
                                                                              

                                                                  
                        

GOAL-ORIENTED ADAPTIVITY IN CONTROL CONSTRAINED
OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS∗
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Abstract. Dual-weighted goal-oriented error estimates for a class of pointwise control con-
strained optimal control problems for second order elliptic partial differential equations are derived.
It is demonstrated that the constraints give rise to a primal-dual weighted error term representing the
mismatch in the complementarity system due to discretization. The paper also contains a posteriori
error estimators for the L2-norm of the error in the state and in the adjoint state.
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1. Introduction. In many computations involving the discretization of (par-
tial) differential equations or variational inequalities, one is interested in the accurate
evaluation of some target quantity. This might be the value of the solution of a par-
tial differential equation (PDE) at some reference point in the domain of interest, a
physically relevant quantity such as the drag in airfoil design, or, in optimal control,
the value of the objective function at the solution of the underlying minimization
problem. Highly accurate numerical evaluations of these targets can be guaranteed
by using uniform meshes with a small mesh size h. This, however, usually repre-
sents a significant computational challenge due to the resulting large scale of the
discrete problems. Therefore, one seeks to adaptively refine the meshes with the goal
of achieving a desired accuracy in the evaluation of the output quantity of interest
while keeping the computational cost as small as possible.

For this purpose, recently for (systems of) PDEs an approach based on dual-
weighted residual-based error estimates was proposed. Here we point to the pioneering
work summarized in [1, 3] and the references therein; see also [7] for related literature.
It essentially relies on employing the dual problem of the underlying system with the
target on the right-hand side. In fact, let A denote some possibly nonlinear partial
differential operator and let f be some fixed data. Then, in some abstract form, the
primal problem (or PDE) is given by

(1.1) A(y) = f.

Let yh be the result of a Galerkin finite element discretization of the underlying
problem. If G(·) represents some desired target quantity (or goal), then the dual
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1722 M. HINTERMÜLLER AND R. H. W. HOPPE

approach consists of considering

(1.2) A′(yh)�ph = G(·)

from which an a posteriori error estimate of the type

|G(y) −G(yh)| ≤
∑
T∈Th

pT (yh)dT (ph)

is derived. Above, A′(·)� is the dual operator of the Frechét-derivative A′(·) of A(·).
Further, Th = {T} denotes a computational mesh consisting of elements T , and pT

and dT stand for the primal residual and the dual weight on each cell T , respectively.
In [2] this concept was transferred to PDE-constrained optimal control problems

of the type

(P0) minimize J(y, u) subject to A(y) = f + B(u),

where (y, u) denotes the state-control pair and B models the control impact. The first
order optimality system of (P0) can be formally written as

A(y) −B(u) = f,(1.3a)

Jy(y, u) + A′(y)�p = 0,(1.3b)

Ju(y, u) −B′(u)�p = 0.(1.3c)

Here, Jy and Ju are the partial derivatives of J with respect to y and u. The variable
p is called the adjoint state. Often, (1.3c) results in an algebraic equation, while
(1.3a)–(1.3b) form a primal-dual pair of PDEs similar to (1.1)–(1.2). Since (1.3a)–
(1.3b) represent a system of PDEs, the dual-weighted approach can be readily carried
over to this optimal control setting.

The situation, however, changes significantly if, in addition to the PDE constraint
in (P0), one has to account for pointwise almost everywhere (a.e.) constraints on the
control variable. In this case, the resulting problem becomes

(Pc)

⎧⎨
⎩

minimize J(y, u)
subject to A(y) = f + B(u),

a ≤ u ≤ b a.e. on ΩC ⊂ Ω,

where Ω ⊂ R
n denotes some suitable domain with ΩC �= ∅ a measurable subset, and

where a < b are given bounds. The corresponding first order necessary optimality
system now involves a variational inequality as follows:

A(y) −B(u) = f,(1.4a)

Jy(y, u) + A′(y)�p = 0,(1.4b)

〈Ju(y, u) −B′(u)�p, v − u〉 ≥ 0 ∀v ∈ Uad, u ∈ Uad,(1.4c)

where the set

Uad = {v : a ≤ v ≤ b}

represents the feasible controls, and 〈·, ·〉 denotes a suitable duality pairing. The
variational inequality induces some nonsmoothness in the first order optimality sys-
tem. This can be seen best when defining the Lagrange multiplier λ pertinent to the
pointwise constraints via

(1.5) Ju(y, u) −B′(u)�p + λ = 0
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and, assuming that λ permits a pointwise interpretation,

(1.6) λ ≥ 0 a.e. on {u = b}, λ ≤ 0 a.e. on {u = a}, λ = 0 else.

