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Abstract Microfluidic biochips are biochemical labo-
ratories on the microscale that are used for genotyping
and sequencing in genomics, protein profiling in proteo-
mics, and cytometry in cell analysis. There are basically
two classes of such biochips: active devices, where the
solute transport on a network of channels on the chip
surface is realized by external forces, and passive chips,
where this is done using a specific design of the geome-
try of the channel network. Among the active biochips,
current interest focuses on devices whose operational
principle is based on piezoelectrically driven surface
acoustic waves (SAWs) generated by interdigital trans-
ducers placed on the chip surface. In this paper, we are
concerned with the numerical simulation of such pie-
zoelectrically agitated SAWs relying on a mathematical
model that describes the coupling of the underlying pie-
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zoelectric and elastomechanical phenomena. Since the
interdigital transducers usually operate at a fixed fre-
quency, we focus on the time-harmonic case. Its vari-
ational formulation gives rise to a generalized saddle
point problem for which a Fredholm alternative is shown
to hold true. The discretization of the time-harmonic
surface acoustic wave equations is taken care of by
continuous, piecewise polynomial finite elements with
respect to a nested hierarchy of simplicial triangulations
of the computational domain. The resulting algebraic
saddle point problems are solved by blockdiagonally
preconditioned iterative solvers with preconditioners of
BPX-type. Numerical results are given both for a test
problem documenting the performance of the iterative
solution process and for a realistic SAW device illustrat-
ing the properties of SAW propagation on piezoelectric
materials.

1 Introduction

Biochips, of the microarray type, are fast becoming the
default tool for combinatorial chemical and biological
analysis in environmental and medical studies. Program-
mable biochips are miniaturized biochemical labs that
are physically and/or electronically controllable. The
technology combines digital photolithography, micro-
fluidics and chemistry. The precise positioning of the
samples (e.g., DNA solutes or proteins) on the surface
of the chip in picoliter to nano liter volumes can be done
either by means of external forces (active devices) or by
specific geometric patterns (passive devices).

During the last couple of years, such biochips have
attracted a considerable amount of interest, since phar-
macology, molecular biology, and clinical diagnostics
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require the precise handling of precious, tiny samples
and costly reagents in amounts of nanoliters. Biochips
can transport such volumes and perform biochemical
analysis of the samples. Microfluidic biochips and micro-
arrays are used in pharmaceutical, medical and forensic
applications as well as in academic research and devel-
opment for high throughput screening, genotyping and
sequencing by hybridization in genomics, protein pro-
filing in proteomics, and cytometry in cell analysis [42].
Traditional technologies rely on fluorescent dyes, radio-
active markers, or nanoscale gold-beads based on pos-
itive hybridization processes. However, these methods
only allow a relatively small number of DNA probes
per assay, and they only yield endpoint results and do
not provide information about the kinetics of the pro-
cesses. With the need for better sensitivity, flexibility,
cost-effectiveness and a significant speed-up of hybrid-
ization, the current technological trend is obtained by
the integration of the microfluidics on the chips itself.
Very recent and novel devices are surface acoustic wave
(SAW) driven microfluidic biochips whose operational
mode is based on piezoelectrically actuated SAWs on
the surface of a chip which transport the droplet contain-
ing probe along a lithographically produced network to
marker molecules placed at prespecified surface loca-
tions (cf., e.g., [2,8,43,52,56,53,55]). By changing the
surface chemistry appropriately, a fluidic network is pro-
duced on the chip: without mechanical tools the chip is
equipped with paths on which samples (and reagents)
propagate as if on tracks. This is done lithographically
by a lateral modulation of the wetting properties of the
free surface which leads to pronounced hydrophilic and
super-hydrophobic regions with significantly different
wetting angles. Small amounts of reagents are confined
to these tracks in contrast to mechanical barriers used
in conventional microfluidics.

The core of the technology are nanopumps featuring
SAWs generated by electric pulses of high frequency.
These waves propagate like a miniaturized earthquake
(nanoscale earthquake) and in this way transport liquids
along the surface of the chip (cf. Fig. 1). Figure 2 below
gives an illustration of a nano titration chip. On the
fluidic network a small portion of titrate solution (mid-
dle) is separated from a larger volume (right). SAWs
transport this quantity towards the analyte (left) at the
reaction site. Once a critical concentration is attained,
it can be either detected by a change of the color of
the analyte or a change of the conductivity. In the latter
case, this can be easily measured by a sensor that is inte-
grated on the same chip. Surface acoustic waves have
been used for a long time in high frequency applications
(cf., e.g., [13,36,40,54]). Using SAW-principles, it is now
possible to combine microelectronics and biochemistry.

Fig. 1 Working principle of an SAW biochip

Fig. 2 Fluidic network on the surface of the chip

Modern semiconductor technology enables the cost-
effective production of devices that unify biological func-
tionality, sensors and pumps for the transport of samples.
These devices can be easily integrated in electronic sys-
tems like those that are used in point-of-care diagnostics
(see [4,9,45,46,49]).

The nanopump consists of a piezoelectric substrate
which is equipped with so-called interdigital transduc-
ers on the surface. Radio-frequency signals are fed into
those transducers and are converted to a deformation
of the crystal underground. In this way, a mechanical
wave is launched across the surface with wavelengths
in the range of a few microns and amplitudes about
only a nanometer. Liquids on the surface are subject to
the vibrating force and absorb parts of the energy. The
absorbtion of energy for various frequencies depends on
the density and viscosity. These properties are ultimately
determined by the atomic composition, molecular struc-
ture and dynamics of the fluid.

Surface acoustic waves of larger amplitudes move
liquid droplets as a whole whereas low power SAWs
induce some sort of an internal streaming. The latter
case enables to construct SAW based nanomixers. If the
frequency of the SAW is changed, different streaming
patterns are induced and superimposed within the drop-
let that leads to a homogeneous blend of the water and
the probe much faster than by more conventional diffu-
sion type microfluidic mixing techniques.
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Fig. 3 Surface acoustic wave nanomixer; with agitation (top),
without agitation (below)

Figure 3 illustrates the effect of nanomixing in case of
the dissolution of a fluorescent dye deposited on the chip
surface with agitation (acoustically induced mixing) and
without agitation. By using SAW nanopumps, different
reagents can be efficiently mixed, separated or moved
to different reaction sites on the chip. Compared with
conventional micro titer plates, the respective volumes
are reduced by several orders of magnitudes.

The paper is organized as follows: in Sect. 2, we give a
brief outline of the theory of piezoelectricity. In Sect. 3,
we deal with the physical modeling of piezoelectrically
driven SAWs followed by the formulation and analysis
of a mathematical solution theory in a variational frame-
work which is provided in Sect. 4. Section 5 is devoted
to the finite element discretization of the time-harmonic
SAW equations, and Sect. 6 describes the numerical
solution of the resulting algebraic saddle point problem
and the associated Schur complement system by pre-
conditioned iterative solvers with blockdiagonal multi-
level preconditioners of BPX-type. Finally, in Sect. 7 we
provide a detailed documentation of numerical results
illustrating the performance of the iterative solvers as
well as the properties of SAW propagation on a realistic
piezoelectrical SAW device.

2 The theory of piezoelectricity

In piezoelectric materials, the mechanical stress σ

depends linearly on the electric field E, in contrast to
non-piezoelectric materials where the effect is quadratic.

