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Abstract — In this first part of our two-part article, we present some theoretical background along
with descriptions of some numerical techniques for solving a particular semilinear elliptic eigenprob-
lem of Lane-Emden type on a triangular domain without any lines of symmetry. For solving the
principal first eigenproblem, we describe an operator splitting method applied to the corresponding
time-dependent problem. For solving higher eigenproblems, we describe an arclength continuation
method applied to a particular perturbation of the original problem, which admits solution branches
bifurcating from the trivial solution branch at eigenvalues of its linearization. We then solve the orig-
inal eigenproblem by ‘jumping’ to a point on the unperturbed solution branch from a ‘nearby’ point
on the corresponding continued perturbed branch, then normalizing the result. Finally, for compar-
ison, we describe a particular implementation of Newton’s method applied directly to the original
constrained nonlinear eigenproblem.

Keywords: numerical method, Lane, Emden, semilinear, elliptic, eigenproblem, operator splitting,
finite element, arclength continuation, least-squares, control, Newton’s method

1. Introduction

LetΩ be a bounded, Lipschitz domain in R
d and denote its boundary by Γ. Consider

the following model nonlinear eigenproblem:

−∆u = λu3 in Ω (1.1)
u = 0 on Γ (1.2)

∫

Ωu4(x) dx = c (1.3)

where c> 0 is a normalization constant (we assume hereafter that c≡ 1). The choice
of the L4 norm constraint (1.3) is natural and convenient, for if we multiply equation
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(1.1) by any solution u (ignoring the natural existence question for the moment) and
integrate, we immediately see that

∫

Ω
∣

∣∇u(x)∣∣2 dx = λ (1.4)

which, for one thing, shows that any eigenvalue λ corresponding to an eigenfunc-
tion u must be positive. It is worth mentioning that for d > 4, the unconstrained
problem (1.1)–(1.2) has no nontrivial solution (cf. [9, Subsection 9.4.2]), and thus
the constrained problem has no solution.

This problem falls into the class of nonlinear (more precisely, semilinear) el-
liptic eigenproblems, finding applications in, for example, the study of stellar equi-
librium (e.g., the so-called Lane–Emden model, cf. [4]). Within the extensive lit-
erature on semilinear elliptic problems in general, some of the contributions on,
or related to, such eigenproblems include [1–3,5,7,8,13–15,18,19,21], and further
citations therein.

The most recent of these citations [21] is the first of three papers that, as of
the final stages of this writing, are in various stages of prepublication. In their first
paper, the authors summarize, rather well, the numerous and substantial difficulties
encountered when attempting to characterize and solve constrained eigenproblems
in a Banach space B arising as Euler–Lagrange systems of the form

F ′(u) = λG′(u) (1.5)
G(u) = α (1.6)

obtained via differentiation of the associated Lagrangian functional

L(u,λ) = F(u)−λ(G(u)−α). (1.7)

The first paper focuses on the case when the component functionals F(·) and G(·)
possess what they refer to as the iso-homogeneity property defined by the existence
of a positive integer k = l such that

F ′(tu) = tkF ′(u)

G′(tu) = t lG′(u) ∀t > 0, u ∈ B. (1.8)

The authors show that this property is sufficient to characterize eigenpairs {u,λ}
solving (1.5)–(1.6) as critical point and value pairs {u,J(u)} of the associated
Rayleigh quotient functional

J(u) := F(u)
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finding multiple critical points of J(·), constrained to the unit sphere and ordered
by their so-called (local) MiniMax Index (MMI) and show how the method re-
lates to the established characterizations of Rayleigh–Ritz, Courant–Fischer, and
Ljusternik–Schnirelman. Finally, they implement the modified LMM method and
use it to solve a nonlinear p-Laplacian eigenproblem on a 2× 2 square with some
interesting and novel results. Although we have not seen their subsequent work, the
authors evidently consider non iso-homogenous problems in their second paper, of
which our model problem is a particular case as it satisfies a bi-homogeneity prop-
erty with k = 1 and l = 3.

