maxima M(ε, δ) of Φ in R
d × [0, T ] in

such a way that

b.x1 = min{b.x | (x, y, t, s) ∈ M(ε, δ)}.
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It follows{
(x1 − τb, y, t, s) �∈ M(ε, δ),
for all τ > 0, y ∈ R

d , 0 ≤ s, t ≤ T .
(51)

Thus,

Φ(x1 − τb, y1, t1, s1) < Φ(x1, y1, t1, s1), τ > 0. (52)

From (48) and (50) we find

|y1|, |s1| ≤ Cδ
1
4 , (53)

where C is a constant independent of δ.
We claim next that if ε, δ > 0 are chosen small enough, we have

t1 > σ(ε) (54)

with σ(ε) defined by (38). Indeed, if t1 ≤ σ(ε), then
a

4
≤ Φ(x1, y1, t1, s1)

≤ uε(x1 + y1, t1 + s1)− vε(x1, t1)

= u(x1 + y1, t1 + s1)− v(x1, t1)+ o(1) as ε → 0

= u(x1 + y1, s1)− v(x1, 0)+ o(1) as ε → 0

= u(x1, 0)− v(x1, 0)+ o(1) as ε, δ → 0

≤ o(1) as ε, δ → 0.

For sufficiently small ε, δ > 0 this is a contradiction, whence t1 > σ(ε).
We will prove that

y1 �= 0. (55)

Assume for contradiction that in fact y1 = 0. Then (48) and (50) imply

uε(x1, t1 + s1)− vε(x1, t1)− αt1 − 1

δ
s4

1

≥ uε(x + y, t + s)− vε(x, t)− αt − 1

δ
(|y|4 + s4) (56)

for all (x, t), (x + y, t + s) ∈ ΩT . We choose x = x1 and t = t1 as above, and simplify to obtain
the inequality

uε(x1 + y, t1 + s) ≤ uε(x1, t1 + s1)+ 1

δ
|y|4 + 1

δ
(s4 − s4

1 )

for (x1 + y, t1 + s) ∈ ΩT . We see that

uε(x1 + y, t1 + s) ≤ uε(x1, t1 + s1)+ 4

δ
s3

1 (s − s1)+ 6

δ
s2

1 (s − s1)
2

+ o(|s − s1|3 + |y|4) as (y, s) → (0, s1).

Since uε is a viscosity subsolution of (11) near (x1, t1 + s1), we may invoke (19) and (21) with
x0 = x1, t0 = t1 + s1, p = 0, q = 4

δ
s3

1 ,mi j = 0 (i, j = 1, . . . , d). This gives

4

δ
s3

1 ≤ 0. (57)
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Going back and inserting y = x1 − x and s = t1 + s1 − t into (56), we have

vε(x, t) ≥ vε(x1, t1)+
(

4

δ
s3

1 − α

)
(t − t1)+ 6

δ
s2

1 (t − t1)
2

+ o(|x − x1|4 + |t − t1|3) as (x, t) → (x1, t1).

Now, since vε is a viscosity supersolution of (11) near (x1, t1), we may invoke (22) and (24) with
x0 = x1, t0 = t1, p = 0, q = 4

δ
s3

1 − α,mi j = 0 (i, j = 1, . . . , d). This gives

4

δ
s3

1 − α ≥ 0, (58)

representing a contradiction to (57), since α > 0. This establishes (55).
Note next that in general if f : R

m −→ R is convex, then so is the mapping (w, z) �→
f (w + z) on R

2m . Consequently, Lemma 3.3(iv) asserts that the mapping

(x, y, t, s) �→ uε(x + y, t + s)+ 1

ε
(|x + y|2 + (t + s)2)

is convex. As

(x, t) �→ −vε(x, t)+ 1

ε
(|x |2 + t2)

is convex as well, we see that for some sufficiently large constant C = C(ε, δ)

(x, y, t, s) �→ Φ(x, y, t, s)+ C(|x |2 + |y|2 + t2 + s2)

is convex near (x1, y1, t1, s1). Since Φ additionally attains its maximum at (x1, y1, t1, s1), we
may invoke Jensen (cf. [10]): There exist points {(xk

1 , yk
1 , tk

1 , sk
1 )}

∞
k=1 such that

(xk
1 , yk

1 , tk
1 , sk

1 ) → (x1, y1, t1, s1), (59)