Piezoelectric materials also show the reverse effect
to generate an electric field when subjected to mechan-
ical stress. These properties are called the piezoelectric
effect and the inverse piezoelectric effect, respectively.
The origin of the piezoelectric effect is related to an
asymmetry in the unit cell of a piezoelectric crystal and
can be observed only in materials with a polar axis,
i.e., in face of a rotational symmetry around this axis
there are differences in the two directions of this axis
(cf. Fig. 4). Crystallographers recognize 32 classes of
crystals of which twenty exhibit the piezoelectric effect.

Fig. 4 Polar axis of a piezoelectric crystal

Fig. 5 Crystallographic structure of a “PZT” material: tempera-
ture above (left) and below (right) the Curie point

Figure 5 shows a traditional “PZT” piezoelectric mate-
rial consisting of a small, tetravalent metal ion, usually
titanium or zirconium, in a lattice of larger divalent
metal ions, usually lead or barium, and O2-ions. Such
materials show a simple cubic symmetry above the Curie
temperature and are thus isotropic before poling. After
poling, they exhibit a tetragonal symmetry below the
Curie temperature (see Fig. 5, right). Above this tem-
perature, they lose the piezoelectric properties again.

Although the magnitudes of piezoelectric voltages,
movements, or forces are small, and often require ampli-
fication (for instance, a typical disc of piezoelectric
ceramic will increase or decrease in thickness by only
a small fraction of a millimeter), piezoelectric materi-
als have been adapted to a wide range of applications:
the piezoelectric effect is used in sensing applications,
such as in force or displacement sensors. The inverse
piezoelectric effect is used in actuation applications, for
instance in motors and devices that precisely control
positioning, and in generating sonic and ultrasonic sig-
nals. Typical piezoelectric materials are quartz (SiO2),
lithium niobate (LiNbO3) or barium titanate (BaTiO3).

In the sequel, we consider a linear model for piezo-
electricity in which the elastic, piezoelectric and dielec-
tric coefficients are treated as constants independent
of the magnitude and frequency of applied mechanical
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stresses and electric fields. The model is macroscopic,
i.e., only mean values of the relevant physical magnitudes
are incorporated. Real materials involve microscopic
effects as well as mechanical and electric dissipation
and nonlinear behavior. For further reference on piezo-
electric problems we refer to [18,35] and the references
therein.

Denoting by Ω ⊂ R
d, d = 2 or d = 3 a Lipschitz

domain and by [0, T] ⊂ R+ a time interval, the mechan-
ical displacement u = u(x, t) of a piezoelectric material,
occupying Ω and being exposed to a volume force b, is
described by the wave equation

ρ
∂2u
∂t2

− ∇ · σ = b in Q := Ω × [0, T]. (1)

Here, ρ is the density and σ = (σij) stands for stress ten-
sor. The stress tensor is related to the linearized strain
tensor ε = (∇u + (∇u)T)/2 by the constitutive equation
(generalized Hooke’s law)

σij(u, E) = cijklεkl(u) − ekijEk. (2)

Here, E = (Ek) denotes the electric field, c = (cijkl)

is the symmetric, positive definite forth-order elasticity
tensor and e = (ekij) refers to the symmetric third-order
piezoelectric tensor. Note that here and in the sequel we
adopt Einstein’s summation convention.

In piezoelectric materials, the frequency of the occur-
ring electric field wave is considered sufficiently small so
that the coupling of electromagnetic waves and elastic
waves can be neglected. This means that local perturba-
tions in the electromagnetic field are felt almost instan-
taneously throughout the domain, so that the electric
field can be treated as quasistatic. Practically, this can be
achieved by setting the magnetic permeability to zero,
corresponding to an infinite speed of the electromag-
netic wave. Maxwell’s second equation then reduces to
∇ × E = 0, i.e., the electric field is irrotational and thus
can be represented as the gradient of an electric scalar
potential Φaccording to E = −∇Φ. When the electric
field E is known, the magnetic field H can be obtained
from Maxwell’s first equation. However, the magnetic
field is usually not of interest in piezoelectric computa-
tions and is therefore not considered further. Moreover,
piezoelectric substrates are nearly perfect isolators, i.e.,
the density of the free electric charges and the current
density can be completely neglected. Consequently, the
only relevant Maxwell equation is ∇ · D = 0, where
D = D(x, t) is the electric displacement that is related
to the electric field E by the constitutive equation

Di = εijEj + Pi.

Fig. 6 The formation of an electric dipole by pressure

Here, P = (Pi) is the electric polarization and ε = (εij)

stands for the symmetric, positive definite permittivity
tensor.

Figure 6 shows a schematic explanation for the for-
mation of a polarization P in an atomic structure when
subjected to external stress: In both cases one can see six
“point charges”, “red” indicating positive and “green”
negative charges. In a relaxed state with no forces acting
on them, they are arranged at the vertices of a hexa-
gon. In some distance, the positive and negative array
of charges will cancel each other out and the potential
Φ will be zero. If a compressive force is applied to the
hexagon, the array is distorted in such a way as to bring
two of the positive charges closer together at one end
and the negative charges at the other. This forms a dipole
where one end of the array is positive and the other one
is negative. One can easily imagine a crystal structure
made up of these hexagonal arrangements of ions.

In piezoelectric materials, the polarization according
to external strain is linear. In analogy to the inverse
effect (2), we set

Di(u, E) = eiklεkl(u)+ εijEj. (3)

Summarizing, the linear field equations of piezoelectric-
ity are given by

ρ
∂2ui

∂t2
− cijkl uk,lj − ekijΦ,kj = bi in Q, (4)

eikl uk,li − εijΦ,ji = 0 in Q. (5)

and the constitutive equations

σij(u,Φ) = cijklεkl(u)+ ekijΦ,k, (6)

Di(u,Φ) = eiklεkl(u)− εijΦ,j. (7)

The boundary ∂Ω is partitioned into two disjoint sets
according to

∂Ω = Γu ∪ Γσ , Γσ = ∂Ω\Γu,

∂Ω = ΓΦ ∪ ΓD, ΓD = ∂Ω\ΓΦ ,

where the Dirichlet boundaries Γu and ΓΦ are assumed
to be closed and with non-vanishing d − 1-dimensional
measure. The piezoelectric equations are supplemented
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by the decoupled boundary conditions

u|Γu = uΓ ,

σ · n|Γσ = σ n,
where ∂Ω = Γu ∪ Γσ , (8)

Φ|ΓΦ = ΦΓ ,

D · n|ΓD = Dn,
where ∂Ω = ΓΦ ∪ ΓD, (9)

and by the initial conditions

u(x, 0) = u0(x),
∂u
∂t
(x, 0) = u1(x). (10)

Sometimes, it is useful to adopt a compressed nota-
tion for the piezoelectric moduli, the Voigt notation (see,
e.g., [18,35,59]). By utilizing the symmetry properties of
the third- and forth-order tensors they can be reduced to
higher dimensional second-order matrices. To this end,
we use the identification I = (ij), where

(ij) (11) (22) (33) (23) (13) (12)

I 1 2 3 4 5 6

i.e., cIK = cijkl, eiK = eikl and εI = εij. With this nota-
tion, the characteristic properties of a linear piezoelec-
tric substrate are completely determined by the material
matrix

(
cIK eT

Ki
eiK εij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

e11 e21 e31
e12 e22 e32
e13 e23 e33
e14 e24 e34
e15 e25 e35
e16 e26 e36

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

⎤
⎦

⎡
⎣ε11 ε12 ε13
ε12 ε22 ε23
ε13 ε23 ε33

⎤
⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrices cIK and εij are symmetric with respect to
the main diagonal and hence, there are 21 + 18 + 6 = 45
independent moduli for the most general piezoelectric
substrates. In Table 3 (see 7.2), we have listed the mate-
rial matrices for lithium niobate.