In the earlier paper [15], the author discusses and implements a Constrained
Steepest Decent Method (CSDM) initializing a Constrained Mountain Pass Algo-
rithm (CMPA) for solving constrained minimax problems arising as systems of vari-
ational functionals corresponding to various semilinear elliptic equations, including
a particular case (λ = 1) of problem (1.1)–(1.3) on the unit square. The details of the
methodology are rather intricate, but it is our basic understanding that the method
first involves the finding of two suitable critical point solutions of the problem via
the CSDM that satisfy the conditions of a constrained version of the classical moun-
tain pass theorem. These two solutions are then used in the CMPA as endpoints of
a path constructed (and possibly refined) in such a way as to traverse a so-called
‘mountain pass’, from the ‘top’ (i.e., local maximum point) of which the CSDM is
used again to descend from this local maximum point along ‘the ridge’ of local max-
ima to the new mountain pass-type critical point solving the constrained minimax
problem.

In the present work, we discuss and implement some alternative numerical
methods and explore their shortcomings and merits. We restrict ourselves to the
numerical investigation of problem (1.1)–(1.3) on a particular domain, looking for
approximate variational solutions in a suitable Hilbert space.

In Section 2, we discuss the solution of problem (1.1)–(1.3) for the principal
eigenpair (u1,λ1). Specifically, in Subsection 2.1, we prove that this problem is
equivalent to energy minimization on the unit L4(Ω) sphere in the Sobolev space
H1
0 (Ω), and that the latter formulation (hence the former) has a solution. In Sub-

sections 2.2 and 2.3, we present a computational algorithm for solving this problem
based on the so-called time-dependent approach and operator splitting.

In Section 3, we discuss the solution of the unconstrained problem (1.1)–(1.2)
in the setting of arclength continuation theory with the particular goal of finding
higher eigenmodes, treating the problem with constraint (1.3) as a special case. In
Subsection 3.1, we present the general and problem-specific arclength continuation
framework. Within this framework, we discuss two local correction methodologies
in Subsections 3.1.1 and 3.1.2.

Finally, for completeness and comparison purposes, we provide in Subsec-
tion 3.2 a direct approach to solving (1.1)–(1.3) based on an application of affine
covariant Newton’s method w/wo damping (à la P. Deuflhard).
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2. The principal eigenproblem

2.1. Theoretical background

In this section, we present some of the supporting existence/uniqueness theory for
problem (1.1)–(1.3), focussing on the principal, or minimal, eigenproblem. It is nat-
ural to look for weak solutions of this problem in the Sobolev space H1

0 (Ω)×R. The
weak formulation of (1.1)–(1.3) is: Find {u,λ} ∈H1

0 (Ω)×R such that
∫

Ω∇u(x) ·∇w(x) dx−λ
∫

Ωu3(x)w(x) dx = 0 ∀w ∈ H1
0 (Ω) (2.1)

∫

Ωu4(x) dx−1 = 0. (2.2)

Consider the following variational problem:

Find u ∈ E4 := H1
0 (Ω)∩S4 such that J(u) 6 J(v) ∀v ∈ E4 (2.3)

where J(v) := 1



Numerical methods for a Lane–Emden type eigenproblem 185

and a principal eigenfunction u1 as a corresponding minimizer solving Problem
(2.3), with the principal eigenpair {u1,λ1} solving (2.1)–(2.2). We now show

Proposition 2.1. Problem (2.3) has a solution.

Proof. Since H1
0 (Ω) is, in fact, compactly imbedded in L4(Ω) (by the Rellich–

Kondrachov imbedding theorem), and since the functional J (being half the square
of the equivalent energy norm ‖ · ‖ ≡ | · |1,2,Ω on H1

0 (Ω)) is continuous, coercive,
and bounded below by zero on H1

0 (Ω), and so also on E4, there exists a minimizing
sequence {vk}k∈N in E4 such that

lim
k→∞J(vk) = inf

v∈E4
J(v). (2.8)

Since {J(vk)}k∈N is bounded in R+, {vk}k∈N must be bounded in H1
0 (Ω) (by coer-

civity), and since H1
0 (Ω) is a Hilbert space, whence reflexive, it follows that there

exists N
′⊆N and u∈H1

0 (Ω) such that the subsequence {vk′}k′∈N′ converges weakly
to u in H1

0 (Ω), that is, 〈 f ,vk′〉 → 〈 f ,u〉 as k′ → ∞ for all f ∈ H−1(Ω), or equiva-
lently (by the Riesz representation theorem),

