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1. Introduction

Structural optimization of biomorphic cellular ceramics with specific microstructures is considered. The new com-
posite materials are designed and produced by biotemplating processing using a naturally grown wood which is known
to be highly porous and to possess excellent mechanical properties. High temperature pyrolysis of the wooden spec-
imen followed by an infiltration of liquid- or gaseous-phase metals such as silicon (Si) or titanium (Ti) come up to
silicon carbide (SiC)- or titanium carbide (TiC)-ceramics of high porosity. The biomimetic processing scheme for
production of SiC-ceramics from wood is explained in [15]. The new ceramic composites can be used as filters in
chemical processing, as implant material in biomedical applications or as high performance brakes of vehicles in car
industry.

The optimization of the macroscopic behavior of microstructural materials using microscopic quantities as design
variables is a well established discipline in materials science (cf., [1,6,12]). Homogenization techniques are applied to
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come up with computationally feasible macromodels. The microstructural geometrical details of the microcells such
as the lengths and widths of the different layers forming the cell walls are considered as design parameters which have
a significant impact on the macroscopic mechanical behavior of the final ceramics. Moreover, they can be tuned very
precisely during the processing procedures. Therefore, the idea is to determine these details in order to achieve an
optimal operational behavior with respect to selected mechanical merit functionals under prespecified load conditions.

Recently, we have developed algorithmic tools for the computation of the homogenized model (homogenized
elasticity tensor) and its dependence on the design variables as well as efficient and reliable structural optimization
routines based on an “all-at-once” approach that is superior to traditional techniques (see, [9,10]). Mesh adaptivity
schemes for the numerical solution of the elasticity problem defined in a three-dimensional microcell and appropriate
iterative methods for the discretized state equation in the homogenized macromodel are considered and discussed in
[11].

In this paper, we formulate the problem for structural optimization of the composite ceramic materials invoking an
elasto-plasticity in the macroscopic model by using the von Mises yield criterion with isotropic strain hardening. Section
2 contains the general elasto-plastic constitutive relations under the assumption of small strains. An incremental finite
element algorithm is presented in Section 3 for the numerical solution of the elasto-plastic problem. Return mapping
procedures, first developed in [21] for simple plasticity models, based on the concept of computing a trial elastic stress
(elastic stress predictor) mapped onto a suitably updated yield surface (plastic return corrector) are applied in Section
4 to find the new stress during the time increment. In the last years, the latter methods became rather popular tools to
provide efficient and accurate computations for constitutive modeling (see, e.g., [17,2,5,19,22]). The problem of optimal
structural design of biomorphic TiC-ceramics (ductile materials) is discussed in Section 5. The macroscopic model
is based on the homogenization approach to compute the constitutive expressions. The homogenized elasto-plastic
equation is considered as an equality constraint in the structural optimization problem. Adaptive grid refinement in
space based on a posteriori error estimators is applied at each time step within the incremental finite element method.
Numerical experiments for the computation of the homogenized elasticity coefficients using a three-dimensional
periodicity microcell are presented. Applications of Newton-like iterative solvers for the nonlinear systems arising in the
numerical solution of the elasto-plastic problem are commented. Some concluding remarks are given in the last section.

The following standard notations are used throughout this paper. Bold-face symbols indicate variables of tensorial
character. By the convention of a summation on repeated indices, dots are used for a scalar product of vectors, e.g.,
u · v = uivi and colons (:) are used for a scalar product of tensors, e.g., (E : e)ij = Eijklekl, (A : B) = AijBij . The norm
of a second-order tensor is denoted by ‖S‖ = (S : S)1/2 = (SijSij)1/2. The symbol ⊗ indicates the tensor product of
vectors and tensors defined by (u ⊗ v)ij = uivj and (A ⊗ B)ijkl = AijBkl.

2. Elasto-plasticity

Let us consider an elasto-plastic material body occupying a bounded Lipschitz domain Ω ⊂ R3. For describing the
development of plastic strains, we introduce a time/load (continuation) parameter t, 0 ≤ t ≤ T and find the deformations
of the body following the history of loading. The dot below denotes the derivative with respect to the parameter t.