Φ, uε and vε are each twice differentiable at (xk
1 , yk

1 , tk
1 , sk

1 ), k = 1, 2, . . . , (60)

∇x,y,t,sΦ(xk
1 , yk

1 , tk
1 , sk

1 ) → 0, (61)

D2
x,y,t,sΦ(x

k
1 , yk

1 , tk
1 , sk

1 ) ≤ o(1)I2d+2 as k → ∞. (62)

Using (48) and (60), we see

∇xΦ(xk
1 , yk

1 , tk
1 , sk

1 ) = ∇uε(xk
1 + yk

1 , tk
1 + sk

1 )− ∇vε(xk
1 , tk

1 )

=: pk − pk,

∇yΦ(xk
1 , yk

1 , tk
1 , sk

1 ) = ∇uε(xk
1 + yk

1 , tk
1 + sk

1 )−
4

δ
|yk

1 |2yk
1

= pk − 4

δ
|yk

1 |2 yk
1 .

Since yk
1 → y1, we deduce from (61) that

pk, pk → 4

δ
|y1|2 y1 =: p in R

d . (63)

Assertion (55) tells us p �= 0 and so pk, pk �= 0 for k large enough.
Again, employing (48) and (60) we note

Φt (x
k
1 , yk

1 , tk
1 , sk

1 ) = uεt (x
k
1 + yk

1 , tk
1 + sk

1 )− vεt (x
k
1 , tk

1 )− α

=: qk − qk − α.
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As uε and vε are Lipschitz continuous, upon passing to a subsequence and reindexing if
necessary, we may assume that

qk → q, qk → q in [0, T ].
Then, (61) ensures

q − q = α > 0. (64)

Moreover, (48) and (60) give

D2
xΦ(x

k
1 , yk

1 , tk
1 , sk

1 ) = D2uε(xk
1 + yk

1 , tk
1 + sk

1 )− D2vε(x
k
1 , tk

1 )

=: Mk − M
k
.

Now, (62) implies

Mk − M
k ≤ εk Id , (εk → 0).

Furthermore, Lemma 3.3(iv) shows that Mk ≥ −C Id and M
k ≤ C Id , for C = C(ε). Hence,

−C Id ≤ Mk ≤ M
k + εk Id ≤ C Id .

Consequently, passing if necessary to a subsequence, we may suppose that

Mk → M, M
k → M in Sd×d

with

M ≤ M. (65)

We recall that (60) holds true and pk := ∇uε(xk + yk, tk + sk) and pk := ∇vε(xk, tk) are
nonzero for large k. Since uε is a viscosity subsolution near (x1 + y1, t1 +s1) and vε is a viscosity
supersolution near (x1, t1) of (11), for all large k we thus have

qk ≤
(
δi j − pk

i pk
j

|pk |2
)

mk
i j − χ−(xk + yk, tk + sk , uε)(b.pk)+

and

qk ≥
(
δi j − pk

i pk
j

|pk |2
)

mk
i j − χ+(xk, tk , vε)(b.p

k)+.

We will see that

lim inf
k→∞ χ−(xk + yk, tk + sk, uε) ≥ χ−(x1 + y1, t1 + s1, uε) (66)

and

lim sup
k→∞

χ+(xk, tk, vε) ≤ χ+(x1, t1, vε). (67)

Indeed, if the left-hand side of (66) equals 1, then there is nothing to prove. Otherwise, we may
assume that

χ−(xk + yk, tk + sk, uε) = 0, k = 1, 2, . . . .
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By definition (14), there exists s0 > 0 such that

uε(xk + yk − s0b, tk + sk) ≥ uε(xk + yk, tk + sk), k = 1, 2, . . . .

Since uε is continuous and (xk, yk, tk, sk) → (x1, y1, t1, s1) as k → ∞,

uε(x1 + y1 − s0b, t1 + s1) ≥ uε(x1 + y1, t1 + s1).

This implies

χ−(x1 + y1, t1 + s1, uε) = 0.

For the proof of (67), we argue as follows: If the right-hand side of (67) is 1, the assertion is
trivial. Otherwise, we assume that

χ+(x1, t1, vε) = 0.

By definition (13), there exists α1 > 0 such that

vε(x1 − α1b, t1) > vε(x1, t1).

Since (xk, tk) → (x1, y1) and vε is continuous, for sufficiently large k

vε(xk − α1b, tk) > vε(xk, tk).