The conditions in (1.6) represent the so-called complementarity system. It can be
written equivalently as

(1.7) λ = min{0, λ + σ(u− a)} + max{0, λ + σ(u− b)},

where σ > 0 is an arbitrarily fixed real and the max- and min-operations are un-
derstood in the pointwise sense. From (1.7) the nonsmoothness involved in the first
order necessary optimality conditions becomes apparent. Of course, suitable a pos-
teriori error concepts have to reflect this situation in order to accurately resolve the
influence of the constraints on the solution of the optimal control problem.

We note that for pointwisely constrained problems such as variational inequalities
of obstacle type, finite element methods based on various concepts in the a posteriori
analysis have been considered in the literature. The goal-oriented dual-weighted ap-
proach was used in [4], whereas residual-type and hierarchical-type estimators were
derived and analyzed in [5, 10, 13, 16]. Although the situation under consideration
is different from obstacle-type problems as the pointwise constraints in our case are
imposed on the control acting on the right-hand side of the PDE, a common feature
in the a posteriori error analysis is the appropriate treatment of the complementarity
conditions.

In this paper, our starting point will be a sufficiently general model problem class
of the type (Pc). Based on the Lagrange function

L(y, u, p, λ) = J(y, u) + 〈A(y) − f −B(u), p〉 + (u− b, λ)

of (Pc), for convenience written here for a unilaterally constrained version of the
minimization problem, and with the objective function as the goal, we derive an error
representation of the type

J(y, u) − J(yh, uh) = −1

2
〈∇xxL(xh, λh)(xh − x), xh − x〉 + (uh − b, λ)

+ osch + r(xh, x)

with x = (p, y, u) and its discretized version xh = (ph, yh, uh), respectively, and (·, ·)
some inner product. Further, osch represents data oscillations and r is the remainder
term resulting from a Taylor expansion of L. In a second step we then estimate the
term due to the inequality constraints and utilize the a posteriori error estimators
derived in [8] in order to obtain a computable error representation.

The rest of the paper is organized as follows. In the next section we derive our new
dual-weighted residual-based error estimator for a representative control constrained
optimal control model problem. Section 3 is devoted to possible extensions. In fact,
we study the bilaterally constrained case, a class of nonlinear governing equations,
and alternative concepts for obtaining a posteriori estimates pertinent to the com-
plementarity system. In the appendix, for our constrained optimal control problem
we derive a new a posteriori error estimate with respect to the L2-norm. Finally, in
section 4 we report on numerical results due to our new error estimator.

Notation. Throughout we use ‖ · ‖0,Ω and (·, ·)0,Ω for the usual L2(Ω)-norm and
L2(Ω)-inner product, respectively. For convenience, with respect to the notation we
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shall not distinguish between the norm (respectively, inner product) for scalar-valued
or vector-valued arguments. We also use (·, ·)0,S , which is the L2(S)-inner product
over a (measurable) subset S ⊂ Ω. By | · |1,Ω we denote the H1(Ω)-seminorm |y|1,Ω =
‖∇y‖0,Ω, which, by the Poincaré–Friedrichs inequality, is a norm on H1

0 (Ω). The
norm in H1(Ω) is written as ‖ · ‖1,Ω. By Th = Th(Ω) we denote a shape regular finite
element triangulation of the domain Ω. The subscript h = max{diam(T ) | T ∈ Th}
indicates the mesh size of Th.