∫

Ω∇w ·∇vk′ dx→
∫

Ω∇w ·∇u dx for all
w ∈ H1

0 (Ω). Now,

0 6
1
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Dirichlet problems, see [11, Chapter VII, Section 3]. One such method discussed
there, and which we employ here, is the so-called time-dependent approach. The
general idea of this approach is to first introduce the parabolic initial value problem
associated with stationary problem (1.1)–(1.3), namely

∂u
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(cf. [12, Chapters II and VII], and references therein), one possible implementation
of which results in the following time-discrete system:

(1) u0 = u0 is given. (2.16)
For n > 0 until convergence, solve

(2)
un+1/2−un
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fact that we initialize the scheme with a smooth function u0 (the linear eigenfunction
w1 solving (2.21)–(2.23)) and use the trapezoidal rule for approximating the inte-
grals in the associated weak form of the equation, which diagonalizes the otherwise
coupled set of nonlinear equations.

The integral constraint

Hτ(λ) :=
∫

Ωu4λ(x) dx−1 = 0 (2.25)

is then used for the Newton update of the implicitly-defined λ using the newly
computed iterate uλ = ∑p∈Σ0,h upϕp solving (2.24) pointwise on Σ0,h, where the ϕp
are the finite element nodal basis functions.

Explicitly, then, we have the following algorithm for solving the problem in Step
(2) for each time step:

(21) λn+1
0 = 0 or λn+1

0 = µ1. (2.26)
For k > 0 until convergence,
(22) at every mesh node p ∈ Σ0,h,

(221) take
∣

∣

∣
un+1/2
p,k,0

∣

∣

∣
∈
[

0, 2
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Unfortunately, this constraint is implicit in τ since λn+1
k and unp depend on τ in a

rather complicated way through the two Newton iteration processes involving gτ(·),
Hτ(·) and their derivatives. Thus, it is only useful as an a posteriori monitor of
whether or not the chosen τ is satisfactory with respect to this condition.

The calculation of H ′τ(·) is straightforward but more involved. First, since uλ is
a function of λ through equation (2.24), we have upon differentiation with respect
to λ that τu3λ +3τλu2λu

′
λ−u′λ = 0 so that u′λ = τu3λ/(1−3τλu2λ). Using this result

we find that

H ′τ(λ) =
∫

Ω 4u
3
λ(x)u′λ(x) dx =

∫

Ω
4τu6λ(x)
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original semilinear problem (although this fact alone doesn’t account for the failures
of these methods). The one method robust enough to solve the higher eigenproblems
preserves the original semilinear structure of the problem and incorporates it into the
solution strategy together with a particular perturbation term that gives rise to a nat-
ural initialization of the numerical scheme. The approach uses the machinery of the
classical technique of arclength continuation (cf. [16,17]) and that of its subsequent
application to the efficient numerical solution of least-squares formulations of some
nonlinear boundary value problems (cf. [13]).

In the sequel, we focus our discussion on the implementation of the arclength
continuation method. For completeness and comparison purposes, however, we also
offer some results obtained from the implementations of so-called error-oriented, or
affine covariant, undamped and damped Newton iterations, discussed in a general
setting by P. Deuflhard in [8]. In contrast to the methods previously discussed, these
Newton methods are applied directly to the original constrained semilinear eigen-
problem (1.1)–(1.3).

3.1. The arclength continuation framework

For a fairly detailed account of the theory of arclength continuation applied to the
least squares formulation of general, and some specific, nonlinear boundary value
problems, we refer the reader to Glowinski, et al. [13]. In this section, we summarize
the presentation found there in the context of the current problem.