Therefore, for all large enough k

χ+(xk, tk, vε) = 0.

We send k to infinity, recalling (66) and (67) to obtain

q ≤
(
δi j − pi p j

|p|2
)

mi j − χ−(x1 + y1, t1 + s1, uε)(b.p)+ (68)

and

q ≤
(
δi j − pi p j

|p|2
)

mi j − χ+(x1, t1, vε)(b.p)+. (69)

Next, we will prove that

χ−(x1 + y1, t1 + s1, uε) ≥ χ+(x1, t1, vε). (70)

In fact, if χ−(x1 + y1, t1 + s1, uε) = 1, then (70) is obviously true. Assume instead that

χ−(x1 + y1, t1 + s1, uε) = 0.

Then, for some τ > 0, we have

uε(x1 + y1 − τb, t1 + s1) ≥ uε(x1 + y1, t1 + s1).

Now, (52) implies

uε(x1 + y1 − τb, t1 + s1)− vε(x1 − τb, t1) < uε(x1 + y1, t1 + s1)− vε(x1, t1).

Thus,

0 ≤ uε(x1 + y1 − τb, t1 + s1)− uε(x1 + y1, t1 + s1)

< vε(x1 − τb, t1)− vε(x1, t1),
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which implies

χ+(x1, t1, vε) = 0.

Since the matrix ((δi j − pi p j

|p|2 ))
d

i, j=1
is nonnegative definite, we subtract (69) from (68) and recall

(65) and (70) to obtain

q − q = α ≤ 0.

This is a contradiction to (64). �

3.3. Existence of viscosity solutions

We construct a viscosity solution to problem (11) and (12). We recall that the initial function
u0 always satisfies the condition (25). We will prove that the viscosity solution of (11) with
initial condition (12) can be obtained by means of a limit process ε → 0+ for a family (uε)ε>0
of approximate solutions. For this purpose, consider

uεt =
(
(1 + ε)δi j −

uεxi
uεx j

|∇uε |2 + ε2

)
uεxi x j

− βε
(

max
ε≤s≤S

[uε(x − sb, t)− uε(x, t)]
)
(b.∇uε)+ in R

d × [0, T ], (71)

with initial condition

uε = u0 on R
d × {t = 0}, (72)

where,

βε(w) =
⎧⎨
⎩

1 if w ≤ 0,
linear if 0 ≤ w ≤ ε,

0 if w ≥ ε

(73)

and

S = 2R

|b| . (74)

Here, R is given by (25) and (26).
We note that the coefficients {ai j } with

ai j (p) :=
(
(1 + ε)δi j − pi p j

|p|2 + ε2

)

satisfy the uniform ellipticity condition:

ε|ξ |2 ≤ ai j (p)ξiξ j , ξ ∈ R
d , p ∈ R

d .

Therefore, there exists a unique smooth solution uε of (71) with initial condition (72) in
R

d × [0, T ] (cf., e.g., [11]). Moreover, the solution uε satisfies the following estimate

‖uε‖L∞(Rd×[0,T ]), ‖∇uε‖L∞(Rd×[0,T ]), ‖uεt ‖L∞(Rd×[0,T ]) ≤ C, (75)

where C does not depend on ε.
The convergence of uε to u as ε → 0+ will be shown in the following theorem.
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Theorem 3.5. There exists a viscosity solution of (11) and (12).

Proof. In view of (75), there exists a subsequence {uεk }∞k=1 ⊂ {uε}0<ε<1 such that εk → 0+ and
uεk → u locally uniformly in R

d × [0, T ] as k → ∞. The function u is therefore bounded and
Lipschitz continuous. We will prove that u is a viscosity solution of (11) and (12).

Assume that φ ∈ C∞(Rd+1) and u − φ has a strict local maximum at a point (x0, t0) ∈ R
d ×

(0, T ]. Since uεk → u uniformly near the point (x0, t0), there exist points (xk, tk) ∈ R
d × (0, T ]

such that{
(xk, tk) → (x0, t0) as k → ∞, and
uεk − φ has a local maximum at (xk, tk).

(76)

Since uεk and φ are smooth,

∇uεk = ∇φ, uεk
t = φt , D2uεk ≤ D2φ at (xk, tk).

