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Abstract. We are concerned with structural optimization problems in
CFD where the state variables are supposed to satisfy a linear or non-
linear Stokes system and the design variables are subject to bilateral
pointwise constraints. Within a primal-dual setting, we suggest an all-
at-once approach based on interior-point methods. The discretization is
taken care of by Taylor-Hood elements with respect to a simplicial trian-
gulation of the computational domain. The efficient numerical solution
of the discretized problem relies on adaptive path-following techniques
featuring a predictor-corrector scheme with inexact Newton solves of the
KKT system by means of an iterative null-space approach. The perfor-
mance of the suggested method is documented by several illustrative
numerical examples.

1 Introduction

Simplified problems in shape optimization have already been addressed by
Bernoulli, Euler, Lagrange and Saint-Venant. However, it became its own disci-
pline during the second half of the last century when the rapidly growing per-
formance of computing platforms and the simultaneously achieved significant
improvement of algorithmic tools enabled the appropriate treatment of complex
problems (cf. [1,3,6,9,13,14,15] and the references therein). The design criteria
in shape optimization are determined by a goal oriented operational behavior of
the devices and systems under consideration and typically occur as nonlinear,
often non convex, objective functionals which depend on the state variables de-
scribing the operational mode and the design variables determining the shape.
The state variables often satisfy partial differential equations or systems thereof
representing the underlying physical laws. Technological aspects are taken into
account by constraints on the state and/or design variables which may occur
both as equality and inequality constraints in the model.

Shape optimization problems associated with fluid flow problems play an im-
portant role in a wide variety of engineering applications [13]. A typical setting
is the design of the geometry of the container of the fluid, e.g., a channel, a
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reservoir, or a network of channels and reservoirs such that a desired flow veloc-
ity and/or pressure profile is achieved. The solution of the problem amounts to
the minimization of an objective functional that depends on the state variables
(velocity, pressure) and on the design variables which determine the geometry
of the fluid filled domain. The state variables are supposed to satisfy the un-
derlying fluid mechanical equations, and there are typically constraints on the
design variables which restrict the shape of the fluid filled domain to that what
is technologically feasible.

The typical approach to shape optimization problems relies on a separate
treatment of the design issue and the underlying state equation what is called
alternate approximation in [1]: For a given initial design the state equation is
solved, followed by a sensitivity analysis that leads to an update of the design
variables. This process is iteratively repeated until convergence. Moreover, many
methods, e.g., those based on the concept of shape derivatives [6,15], only use
first order information by employing gradient type techniques. In this paper, we
focus on a so-called all-at-once approach where the numerical solution of the
discretized state equation is an integral part of the optimization routine (cf, e.g.,
[4,5,10,12]). Moreover, we use second order information by means of primal-dual
interior-point methods. In particular, we consider an adaptive path-following
technique for the shape optimization of stationary flow problems as described
by a linear or nonlinear Stokes system in channels where the objective is to
design the lateral walls such that a desired velocity and/or pressure profile is
obtained. The design variables are chosen as the control points of a Bézier curve
representation of the lateral walls.

The paper is organized as follows: Section 2 is devoted to the setup of the shape
optimization problem including its finite element discretization by Taylor-Hood
elements. In section 3, we focus on the primal-dual interior-point approach and
a path-following predictor-corrector type continuation method with an adaptive
choice of the continuation parameter. Finally, in section 4 we illustrate the appli-
cation of the algorithm for the design of a channel with a backward facing step
assuming a linear Stokes regime and for the shape optimization of the inlet and
outlet boundaries of the ducts of an electrorheological shock absorber, where the
states satisfy a nonlinear Stokes equation.