3 Piezoelectrically driven SAWs

3.1 Surface acoustic wave devices

Surface acoustic waves are modes of elastic energy prop-
agating at the surface of a solid body. Being the nanome-
ter size analogon of earthquakes, they have been made
available to industrial applications during the last two
decades. The underlying technique is relatively new,
although the first theoretical treatments on the prop-
agation of SAWs at the free surface of a homogenous
isotropic elastic solid date back approximately 150 years

Fig. 7 Interdigital transducer

(cf. [44]). But it was not before White and Voltmer [51]
succeeded in the production of SAWs on the surface of
a piezoelectric substrate that the use of this technology
became clear. Nowadays, piezoelectric SAW devices are
very popular in signal-processing applications (see, e.g.,
[13,20,22,30,33,36]), which is mostly due to the fact that
on homogenous substrates the velocity of SAWs is inde-
pendent of their frequency.

Surface acoustic waves are easily excited on piezo-
electric solids, because substrates deform due to the
application of an electric field. Rapid changes of these
electric fields are efficiently converted into a real ‘nano-
quake on a chip’. Such rapid changes can be generated
by a metallic electrode comb structure, called interdig-
ital transducer (IDT), deposited on the surface of the
piezoelectric material (see Fig. 7).

By applying an alternating voltage to the IDT, a SAW
is excited [39]. Typical frequencies range in the hundred
MHz regime, typical wavelengths of SAW are microm-
eters. Since the SAW components can be manufactured
using advanced photolithographic techniques, they meet
the requirements of small size and weight. This is also the
reason why SAW devices can be mass produced using
the same techniques as in semiconductor microfabrica-
tion. They receive outstanding response characteristics,
especially in filter applications.

Unfortunately, the excitation of an IDT on a pie-
zoelectric substrate can lead to the generation of bulk
acoustic waves (BAWs) as well as surface waves. In most
applications, such BAWs are certainly undesirable, e.g.,
in signal processing applications they seriously degrade
the filter response. In most analytical treatments, BAWs
are neglected.

The typical dimensions of a SAW chip is only a few
millimeters, depending on the operating frequency. A
wide range of piezoelectric materials are used for the
production of SAW devices, among them lithium niobate
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Fig. 8 Modeling of surface acoustic waves. Coordinate system
(left) and Rayleigh wave (right)

(LiNbO3), lithium tantalate (LiTaO3), and quartz (SiO2)
monocrystals.

3.2 Physical modeling of Rayleigh waves

The type of surface waves considered here are so-called
Rayleigh waves (see, e.g., [3,34]), i.e., these are waves
polarized in the sagittal plane and propagating at the
free surface at a speed less than that of volume shear
elastic waves. These waves usually are considered in a
semi-infinite, isotropic and homogenous linear elastic
space, which will be fixed as in Fig. 8 (left).

The sagittal plane is the plane spanned by the unit sur-
face normal and the real wavevector k, i.e., the (x1, x3)-
plane in Fig. 8 (left). SAWs are strictly confined to the
limiting surface of the piezoelectric substrate and practi-
cally nil outside a relatively narrow zone. To be precise,
the amplitude of the displacement u

¯
decays exponen-

tially with depth into the substrate [35]. In true Ray-
leigh waves, most of the energy (90%) is concentrated
within one wavelength from the surface. Thus, both the
mechanical displacements u and the electric potential
Φ should vanish as x3 → ∞. Moreover, since x1 is the
direction of propagation of the wave solutions, there is
no dependence of u

¯
and Φ on the x2 coordinate, since

here the surface is assumed to be infinite.
We note that in the physical modeling of SAWs the

assumption of an x2-independence is extremely simpli-
fying, since piezoelectric materials are in general aniso-
tropic and pure Rayleigh SAWs can be observed only in
rare crystal cuts.

The two wave motions in the x1- and x3-direction are
90◦ out of phase in the time domain: if one wave com-
ponent is at its maximum for a given instant, the other
will be zero. Moreover, the displacement in the x3-direc-
tion will be larger than that in the x1-direction. These

considerations give rise to

ui = αi exp(−βkx3) exp(i(ωt − kx1)),

Φ = α4 exp(−βkx3) exp(i(ωt − kx1)),

where Re(β) > 0. Hence, in some sense the factor β
measures the rate of exponential decay into the sub-
strate. We insert these functions into the piezoelectric
equations by

ρ
∂2ui

∂t2
− cijkl

∂2uk

∂xl∂xj
− ekij

∂2Φ

∂xk∂xj
= 0,

eikl
∂2uk

∂xl∂xi
− εij

∂2Φ

∂xj∂xi
= 0.

This leads to a linear system for the coefficients αi of the
form

M α = 0.

Here, α = (αi) ∈ C
4, M = (Mkl) ∈ C

4×4, and the coeffi-
cients Mkl are quadratic functions in β. For the exis-
tence of nontrivial solutions, we have to require that
det M = 0 . Accounting for Re(β) > 0, we get four
possible values for β. For each such β, there is an eigen-
vector α.

The general solution is then obtained as a linear
combination of these solutions

ui = exp(i(ωt − kx1))

4∑
m=1

c(m)α(m)i u0(m)
i exp(−β(m)kx3),

Φ = exp(i(ωt − kx1))

4∑
m=1

c(m)α(m)4 Φ0(m) exp(−β(m)kx3),

where i stands for the imaginary unit. We note that
the weighting factors c(m), representing the value of
the phase velocity, have to be chosen according to the
boundary conditions.

The use of anisotropic materials causes many differ-
ences in detail even though the occurring surface waves
share many features. For instance, the waves are still
elliptically polarized at each depth and the displacement
amplitude decays exponentially into the substrate. But
in anisotropic materials, the phase velocity depends on
the direction of propagation and in general, the vec-
tor of energy flow is not parallel to the wave vector.
Moreover, the plane of the elliptical polarization of the
displacement does not necessarily correspond to the sag-
ittal plane, but even when it does, the principal axes of
the ellipse are not necessarily x1 and x3.
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4 Mathematical theory of piezoelectric SAWs

Surface acoustic waves are usually excited by a source
interdigital transducer located at ΓΦ and operating at
a fixed frequency ω > 0. We treat the excitation as a
Dirichlet boundary condition for the electric potential
Φ and assume that there is no further volume force b.
Consequently, the piezoelectric equations reduce to

ρ
∂2u
∂t2

− cijkl
∂2uk

∂xl∂xj
− ekij

∂2Φ

∂xk∂xj
= 0, (11)

eikl
∂2uk

∂xl∂xi
− εij

∂2Φ

∂xj∂xi
= 0. (12)

In particular, we are looking for time harmonic solutions

u(x, t) = Re(u(x) exp(−iωt)), (13)

Φ(x, t) = Re(Φ(x) exp(−iωt)), (14)

where the functions u and Φ are complex valued. The
boundary conditions are assumed to be of the same form

u(x, t) = Re(uΓ (x) exp(−iωt)), (15a)

σ (x, t) · n = Re(σ n(x) exp(−iωt)), (15b)

Φ(x, t) = Re(ΦΓ (x) exp(−iωt)), (15c)

D(x, t) · n|ΓD = Re(Dn(x) exp(−iωt)). (15d)

For the variational formulation of (11), (12), (15a)–(15d)
we adopt standard notation of Lebesgue and Sobolev
space theory (cf., e.g., [1,21,37]. We denote by L2(Ω)