2. Residual-based error estimate. For deriving the structure of the new error
estimate due to the inequality constraints, we consider the model problem

(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

minimize J(y, u) := 1
2‖y − z‖2

0,Ω + α
2 ‖u‖2

0,Ω

over (y, u) ∈ H1
0 (Ω) × L2(Ω)

subject to −Δy = u + f,

u ≤ b a.e. in Ω,

which is a particular instance of (Pc). The domain Ω ∈ R
2 is assumed to be bounded

and polygonal with boundary Γ := ∂Ω. For the data we assume z, b, f ∈ L2(Ω) and
α > 0. It is well known that (P) admits a unique solution (y∗, u∗) ∈ H1

0 (Ω) × L2(Ω)
(cf., e.g., [12]). Moreover, the optimal solution is characterized by the existence of
an adjoint state p∗ ∈ H1

0 (Ω) and a Lagrange multiplier λ∗ ∈ L2(Ω) which satisfy the
first order necessary (and in this case, also sufficient) conditions

−Δy∗ = u∗ + f,(2.1a)

−Δp∗ + y∗ = z,(2.1b)

αu∗ + λ∗ − p∗ = 0,(2.1c)

u∗ ≤ b, λ∗ ≥ 0, (u∗ − b, λ∗)0,Ω = 0.(2.1d)

We define the Lagrange functional L : H1
0 (Ω) × L2(Ω) × H1

0 (Ω) × L2(Ω) → R

pertinent to (P) as

(2.2) L(y, u, p, λ) = J(y, u) + (∇y,∇p)0,Ω − (u + f, p)0,Ω + (u− b, λ)0,Ω.

For convenience we use x := (p, y, u), x∗ = (p∗, y∗, u∗), and X = P × Y × L =
H1

0 (Ω)×H1
0 (Ω)×L2(Ω). Obviously, the weak form of (2.1a)–(2.1b) and (2.1c) of the

optimality system (2.1) is equivalent to

(2.3) ∇xL(x∗, λ∗)(ϕ) = 0 ∀ϕ ∈ X.

Let Xh ⊂ X, with Xh = Ph ×Yh ×Lh, denote a finite dimensional subspace with
the subscript h indicating the mesh size of the discretization obtained by a standard
Galerkin method, let λh ∈ Lh ⊂ L2(Ω) denote the discrete (finite dimensional) coun-
terpart of λ (analogously for λ∗), and let fh, bh, zh ∈ Lh be the L2-projections of f ,
b, z onto Lh. The finite dimensional version of (2.1) reads

∇xLh(x∗
h, λ

∗
h)(ϕh) = 0 ∀ϕh ∈ Xh,(2.4a)

u∗
h ≤ bh, λ∗

h ≥ 0, (u∗
h − bh, λ

∗
h)0,Ω = 0,(2.4b)

where the discrete Lagrange function is given by

Lh(xh, λh) = Jh(yh, uh) + (∇yh,∇ph)0,Ω − (uh + fh, ph)0,Ω

+ (uh − bh, λh)0,Ω
(2.5)
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with Jh(yh, uh) = 1
2‖yh − zh‖2

0,Ω + α
2 ‖uh‖2

0,Ω. Observe that the pointwise representa-
tion (2.1c) in the discrete setting reads

(2.6) αu∗
h + λ∗

h −Mhp
∗
h = 0,

where Mh represents a projection operator from Ph onto Lh.
Further note that for x ∈ X, λ ∈ L2(Ω) and xh ∈ Xh, λh ∈ Lh,

L(x, λh) = L(x, λ) + (u− b, λh − λ)0,Ω,(2.7)

∇xL(xh, λh)(ϕh) = ∇xL(xh, λ)(ϕh) + (δuh, λh − λ)0,Ω(2.8)

for all (δph, δyh, δuh) = ϕh ∈ Xh. Moreover, for our model problem (P) the second
derivative of L with respect to x does not depend on x and λ. Thus, we can write
∇xxL(ϕ, ϕ̂) instead of ∇xxL(x, λ)(ϕ, ϕ̂). Similar observations hold true for Lh. Due
to Xh ⊂ X, we have for ϕh = (δph, δyh, δuh) ∈ Xh,

0 = ∇xL(x∗, λ∗)(ϕh)