The general idea behind the use of arclength continuation for solving a nonlinear
problem, say S(u,λ) = 0 with u in a (real, in this case) Hilbert space (V,(·, ·)) and
λ ∈ R, is to adjoin a so-called arclength constraint l(u,λ,s) = 0 that parameterizes
solution branches {{u(s),λ(s)}} in terms of an arclength parameter s. Recall that
any parameterized solution branch {{u(s),λ(s)}} ⊂V ×R is said to be parameter-
ized by arclength provided ‖u̇(s)‖2+ |λ̇(s)|2−1= 0 for all s, that is, the tangent vec-
tor {u̇(s), λ̇(s)} has unit length for all s, and is the natural candidate for the arclength
constraint l. We then employ the implicit function theorem and bifurcation theory in
order to assert, depending on the behavior of the respective partial derivatives of S
and l with respect to the variables u and λ, the local existence and uniqueness of so-
lution branches in the neighborhood of a known solution {u0,λ0} := {u(s0),λ(s0)}.
Note that along any branch of solutions, the derivatives with respect to arclength
must vanish since the functions are identically zero there. This leads to the so-called
Davidenko equations for the tangent vector {u̇, λ̇} along the branch. If we know or
can solve for a corresponding tangent vector {u̇0, λ̇0} := {u̇(s0), λ̇(s0)} at s0, then
we may predict to first order the location of the next iterate along the branch and use
it to solve for another nearby solution on the same branch using an appropriate non-
linear solver, and thus (theoretically anyway) produce the entire branch via iteration
(cf. [16]).

More concretely, to solve the system

S(u,λ) = 0 (3.1)
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l(u,λ,s) = 0 (3.2)

along a branch of solutions {(u(s),λ(s))} in V ×R parameterized by arclength s,
one particular arclength continuation process is the following predictor–corrector
method:

Step 0: Initialization

Assume a regular point {u0,λ0} := {u(s0),λ(s0)} on, and a tan-
gent {u̇0, λ̇0} := {u̇(s0), λ̇(s0)} to, a solution branch (3.1)–(3.2)
are known.

Step 1: Continuation

Step 1.1: Tangent line prediction

Set

{u01,λ0
1 }= {u0,λ0}+{u̇0, λ̇0}∆s0 (3.3)

for a suitably chosen arclength step ∆s0 := s1− s0.

Step 1.2: Correction

Solve for {u1,λ1} := {u(s1),λ(s1)} on the solution branch via
Newton’s method
(

Su(uk1,λk
1 ) Sλ(uk1,λk

1 )

lu(uk1,λk
1 ,s1) lλ(uk1,λk

1 ,s1)

)( ∆uk1
∆λk

1

)

=

(

−S(uk1,λk
1 )

−l(uk1,λk
1 ,s1)

)

(3.4)

{uk+1
1 ,λk+1

1 }= {uk1,λk
1}+{∆uk1,∆λk

1} (3.5)

for k = 0,1, . . . .

Step 2: Update

Solve the Davidenko equations (which arise from differentiation
with respect to s along the solution branch)
(

Su(u1,λ1) Sλ(u1,λ1)
lu(u1,λ1,s1) lλ(u1,λ1,s1)

)(

u̇1
λ̇1

)

=

(

0
−ls(u1,λ1,s1)

)

(3.6)

for {u̇1, λ̇1} := {u̇(s1), λ̇(s1)}.

Set s0 = s1, {u0,λ0} = {u1,λ1}, {u̇0, λ̇0} = {u̇1, λ̇1}, and return
to Step 1.
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Remark 3.1. As a practical matter, the system in the correction step is solved
via the particular equivalent Schur complement system
(

Su Sλ
0 lλ − luS−1u Sλ

)
∣

∣

∣

∣

{uk1,λk
1 ,s1}

( ∆uk1∆λk
1

)

=

( −S
−l+ luS−1u S

)
∣

∣

∣

∣

{uk1,λk
1 ,s1}

(3.7)

while from the Davidenko equations in the update step we have that

u̇1 = λ̇1û, where û solves Su(u1,λ1)û =−Sλ(u1,λ1) (3.8)

and depending on the form of the second equation in (3.6), λ̇1 is found either from
that equation as

λ̇1 =
−ls(u1,λ1,s1)
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not this is the case by examining the linearization of system (3.12)–(3.13). Upon
differentiating with respect to s, we have that
(

Su(u,λ) Sλ(u,λ)
lu(u,λ,s) lλ(u,λ,s)

)

=

(

−∆−3λu2 −u3
2(u̇, d
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At this point, it would seem that we have a major dilemma when it comes to us-
ing arclength continuation, as it is currently formulated, for solving problem (3.12)–
(3.13) directly. On the one hand, we need to have a known solution {u0,λ0} on a
nontrivial branch of solutions to initialize the continuation process, but if we had
such a solution, no continuation would be necessary because, modulo an appropri-
ate normalization, the original problem would be solved.