Given a displacement field u = u(t) ∈ [H1(Ω)]3, the total small strain reads

e = ∇u + (∇u)T

2
, i.e., e(u)ij = ui,j + uj,i

2
; 1 ≤ i, j ≤ 3. (1)

The following governing equations describe the elasto-plastic behavior of the material

e = ee + ep (2)

ė = ėe + ėp (3)

σ = E : ee (4)

Φ(σ, ξ) = 0 (5)

ėp = γ
∂G

∂σ
(6)

ξ̇ = γz, (7)
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where the total strain e is decomposed into an elastic and plastic strain tensors denoted by ee and ep, respectively, σ

the Cauchy stress tensor, E the fourth-order elasticity tensor, Φ = Φ(σ, ξ) ≤ 0 the yield function, ξ ∈ Rk, k ≥ 1, the
vector of internal state variables, γ ≥ 0 the plastic multiplier (also called the magnitude of the plastic strain rate), G the
flow potential, and z is a vector related to the evolution of the internal state variables ξ. Note that ξ and z are scalars in
the case k = 1. We assume that the scalar-valued function G is differentiable everywhere and ∂G/∂σ is a second-order
tensor produced by differentiation of G with respect to the tensorial argument σ.

Linear isotropic and homogeneous elasticity is considered, so that (4) is referred to Hooke’s law which corresponds
to a two-parameter model with nonzero material coefficients given as follows

Eiiii = λ + 2μ, Eiijj = λ, Eijij = Eijji = 2μ, (8)

where 1 ≤ i, j ≤ 3, i 
= j, and λ, μ are the Lamé moduli of the material. Very often in the literature the isotropic
materials are also described by the Young modulus E and the Poisson ratio ν.

Eq. (5) defines the yield surface and can be viewed as the onset of the inelastic behavior of the material. The yield
function Φ obeys the sign convention: elastic deformations correspond to negative values of Φ (the interior of the yield
surface) and forbidden deformations (on the exterior of the yield surface) are identified by positive values of Φ. Hence,
all admissible stresses are described by Φ(σ, ξ) ≤ 0 and exactly one of the following relations holds

γ = 0 ∧ Φ(σ, ξ) < 0, elastic behavior

γ > 0 ∧ Φ(σ, ξ) = 0 ∧ Φ̇(σ, ξ) = 0, plastic behavior
(9)

These relations are explicitly described by the Karush–Kuhn–Tucker (KKT) loading/unloading conditions which
take place both for elastic and plastic deformations

γ ≥ 0, Φ(σ, ξ) ≤ 0, γΦ(σ, ξ) = 0. (10)

The parameter γ ≥ 0 in (10) is determined by the plastic consistency condition γΦ̇(σ, ξ) = 0. Note that γ is nonzero
only if Φ = Φ̇ = 0, see (9). For details we refer to [17].

The plastic flow rule is expressed by (6). In the case of associative plasticity (typically applied to porous solids) the
flow function becomes G = Φ and the associative flow rule of plastic deformation is given by

ėp = γ
∂Φ

∂σ
. (11)

For rate-independent elasto-plasticity the relation (4) involves the rate constitutive equation σ̇ = E : ėe. Using (3)
and (11) the following expression holds

σ̇ = E :

(
ė − γ

∂Φ

∂σ

)
. (12)

Multiplying (12) by ∂Φ/∂σ we get

∂Φ

∂σ
: σ̇ = ∂Φ

∂σ
: E : ė − γ

∂Φ

∂σ
: E :

∂Φ

∂σ
. (13)

To eliminate γ we take the rate form of (5) as follows

Φ̇(σ, ξ) = 0, (14)

which using the chain rule reads

∂Φ

∂σ
: σ̇ + ∂Φ

∂ξ
· ξ̇ = 0. (15)

Replacing (13) and (7) in (15) we get the following expression

∂Φ

∂σ
: E : ė − γ

(
∂Φ

∂σ
: E :

∂Φ

∂σ
− ∂Φ

∂ξ
· z

)
= 0. (16)
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Thus, the plastic multiplier can be defined explicitly as

γ = (∂Φ/∂σ) : E : ė

(∂Φ/∂σ) : E : (∂Φ/∂σ) − (∂Φ/∂ξ) · z
. (17)

Substituting γ in (12) we get

σ̇ = Eep : ė, (18)

where the so-called continuum elasto-plastic tangent modulus Eep is given by

Eep = Eep(σ, ξ, ė) =

⎧⎪⎪⎨
⎪⎪⎩

E, if Φ(σ, ξ) < 0 ∧ ∂Φ

∂σ
: E : ė ≤ 0,

E − E : (∂Φ/∂σ) ⊗ (∂Φ/∂σ) : E

(∂Φ/∂σ) : E : (∂Φ/∂σ) − (∂Φ/∂ξ) · z
, if Φ(σ, ξ) = 0 ∧ ∂Φ

∂σ
: E : ė > 0.