= ∇xL(x∗
h, λ

∗)(ϕh) + ∇xxL(x∗ − x∗
h, ϕh)

= ∇xL(x∗
h, λ

∗
h)(ϕh) + (δuh, λ

∗ − λ∗
h)0,Ω + ∇xxL(x∗ − x∗

h, ϕh)

= ∇xLh(x∗
h, λ

∗
h)(ϕh) − (f − fh, δph)0,Ω − (z − zh, δyh)0,Ω(2.9)

+ (δuh, λ
∗ − λ∗

h)0,Ω + ∇xxL(x∗ − x∗
h, ϕh)

= (δuh, λ
∗ − λ∗

h)0,Ω + ∇xxL(x∗ − x∗
h, ϕh) − (f − fh, δph)0,Ω

− (z − zh, δyh)0,Ω.

From this we further derive the relations

∇xxL(x∗
h − x∗, x∗

h − x∗)(2.10)

= ∇xxL(x∗
h − x∗, x∗

h − x∗ + ϕh) − (δuh, λ
∗ − λ∗

h)0,Ω

+ (f − fh, δph)0,Ω + (z − zh, δyh)0,Ω,

∇xL(x∗
h, λ

∗)(x∗ − x∗
h − ϕh) = ∇xxL(x∗

h − x∗, x∗ − x∗
h − ϕh)(2.11)

and also

∇xL(x∗
h, λ

∗
h)(x∗ − x∗

h − ϕh)

= ∇xL(x∗, λ∗
h)(x∗ − x∗

h − ϕh) + ∇xxL(x∗
h − x∗, x∗ − x∗

h − ϕh)(2.12)

= (λ∗
h − λ∗, u∗ − u∗

h − δuh)0,Ω + ∇xxL(x∗
h − x∗, x∗ − x∗

h − ϕh).

These preliminary results are now used to prove the following theorem.
Theorem 2.1. Let (x∗, λ∗) ∈ X × L2(Ω) and (x∗

h, λ
∗
h) ∈ Xh × Lh denote the

solution of (2.1) and its finite dimensional counterpart (2.4). Then

J(y∗, u∗) − Jh(y∗h, u
∗
h) = −1

2
∇xxL(x∗

h − x∗, x∗
h − x∗)

+ (u∗
h − b, λ∗)0,Ω + osch(x∗

h),
(2.13)

where the oscillations osch(x∗
h) are given by

osch(x∗
h) = (y∗h − zh, zh − z)0,Ω +

1

2
‖z − zh‖2

0,Ω + (fh − f, p∗h)0,Ω.
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Proof. Observe that J(y∗, u∗) = L(x∗, λ∗) and Jh(y∗h, u
∗
h) = Lh(x∗

h, λ
∗
h). Using

Taylor expansions and (2.7)–(2.8), we obtain

J(y∗, u∗) − Jh(y∗h, u
∗
h) = L(x∗, λ∗) − Lh(x∗

h, λ
∗
h)

= L(x∗, λ∗) − Lh(x∗, λ∗
h) −∇xLh(x∗, λ∗

h)(x∗
h − x∗)

− 1

2
∇xxLh(x∗

h − x∗, x∗
h − x∗)

= J(y∗, u∗) − Jh(y∗, u∗) + (fh − f, p∗)0,Ω − (u∗ − bh, λ
∗
h)0,Ω

−∇xLh(x∗, λ∗
h)(x∗

h − x∗) − 1

2
∇xxLh(x∗

h − x∗, x∗
h − x∗)

= osch(x∗
h) − (u∗ − bh, λ

∗
h)0,Ω −∇xL(x∗, λ∗

h)(x∗
h − x∗)

− 1

2
∇xxLh(x∗

h − x∗, x∗
h − x∗)

= osch(x∗
h) − (u∗ − u∗

h, λ
∗
h)0,Ω + (λ∗ − λ∗

h, u
∗
h − u∗)0,Ω

− 1

2
∇xxLh(x∗

h − x∗, x∗
h − x∗)

= osch(x∗
h) + (λ∗, u∗

h − b)0,Ω − 1

2
∇xxLh(x∗

h − x∗, x∗
h − x∗),

where we also used the complementarity relations (2.1d) and (2.4b) as well as (2.3)
and (2.4a).