To overcome this dilemma and salvage the technique, instead of pursuing the
one-step strategy:

1. Continue along a nontrivial solution branch starting from a known nontrivial
solution,

we pursue the two-step strategy:

1. Formulate and solve a perturbation of problem (3.12) that admits perturbed
nontrivial solution branches bifurcating from the trivial branch and which are
asymptotic to the corresponding unperturbed nontrivial solution branches.

2. On any of these perturbed solution branches, continue to a point ‘close
enough’ to the corresponding unperturbed solution branch that it becomes
possible to ‘jump’ from this point to a point on the unperturbed branch.

Note that in the second step of the two-step strategy, ‘close enough’ means inside the
radius of convergence of the nonlinear solver applied to the unperturbed problem,
and ‘jump’ means convergence to a point on the correct unperturbed branch in a
single step using the ‘close enough’ perturbed branch point as an initial guess in the
nonlinear solver.

With these ideas in mind, consider the following alternative to the system
(3.12)–(3.13):

S̃(u,λ,δ) :=−∆u−λ(u3+δu) = 0 (3.18)
l̃(u,λ,s) := (u̇0,u−u0)+ λ̇0(λ−λ0)− (s− s0) = 0 (3.19)

where δ is a perturbation parameter (which we henceforth suppress in the nota-
tion) and the form of the perturbation was inspired by a third-order approxima-
tion to a model problem posed in the NETLIB software package PLTMG (see Part
II, Section 3). Notice that this perturbed system has the trivial branch in com-
mon with the original system, and we have replaced the natural arclength con-
straint l with a pseudo-arclength constraint l̃ that depends explicitly on s and is
based on a first-order approximation of l at s0. Specifically, l̃ defines the length
s−s0 of the {u̇0, λ̇0}–projection (i.e. tangent projection) of the first-order difference
{u−u0,λ−λ0}. A nice explanation of this choice can be found in [17].

Differentiating with respect to s, we have that
(

−∆−λ(3u2 +δ) −(u3 +δu)
(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

(3.20)
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which along the trivial branch reduces to
(

−∆−λδ 0
(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

. (3.21)

Since S̃u(0,λ) = −∆−λδ is singular whenever µ := λδ is an eigenvalue of the
linear eigenproblem (2.21)–(2.22), we have bifurcation at points {0,µ/δ} along
the trivial branch. Let {wn,µn} be the nth eigenpair solving the linear eigen-
problem (2.21)–(2.22), where wn is normalized to have unit L2 norm (recall that
these eigenpairs form an orthonormal basis of L2(Ω)). Then, choosing the point
{u0,λ0} = {0,µn/δ} along the trivial branch to initialize the continuation process
along the nth bifurcating nontrivial branch and, assuming we have simple bifurca-
tion at this point (our tacit assumption here because of the choice of our symmetry-
breaking domain), we have from the first equation in (3.21) that u̇0 = cnwn, where
cn is a constant, and from the second equation that cn and λ̇0 satisfy c2nµn + λ̇2

0 = 1,
which is the equation of a {λ̇0,cn}-ellipse on which the choice of λ̇0 determines
cn and conversely. Taking λ̇0 = 0 gives cn = ±1/√
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Step 0: Initialization

Take

{u0,λ0} =
{

0,
µn
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The continuation process proceeds along the perturbed solution branch until an
attempt is made to ‘jump’ to the unperturbed solution branch, which entails setting
δ = 0 in (3.26) and attempting to correct to the unperturbed branch instead of the
perturbed branch in the correction step. If the ‘jump’ to the unperturbed branch is
successful, we normalize the solution as indicated previously so that the L4 norm
constraint is satisfied, and we are done. Otherwise, we restore δ to its previous value
and proceed with the continuation process as before.

