
J. Numer. Math., Vol. 15, No. 2, pp. 81–100 (2007)
DOI 10.1515/ JNUM.2007.005
c© de Gruyter 2007

Path-following primal-dual interior-point methods
for shape optimization of stationary flow problems

H.ANTIL∗, R.H.W.HOPPE∗†, and Chr. LINSENMANN∗†

Received September 2, 2006
Received in revised form November 15, 2006

Abstract — We consider shape optimization of Stokes flow in channels where the objective is to
design the lateral walls of the channel in such a way that a desired velocity profile is achieved. This
amounts to the solution of a PDE constrained optimization problem with the state equation given by
the Stokes system and the design variables being the control points of a Bézier curve representation
of the lateral walls subject to bilateral constraints. Using a finite element discretization of the problem
by Taylor–Hood elements, the shape optimization problem is solved numerically by a path-following
primal-dual interior-point method applied to the parameter dependent nonlinear system represent-
ing the optimality conditions. The method is an all-at-once approach featuring an adaptive choice of
the continuation parameter, inexact Newton solves by means of right-transforming iterations, and a
monotonicity test for convergence monitoring. The performance of the adaptive continuation process
is illustrated by several numerical examples.

Keywords: PDE constrained optimization, shape optimization, Stokes flow, primal-dual interior-point
methods, central path, continuation methods

1. Introduction

Structural optimization problems with constraints given by the Stokes equations can
be written as follows

minimize J(u, p,α) (1.1a)
over (u, p,α) ∈ V×Q×K
subject to: S(u, p,α) = g . (1.1b)

Here, J : V×Q×U → R denotes the objective functional which depends on the
state variables u and p (the velocity and the pressure) in the state space V×Q and
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the design variables α in the design spaceU . The equation (1.1b) corresponds to the
Stokes equations, whereas K ⊂U refers to the set of admissible design variables.
We note that simplified problems in structural optimization have already been ad-
dressed by Bernoulli, Euler, Lagrange and Saint–Venant. However, it became its
own discipline during the second half of the last century when the rapidly grow-
ing performance of computing platforms and the simultaneously achieved signifi-
cant improvement of algorithmic tools enabled the appropriate treatment of complex
problems (cf. [1–3,13,14,24,25,28,33,35,36,39] and the references therein). The de-
sign criteria in structural optimization are determined by a goal oriented operational
behavior of the devices and systems under consideration and typically occur as a
nonlinear, often non convex, objective functionals which depend on the state vari-
ables describing the operational mode and the design variables determining the
shape and the topology. The state variables have to satisfy differential equations
or systems thereof representing the underlying physical laws. Technological aspects
are taken into account by constraints on the state and/or design variables which may
occur both as equality and inequality constraints in the model.
The discretization of such structural optimization problems typically gives rise to
equality and inequality constrained nonlinear programming problems. If Newton’s
method is applied to the KKT conditions, each Newton step requires the solu-
tion of a linear algebraic system representing the optimality conditions of a re-
lated quadratic programming (QP) problem. Hence, Newton methods can be in-
terpreted in the framework of sequential quadratic programming (SQP) which is the
most successful method for solving constrained nonlinear optimization problems
[4–9,21,22,34]. As far as the appropriate treatment of the inequality constraints is
concerned, a local optimum can be approximated from within the feasible set, which
is the idea behind interior-point methods. The so-called interior-point revolution in
continuous optimization started in the eighties of the last century with Karmarkar’s
polynomial-time linear programming algorithm. It was immediately found that there
is a close relationship to barrier functions which had been used long time before for
inequality constrained nonlinear programming problems. Nowadays, interior-point
methods are well established tools for constrained nonlinear optimization problems
(cf., e.g., [12,15,17–19,20,26,27,29–32,40,41,43–45]). In terms of the barrier pa-
rameter, we are faced with a parameter dependent nonlinear system whose solution
is referred to as the central path. For the parameter-dependent nonlinear system,
continuation methods along the central path are the methods of choice. Such con-
tinuation methods have been studied extensively in the literature. A good reference
both for theoretical and algorithmic aspects is the recent textbook [16]. The most
widely used techniques are path-following predictor–corrector strategies.