2 Shape Optimization of Stationary Stokes Flow

We consider Stokes flow in a bounded domain 2(a) C R? with boundary
I'a) = INp(a) + Tou(a) + Iat(a) consisting of the inflow, the outflow and
the lateral boundaries with n and t denoting the outward unit normal and unit
tangential vector, respectively. Here, o = (aq, -+, )T € R™ is the vector
of design variables which are chosen as the Bézier control points of a Bézier
curve representation of I'(«) and which are subject to upper and lower bounds
amin qmer 1 < § < m. The state variables are the velocity u and the pressure
p. Given desired velocity and pressure profiles ud and p¢, an inflow u;, at the
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inflow boundary I, («) and weighting factors k; > 0,1 <4 < 2, k1 + ko > 0, the
shape optimization problem can be stated as follows:

minimize J(u,p,a) = 21 / lu —u?|?dz + 22 / lp —p?%dz, (la)

£2(e) $2()
subject to —V.o(u) = 0 in 2(a), (1b)
V.u =0 in 2(w),
o(u) = —pI+g(u, D(w)D(u), (10)
n-u = u; on l(a),
n-u =20 on g (),
t-u =0 onIla),
a;m” <o <a™,1<i<m. (1d)

We note that in the constitutive equation (1c) the tensor D(u) stands for the
rate of deformation tensor D(u) := (Vu+(Vu)?)/2 and g(u, D(u)) denotes the
viscosity function which is given by g(u,D(u)) = v for linear Stokes flow and
depends nonlinearly on u, D(u) in the nonlinear regime.

We choose & € K as a reference design and refer to {2 := (&) as the associ-
ated reference domain. Then, the actual domain £2(«) can be obtained from the
reference domain 2 by means of an isomorphism

; (2)
D(3; ) = (D1(2; ), Po (i) | & = (21,20)7

with continuous components @;,1 < i < 2. Due to the reference domain, finite
element approximations of (1) can be performed with respect to £2 without be-
ing forced to remesh any time the design parameters are changed.

We introduce (%(Q))N as a shape regular family of simplicial triangulations of
2. Tn view of (2), these triangulations induce an associated family (75, (£2()))x
of simplicial triangulations of the actual physical domains {2(«). For the dis-
cretization of the velocity u and the pressure p we use Taylor-Hood P2/P1
elements. We refer to uf € R™ and pf € R"2 as the vectors representing the
L2-projections of ud, p onto the respective finite element spaces giving rise to

the discrete objective functional

K2

9 p,%:IQ,h(a)phv

K
' (uy, — a1 (a)(up — ud) +

Jh(yhaa) = 2

where y;, == (uy,pn)T and I n(a),1 < i < 2, are the associated mass matrices.
Further, denoting by

Sh(yn,a) = (A%(:{;)a) Bgo(a)> (;Z) = (i;:) =: gh, 3)
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the Taylor-Hood approximation of the Stokes system (1a), the discretized shape
optimization problem can be stated as

minimize In(Yn, @), (4a)
subject to  Si(yn,a) = gn, (4b)
A" <oy <" 1< i< m. (4c)

For notational convenience, in the sequel we will drop the discretization sub-
index h.

3 Path-Following Primal-Dual Interior-Point Method

We use a primal-dual interior-point method where the inequality constraints
(4¢) are coupled by logarithmic barrier functions with a barrier parameter 8 =
1/p > 0, p — oo, resulting in the following parameterized family of minimization
subproblems

m

1 .
;nfB(y7a7ﬂ) =J(y,a) — . Z[ln(ai — ™) + In(a™™ — ;)] (5)
o« i=1

subject to (4b). Coupling (4b) by a Lagrange multiplier A = (Ay, A\p)T, we are
led to the saddle point problem

inf sup LW (y, A, @) = B (y,a) + (S(y,a) — g A). (6)
y,« A

The central path g — 2(u) := (y(u), M), a(p))” is given as the solution of
the nonlinear system

L (y, A )
Fla(p),m) = | LY (v, A0) | =0, (7)
LY (y, A, a)

which represents the first order necessary optimality conditions for (5).
For the solution of (7) we use an adaptive path-following predictor-corrector
strategy following strategies developed in [7].