(19)

Using (17) one can rewrite (7) in the form

ξ̇ = Gep : ė, (20)

where

Gep = Gep(σ, ξ, ė) =

⎧⎪⎪⎨
⎪⎪⎩

0, if Φ(σ, ξ) < 0 ∧ ∂Φ

∂σ
: E : ė ≤ 0,

(∂Φ/∂σ) : E : z

(∂Φ/∂σ) : E : (∂Φ/∂σ) − (∂Φ/ξ) · z
, if Φ(σ, ξ) = 0 ∧ ∂Φ

∂σ
: E : ė > 0.

(21)

The expressions (18)and (20) are called the incremental elasto-plastic constitutive relations derived under the
assumption (14) during the plastic yielding.

We suppose now that the elasto-plastic body occupying the domain Ω is fixed on the part ΓD of its boundary
∂Ω, ΓD ⊂ ∂Ω, and loaded by the body force f b in Ω and by the surface traction f s on the rest part of the boundary
ΓT , ΓT ⊂ ∂Ω, ΓD ∪ ΓT = ∂Ω. Taking into account the continuation of loading with respect to the time parameter
t ∈ [0, T ] ⊂ R one can formulate the problem of elasto-plasticity as the following initial value problem: find

u = u(x, t), σ = σ(x, t), ξ = ξ(x, t),

such that∫
Ω

σ̇ : e(v) dΩ = (Ḟ , v), ∀v ∈ V , t ∈ (0, T ]

σ̇ = Eep(σ, ξ, ė) : ė

ξ̇ = Gep(σ, ξ, ė) : ė

ė = e(u̇), u̇ ∈ V

(22)

with initial conditions

u = u(x, 0) = 0, σ = σ(x, 0) = 0, ξ = ξ(x, 0) = 0, ∀x ∈ Ω.

Here, x is the space variable in Ω, V := {v ∈ [H1(Ω)]3|v = 0 on ΓD} is the space of admissible displacements, and F

is the function of all external forces with an inner product defined as follows

(Ḟ , v) =
∫

Ω

ḟ b · v dΩ +
∫

ΓT

ḟ s · v dΓ.

Note that the first relation in (22) represents the incremental equilibrium equation in a weak form.

3. Incremental finite element elasto-plasticity

In this section, we present the discrete analog of the initial value problem (22) by using finite differences with
respect to the time parameter t and finite elements with respect to the space variable x. We introduce the following
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temporal mesh in the interval [0, T ] ⊂ R

t0 = 0, tn+1 = tn + �t, n = 0, . . . , N, N = T

�t
− 1. (23)

The domain Ω is discretized by finite elements with a discretization parameter h. Using rates one can exploit the
following incremental relation

�σh =
∫ tn+1

tn
σ̇h dt, t ∈ [tn, tn+1].

For a fixed time step tn = n�t we approximate u(x, tn), σ(x, tn), and ξ(x, tn), respectively, by

un
h(x), σn

h(x), ξn
h(x),

where un
h ∈ V h, V h is the finite element subspace of V , σn

h and ξn
h belong to the corresponding discrete spaces of

stresses and internal variables.
For given un

h, σ
n
h, ξ

n
h, the increments �uh, �σh, �ξh at the time step tn, n = 0, . . . , N, can be determined by using

the following incremental finite element (FE) algorithm

S1. Initial step: u0
h = 0, σ0

h = 0, ξ0
h = 0

S2. Time steps: for n = 0, . . . , N do
◦ Compute the increments �uh, �σh, �ξh, such that∫

Ω

�σh : e(vh) dΩ = (�F , vh), ∀vh ∈ V h, (24)

�σh = Eep(σn
h + θ�σh, ξ

n
h + θ�ξh, �eh) : �eh, (25)

�ξh = Gep(σn
h + θ�σh, ξ

n
h + θ�ξh, �eh) : �eh, (26)

�eh = e(�uh), �uh ∈ V h. (27)

◦ Put un+1
h = un

h + �uh, σ
n+1
h = σn

h + �σh, ξ
n+1
h = ξn

h + �ξh.
S3. End

The right hand side in (24) is determined through

(�F , vh) =
∫

Ω

�f b · vh dΩ +
∫

ΓT

�f s · vh dΓ, (28)

where

�f b(x) = f b(x, tn+1) − f b(x, tn), �f s(x) = f s(x, tn+1) − f s(x, tn).