In this paper, we consider path-following primal-dual interior-point methods for
the shape optimization of stationary flow problems as described by the Stokes sys-
tem. In particular, we consider Stokes flow in channels where the objective is to
design the lateral walls in such a way that a desired velocity profile is obtained.
The design variables are chosen as the control points of a Bézier curve representa-
tion of the lateral walls. The discretization of the problem is done by Taylor–Hood
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amounts to the minimization problem

inf
u,p,α

J(u, p,α), J(u, p,α) :=
λ1



Path-following primal-dual interior-point methods 85

We note that S(·,α) : Y→ Y∗,α ∈ K, is the Stokes operator. Then, the state equa-
tions (2.2a)–(2.2d) can be written in operator form according to

S(y,α) = g (2.6)

where g := (f,0)T . The design variables αi, i = 1, . . . ,m, are chosen as the Bézier
control points in a Bézier representation of Γ(α) as a globally continuous compo-
sition of polynomial curve segments of some polynomial degree. We choose α̂ ∈ K
as a reference design and refer to Ω̂ := Ω(α̂) as the associated reference domain.
Then, the actual domain Ω(α) can be obtained from the reference domain Ω̂ by
means of an isomorphism

Ω(α) = Φ(Ω̂;α) (2.7)
Φ(x̂;α) = (Φ1(x̂;α),Φ2(x̂;α))T , x̂= (x̂1, x̂2)T

with continuous components Φi, i= 1,2. We assume: The functions Φi, i= 1,2, are
subdifferentiable in x̂ ∈ Ω̂ with uniformly bounded subdifferentials ∂Φi and twice
continuously differentiable in αi, i= 1, . . . ,m.

The advantage of using the reference domain Ω̂ is that finite element approxi-
mations of (2.1) can be performed with respect to that fixed domain without being
forced to remesh.

We denote by (Th(Ω̂))N a shape regular family of simplicial triangulations of Ω̂.
By means of (2.7), these triangulations induce an associated family (Th(Ω(α)))N

of simplicial triangulations of the actual physical domains Ω(α).
We use Taylor–Hood P2/P1 elements (cf., e.g., [11]) for the discretization of the

velocity u∈V and the pressure p∈Q denoting the associated trial spaces byVh and
Qh with dim Vh = n1 and dim Qh = n2, respectively. This gives rise to an objective
functional Jh : Rn×R

m, n := n1+n2, by means of

Jh(uh, ph,α) :=
λ1
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Due to the dependence of the domain on the design parameters αi, i= 1, . . . ,m,
the objective functional Jh is nonconvex. Therefore, there may exist a multitude of
local minima. Throughout the following, we assume that (y∗h,α∗)∈R

n×K is a strict
local solution of (2.9), i.e., there exists a neighborhood U (y∗h,α∗) ⊂ R

n×K such
that

Jh(y∗h,α∗) < J(yh,α), (yh,α) ∈ U (y∗h,α∗)\{(y∗h,α∗)} . (2.11)

For notational convenience, in the sequel we will drop the discretization index h.

2.2. Optimality conditions

We introduce Lagrange multipliers λλλ := (λλλu,λp)T ∈ R
n1×R

n2 and σ := (σ1,σ2)T ,
σk ∈ R

m
+, k = 1,2. The saddle point formulation of the minimization problem (2.9)

is
inf
y,α

sup
λλλ,σ
L(y,α,λλλ ,σ) . (2.12)

Here, the Lagrangian L is given by

L(y,α,λλλ ,σ) := J(u, p,α)+λλλT (S(y,α)−g)+σT1 (αmin−α)+σT2 (α−αmax) .
(2.13)

Denoting by x := (y,α)T the primal variables, the first order necessary optimality
conditions are given by

Ly(x,λλλ ,σσσ) = 0 (2.14a)
Lα(x,λλλ ,σσσ) = 0 (2.14b)
Lλλλ(x,λλλ ,σσσ) = 0 (2.14c)
Lσ1(x,λλλ ,σσσ) = αmin−α 6 0 (2.14d)

(σ1)T (αmin−α) = 0
Lσ2(x,λλλ ,σσσ) = α−αmax 6 0 (2.14e)

(σ2)T (α−αmax) = 0.

In particular, we find

Lu(· · · ) = λ1I1(α)(u−ud) + A(α)λλλu + BT (α)λp = 0 (2.15a)
Lp(· · · ) = λ2I2(α)p + B(α)λλλu = 0 (2.15b)
Lα(· · · ) = ∇αJ(u, p,α) + ∇α〈A(α)u+BT(α)p− f,λλλu〉 (2.15c)

+ ∇α〈B(α)u,λp〉 − σ1 + σ2 = 0
Lλλλu(· · · ) = A(α)u + BT (α)p − f = 0 (2.15d)
Lλp(· · · ) = B(α)u = 0 . (2.15e)
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Theorem 2.1. Let (y∗,α∗) ∈ R
n×K be a strict local solution of (2.9) and as-

sume that the constraints are qualified in the sense of the linear independence con-
straint qualification (cf., e.g, [10]). Then, there exist multipliers λλλ∗ = (λλλ∗

u,λ∗
p ) ∈ R

n

and σ∗ = (σ∗
1 ,σ∗

2 ), σ∗
k ∈ R

m
+, k = 1,2, such that (y∗,α∗,λλλ∗,σ∗) satisfies the KKT

system (2.14a)–(2.14e).