(L2(Ω)) the Lebesgue of square integrable complex
valued functions (vector fields) on Ω with inner prod-
uct (·, ·)0,Ω and norm ‖ · ‖0,Ω and by Hk(Ω) (Hk(Ω))
the Sobolev space of complex valued square integrable
functions (vector fields) having square integrable weak
derivatives up to order k ∈ N with inner product (·, ·)k,Ω
and norm ‖ · ‖k,Ω . For Γ ′ ⊆ ∂Ω , we refer to H1/2(Γ ′)
(H1/2(Γ ′)) as the trace space associated with H1(Ω)

(H1(Ω)). The subspace H1
0,Γ ′(Ω) (H1

0,Γ ′(Ω)) stands for
the subspace of functions (vector fields) on Ω with van-
ishing trace on Γ ′ (omitting the subindex Γ ′, if Γ ′ =
∂Ω). Moreover, we denote by H1/2

00 (Γ
′) ⊂ H1/2(Γ ′)

(H1/2
00 (Ω) ⊂ H1/2(Γ ′)) the subspace of functions (vec-

tor fields) whose extension by zero to all of ∂Ω belongs
to H1/2(∂Ω) (H1/2(∂Ω)) and defines a bounded linear
operator. The associated dual spaces are referred to as
H−1/2(Γ ′) (H−1/2(Γ ′)).

For the ease of notation, we set V := H1
0;Γu

(Ω), W :=
H1

0;ΓΦ
(Ω) and denote by V∗ and W∗ the associated dual

spaces. As far as the elastic and electric Dirichlet bound-
ary data are concerned, we assume uΓ ∈ H1/2(Γu) as
well asΦΓ ∈ H1/2(ΓΦ). We denote by EΓu : H1/2(Γu) →
H1(Ω) and by EΓΦ : H1/2(ΓΦ) → H1(Ω) the uniquely

defined extension operators with EΓu(uΓ )|Γu = uΓ and
EΓΦ (ΦΓ )|ΓΦ = ΦΓ , and we introduce the subspaces

VΓu := V + EΓu(uΓ ), (16a)

WΓΦ := W + EΓΦ (ΦΓ ). (16b)

On the other hand, for the elastic and electric Neumann
boundary data we suppose that σ n ∈ H− 1

2 (Γσ ) and Dn ∈
H− 1

2 (ΓD) and we refer to RΓσ : H1(Ω) → H−1/2(Γσ )

and RΓD : H1(Ω) → H−1/2(ΓD) as the trace operators
with RΓσ (u) = (σ (u) · n)|Γσ and RΓD(Φ) = (∇Φ · n)|ΓD .
We further introduce the sesquilinear forms

a(v, w) :=
∫
Ω

cijkl εkl(v) εij(w) dx,

b(ϕ, v) :=
∫
Ω

ekij
∂ϕ

∂xk
εij(v) dx,

c(ϕ,ψ) :=
∫
Ω

εij
∂ϕ

∂xi

∂ψ

∂xj
dx,

where v, w ∈ H1(Ω) and ϕ,ψ ∈ H1(Ω) with w and ψ
denoting the complex conjugation.

The variational formulation of the problem of piezo-
electrically driven SAWs then reads: Find u ∈ VΓu and
Φ ∈ WΓΦ such that for all v ∈ V and ψ ∈ W

a(u, v)+ b(Φ, v)− ω2(u, v)0,Ω = 〈σ n, v〉, (18a)

b(ψ , u)− c(Φ,ψ) = 〈Dn,ψ〉. (18b)

Here, 〈·, ·〉 stands both for the dual pairing between
H−1/2(Γσ ) and H1/2

00 (Γσ ) and for the dual pairing between

H−1/2(ΓD) and H1/2
00 (ΓD).

The above sesquilinear forms define linear operators
A : H1(Ω) → V∗, B : H1(Ω) → V∗ and C : H1(Ω) →
W∗ so that (18a) and (18b) can be written in operator
form as:

Find u ∈ V and Φ ∈ W such that

(A − ω2I)u + BΦ = f, (19a)

B∗u − CΦ = g, (19b)

where I stands for the injection I : V → V∗ and the
right-hand sides f ∈ V∗, g ∈ W∗ are given by

f := R∗
Γσ
(σ n)− (A − ω2I)EΓu(uΓ )− BEΓΦ (ΦΓ ),

g := R∗
ΓD
(Dn)− B∗EΓu(uΓ )+ CEΓΦ (ΦΓ ).

Lemma 4.1 The operators A, B and C are bounded
linear operators. Moreover, the operator A is symmet-
ric and V-elliptic, and the operator C is symmetric and
W-elliptic.
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Proof The continuity of A, B and C follows readily by
applying the Cauchy Schwarz inequality. The symmetry
of A results from the symmetry of the elasticity tensor
c, whereas the V-ellipticity of A is a direct consequence
of the positive definiteness of c and Korn’s inequality.
Likewise, the symmetry of C follows from the symmetry
of the piezoelectric tensor ε and the W-ellipticity can be
deduced from the positive definiteness of ε. 
�

The invertibility of C allows us to eliminate Φ from
(19a) and (19b) which results in the Schur complement
system

Su − ω2u = F. (21)

Here, the Schur complement operator S : V → V∗ and
the right-hand side F are given by

S := A + BC−1B∗, (22)

F := f + BC−1g. (23)

Lemma 4.2 The Schur complement operator S is a
bounded, symmetric and V-elliptic linear operator. Denot-
ing by γA and γC the ellipticity constants of A and C,
respectively, for the ellipticity constant γS of S and the
norm ‖S‖ we have the estimates

‖S‖ ≤ ‖A‖ + ‖B‖2

γC
, γS ≥ γA. (24)

Proof The symmetry of S follows immediately from the
symmetry of A and C. Moreover, for v, w ∈ V we have

〈Sv, w〉 = 〈Av, w〉 + 〈C−1B∗v, B∗w〉
≤

(
‖A‖ + ‖C−1‖‖B‖2

)
‖v‖1,Ω‖w‖1,Ω .

Hence, taking ‖C−1‖ ≤ γ−1
C into account, this gives the

upper bound for ‖S‖ in (24). The lower bound for γS can
be readily deduced from

〈Sv, v〉 = 〈Av, v〉 + 〈C−1B∗v, B∗v〉 ≥ γA ‖v‖2
1,Ω . 
�

The Riesz Schauder theory of compact, self-adjoint
linear operators is not directly applicable to (21), since
the Schur complement operator S is not a self-adjoint
endomorphism. Nevertheless, the Fredholm alternative
holds true for (21), as can be seen by introducing the
operator S−1

R : L2(Ω) → V ⊂ L2(Ω) according to

S−1
R v := S−1v, v ∈ L2(Ω). (25)

Then, (21) can be rewritten as

Su − ω2u = −ω2S
(

S−1
R − ω−2

)
u = F, (26)

and we obtain the following result:

Theorem 4.1 (Fredholm alternative)

(a) Forω2 ∈ R, exactly one of the following alternatives
holds true:
1. u = 0 is the only solution of the eigenvalue

problem Su = ω2Iu. In this case, for every F ∈
V∗ the equation (S−ω2I)u = F admits a unique
solution u ∈ V depending continuously on F.

2. There is a finite number M of linear independent
eigenfunctions u1, . . . , uM satisfying Sum = ω2

Ium. In this case, if u solves (S−ω2I)u = F
¯

(i.e.,
if the equation is solvable), the general solution
can be obtained with arbitrary αm ∈ R by

u = u +
M∑

m=1

αmum.

(b) The spectrum of S consists of a sequence of count-
ably many real eigenvalues 0 < ω2

1 < ω2
2 < · · ·

tending to infinity, i.e., limj→∞ ω2
j = ∞.