Note that θ ∈ [0, 1] is a parameter. The choice of θ = 0 resembles the forward (explicit) Euler method, θ = 1/2
indicates the midpoint rule, and θ = 1 corresponds to the backward (implicit) Euler scheme (see, e.g., [17]). Hence,
the algorithm above refers to as the explicit (θ = 0) and implicit (θ = 1) incremental FE method, respectively. The
question of consistency, numerical stability and accuracy of the forward and backward Euler integration algorithms is
discussed in [22]. The essential difficulty in the incremental finite element method is the computation of Eep and Gep

which depend at a fixed time step tn on the stress and the vector of internal variables. Note that in the case θ = 0 the
values of ∂Φ/∂σ, ∂Φ/∂ξ, and z in (19) and (21) are computed at the beginning of the time increment and hence, at
each time step they are known in advance.

Iterative solution schemes based on Newton’s method to compute the increments �uh, �σh, and �ξh are widely used
in the literature (cf., e.g., [4,5,19,22]). Typically, for each n, 0 ≤ n ≤ N, in step S2 of the incremental FE algorithm, one
has to solve a nonlinear system to find �uh. The solution of this nonlinear system requires applications of Newton-like
algorithms in which a sequence of linear problems has to be solved (see, e.g., [4]). The use of the so-called consistent
tangent moduli within the finite element approach was first proposed in [19] where a consistently linearization of the
nonlinear problem based on the closest-point return mapping algorithms is applied in order to preserve the quadratic
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rate of asymptotic convergence of Newton’s method. It was shown in the latter work that for associative J2 plasticity
with arbitrary rules of isotropic and kinematic hardening, an explicit expression for the tangent moduli consistent
with the integration scheme can be derived. In the particular case of von Mises yield criterion with associative flow
rule and isotropic hardening, the closest-point projection leads to the so-called radial return algorithm for which the
consistent tangent matrix is easily computed (see [19] for details). A return mapping algorithm for the J2 flow theory
with isotropic hardening to compute the returned stress is presented in [17]. When the return is non-radial, an essential
drawback in practical computations is the necessity of matrix inversions to solve the return equations (see, [17,2,22]).

4. Return mapping algorithm

We apply the return mapping algorithm based on the operator splitting methodology for the numerical solution
of the elasto-plastic problem within the incremental FE method described in Section 3. For pioneering results in this
area we refer the reader to [21] in case of simple plasticity models as, for instance, the linearly hardening von Mises
plasticity with constant elastic moduli. The return mapping methods were further extended in [18] to elasto-plastic
materials with non-associative plasticity, general yield conditions, arbitrary flow and hardening rules, and variable
tangent elastic moduli. Details and generalizations of these algorithms can be found in [17].

For convenience of the presentation, we omit the discretization space parameter h and use the following notations
for the increments: �σ = �σh(x), �e = �eh(x), �ξ = �ξh(x), at a fixed time step tn, 0 ≤ n ≤ N. For given initial
values of σn and ξn the problem is to find the evolution of these values over the interval [tn, tn+1].

The basic idea of the return algorithm is the following: A trial stress σtrial is involved by taking the entire step to be
elastic (elastic predictor). The computed trial stress is categorized to be elastic or plastic by checking the sign of the
yield function Φ. If the predicted trial stress happens to fall outside the yield surface (Φ > 0) then our assumption of
elasticity has been wrong and the updated stress σn+1 is obtained by the orthogonal projection (closest-point projection)
of the trial stress onto the updated yield surface (plastic corrector). The return path is visualized in Fig. 1 in case of
perfect plasticity (i.e., ξ ≡ 0).

Using (2), (4), and (11) the final updated stress σn+1 can be successively expressed as follows

σn+1 = E : (en+1 − (ep)n+1) (29)

σn+1 = E : (en+1 − (ep)n) − E : ((ep)n+1 − (ep)n) (30)

σn+1 = E : en+1 − E :
(
en − (ee)n

)− E : �ep (31)

σn+1 = E : (ee)n + E : (en+1 − en) − E : �ep (32)

σn+1 = σn + E : �e − �γ E :
∂Φ

∂σ
(33)

σn+1 = σtrial − �γ E :
∂Φ

∂σ
, (34)

where �γ = γn+1�t ≥ 0. This choice corresponds to the backward Euler scheme and leads to the classical return
mapping algorithms (cf., [17]).