Proof. The proof follows from standard results of optimization theory (cf., e.g.,
[10]). �

For the second order derivatives of the Lagrangian L with respect to the primal
variables y we obtain

Luu(· · · ) = λ1I1(α), Lup(· · · ) = 0 (2.16a)
Lpu(· · · ) = 0, Lpp(· · · ) = λ2I2(α). (2.16b)

Consequently, the Hessian Lxx has the form

Lxx(· · · ) =

(
I(α) Lyα
Lαy Lαα

)

(2.17)

where

I(α) =

(
λ1I1(α) 0
0 λ2I2(α)

)

(2.18a)

Lαy = (Lαu Lαp), Lyα = (Luα Lpα)T . (2.18b)

Note that

Luα : Rm → R
n1 , Lαu : Rn1 → R

m (2.19a)
Lpα : Rm → R

n2 , Lαp : Rn2 → R
m (2.19b)

Luα = L∗αu, Lpα = L∗αp (2.19c)

so that Lxx(· · · ) is symmetric. The second order sufficient optimality requires posi-
tive definiteness of Lxx(· · · ) at optimality.

Theorem 2.2. Let (x∗,λλλ∗,σ∗) ∈ R
n×K×R

n× (Rm+)2 satisfy the KKT condi-
tions (2.14a)–(2.14e) and suppose that Lxx(x∗,λλλ∗,σ∗) is positive definite, i.e.,

wTLxx(x∗,λλλ∗,σ∗)w > 0, w ∈ R
n×K \{0} . (2.20)

Then, (x∗,λλλ∗,σ∗) is a strict local solution of (2.1).

Proof. We refer to [10]. �
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3. The primal-dual interior-point approach

3.1. The central path

We couple the inequality constraints (2.3) by logarithmic barrier functions with a
barrier parameter β = 1/µ > 0, µ → ∞, resulting in the following parameterized
family of minimization subproblems

inf
y,α
B(µ)(y,α) (3.1)

subject to (2.6), where

B(µ)(y,α) := J(y,α) − 1



Path-following primal-dual interior-point methods 89

Theorem 3.1. Let (y∗,α∗,λλλ∗,σ∗) ∈ Y×K ×R
n× (Rm+)2 satisfy the first or-

der necessary optimality conditions (2.14a)–(2.14e) with strict complementarity in
(2.14d), (2.14e) and the second order sufficient optimality condition (2.20). More-
over, assume that the linear independence constraint qualification holds true. Then,
there exists µmin > 0 such that for all µ > µmin the minimization subproblems
(3.1) admit unique solutions (y(µ),λλλ(µ),α(µ)) satisfying (3.5) and converging to
(y∗,λλλ∗,α∗) as µ→∞.

Proof. We refer to [43]. �

3.2. Adaptive path-following continuation method

For the solution of the parameter-dependent nonlinear system (3.5) we use an adap-
tive path-following predictor-corrector strategy along the lines of [16].

Predictor step. The predictor step relies on tangent continuation along the
trajectory of the Davidenko equation

Fx(x(µ),µ) x′(µ) = −Fµ(x(µ),µ) . (3.7)

Given some approximation x̃(µk) at µk > 0, compute x̃(0)(µk+1), where µk+1 =

µk+∆µ(0)
k , according to

Fx(x̃(µk),µk) δx(µk) = − Fµ(x̃(µk),µk) (3.8a)

x̃(0)(µk+1) = x̃(µk) + ∆µ(0)
k δx(µk) . (3.8b)

We use ∆µ(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k > 1 the

predicted step size ∆µ(0)
k is chosen by

∆µ(0)
k :=

( ‖∆x(0)(µk)‖
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We monitor convergence of Newton’s method by means of

Θ( jℓ)(µk+1) :=
∥
∥
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where
g := (g1,g2,g3,g4,g5,D1Z1e−µ−1e,D2Z2e−µ−1e)T

with appropriate gi, i= 1, . . . ,5, e := (1, . . . ,1)T and

D1 := diag(αi−αmini ), D2 := diag(αmaxi −αi), Zν := diag(z(ν)
i ), ν = 1,2.