(c) If ω2 ∈ R is an eigenvalue of S, the equation (S −
ω2I)u = F is solvable if and only if F ∈ (S−ω2I)(V),
i.e., iff F ∈ Ker(S − ω2I)0 where

Ker(S − ω2I)0

:= {v∗ ∈ V∗ | 〈v∗, v〉 = 0, v ∈ Ker(S − ω2I)}.

Proof The operator S−1
R as given by (25) is symmetric

in L2(Ω). Indeed, using the symmetry of S, for v, w ∈
L2(Ω) we obtain

(S−1
R v, w)0,Ω = (S−1

R v, SS−1
R w)0,Ω

= (SS−1
R v, S−1

R w)0,Ω = (v, S−1
R w)0,Ω .

It is bounded, since for v ∈ L2(Ω):

γS‖S−1
R v‖2

0,Ω ≤ γS‖S−1
R v‖2

1;Ω

≤ 〈SS−1
R v, S−1

R v〉 = (v, S−1
R v)0,Ω

≤ ‖v‖0,Ω‖S−1
R v‖0,Ω .

Moreover, for a generalized eigenvalue ω2 �= 0 and a
corresponding eigenfunction u ∈ V of S, the operator
S−1

R satisfies the inverse eigenvalue problem

S−1
R u = 1

ω2 u. (27)

On the other hand, if u ∈ L2(Ω) satisfies (27), then
u ∈ V (since S−1

R (L2(Ω)) ⊂ V) and u is an eigenfunction
of S. The operator S−1

R is compact, since the embedding
V ⊂ L2(Ω) is compact. Consequently, S−1

R is a compact
self-adjoint endomorphism on L2(Ω) and hence, in view
of (26), the assertions can be deduced from the Hilbert-
Schmidt theory and the Fredholm alternative (cf., e.g.,
[58]). 
�

Theorem 4.1 tells us that the solvability of the Schur
complement system (21) is guaranteed for almost all
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ω2 ∈ R. If ω2 is a generalized eigenvalue of S, the solv-
ability condition (c) is in fact a condition on the bound-
ary data, since F = f + BC−1g and by (20),

F = R∗
Γσ
(σ n)+ BC−1R∗

ΓD
Dn − (S − ω2I)EΓu(uΓ ).

Remark 4.1 (A 2.5 D Model) Surface acoustic waves
propagate along the surface of a substrate. To be more
precise, the amplitude of the displacement u decays
exponentially with the depth of the penetration into
the substrate [35]. In true Rayleigh waves, most of the
energy (90%) is concentrated within one wavelength
from the surface. If h is the height of the substrate with
the surface located at x3 = 0, this leads to the definition

H(x3) := 1 − e
α(x3+h)

h

1 − eα
. (28)

We reduce the dependency on x3 to exponential decay:

u(x) = H(x3)u(x1, x2), (29)

Φ(x) = H(x3)Φ(x1, x2). (30)

The factor α measures the rapidity of the exponential
decay. A good guess for this parameter can be obtained
from 2D calculations.

5 Finite element approximation of the SAW equations

We now restrict ourselves to the case where the com-
putational domain Ω ⊂ R

d is a polygonal resp. poly-
hedral domain. We provide a simplicial triangulation
Th(Ω) of Ω that aligns with Γu and Γφ and denote by
S(k)0,Γ ′(Ω ; Th(Ω)), k ∈ N,Γ ′ = Γu or Γ ′ = ΓΦ the finite
element space of continuous functions vh : Ω → C van-
ishing on Γ ′ and satisfying vh|T ∈ Pk(T), T ∈ Th(Ω),
where Pk(T) stands for the linear space of complex val-
ued polynomials of degree k on T ∈ Th(Ω). We approx-
imate the space V of displacements and the space W of
electric potentials by

Vh := S(k)0,Γu
(Ω ; Th(Ω))

d, (31a)

Wh := S(k)0,ΓΦ
(Ω ; Th(Ω)). (31b)

We refer to Ah : Vh → V∗
h, Bh : Wh → V∗

h and Ch :
Wh → W∗

h as the operators associated with the ses-
quilinear forms a(·, ·), b(·, ·) and c(·, ·)when restricted to
the respective finite dimensional subspaces, i.e., a|Vh×Vh ,
b|Wh×Vh and c|Wh×Wh . We note that these operators
inherit their properties from its continuous counter-
parts. In particular, Ah, Bh and Ch are bounded linear
operators. Moreover, Ah is symmetric and Vh-elliptic,
whereas Ch is symmetric and Wh-elliptic having the
same ellipticity constants γA and γC. We further define

fh ∈ V∗
h and gh ∈ W∗

h by 〈fh, uh〉 := 〈f, uh〉, uh ∈ Vh, and
〈gh,Φh〉 := 〈g,Φh〉,Φh ∈ Wh.

Then, the finite element approximation of (19)
amounts to the computation of uh ∈ Vh and Φh ∈ Wh
such that

(Ah − ω2Ih)uh + BhΦh = fh, (32a)

B∗
huh − ChΦh = gh, (32b)

where Ih is the injection Ih : Vh → V∗
h.

Again, static condensation of Φh yields the discrete
Schur complement system

(Sh − ωsIh)uh = Fh (33)

with Fh := fh + BhC−1
h gh and the discrete Schur com-

plement operator Sh given by

Sh := Ah + BhC−1
h B∗

h. (34)

It is an easy exercise to show that Sh as given by (34) is
indeed the Galerkin approximation of S, i.e.,

〈Shvh, wh〉 = 〈Svh, wh〉, vh, wh ∈ Vh.

If ω ∈ R is such that (21) is solvable, then it is well-
known that the operator Sω := S − ω2I satisfies the
inf-sup condition (cf., e.g., [12])

inf
0 �=v∈V

sup
0 �=w∈V

|〈Sωv, w〉|
‖v‖1,Ω‖w‖1,Ω

≥ β > 0. (35)

As has been shown in [31], for sufficiently small h a
discrete inf–sup condition holds true as well:

Theorem 5.1 Let Sh be given by (34) and assume that for
someω ∈ R the operator Sω satisfies the inf-sup condition
(35). Then, there exist h0 > 0 and βmin > 0 such that for
all h ≤ h0 the operator Sh,ω := Sh − ω2Ih satisfies the
discrete inf-sup condition

inf
0 �=vh∈Vh

sup
0 �=wh∈Vh

|〈Sh,ωvh, wh〉|
‖vh‖1,Ω‖wh‖1,Ω

≥ βh ≥ βmin.

Proof We give the proof for completeness and assume
without restriction of generality that ω �= 0. We intro-
duce bounded linear operators S−1 : V → V and S−1

h :
Vh → Vh by S(S−1v) = Iv, v ∈ V, and Sh(S

−1
h vh) =

Ihvh, vh ∈ Vh. Then, taking (35) into account, for v ∈ V
we get

β‖v‖1;Ω ≤ sup
0 �=w∈V

|〈Sωv, w〉|
‖w‖1;Ω

= sup
0 �=w∈V

|〈S(v − ω2S−1v, w〉|
‖w‖1;Ω

≤ ‖S‖ ‖v − ω2S−1v‖1;Ω .
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Hence, in view of the Vh-ellipticity of Sh for vh ∈ Vh we
obtain

sup
0 �=wh∈Vh

|〈Sh,ωvh, wh〉|
‖wh‖1;Ω

= sup
0 �=wh∈Vh

|〈Sh(vh − ω2S−1
h vh), wh〉|

‖wh‖1;Ω

≥ |〈Sh(vh − ω2S−1
h vh), vh − ω2S−1

h vh〉|
‖vh − ω2S−1

h vh‖1;Ω

≥ γS‖vh − ω2S−1
h vh‖1;Ω

≥ γS‖vh − ω2S−1vh‖1;Ω − ω2γS‖(S−1
h − S−1)vh‖1;Ω

≥
(
βγS

‖S‖ − ω2γS‖S−1
h − S−1‖

)
‖vh‖1;Ω

whence

βh ≥ βγS

‖S‖ − ω2γS‖S−1
h − S−1‖.