Assume, for the moment, that λ∗ = 0 and λ∗
h = 0; i.e., the continuous and

the discrete control constraints are inactive. Then we infer from (2.10) that for all
ϕh ∈ Xh there holds

∇xxL(x∗
h − x∗, x∗

h − x∗) = ∇xxL(x∗
h − x∗, x∗

h − x∗ + ϕh)

+ (f − fh, δph)0,Ω + (z − zh, δyh)0,Ω

as well as

J(y∗, u∗) − Jh(y∗h, u
∗
h) =

1

2
∇xLh(xh, λh)(x∗ − x∗

h − ϕh)

+
1

2
(fh − f, p∗ − p∗h)0,Ω +

1

2
(zh − z, y∗ − y∗h)0,Ω(2.14)

+ osch(x∗
h)

due to (2.12). This corresponds to the result in [2, Proposition 4.1] for the uncon-
strained version of (P).

If bh ≤ b a.e. in Ω, then (2.13) implies

J(y∗, u∗) ≤ Jh(y∗h, u
∗
h) + osch(x∗

h).

Next we interpret the new, second term in the right-hand side of (2.13). For this
purpose we define the active set A∗ and the inactive set I∗ at the optimal solution
(x∗, λ∗) of (P) by

(2.15) A∗ := {x ∈ Ω : u∗(x) = b(x)}, I∗ := Ω \ A∗.

Analogously we define the discrete counterparts A∗
h and I∗

h. Obviously, u∗ < b a.e. in
I∗. By (2.1d), this implies λ∗ = 0 a.e. in I∗. Therefore, the term (u∗

h − b, λ∗)0,Ω
satisfies

(u∗
h − b, λ∗)0,Ω = (u∗

h − bh, λ
∗)0,A∗∩I∗

h
+ (bh − b, λ∗)0,A∗ .

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



                                                                              

GOAL-ORIENTED ADAPTIVITY 1727

The right-hand side above reflects the error in complementarity. In fact, the second
term represents the data oscillation in the bound in the active set weighted by the
continuous Lagrange multiplier. For this term we introduce the notation

oscA
∗

h (b;λ∗) := (bh − b, λ∗)0,A∗ .

The first term captures a primal-dual weighted mismatch in complementarity in A∗ ∩
I∗
h.

Let ih := (iph, i
y
h, i

u
h) be an interpolation operator such that ihx ∈ Xh for x ∈

X. Moreover, for y, p ∈ H1
0 (Ω) there exist iph and iyh such that max{‖iphp − p‖H1 ,

‖iyhy − y‖H1} → 0 for h → 0. In connection with Theorem 2.1 we have the following
result.

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then

J(y∗, u∗) − Jh(y∗h, u
∗
h)

= −1

2

(
(y∗h − zh, i

y
hy

∗ − y∗)0,Ω + (∇(iyhy
∗ − y∗),∇p∗h)0,Ω

+ (∇(iphp
∗ − p∗),∇y∗h)0,Ω − (u∗

h + fh, i
p
hp

∗ − p∗)0,Ω

+ (Mhp
∗
h − p∗h, i

u
hu

∗ − u∗)0,Ω

)
(2.16)

+
1

2

[
(u∗

h − b, λ∗)0,Ω + (bh − u∗, λ∗
h)0,Ω

]
+

1

2
(f − fh, p

∗
h − p∗)0,Ω

+
1

2
(z − zh, y

∗
h − y∗)0,Ω + osch(x∗

h).