3.1.1. Newton’s method correction. The particular Schur complement system of
interest corresponding to system (3.26) in Step 1.2 of the continuation process is
(−∆−λk

1 (3(uk1)2 +δ) −((uk1)3 +δuk1)
0 λ̇0−

(

u̇0,zk1
)

)(

vk
1
µk
1

)

=−
( −∆uk1−λk

1 ((uk1)3 +δuk1)
(u̇0,uk1−u0)+ λ̇0(λk

1 −λ0)− (s1− s0))−
(

u̇0,yk1 +λk
1 zk1
)

)

(3.29)

where yk1 and zk1 solve the system

−∆yk1−λk
1
(

3(uk1)2 +δ
)

yk1 = −∆uk1 (3.30)
−∆zk1−λk

1
(

3(uk1)2 +δ
)

zk1 = −
(

(uk1)3 +δuk1
)

. (3.31)

The solution of this system is readily seen to be

µk
1 =

(u̇0,uk1− (u0 + yk1 +λk
1 zk1))+ λ̇0(λk

1 −λ0)− (s1− s0)
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J̃s(u,λ) 6 J̃s(v,µ) ∀{v,µ} ∈ H1
0 (Ω)×R (3.34)

where the (homogeneous, in this case) least-squares functional J̃s is defined by

J̃s(v,µ) :=
1
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Step 1.2.0: Initialize the conjugate gradient direction

Solve (g0u,w) =
〈

J̃′u(u01,λ0
1 ),w

〉

∀ w ∈H1
0 (Ω) (3.39)

set g0λ = J̃′λ(u01,λ0
1 ) (3.40)

and take {v01 ,µ0
1}= {g0u,g0λ} (3.41)

where J̃′u and J̃′λ are the partial derivatives of J̃(u,λ)
with respect to u and λ , respectively.

Compute {uk+1
1 ,λk+1

1 }, {gk+1
u ,gk+1

λ }, (vk+1
1 ,µk+1

1 ) from
{uk1,λk

1}, {gku,gkλ}, {vk
1,µ

k
1} via

Step 1.2.1: Compute optimal step size for descent

Find ρk such that

J̃(uk1−ρkv
k
1,λk

1 −ρkµk
1) 6 J̃(uk1−ρvk

1,λk
1 −ρµk

1) ∀ρ ∈ R. (3.42)

Step 1.2.2: Update and test for convergence

{uk+1
1 ,λk+1

1 }= {uk1−ρkv
k
1,λk

1 −ρkµ
k
1} (3.43)

If J̃(uk+1
1 ,λk+1

1 ) 6 ε, take {u1,λ1} = {uk+1
1 ,λk+1

1 } and
stop; else

Step 1.2.3: Update conjugate gradient direction

Solve (gk+1
u ,w) =

〈

J̃′u(uk+1
1 ,λk+1

1 ),w
〉

∀ w ∈ H1
0 (Ω) (3.44)

set gk+1
λ = J̃′λ(uk+1

1 ,λk+1
1 ) (3.45)

compute γk =
(gk+1

u −gku,gk+1
u )+ (gk+1

λ −gkλ)gk+1
λ
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where, from (3.37)–(3.38), we find that ṽ′(v,µ) ∈ L(H1
0 (Ω) × R,H1

0 (Ω)) and
µ̃′(v,µ) ∈ L(H1

0 (Ω)×R,R) are defined by
(

ṽ′(v,µ){w,ν}, w̃
)

=
〈

S̃′(v,µ){w,ν}, w̃
〉

=
〈

−∆w−µ(3v2+δ)w− (v3+δv)ν, w̃
〉

(3.49)

for all w̃ ∈ H1
0 (Ω), and

〈

µ̃′(v,µ),{w,ν}
〉

=
〈

l̃′u(v,µ,s),w
〉

+ l̃′λ(v,µ,s)ν = (u̇0,w)+ λ̇0ν. (3.50)

On the other hand,
〈

J̃′(v,µ),(w,ν)
〉

=
〈

J̃′u(v,µ),w
〉

+ J̃′λ(v,µ)ν (3.51)

for all {w,ν} ∈H1
0 (Ω)×R, so from (3.49)–(3.51) we deduce that the partial deriva-

tives of J̃ satisfy
〈

J̃′u(v,µ),w
〉

=
〈

−∆w−µ(3v2+δ)w, ṽ
〉

+(u̇0,w)µ̃ (3.52)
J̃′λ(v,µ) =

〈

−(v3 +δv), ṽ
〉

+ λ̇0µ̃ (3.53)

for all {w,ν} ∈H1
0 (Ω)×R. We use these expressions in the implementation.