Since ‖S−1
h − S−1‖ → 0 as h → 0, we conclude. 
�

6 Multilevel preconditioned iterative solution
of the saddle point system

The discrete system (32a) and (32b) represents an alge-
braic saddle point problem of the form
(

A B
BT −C

) (
u
Φ

)
=

(
f
g

)
or ZU = �. (36)

Here, A ∈ R
n×n and C ∈ R

m×m are symmetric, positive
definite matrices satisfying

γ1vTv ≤ vTAv ≤ Γ1vTv, v ∈ R
n, (37a)

γ2Φ
TΦ ≤ ΦTCΦ ≤ Γ2Φ

TΦ, Φ ∈ R
m (37b)

with constants 0 < γi ≤ Γi, 1 ≤ i ≤ 2. Moreover, B ∈
R

n×m and f ∈ R
n, g ∈ R

m whence Z ∈ R
N×N , � ∈ R

N

where N := n + m. We further assume that Z satisfies

inf
U �=0

sup
V �=0

|VTZU|
‖U‖‖V‖ ≥ γZ > 0, (38)

where ‖ · ‖ stands for the Euclidean norm in R
N .

Generalized saddle point problems such as (36) arise
in many applications as, for instance, in the framework of
stabilized Stokes systems [47,48] or in mixed finite ele-
ment approximations of boundary value problems for
elliptic equations and systems [12]. We refer to [7,15,38]
and to the references therein for basic results and to
[5,11,14,16,25,26,31,32] for efficient iterative solution
techniques including multilevel preconditioning.

In the sequel, we closely follow [32,48] and consider
blockdiagonal preconditioners of the form

P−1 :=
(

Ã 0
0 C̃

)
, (39)

where we assume that Ã ∈ R
n×n and C̃ ∈ R

m×m are
symmetric, positive definite matrices satisfying

γ̃1vTv ≤ vTÃv ≤ Γ̃1vTv, v ∈ R
n, (40a)

γ̃2Φ
TΦ ≤ ΦTC̃Φ ≤ Γ̃2Φ

TΦ, Φ ∈ R
m (40b)

with constants 0 < γ̃i ≤ Γ̃i, 1 ≤ i ≤ 2.
As an easy consequence from (40) we deduce that

P−1 is positive definite with

Γ −1
P zTz ≤ zTP−1z ≤ γ−1

P zTz, z ∈ R
N , (41)

where γ−1
P := max(Γ̃1, Γ̃2) and Γ −1

P := 1/(min(γ̃1, γ̃2).

Using (38) and (41), we can readily derive lower and
upper bounds for the spectrum of the preconditioned
matrix P1/2ZP1/2:

Theorem 6.1 Suppose that (38) and (41) are satisfied for
Z and P−1, respectively. Then, for V ∈ R

N there holds

γPZ VTV ≤ VTP1/2ZP1/2V ≤ ΓPZ VTV, (42)

where γPZ := γPγZ and ΓPZ := ΓP‖Z‖.

Proof Straightforward computations yield

inf
W�=0

sup
V �=0

VTP1/2ZP1/2W
‖V‖‖W‖

= inf
W̃�=0

sup
Ṽ �=0

ṼTZW̃

(ṼTP−1Ṽ)1/2(W̃TP−1W̃)1/2

≥ γP inf
W̃ �=0

sup
Ṽ �=0

ṼTZW̃

‖Ṽ‖‖W̃‖ ≥ γPγZ.

Similar arguments result in the upper bound in (42). 
�

We allow the following inf-sup condition for the sesqui-
linear form b(·, ·) restricted to Vh × Wh:

inf
vh∈Vh

sup
ϕh∈Wh

|b(vh,ϕh)|
‖vh‖V‖ϕh‖W

≥ βh ≥ βmin ≥ 0, (43)

i.e., βmin = 0 is admitted. In this case, the associated
matrix B may have a non-trivial kernel, and we get:

Lemma 6.1 Under the assumptions (37b) and (43), for
v ∈ R

n, v �= 0 there holds

β2
min

‖C‖ ≤ vTBC−1BTv
vTv

≤ ‖B‖2

γ2
. (44)
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Proof For v ∈ R
n we readily obtain

vTBC−1BTv = sup
Φ �=0

(ΦTCC−1BTv)2

ΦTCΦ
,

≥ 1
‖C‖

(ΦTBv)2

ΦTΦ
≥ β2

min

‖C‖ vTv

and

vTBC−1BTv ≤ 1
γ2

‖BTv‖2 ≤ ‖B‖2

γ2
vTv.


�
The preconditioned saddle point system is given by(

Ã−1A Ã−1B
C̃−1BT −C̃−1C

) (
u
Φ

)
=

(
Ã−1f
C̃−1g

)
. (45)

A simple computation shows that the Schur complement
matrix of the preconditioned system is given by

S̃ = Ã−1S,

thus completely neglecting the dependence on the pre-
conditioner part C̃−1. This is immediately clear, since
this preconditioner only speeds up the inner iteration
when solving systems with coefficient matrix C. The
spectrum of Ã−1S can be determined from the eigen-
values of Ã−1/2SÃ−1/2.

Theorem 6.2 For the spectrum of S̃ the following lower
and upper bounds hold true

γPS ≤ v
¯

TS̃v
‖v‖2 ≤ ΓPS, (46)

where

γPS := 1
‖Ã‖

(
γ1 + β2

min‖C‖

)
,

ΓPS := 1
γ̃1

(
‖A‖ + ‖B‖2

γ2

)
.

Proof Setting w := Ã−1/2v, we obtain

vTÃ−1/2SÃ−1/2v
vTv

= vTÃ−1/2AÃ−1/2v
vTv

+ vTÃ−1/2BC−1BTÃ−1/2v
vTv

= wTAw

wTÃw
+ wTBC−1BTw

wTÃw
.

The first term can be estimated by the ellipticity prop-
erties of A and Ã,

γ1

‖Ã‖ ≤ wTAw

wTÃw
≤ ‖A‖

γ̃1
.

By Lemma 6.1 and the ellipticity property of Ã, for the
second term it follows that
β2

min

‖Ã‖ ‖C‖ ≤ wTBC−1BTw

wTÃw
≤ ‖B‖2

γ̃1 γ2
.

Combining both estimates, gives the assertion. 
�

We are particularly interested in such preconditioners
where the lower and upper bounds γPZ and ΓPZ for the
spectrum of the preconditioned saddle point matrix PZ
and the corresponding bounds γPS and ΓPS for the spec-
trum of the preconditioned Schur complement Ã−1S as
well as the bounds for the spectrum of C̃−1C are inde-
pendent of the granularity h of the triangulations. Such
preconditioners are provided by multilevel precondi-
tioners of PBX-type with respect to a nested hierarchy
of simplicial triangulations of the computational domain
Ω (cf., e.g., [10,41]).

7 Numerical results

In this section, we present a documentation of numer-
ical results both for a test problem in order to study
the performance of the blockdiagonally preconditioned
iterative solver of the finite element discretized SAW
equations and for a realistic SAW device as it is used on
microfluidic biochips.