Fig. 1. Mapping the trial stress back to the yield surface (perfect plasticity)
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For a given total strain increment �e the following two steps are applied in the return mapping process:

1. Elastic predictor: Compute the trial stress σtrial assuming only elastic behavior

σtrial = σn + �σe with �σe = E : �e. (35)

2. Plastic corrector: Compute the updated stress and the internal variables

σn+1 = σtrial − �γ A, A = E :
∂Φ

∂σ
, (36)

ξn+1 = ξn + �ξ, �ξ = �γ z, (37)

where ∂Φ/∂σ and z are computed at the end of the time increment. Note that A is a second-order tensor called the
projection direction (see Fig. 1). One can see from (33) that the updated stress σn+1 = σn + �σ can be evaluated with
a stress increment �σ = T (σn, ξn, �e) = Tn(�e), computed by the return mapping procedure with a stress operator
Tn determined according to the sign of the yield function Φ, namely

Tn(�e) =
⎧⎨
⎩

E : �e, if Φ(σtrial, ξn) ≤ 0,

E : �e − �γ E :
∂Φ

∂σ
, if Φ(σtrial, ξn) > 0.

(38)

Therefore, we simply set σn+1 = σtrial in the case Φ(σtrial, ξn) ≤ 0. Otherwise, one computes the plastic return of
the trial stress onto the yield surface according to (36). The discrete plastic multiplier �γ is updated satisfying the
yield condition at the end of the time increment

Φ(σn+1, ξn+1) = 0. (39)

In general, the return mapping of the trial stress back to the yield surface is nonlinear and it should be performed
iteratively according to the Newton method with consistently linearized stress–strain relations. Thus, the proper choice
of tangent moduli consistent with the proposed return mapping procedure has a strong influence on the convergence
rate of the iterative schemes and the diminishing of the computational work. Consistent tangent moduli based on an
exact linearization of the nonlinear problem have been originally proposed in [19] and recently developed, for instance,
in [2].

In practical computations we emphasize on the classical von Mises constitutive relations which can be involved
in various modifications (perfect plasticity or isotropic/kinematic hardening). We use as a model example the von
Mises plasticity with isotropic strain hardening which fits to the porous composite ceramic materials when consider
mechanical damages due to the growth and nucleation of voids. This model is given by

Φ(σ, ξ) =
√

3

2
‖dev(σ)‖ − H(ξ) (40)

ξ =
√

2

3
‖ep‖, (41)

where dev (σ) = σ − (1/3)tr(σ)1 denotes the deviatoric stress tensor and 1 is the second-order symmetric unit tensor.
H is a given function derived experimentally. It is assumed to be twice differentiable with the following relations

H(ξ) ≥ H0 > 0, H′(ξ) ≥ H1 > 0, |H′′(ξ)| ≤ H2, ∀ξ ≥ 0. (42)

The values of ∂Φ/∂σ and ∂Φ/∂ξ which take part in (19)and (21) can be easily computed

∂Φ

∂σ
=
√

3

2

dev(σ)

‖dev(σ)‖ ,
∂Φ

∂ξ
= −H′. (43)

The function H′(ξ) is called the isotropic hardening modulus. By (7), (11), and (41) we find z as follows

ξ̇ =
√

2

3
‖ėp‖ =

√
2

3
γ

∥∥∥∥∂Φ

∂σ

∥∥∥∥ = γz, =⇒ z =
√

2

3

∥∥∥∥∂Φ

∂σ

∥∥∥∥ = 1. (44)
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Note that in this particular case the closest-point projection can be explicitly defined in such a way that no operator
inversion is required. Here, one faces with the so-called radial return mapping algorithms whose efficiency is well
established [17,19].

5. Structural optimization

The problem of structural optimization of microcellular biomorphic TiC-ceramics is discussed in this section.
As noted in Section 1, the materials under consideration are microstructural and hence, their macroscopic mechanical
behavior strongly depends on microscopic geometrical quantities such as the size of the voids and the lengths and widths
of the different layers forming the cell walls (cf., e.g., [8]). While the size of the voids is determined by the growth of the
wood itself (early/late wood), the other quantities can be influenced by tuning the parameters within the biotemplating
process. For a given number of material layers m, we denote these geometrical quantities by α = (α1, . . . , αm)T, further
referred to as design parameters.