Next, we need to solve the one-dimensional minimization problem in Step 1.2.1
for the optimal step size ρk for descent. Although there is more than one method that
can be used for this, we have chosen Newton’s method, for which we give the details
now. Define r : R→ H1

0 (Ω)×R : ρ 7→ {v−ρw,µ−ρν} and take ϕ(ρ) := J̃(r(ρ)).
Taking {v,µ} = {uk1,λk

1} and {w,ν} = {vk
1,µ

k
1}, we solve (3.42) for the optimal

step size ρk by applying Newton’s method to the derivative ϕ ′ in order to find the
root corresponding to the (unique in this case) minimizer of ϕ , giving

ρn+1
k = ρn

k −
ϕ ′(ρn

k )
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The explicit form of ϕ ′(ρ) for our problem may be found from equations (3.48)–
(3.50) by replacing {v,µ} by {v−ρw,µ−ρν}, which gives

ϕ ′(ρ) =
〈

−∆w− (µ−ρν)(3(v−ρw)2+δ)w
−((v−ρw)3+δ(v−ρw))ν, ṽ(v−ρw,µ−ρν)

〉

+
(

u̇0,w)+ λ̇0ν
)

µ̃(v−ρw,µ−ρν) (3.57)

where from (3.37)–(3.38)

(ṽ(v−ρw,µ−ρν), w̃) =
〈

−∆(v−ρw)− (µ−ρν)((v−ρw)3+δ(v−ρw)), w̃
〉

(3.58)
for all w̃ ∈ H1

0 (Ω), and

µ̃(v−ρw,µ−ρν) = (u̇0,v−ρw−u0)+ λ̇0(µ−ρν−λ0)− (s− s0). (3.59)

To find the explicit form of ϕ ′′(ρ) for our problem, we need the second derivative
mapping J̃′′ of J̃ (more precisely, its action). Differentiating (3.48), we obtain
〈

J̃′′(v,µ){w2,ν2},{w1,ν1}
〉

=
(

ṽ′′(v,µ){w2,ν2}{w1,ν1}, ṽ(v,µ)
)

+
(

ṽ′(v,µ){w1,ν1}, ṽ′(v,µ){w2,ν2}
)

+
〈

µ̃′′(v,µ){w2,ν2},{w1,ν1}
〉

µ̃(v,µ)

+
〈

µ̃′(v,µ),{w1,ν1}
〉〈

µ̃′(v,µ),{w2,ν2}
〉

(3.60)

where, from (3.49)–(3.50), ṽ′′(v,µ) ∈ L
(

H1
0 (Ω)×R,L

(

H1
0 (Ω)×R,H1

0 (Ω)
))

and
µ̃′′(v,µ) ∈ L

(

H1
0 (Ω)×R,L

(

H1
0 (Ω)×R,R

))

are defined by
(

ṽ′′(v,µ){w2,ν2}{w1,ν1}, w̃
)

=
〈

S̃′′(v,µ){w2,ν2}{w1,ν1}, w̃
〉

=
〈

−6µvw2w1− (3v2 +δ)w2ν1− (3v2 +δ)ν2w1, w̃
〉

(3.61)

for all w̃ ∈ H1
0 (Ω) (note there is no ν1ν2 term because S(v,µ) is linear in µ), and

〈

µ̃′′(v,µ){w2,ν2},{w1,ν1}
〉

=
〈

l̃′′uu(v,µ,s)w2,w1
〉

+
〈

l̃′′uλ(v,µ,s)ν2,w1
〉

+ l̃′′λu(v,µ,s)w2ν1 + l̃′′λλ(v,µ,s)ν2ν1≡ 0. (3.62)

Taking {w2,ν2} = {w1,ν1} = {w,ν}, replacing {v,µ} with {v−ρw,µ−ρν} in
(3.60), and using (3.49)–(3.50) and (3.61)–(3.62), we finally obtain that