Predictor Step: The predictor step relies on tangent continuation along the
trajectory of the Davidenko equation

Fe(x(p), p) X' (1) = —Fu(x(p), ) - (8)

Given some approximation %(u) at > 0, compute X (upy1), where g1 =
Ap di
Wi + A, according to

o (%(pn)s i) 0x (i) = — Fpu(X(pn)s pie) (9a)
%O (prgr) = %) + Apl ox(ui) (9b)
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We use Auéo) = Apyg for some given initial step size Apg, whereas for k > 1 the
predicted step size A,u,(co) is chosen by

o ._ [AXO (ue)|| V2 —1\1/2
™ = (llf<<uk>—>~<<0><uk>|| 2@<uk>> Ape-t (10)

where Apy_1 is the computed continuation step size, Ax© (k) is the first New-
ton correction (see below), and ©(ur) < 1 is the contraction factor associated
with a successful previous continuation step.

Corrector step. As a corrector, we use Newton’s method applied to

F(x(prs1), 1) =0

with X(© (j1541) from (9) as a start vector. In particular, for £ > 0 and j, > 0 we
compute Az¢) (ju41) according to

F'(299) (i), 1) D299 (g1) = — F@EY) (pgp1), pigr)

and Ax(jk)(ukﬂ) as the associated simplified Newton correction

F'(39) (jn), prn) A2 (ier) = = P@EY (par) + A209 (), s -

We monitor convergence of Newton’s method by means of

0 (upy1) = [|Az™ (i) |/ AV ()| -

In case of successful convergence, we accept the current step size and proceed
with the next continuation step. However, if the monotonicity test

OV (jpy1) < 1 (11)

fails for some j, > 0, the continuation step has to be repeated with the reduced
step size

V2 —1\1/2
A = (g<@m>>> Al g@)=Ve+1-1  (12)

until we either achieve convergence or for some prespecified lower bound Api,in
observe

A,U'](erl) < A,Ufmin .

In the latter case, we stop the algorithm and report convergence failure.

The Newton steps are realized by an inexact Newton method featuring right-
transforming iterations (cf., e.g., [10,12]). The derivatives occurring in the KKT
conditions and the Hessians are computed by automatic differentiation [8].
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Fig. 1. Backward facing step with final shape and computed velocity field

Table 1. Backward facing step: Convergence history of the continuation method

E p Ap corr. by ||Aallz |l —a|lee T e
0 100.0 (300.0) - - 9.0e-01  2.6e+00 -
1 100.0 (300.0) yes 1.2e4+00 1.7e-01  9.6e-01 0.58
8.8e-01 1.7e-01  1.3e-01 618.42
2.1e-01  3.3e-02 4.3e-04 0.11
1.2e-01  3.3e-02  2.3e-03 0.41
3.3e-02  2.5e-02  2.3e-03 0.58
1.6e-02 2.4e-02 2.0e-03 0.92
2.0e-02  2.9e-03 1.6e-05 0.43
5.7e-04  3.2e-03  2.5e-05 -
2.9e-03  3.6e-03 5.1e-05 0.34
1.4e-03  3.5e-03  4.9e-05 0.27
1.7e-04  2.9e-03  3.3e-05 0.05
1.3e-04  2.1e-03  1.7e-05 0.01
- 2.0e-04 1.9e-07 -

1 100.0 425.5 no
2 525.5 4171 no

3 942.6 323.5 no
41266.1 283.7 no
51549.8 593.1 no
6 21429 2265.3 no
74408.2 - -

R R RO WD R =N

4 Numerical Simulation Results

As a first example, we consider linear Stokes flow with viscosity v = 1 and given
inflow u;,, in a channel with a backward facing step. The initial shape corresponds
to a 90° step, whereas the desired velocity profile ud has been chosen according
to the final shape as shown in Fig. 1. We have used a total of six Bézier control
points with given lower and upper bounds.

Table 1 contains the convergence history. Here, k£ counts the continuation
steps, u and Ay stand for the values of the continuation parameter and conti-
nuation steplength, respectively. The following column ’corr.’” indicates whether
a correction was necessary, £ counts the inner iterations, |Aals refers to the
ly-norm of the increments in the design variables, ||« — a*||« stands for the
maximal distance to the optimal design, and .J denotes the value of the objective
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Fig. 2. Electrorheological shock absorber (left), Bézier curve representation of the inlet
and outlet boundary of the right part of the fluid chamber (middle), and optimal design
of the outlet boundary in rebound mode (right)

functional. Finally, @ is the quantity used in the monotonicity test to check
contractivity. For further details we refer to [2].