7.1 Test problem

For the test problem, we assume that, in Voigt nota-
tion, the elasticity tensor c = (cIK) and the piezoelectric
tensor e = (eIK) are given by

c =

⎛
⎜⎜⎜⎜⎜⎜⎝

20 5 7 1 0 0
5 20 7 −1 0 0
7 7 25 0 0 0

−1 −1 0 5 0 0
0 0 0 0 6 1
0 0 0 0 1 7

⎞
⎟⎟⎟⎟⎟⎟⎠

,

e =
⎛
⎝−4 1 1 0 0 0

0 −4 1 0 0 0
1 1 1 1 1 1

⎞
⎠ ,

whereas the dielectric tensor ε = (εij) is chosen accord-
ing to

ε =
⎛
⎝ 10 0 0

0 10 0
0 0 5

⎞
⎠ .

We note that the material moduli resemble the proper-
ties of a typical piezoelectric material like quartz.

The right-hand sides and boundary data are chosen
in such a way that

u(x) = xTx (1, 2, 3)T, Φ(x) =
3∑

i=1

sin(πxi),
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Table 1 Number of iterations and CPU-time (in s) for SC-CG
and BICGSTAB/GMRES without preconditioner

Level SC-CG BICGSTAB GMRES

Time Iter Time Iter Time Iter

3 0.15 74 0.10 65 0.14 17
4 1.4 148 0.75 137 1.7 56
5 29 311 7.6 324 32 206
6 440 872 75 678 530 758

solves the time-harmonic SAW equations (11), (12) and
(15) for angular frequencies ω ranging between ω = 0
and ω = 25.

We apply the iterative solvers GMRES and BICG-
STAB with and without the blockdiagonal precondition-
ers to the algebraic saddle point problems arising from
finite element discretizations with respect to uniform
hierarchies of simplicial triangulations of the computa-
tional domain in its nonsymmetric formulation
(

Aω B
−BT C

) (
u
Φ

)
=

(
f

−g

)
,

where Aω := A − ω2I. We also consider the iterative
solution of the Schur complement system

Su = (Aω + BC−1B∗)u = F,

CΦ = BTu − g

by the CG method with and without preconditioning
(SC-CG/SC-PCG).

We first consider the results of a 2D simulation where
Ω = (−1, +1)2 and the boundaries Γu,Γσ ,ΓΦ and ΓD
are given as follows

Γu := [−1, +1] × {−1} ∪ {+1} × [−1, +1],
Γσ := (−1, +1)× {+1} ∪ {−1} × (−1, +1),

ΓΦ := [−1, +1] × {−1} ∪ {−1} × [−1, +1],
ΓD := (−1, +1)× {+1} ∪ {+1} × (−1, +1).

The stopping criterion for the iterations has been cho-
sen such that the residual gets smaller than 10−6. We
list the number of iterations for SC-CG, GMRES and
BICGSTAB with and without preconditioner. Since the
effort for one iteration step is not directly comparable
(there is an inner iteration in the application of the Schur
complement), we have also measured the CPU-time (in
seconds). Tables 1 and 2 contain the results without and
with the BPX-type preconditioner.

Comparing the CPU-times, in case of the iterations
without preconditioning, BICGSTAB has clearly outper-
formed SC-CG and GMRES, whereas for the iterations
with the BPX-type preconditioner PBICGSTAB and
PGMRES perform similarly followed by SC-PCG.

Table 2 Number of iterations and CPU-time (in s) for SC-PCG
and BICGSTAB/GMRES with preconditioner

Level SC-PCG PBICGSTAB PGMRES

Time Iter Time Iter Time Iter

5 2.5 48 1.1 33 1.2 6
6 12 52 5.2 39 5.9 7
7 70 55 23 41 25 7
8 290 57 92 44 100 8

We have also performed 3D simulations for the com-
putational domain Ω = (−1, +1)3 and the boundaries
Γu,Γσ ,ΓΦ and ΓD specified according to

Γu := [−1, +1]2 × {−1}, Γσ := ∂Ω\Γu

ΓΦ := {−1} × [−1, +1]2, ΓD := ∂Ω\ΓΦ .

Using the same termination criterion, the performance
of SC-CG, BI-CGSTAB and GMRES with and without
preconditioning was roughly the same as in the 2D case.

In order to illustrate the dependence of SC-CG and
SC-PCG on the refinement level, Fig. 9 displays the num-
ber of iterations as a function of the refinement level �
for SC-CG (blue line) and SC-PCG with the BPX pre-
conditioner (red line). For comparison, the results for
SC-PCG with the hierarchical type preconditioner (cf.,
e.g., [41,57]) are shown as well (green line). The results
clearly show the exponential growth of the condition
number of SC-PCG in � and the level independence of
SC-PCG with the BPX preconditioner at least in 2D (in
the 3D case the asymptotics has not yet been reached).
Likewise, the theoretically predicted growth of the con-
dition number like O((�+ 1)2) for d = 2 and like O(2�)
for d = 3 of SC-PCG with the hierarchical type precon-
ditioner is reflected by the numerical results as well.

7.2 Surface acoustic wave device simulation

The piezoelectric material used for the SAW chip in our
calculations is lithium niobate (LiNbO3). Usually, one
is interested in very large monocrystals appearing only
randomly in nature. However, sophisticated production
procedures for all technologically relevant materials are
at hand. Depending on the cut used for the special
device the monocrystals are sawed. For details concern-
ing production procedures, natural appearances and the
material constants stated here we refer to [59] and the
references therein.

The material moduli are given here in a way such that
the coordinate x3-axis is identical with the polar axis Z
along which rotatory polarization occurs (the crystal-
lographic Z-axis). By convention, the crystallographic
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Fig. 9 Number of iterations
required to reach a fixed
tolerance TOL = 10−6; 2D
simulation (left) and 3D
simulation (right)
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Table 3 Material moduli for 128◦ rotated YX LiNbO3 (note that
c11 = c22, c13 = c23, c14 = −c24 = c56, c44 = c55 and e22 = −e16)

c c11 c12 c13 c14 c33 c44 c66
(1010 N/m2) 20.3 5.3 7.5 0.9 24.5 6.0 7.5

e e15 = e24 e22 = −e21 e31 = e32 e33
(C/m2) 3.7 2.5 0.1 1.3
ε ε11 = ε22 ε33

(10−12 F/m) 749.0 253.2

axes are denoted by X, Y, Z, while the coordinate axes
are denoted x1, x2, x3.

Lithium niobate is an extremely versatile crystal
material. It possesses a very high Curie temperature
and excellent piezoelectric coupling coefficients mak-
ing it attractive for ultrasonic device applications. Lith-
ium niobate possesses a number of useful cuts that are
extensively used in transducer applications, e.g. YZ LiN-
bO3 (i.e. Y-axis crystal cut, Z-axis propagation) or 128◦
rotated YX LiNbO3. Material moduli are given for room
temperature (20◦C) in the Table 3.