Thus, we have

φt ≤
(
(1 + εk)δi j − φxiφx j

|∇φ|2 + ε2

)
φxi x j (xk, tk)

− βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk (xk, tk)]
)
(b.∇φ(xk, tk))+. (77)

We claim next that

χ−(x0, t0, u) ≤ lim
k→∞ βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)]
)
, (78)

provided that

b.∇φ(x0, t0) > 0. (79)

Indeed, if χ−(x0, t0, u) = 0, then (78) obviously holds true. Otherwise, χ−(x0, t0, u) = 1,
which means that for all s > 0, we have

u(x0 − sb, t0) < u(x0, t0). (80)

In view of (76), we see that

uεk (xk, tk)− φ(xk, tk) ≥ uεk (xk − sb, tk)− φ(xk − sb, tk). (81)

Taking advantage of (79), provided that 0 < s < δ, where δ > 0 is chosen small enough and k is
sufficiently large, we find

uεk (xk − sb, tk)− uεk (xk, tk) ≤ φ(xk − sb, tk)− φ(xk, tk)

= −sb.∇φ(xk, tk)+ o(s2)

< 0.

Moreover, (80) implies

uεk (xk − sb, tk)− uεk (xk, tk) ≤ 0,

if δ ≤ s ≤ S and k is large. Consequently, for sufficiently large k

max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)] < 0,
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whence

βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)]
)

= 1.

Consequently, (78) follows if χ−(x0, t0, u) = 1 and b.∇φ(x0, t0) > 0.
Suppose next that ∇φ(x0, t0) �= 0. Then ∇φ(xk, tk) �= 0 for large k. We consequently pass to

limits in (77), recalling (78) to deduce

φt (x0, t0) ≤
(
δi j − φxiφx j

|∇φ|2
)
φxi x j (x0, t0)− χ−(x0, t0, u)(b.∇φ(x0, t0))+.

Next, assume instead that ∇φ(x0, t0) = 0. We set

ηk = ∇φ(xk, tk)

(|∇φ(xk, tk)|2 + ε2
k )

1
2

,

so that (77) becomes

φt (xk, tk) ≤ ((1 + εk)δi j − ηk
i η

k
j )φxi x j (xk, tk). (82)

Since |ηk| ≤ 1, upon passing to a subsequence and reindexing if necessary, we may assume that
ηk → η in R

d for some |η| ≤ 1. Sending k to infinity in (82), we obtain

φt (x0, t0) ≤ (δi j − ηiη j )φxi x j (x0, t0).

Consequently, u is a viscosity subsolution of (11).
In order to verify that u is a viscosity supersolution of (11), we again take φ ∈ C∞(Rd+1)

and suppose that u − φ has a strict local minimum at (x0, t0) ∈ R
d × (0, T ]. Since uεk → u

uniformly near (x0, t0), there exist (xk, tk) ∈ R
d × (0, T ] such that{

(xk, tk) → (x0, t0) as k → ∞, and
uεk − φ has a local minimum at (xk, tk).

(83)

Since uεk and φ are smooth,

∇uεk = ∇φ, uεk
t = φt , D2uεk ≥ D2φ at (xk, tk).

Thus, we deduce

φt ≥
(
(1 + εk)δi j − φxiφx j

|∇φ|2 + ε2

)
φxi x j (xk, tk)

− βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)]
)
(b.∇φ(xk, tk))+. (84)

We claim next that

χ+(x0, t0, u) ≥ lim
k→∞ βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)]
)
. (85)

Now, if χ+(x0, t0, u) = 1, then (85) obviously holds true. Otherwise, χ+(x0, t0, u) = 0, which
means that for some s0 > 0 we have

u(x0 − s0b, t0) > u(x0, t0).

We further note that s0 ≤ S, otherwise u(x0 − s0b, t0) = −1 = min u on R
d × [0, T ].
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Thus, for k sufficiently large, we have εk ≤ s0, and hence,

max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)] ≥ uεk (xk − s0b, tk)− uεk(xk, tk)

→ u(x0 − s0b, t0)− u(x0, t0) > 0.

By definition of βε , we have

lim
k→∞ βεk

(
max
εk≤s≤S

[uεk (xk − sb, tk)− uεk(xk, tk)]
)

= 0.

The rest of the proof is similar to above, and we conclude that u is a viscosity supersolution of
(11). Altogether, we have thus shown that u is a viscosity solution of (11). �
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