We consider a three-dimensional stationary microstructure with a geometrically simple tracheidal periodicity cell
Y = [0, 1]3 (see Fig. 2) consisting of an outer layer of carbon (C), interior layer of TiC, and a void channel (no material).
In this particular case the number of layers is m = 2. We assume that our material workpiece occupies the bounded
domain Ω ⊂ R3 consisting of periodically distributed infinitesimal microstructures with three constituents (C, TiC,
and Void).

The optimal structural design of the biomorphic microcellular ceramics can be performed by solving the structural
optimization problem

J(u, α) = inf
v,β

J(v, β), (45)

subject to the following equality constraints.
The homogenized elasto-plastic equation of type (22) with (Eep)H and (Gep)H,

m∑
s=1

αs := C, (46)

and the inequality constraints:

α(min)
s ≤ αs ≤ α(max)

s , 1 ≤ s ≤ m, (47)

where C is a given constant. The second equality in (46) and the bounds α
(min)
s , α

(max)
s , 1 ≤ s ≤ m, in (47) stand for

constraints motivated by both the microstructural geometry of the carbon preform and the biotemplating process.
The von Mises plasticity with isotropic strain hardening is included in the homogenized elasto-plastic equation. The
objective functional J depends on the mode of loading (cf., e.g., [8,16,3] for a variety of mechanical merit criteria).

Fig. 2. (a) Periodicity cell Y = [0, 1]3 and (b) cross section of Y = Void ∪ TiC ∪ C.



476                                                                           

Note that the resolution of the microstructures is cost prohibitive with respect to computational work. Thus, the
main idea is to derive a homogenized macromodel featuring the dependence on the microstructural design variables
and to apply the optimization process to the homogenized macrostructure. Typically, the microscopic and macroscopic
models are considered simultaneously supposing a strong scale separation, i.e., a large gap in length scale between
the macroscopic component and the microstructure. A double-scale asymptotic expansion for the displacement rate
and a homogenization procedure by taking a zero limit of the scale ratio are applied to come up with computationally
feasible macromodel. For layered materials the fourth-order tensor (Eep)H = (Eep)H(α) (also called homogenized
elasto-plastic tangent modulus) and (Gep)H = (Gep)H(α) in (46) corresponding to the homogenized model can be
explicitly obtained taking into account the expressions E

ep
s and G

ep
s of all material layers, 1 ≤ s ≤ m. Note that in this

case E
ep
s = Es and G

ep
s = 0 if the sth layer is elastic (see, e.g., [13], Chapter 5).

In our model the computation of the averaged stresses and strains from the constitutive relations has to be done
numerically. Effective elasto-plasticity properties of periodic microstructural composite materials based on the homog-
enization approach are considered in [7,14,20]. The following expression for the homogenized elasto-plastic tangent
modulus holds (see, e.g., [7])

(Eep
ijk�)H = 1

|Y |
∫

Y

E
ep
ijqr

(
Ikl
qr + ∂ζk�

q

∂yr

)
dY, (48)

where E
ep
ijqr are the components of the instantaneous tangent modulus and Ikl

qr is the fourth-order identity tensor given
by

Ikl
qr = 1

2
(δqkδrl + δqlδrk).

The third-order tensor ζ = (ζk�
q ) has Y-periodic (i.e., equal values on opposite sides of Y) entries ζk�

q ∈ H1(Y )

referred to as characteristic displacements. Note that ζk� are computed by solving the elasto-plasticity problem in the
unit cell Y with periodic boundary conditions. The Young modulus E (in GPa) and the Poisson ratio ν of our two
materials are, respectively, E = 10, ν = 0.22 for carbon and E = 439, ν = 0.187 for TiC. In case of elastic behavior
of the composite material numerous computational results are given in [9] for a two-dimensional specimen and in [11]
for a three-dimensional material workpiece.