The constants given here are for crystal geometries
coinciding with the coordinate planes. For some techno-
logical reasons, different cuts of crystals are preferred in
practice, i.e. an coordinate transformation is realized by

x̄
¯

= x̄
¯
(x
¯
),

The material moduli in the new coordinate system are
then regained by the tensor transformations

c̄ ī j̄k̄l̄ = cijkl
∂ x̄ī

∂xi

∂xj

∂xj̄

∂ x̄k̄

∂xk

∂xl

∂xl̄
, (51)

ē ī j̄k̄ = eijk
∂ x̄ī

∂xi

∂ x̄j̄

∂xj

∂xk

∂xk̄
, (52)

ε̄ ī j̄ = εij
∂ x̄ī

∂xi

∂xj

∂xj̄
. (53)

Usually, a simple rigid rotation is undertaken, i.e. the
coordinate transformation is linear, x̄

¯
= T

¯
x
¯
, and ∂ x̄ī

∂xi
=

Fig. 10 Piezoelectric plate in crystallographic X, Y, Z coordinate
system; YZ orientation (left) and YZw − φ orientation (right)

Tīi represent the direction cosines between the two
frames of reference.

In this setting, the relationship between the so-called
crystallographic fundamental orthogonal system of axes
X, Y, Z and the coordinate axes x1, x2, x3 must be known.
Note, that there are piezoelectric materials where the
orientations of the crystallographic unit cell axes do not
align with the fundamental coordinate system, but usu-
ally constants are given for the fundamental coordinate
system and we will not consider such materials anyway.

In transducer design, there is a simple standardized
[28] way to provide this information: Here, the first two
letters (out of X, Y, Z) denote the initial plate orienta-
tion, the first indicating the plate thickness, the second
the plate length before any rotations. The remaining
three symbols (t =thickness, w =width, l =length) are
used to indicate the plate edges used for rotation, fol-
lowed by a list of corresponding angles [see Fig. 10 (left)
for a YZ-plate and Fig. 10 (right) for a rotated YZw −φ
plate].

For the SAW device, we have used a reduced model
in the (x1, x3)-plane assuming that all variables do not
depend on x2 and have no impact in the x2-direction. The
piezoelectric material is lithium niobate (LiNbO3) with
density ρ = 4, 630 kg/m3. This chip is operated at room
temperature (20◦C). We remark that the SAW devices
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Fig. 11 Electric potential wave

can be cooled efficiently. Hence, the assumption of a con-
stant operating temperature is justified. The used crystal
cut is YXl 128◦ LiNbO3. The length � and the height h of
the SAW chip have been chosen according to � = 1.2 mm
and h = 0.6 mm so that Ω = (0, 1.2) × (0, 0.6). The
Dirichlet and Neumann boundary conditions have been
specified according to

uΓ (x, t) = 0 on Γu, σ n(x, t) = 0 on Γσ ,

ΦΓ (x, t) = Φ̂ sin

(
2π
λIDT

)
sin(ωt) on Γ

(1)
Φ ,

ΦΓ (x, t) = 0 on Γ
(2)
Φ , Dn(x, t) = 0 on ΓD,

where the Dirichlet boundaries are Γu := [0, 1.2] × {0},
Γ
(1)
Φ := [0.2, 0.4] × {1.2}, Γ (2)Φ := [0, 1.2] × {0}, whereas
Γσ := ∂Ω\Γu and ΓD = ∂Ω\(Γ (1)Φ ∪ Γ (2)Φ ) stand for the
Neumann boundaries.

Concerning the wavelength λIDT of the interdigital
transducer and its operating frequency f , we have made
the realistic choice λIDT = 40µm and f = ω

2π = 100 MHz.
We have discretized the computational domain by a

nested hierarchy of simplicial triangulations of the com-
putational domain Ω generated by uniform refinement
of a given coarse mesh. It is well-known that for time-
harmonic waves with increasing angular frequency ω =
2π f
λ

the finite element error grows, even if we account
for a condition on the meshsize like h � λ . A common
choice is h � λ

2 (i.e., two elements per wavelength),
an estimate that guarantees an interpolation property
for the used finite element spaces. However, an intrin-
sic analysis shows that an additional condition like h �√
λ3 is needed, if we want to control the finite element

error (cf. [27]). Therefore, we have chosen the meshsize
for the coarsest grid of the nested hierarchy accordingly.

Figures 11, 12 and 13 show the amplitudes of the elec-
tric potential and the polarized Rayleigh waves, respec-
tively. The amplitudes of the displacement waves are, as
expected, in the region of nanometers. The SAWs are
strictly confined to the surface of the substrate. Their

Fig. 12 Displacement wave amplitudes in x1-direction

Fig. 13 Displacement wave amplitudes in x2-direction

penetration depth into the piezoelectric material is in
the range of one wavelength.

One of the most outstanding properties of SAW prop-
agation on piezoelectric materials is that the velocity of
the SAW is independent of the applied frequency. In
the case of YXl 128◦ LiNbO3 the SAW velocity is given
by v = 3, 992 m/s, cf. [13]. Thus, for an excitation at the
frequency f = 100 MHz the theoretical wavelength of
the SAW is given as λ = v

f ≈ 40µm. Our calculations
show the same wavelength for the SAW. Figure 14 also
illustrates the piezoelectric wave for f = 50 MHz. The
wavelength of the SAW for f = 100 MHz is half of that
for f = 50 MHz. We remark that the wavelength of an
occurring electro-magnetical wave is in the region of
approximately 0.3 m. Hence, the negligence of this elec-
tro-magnetic wave in the modeling of piezoelectric SAW
devices is justified.

The excitation of an IDT on the surface of a piezo-
electric material leads to the generation of BAWs as
well as SAWs. These bulk waves can also be observed
in our simulations in Figs. 11, 12, 13 and 14. Techno-
logically, they are desirably employed in solid-state cir-
cuits [13]. We refer to [17,19,23,24,50] for finite element
approximations of SAW propagation in signal process-
ing. However, for the SAW devices under consideration
the presence of BAWs is unwanted, since the interfer-
ence of BAWs with SAWs can lead to a complete loss of
functionality of the device. Our approach is sufficiently
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Fig. 14 Electric potential wave for f = 50 MHz

Fig. 15 Bulkwave Excitation

Fig. 16 Phaseshift of x1- and x2- (flipped) displacements

general to simulate every kind of piezoelectric resona-
tor. In Fig. 15 we have used an YXl 38◦ cut of LiNbO3
to generate a strong BAW at frequency f = 200 MHz.

We recall from Chapt. 3 that Rayleigh surface waves
characteristically show an elliptical displacement, i.e. the
displacements in the x1- and x2-direction are 90◦ out of
phase with one another. Additionally, the amplitude of
the surface displacement in the x2-direction is larger
than that along the SAW propagation axis x1. These
observations are also true in our numerical computa-
tions, see Figs. 16 and 17. In Fig. 16, the displacements
in the x1- and x2-direction for a certain surface area are
depicted. The x2-displacements are flipped vertically for
easier comparability.

In Fig. 17 a certain surface area is magnified and the
vectors indicate the surface displacements. All numeri-
cal calculations show relatively strong reflections from
the boundaries of the SAW device. In real devices these
reflections are usually avoided by attaching some adhe-
sive material to the side boundaries. An easy way to
model such a damping is to introduce an additional term

Fig. 17 Displacement vectors for the SAW

Fig. 18 x1-displacements with damping

(the so-called gyroscopic term) into the piezoelectric
equations which now become

ρ
∂2ui

∂t2
− ∂βi

∂xj

∂3ui

∂2xj∂t
− cijkl

∂2uk

∂xl∂xj
− ekij

∂2Φ

∂xk∂xj
= bi,

eikl
∂2uk

∂xl∂xi
− εij

∂2Φ

∂xj∂xi
= βi

cf. e.g. [6,29]. Introducing such a damping at the bound-
aries of the bottom and left-hand side we indeed get
less reflections and thus less disturbances for the SAW.
This gets extraordinarily palpable, if we compare the x1-
displacements in Fig. 12 (calculations without damping)
to the new calculations with damping term in Fig. 18.
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