ϕ ′′(ρ) =
〈

−6(µ−ρν)(v−ρw)w2−2(3(v−ρw)2+δ)wν, ṽ(v−ρw,µ−ρν)
〉

+‖ṽ′(v−ρw,µ−ρν)(w,ν)‖2 + |(u̇0,w)+ λ̇0ν|2 (3.63)

where ṽ(v−ρw,µ−ρν) and µ̃(v−ρw,µ−ρν) are again defined by (3.58)–(3.59).
For the results of the numerical experiments with our implementation of this

method, we refer the reader to Part II, Section 3, of our article.
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3.2. Newton’s method applied directly to the original eigenproblem

Before presenting the formulation for our specific problem, we summarize the gen-
eral framework for the damped Newton method. Let F :X 7→Y be aC1 map between
Banach spaces such that F(x) = 0 has at least one solution. Under suitable regular-
ity restrictions on F and for a suitable initial guess x0, it can be shown that ordinary
Newton’s method

F ′(xk)∆xk =−F(xk) (3.64)
xk+1 = xk +∆xk (3.65)

converges to a solution x∗ of F(x) = 0. Note that this method is local in the sense
that its convergence depends on having a suitable initial guess x0. The rationale
for damping the ordinary Newton increments ∆xk is to remove any restrictions on
x0 and in this sense globalize the method. Such damping typically utilizes second
order information available in the problem to restrict the sizes of the steps taken
in the sequential Newton directions ∆xk/‖∆xk‖, which are initial tangent directions
to the sequential Newton paths defined by the sequential Davidenko IVPs (cf. [20,
Subsection 7.5] for a summary of Davidenko’s work and references)

F ′(x(σ))ẋ(σ)+F(x(0)) = 0 (3.66)
x(0) = xk, x(1) = x∗ (3.67)

which in turn are derived by differentiating each link in the sequential homotopy
chain

Φk(x,σ) := F(x)− (1−σ)F(xk)≡ 0, k = 0,1,2, . . . . (3.68)
Damping the ordinary Newton increments simply involves multiplying them by cor-
responding damping factors σk in the interval (0,1]. The derivation of theoretically-
optimal damping factors, and their computationally-available estimates, is technical
and for which we refer the curious reader to [8]. We simply invoke such estimates in
the following general error-oriented damped Newton algorithm adapted from Deu-
flhard (cf. [8, Algorithm NLEQ-ERR]):

Step 0: Initialization

Guess x0.

For k = 0,1, . . . , until convergence, compute xk+1 from xk via

Step 1: Natural level function descent

Step 1.1: Compute ordinary Newton increment.

Solve

F ′(xk)∆xk =−F(xk). (3.69)
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Step 1.2: Test for convergence.

If ‖∆xk‖6 ε, take x∗ = xk +∆xk and stop; else

Step 1.3: Predict Newton increment damping factor.

If k = 0, set σ0 6 1;

else

Step 1.3.1: Compute a priori local trial Lipschitz constant estimate.

Define

[
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Define

[hk] :=
2‖
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and a quick calculation gives

F ′(u,λ) =

(

−∆−3λu2 −u3
4
∫

Ωu3(x) dx 0

)

(3.79)

where the iteration takes place in H1
0 (Ω)×R using the corresponding product norm.

Steps 1.1 and 1.5 take the respective forms
(

−∆−3λk (uk
)2 −

(

uk
)3

4
∫

Ω
(

uk(x)
)3 dx 0

)(

vk

µk

)

=−
(

−∆uk−λk (uk
)3

∫

Ω
(

uk(x)
)4 dx−1

)

(3.80)

and
(

−∆−3λk (uk
)2 −

(

uk
)3

4
∫

Ω
(

uk(x)
)3 dx 0

)(



206 F. J. Foss, II, R. Glowinski, and R.H.W. Hoppe

where, for j = k,k+1, y j solves

−∆y−3λk (uk
)2 y =−∆u j in Ω (3.85)

y = 0 on Γ (3.86)

and z j solves

−∆z−3λk (uk
)2 z =−

(

u j)3 in Ω (3.87)

z = 0 on Γ. (3.88)

The solutions of (3.83) and (3.84) are readily seen to be

vk =−
(

yk +λkzk +µkzk
)

(3.89)

and
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