As an example for a shape optimization problem associated with nonlinear
Stokes flow, we consider the optimization of the inlet and outlet boundaries of
the ducts in an electrorheological shock absorber (cf. Fig. 2 (left). Such shock
absorbers are based on an electrorheological fluids (ERF). An ERF is a suspen-
sion of small electrically polarizable particles dissolved in nonconducting liquids
which under the influence of an outer electric field changes its viscosity within
a few milliseconds in a reversible way. The viscosity function in (1c) is of the
form g(I(u),|E|), where I(u) is the second invariant of the rate of strain ten-
sor and |E| stands for the electric field strength (for details see [11]). The issue
is to avoid too large pressure fluctuations at the boundaries of the duct both
in the compression and the rebound mode. We have chosen a desired pressure
profile p¢ and used Bézier curve representations of the inlet and outlet bound-
aries as illustrated in Fig. 2 (middle). A computed optimal shape of the outlet
boundary in the rebound mode is shown in Fig. 2 (right). For details we refer
to [10].

Acknowledgements

The first two authors acknowledge support by the NSF under Grant-No. DMS-
0511611 and by the German National Science Foundation within the Priority
program SPP1253 ’Optimization with Partial Differential Equations’. The work
of the third author is supported by the Texas Computational and Learning
Center TLC2.



266

R.H.W. Hoppe, C. Linsenmann, and H. Antil

References

10.

11.

12.

13.

14.
15.

. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, Heidel-

berg (2002)

. Antil, H., Hoppe, R.H.W., Linsenmann, C.: Path-following primal-dual interior-

point methods for shape optimization of stationary flow problems. Journal of Nu-
merical Mathematics (to appear 2007)

Bendsge, M.P.: Optimization of Structural Topology, Shape, and Material.
Springer, Berlin (1995)

Biros, G., Ghattas, O.: Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimization. Part i: The Krylov-Schur solver. STAM J. Sci. Comp (to
appear 2004)

. Biros, G., Ghattas, O.: Parallel Lagrange-Newton-Krylov-Schur methods for PDE-

constrained optimization. Part ii: The Lagrange-Newton solver and its application
to optimal control of staedy viscous flows. STAM J. Sci. Comp (to appear 2004)
Delfour, M.C., Zolesio, J.P.: Shapes and Geometries: Analysis, Differential Calculus
and Optimization. SIAM, Philadelphia (2001)

Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and
Adaptive Algorithms. Springer, Berlin (2004)

Griewank, A.: Evaluating Derivatives, Principles and Techniques of Automatic
Differentiation. STAM, Phildelphia (2000)

Haslinger, J., Mékinen, R.A.E.: Introduction to Shape Optimization: Theory, Ap-
proximation, and Computation. STAM, Philadelphia (2004)

Hoppe, R.H.W., Linsenmann, C., Petrova, S.I.: Primal-dual Newton methods in
structural optimization. Comp. Visual. Sci. 9, 71-87 (2006)

Hoppe, R.H.W., Litvinov, W.G.: Problems on electrorheological fluid flows. Com-
munications in Pure and Applied Analysis 3, 809-848 (2004)

Hoppe, R.H.W., Petrova, S.I.: Primal-dual Newton interior point methods in shape
and topology optimization. Numerical Linear Algebra with Applications 11, 413—
429 (2004)

Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford
University Press, Oxford (2001)

Rozvany, G.: Structural Design via Optimality Criteria. Kluwer, Dordrecht (1989)
Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, Berlin
(1992)



	Adaptive Path Following Primal Dual Interior Point Methods for Shape Optimization of Linear and Nonlinear Stokes Flow Problems
	Introduction
	Shape Optimization of Stationary Stokes Flow
	Path-Following Primal-Dual Interior-Point Method
	Numerical Simulation Results



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