Proof. Utilizing (2.10)–(2.11) and considering ϕh = (δph, δyh, δuh) ∈ Xh, we
obtain

J(y∗, u∗) − Jh(y∗h, u
∗
h) =

1

2
∇xxL(x, λ∗

h)(x∗ − x∗
h, x

∗
h − x∗ + ϕh)

+
1

2
(δuh, λ

∗ − λ∗
h)0,Ω +

1

2
(fh − f, δph)0,Ω +

1

2
(zh − z, δyh)0,Ω

+ (u∗
h − b, λ∗)0,Ω + osch(x∗

h)

= −1

2
∇xL(x∗

h, λ
∗
h)(x∗

h − x∗ + ϕh) +
1

2
(λ∗

h + λ∗, u∗
h − u∗)0,Ω

+
1

2
(fh − f, δph)0,Ω +

1

2
(zh − z, δyh)0,Ω + osch(x∗

h)

= −1

2
∇xLh(x∗

h, λ
∗
h)(x∗

h − x∗ + ϕh) +
1

2
(λ∗

h + λ∗, u∗
h − u∗)0,Ω

+
1

2
(f − fh, p

∗
h − p∗)0,Ω +

1

2
(z − zh, y

∗
h − y∗)0,Ω + osch(x∗

h).

Choosing ϕh = (iphp
∗ − p∗h, i

y
hy

∗ − y∗h, i
u
hu

∗ − u∗
h) ∈ Xh and using complementary

slackness, we continue with

J(y∗, u∗) − Jh(y∗h, u
∗
h) = −1

2
∇xLh(x∗

h, λ
∗
h)(ihx

∗ − x∗)

+
1

2

[
(λ∗

h, bh − u∗)0,Ω + (λ∗, u∗
h − b)0,Ω

]
+

1

2
(f − fh, p

∗
h − p∗)0,Ω +

1

2
(z − zh, y

∗
h − y∗)0,Ω

+ osch(x∗
h).
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The assertion now follows from (2.2) and αu∗
h −Mhp

∗
h + λ∗

h = 0 a.e. in Ω.
This result is interesting in several ways as follows:
(i) For ‖Mhph − ph‖0,Ω → 0 as h → 0 sufficiently fast, only the convergence

properties implied by iph and iyh are required for obtaining an a posteriori
error estimate based on (2.16). Since y∗ and p∗ solve elliptic PDEs, they
usually enjoy more regularity than u∗ and λ∗.

(ii) The term in brackets on the right-hand side in (2.16) is again related to
errors coming from complementary slackness. The first term of the sum
can be interpreted as before, while the second term of the sum reflects the
symmetric case, i.e.,

(bh − u∗, λ∗
h)0,Ω = (b− u∗, λ∗

h)0,A∗
h∩I∗ + (bh − b, λ∗

h)0,A∗
h
.

Hence, the first term of the right-hand side above represents the primal-dual
weighted mismatch in complementarity in I∗ ∩ A∗

h, while the second term
denotes the data oscillation on A∗

h weighted by the discrete multiplier, i.e.,

osc
A∗

h

h (b;λ∗
h) := (bh − b, λ∗

h)0,A∗
h
.

Of course, (2.16) is not immediately amenable to numerical realization since u∗

and λ∗ are involved. Before we tackle this point, let us first state a posteriori error
bounds for the control and the adjoint state which were derived in [8]. A coarser
estimate was established in [14]. Recall that Uad denotes the set of admissible controls,
and let Uad

h be its discretization. Then the following a posteriori error estimates hold
true:

max(‖λ∗ − λ∗
h‖2

0,Ω, ‖u∗ − u∗
h‖2

0,Ω) ≤ C2
1η

2
1 + C2

2η
2
2 + C2

bμ
2
h(b),(2.17a)

|p∗ − p∗h|21,Ω ≤ C2
2η

2
2 + C2

z osc2
h(z).(2.17b)

In what follows we also use

C2
3η

2
3 := C2

1η
2
1 + C2

2η
2
2 + C2

bμ
2
h(b) and C2

4η
2
4 := C2

2η
2
2 + C2

z osc2
h(z).

Here and below, Ci > 0, i = 1, 2, 3, 4, denote constants which depend on α, Ω, and
the shape regularity of Th. The error bounds η1 and η2 are defined as

η2
1 =

∑
T

∫
T

h2
T (p∗h −Mhp

∗
h)

2
,(2.18)

η2
2 =

∑
T

∫
T

h2
T (f + u∗

h + Δy∗h)
2

+
∑
F

∫
F

hF [∇y∗h · n]2(2.19)

+
∑
T

∫
T

h2
T (z − y∗h + Δp∗h)

2
+
∑
F

∫
F

hF [∇p∗h · n]2.