Since Dν, Zν, ν = 1,2, are diagonal matrices, the slack variables can be easily elim-
inated by condensation (block Gaussian elimination) which leads to the condensed
Hessian system












λ1I1(α) 0 | A(α) BT (α) | Lu,α
0 λ2I2(α) | B(α) 0 | Lp,α

−− −− | −− −− | −−
A(α) BT (α) | 0 0 | Lλλλu,α
B(α) 0 | 0 0 | Lλp,α
−− −− | −− −− | −−
Lα,u Lα,p | Lα,λλλu Lα,λp | L̃α,α























∆u∆p
−−∆λλλu∆λp
−−∆α












(3.15)

=






I(α) S | Lv,α
S 0 | Lλλλ,α

−− −− | −−
Lα,v Lα,λλλ | L̃α,α











∆v∆λλλ
−−∆α




 = −






h1
h2
−−
h3






with appropriate hi, i= 1,2,3, v := (u, p)T , λλλ := (λλλu,λp)T and

S :=
(
A(α) BT (α)

B(α) 0

)

L̃αα := Lαα + D−1
1 Z1 + D−1

2 Z2 .

Denoting by S̃−1 an approximate inverse of S (approximate Stokes solver), an ap-
proximate inverse ˜A −1 of the first diagonal block A of the condensed Hessian K is
given by

A =

(
I(α) S
S 0

)

=⇒ ˜A
−1 =

(
0 S̃−1
S̃−1 −S̃−1I(α)S̃−1

)

.

Hence, a right-transform KR of K can be obtained according to

KR :=







I 0 | −S̃−1Lλλλ,α
0 I | −S̃−1Lv,α + S̃−1I(α)S̃−1Lλλλ,α

−− −− | −−−−−−−−−−−−−
0 0 | I







.
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The right transform KR provides a regular splitting of the condensed Hessian

KKR :=






I(α) S | Lv,α
S 0 | Lλλλ,α

−− −− | −−
Lα,v Lα,λλλ | L̃αα











I 0 | −S̃−1Lλλλ,α
0 I | −S̃−1Lv,α + S̃−1I(α)S̃−1Lλλλ,α

−− −− | −−−−−−−−−−−−
0 0 | I






=






I(α) S | 0
S 0 | 0

−− −− | −−
Lα,v Lα,λλλ | L̂αα






︸
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Step 2.1. Compute (δψ1,δψ2)T according to
( δψ1

δψ2

)

=

(
I(α) S
S 0

)−1( r1
r2

)

≈
(

0 S̃−1

S̃−1 −S̃−1I(α)S̃−1

)(
r1
r2

)

.

Step 2.2. Compute δψ3 as the solution of

L̂αα δψ3 = r3 − Lα,vδψ1 − Lα,λλλδψ2 .

As a termination criterion for the inexact Newton solves, we stop the inner iter-
ations, if

ϑℓ :=
1−
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Table 1.
Example 1. Discretization data and termination criteria.
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Figure 2. Results for Example 1. Initial shape (top left), optimal shape after the third iteration (top
right), the optimal velocity field as an arrow plot (bottom left) and the L20-gauged pressure field shown
by equipotential lines (bottom right).

Due to our experience, a fast convergence of the algorithm requires initial pa-
rameters µ0 and ∆µ0 that are not chosen too small. In particular, for too small ∆µ0
the algorithm starts too ‘carefully and does not achieve satisfactory progress within
a reasonable number of outer iterations.

Figure 2 displays the initial and optimal shape (top) and the associated velocity
and pressure field (bottom).

Example 2. This example has been constructed in such a way that the de-
sired velocity profile is outside the range of the admissible design variables. Conse-
quently, the value J∗ of the objective functional at optimality is greater than zero (cf.
Table 4). It can be observed that the upper computed Bézier curve tries to ‘mimic’
the corresponding part of the shape associated with the desired velocity (cf. Fig. 3,
bottom right). The data for αmin,αmax, uin, etc. are the same as in Example 1, except
that the desired velocity field corresponds to the following vector of design variables

ᾱ = (2.50,1.65,1.15,0.90,−1.30,−0.85,−1.20,−1.35)T .

After reaching the criterion µ> µmax = 15000, the computed optimal design turned
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Table 3.
Example 2. Discretization data and termination criteria.
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fixed

Figure 3. Results for Example 2. Initial shape (left) and the optimal shape after 8 iterations (right).
Here, the first Bézier point of each curve (top and bottom) of the initial shape are fixed and different
from the corresponding points of the shape corresponding to the desired velocity profile (dotted line).
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Figure 4. Results for Example 3. A scheme of the backward step geometry (top left) along with the
optimal pressure filed (top right), initial and optimal shape after 7 outer iterations (bottom left and
right).
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Table 5.
Example 3. Discretization data and termination criteria.
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