To find the homogenized coefficients (48) we use finite element discretizations of the computational domain Y. The
periodic microcell is decomposed first in hexahedra and further by continuous, piecewise linear finite elements on
tetrahedral shape regular meshes, as shown in Fig. 3. Recently, we have developed adaptive grid refinement algorithms
using the Zienkiewicz–Zhu a posteriori error estimator originally proposed in [23] for elasticity problems. Based on an
averaging technique we find the nodal values of the recovered stress σ∗ and the discrete stress σ̂ locally and compute
the error indicator for each tetrahedral finite element T as follows

ηT := ‖σ∗ − σ̂‖0,T . (49)

Furthermore, we mark for refinement those tetrahedra {T } for which

ηT ≥ β max
T ′ ηT ′ ,

where 0 < β < 1 is a prescribed threshold, for instance, β = 0.5. Note that the adaptive mesh-refinement procedure is
local and computationally cheap. Details are given in [9]. Efficient solvers for the linear systems in the three-dimensional
elastic model are discussed in [11]. Some numerical experiments from the computation of the homogenized elasticity
coefficients with respect to the consecutive number of adaptive level are presented in Tables 1 and 2.

Our implementation of the incremental finite element method is based on adaptivity in the space discretization by
using a posteriori error estimators. The adaptive grid refinement within the computation of (24) and (25) in step S2
of the algorithm requires additionally to define and compute the error indicator, to refine the mesh, to generate a new
finite element space, and to transfer the evaluated data from the previous time step according to the new discretization.
Hence, during a fixed time increment the finite element discretization of the domain is updated and one has to take
care of sufficiently accurate approximate solutions. Our adaptivity procedure in the elasto-plasticity model relies on
the Zienkiewicz–Zhu type error indicator considering the error energy norm based on the corresponding elasticity
operator.
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Fig. 3. Adaptive refinement: (a) 3D unit periodicity cell Y and (b) cross section of Y.

Table 1
Homogenized coefficients w.r.t. the adaptive refinement level, density 19%

Level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 179.7 192.4 224.2 67.4 75.5 64.0
2 197.4 227.0 238.1 80.7 99.1 69.8
3 177.6 188.7 226.9 60.9 73.1 63.1
4 190.2 184.3 235.7 69.7 72.0 81.5
5 184.5 180.6 236.1 46.3 57.4 86.6
6 171.5 156.0 228.1 31.0 58.3 56.9
7 177.6 151.5 234.1 29.1 59.1 76.8
8 170.9 152.7 232.5 26.5 59.3 64.4
9 161.6 148.9 230.0 36.6 57.8 59.2

10 146.9 145.7 230.3 28.5 55.2 57.3

The stress computation procedure plays an essential role in the efficiency of the incremental finite element method.
We use the return mapping stress operator (38) defined in the previous section. Numerically the most consuming part
of the incremental algorithm is the solution of the nonlinear system (24) and (25) which has to be done at each time
step n, 0 ≤ n ≤ N. For simplicity, using an isomorphism RMn → V hn , we write this system in the following algebraic

Table 2
Homogenized coefficients w.r.t. the adaptive refinement level, density 84%

Level EH
1111 EH

2222 EH
3333 EH

1212 EH
2323 EH

1313

1 168.6 174.2 180.2 63.6 66.8 62.3
2 178.6 191.1 194.7 75.2 79.7 71.4
3 167.2 179.1 192.3 63.9 70.7 68.8
4 172.7 157.3 188.9 51.4 60.2 70.8
5 154.0 153.1 192.0 48.1 63.1 64.0
6 123.5 125.4 190.0 37.9 51.1 51.0
7 104.7 109.8 187.9 34.4 46.8 50.3
8 99.6 99.7 187.7 30.4 48.1 48.4
9 88.1 90.3 186.3 26.5 45.0 46.2

10 84.0 84.3 185.8 26.6 43.8 43.5
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form

Fn(�u) = �f n, �u, �f n ∈ RMn , (50)

where Mn is the number of degrees of freedom for the finite element mesh and hn is the discretization parameter at the
nth time step. The nonlinear operator Fn : RMn → RMn is defined by

< Fn(u), v >=
∫

Y

Tn(e(uh)) : e(vh) dY, ∀u, v ∈ RMn , (51)

where < u, v >= u · v and uh, vh are the finite element functions corresponding to u, v.
The system (50) can be solved iteratively by Newton-like method of the form

�ui = given (52)

rn,i = �f n − Fn(�ui) (53)

An,iδ
i = rn,i (54)

�ui+1 = �ui + ωiδ
i, (55)

where ωi ∈ (0, 1] is a damping parameter. The initial guess �u0 can be zero or the computed value of �u from
the previous time step. The choice of the matrix An,i in the linear system (54) and the efficient linear solver have a
strong influence on the accuracy of the numerical solution. A standard technique is to use the so-called initial stiffness
method for which An,i is the stiffness matrix corresponding to the elasticity operator. If the Frechet derivative F′

n of
the nonlinear operator in (50) exists, one can consider the Newton method with An,i = F′

n(�ui). Inexact (i.e., solving
(54) iteratively) Newton-like solvers are computationally cheaper than direct methods especially for large-scale elasto-
plasticity. Convergence of inexact Newton solvers and basic properties of Fn for return mapping stress computations
are studied in [5]. A proper combination of the inexact initial stiffness method and the inexact Newton method is
proposed in [4].

Our numerical experiments concern the incremental return mapping algorithm with inexact initial stiffness method,
i.e., An,i corresponds to the elasticity stiffness matrix which is symmetric and positive definite but not an M—matrix.
We apply the preconditioned conjugate gradient (PCG) method for solving the auxiliary linear system (54) with two
types of preconditioners: Incomplete Cholesky (IC) factorization and Algebraic MultiGrid (AMG) preconditioner. The
nonlinear system (50) is solved iteratively at each time step with a number of iterations determined by the following
stopping criterion

‖rn,i‖ ≤ ε‖�f n‖,
where ε is a given tolerance, for instance, ε = 10−4. For solving the auxiliary linear system to find the correction δi

we use a relative condition for the residual norm of the form

‖An,iδ
i − rn,i‖ ≤ η‖rn,i‖,

where η is a given accuracy parameter, taken in the experiments as η = 10−2.
In Table 3 we report some computational results for finding the characteristic displacement ζ11 in the unit microcell

with various density of the solid material part. We consider a time discretization with a step size �t = 1/10 (N = 9)
and report the number of degrees of freedom MN at the last adaptive refinement level. We denote by TNNLI the total
number of nonlinear iterations and by TNLI the total number of linear iterations using PCG as a computational solver.
One can observe from the numerical experiments a better convergence with respect to the number of iterations for the
AMG method compared to IC preconditioner. Various other preconditioners can be tested to get more efficient linear
solvers. One expects a faster convergence using the inexact Newton method for solving the nonlinear system.

The dependence of the homogenized elasto-plastic tangent modulus (Eep)H = (Eep)H(α) on the design parameters
α is found by means of multivariate interpolation. Primal-dual Newton interior point methods for solving the struc-
tural optimization problem with a suitable steplength selection and various strategies for convergence monitoring are
discussed in [10].
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Table 3
Convergence results: N = 9, ε = 10−4, η = 10−2

Density (%) MN TNNLI TNLI (IC) TNLI (AMG)

19 13336 17 876 293
51 16066 20 928 312
75 18430 23 943 325
84 19492 25 996 341

6. Conclusions

Structural optimization of biomorphic ceramic composites is considered. The new materials are produced using a
naturally grown wood by a two-steps processing: high-temperature pyrolysis of the wooden specimen and infiltration
reaction of the carbonized wood with various carbide forming metals (e.g., Si, Ti). Homogenization approach is applied
to obtain the macromodel with a cubic microstructure of three phases (carbon, carbide material, and a void) supposed
to be periodically distributed throughout the design media. The lengths and widths of the different material layers
forming the cell walls are considered as design parameters. These variables can be tuned very precisely during the
processing and have a significant impact on the macroscopic mechanical behavior of the final ceramics.

The homogenized elasto-plastic equation is invoked as an equality constraint in the structural optimization problem.
Additionally, we have inequality constraints motivated by the microstructural geometry. The incremental finite element
method is used for the numerical solution of the elasto-plastic problem. Newton-like iterative algorithms are applied
to solve the nonlinear system of equations during the time increments. A return mapping scheme is considered for the
stress computation procedure defined as a closest-point projection of the trial elastic stress onto the yield surface. The
latter method was extensively developed in the last decade and has become a popular tool in computational plasticity
due to its efficiency, accuracy, and stability.

Tetrahedral shape regular decomposition and adaptive grid refinement techniques based on a posteriori error esti-
mators are used for the finite element discretization of the microstructure. Numerical experiments for the computation
of the homogenized elasticity coefficients are presented for microcells of small/large density. Convergence results with
respect to the total number of nonlinear and linear iterations using various efficient linear iterative solvers are compared
and discussed.
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