Further, the data oscillations

μ2
h(b) =

∑
T∈Th

‖b− bh‖2
0,T ,(2.20)

osc2
h(z) =

∑
T∈Th

h2
T ‖z − zh‖2

0,T(2.21)

are involved.
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Above, T denotes an element of the triangulation Th of Ω. Further, F denotes a
face of T , and hF is the maximal diameter of the face F . Moreover, [∇y∗h · n] is the
normal derivative jump over an interior face F . As noted before, the operator Mh

represents the projection of a mesh function in Ph (= Yh, typically in our context)
onto Lh. If Lh is given by

Lh = {uh ∈ L2(Ω) : uh|T ∈ P0(T ), T ∈ Th},

i.e., the function uh is piecewise constant on Th, then the action of Mh in T is given
by

(Mhph)|T =
1

|T |

∫
T

ph(x) dx, T ∈ Th.

A final observation concerns the unconstrained case, which is Uad = L2(Ω). In this
situation we have λ∗ = 0 a.e. in Ω. From (2.18)–(2.19) we see that the error estimator
remains unaffected.

Our investigations concentrate now on the term

(2.22)
1

2

[
(u∗

h − b, λ∗)0,Ω + (bh − u∗, λ∗
h)0,Ω

]
=: Ψ∗(Ω),

which contains u∗ and λ∗. A simple manipulation yields

Ψ∗(Ω) =
1

2

[
(λ∗

h − λ∗, bh − u∗)0,Ω + (λ∗ − λ∗
h, u

∗
h − b)0,Ω + (λ∗ + λ∗

h, bh − b)0,Ω
]
.

From first order optimality we recall

u∗ ≤ b, λ∗ ≥ 0, (u∗ − b, λ∗)0,Ω = 0, αu∗ − p∗ + λ∗ = 0,(2.23)

u∗
h ≤ bh, λ∗

h ≥ 0, (u∗
h − bh, λ

∗
h)0,Ω = 0, αu∗

h −Mhp
∗
h + λ∗

h = 0.(2.24)

Obviously, we have

Ψ∗(I∗ ∩ I∗
h) = 0,(2.25a)

Ψ∗(A∗ ∩ A∗
h) =

1

2
(λ∗ − λ∗

h, bh − b)0,A∗∩A∗
h

+ (λ∗
h, bh − b)0,A∗∩A∗

h
,(2.25b)

where Ψ∗(S) = 1
2 [(u∗

h− b, λ∗)0,S +(bh−u∗, λ∗
h)0,S ]. In the right-hand side of (2.25b),

typically the latter term dominates. It is nonpositive if bh ≤ b a.e. in A∗
h. Note that

if bh = b a.e. in Ω, then Ψ∗(A∗ ∩A∗
h) = 0. From the structure of Ψ∗(A∗ ∩A∗

h) we can
see that it represents a dual-weighted data oscillation on A∗ ∩ A∗

h. Subsequently we
use

(2.26) oscSh (b;λ∗ + λ∗
h) := (bh − b, λ∗

h + λ∗)0,S .

Note that osc
I∗∩I∗

h

h (b;λ∗ + λ∗
h) = 0.

Utilizing (2.23)–(2.26), for C∗
1 = A∗ ∩ I∗

h and C∗
2 = I∗ ∩ A∗

h we obtain

Ψ∗(C∗
1 ) =

α

2
‖u∗

h − u∗‖2
0,C∗

1
+

1

2
(p∗ −Mhp

∗
h, u

∗
h − u∗)0,C∗

1
,(2.27a)

Ψ∗(C∗
2 ) =

1

2
(bh − α−1p∗, λ∗

h)0,C∗
2
.(2.27b)
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On the respective sets we get the following estimates:
(i) In C∗

1 we have u∗
|C∗

1
= b|C∗

1
. Thus,

|Ψ∗(C∗
1 )| ≤ 1

2

(
‖Mhp

∗
h − p∗h‖0,C∗

1
+ ‖p∗h − p∗‖0,C∗

1
+ α‖u∗

h − b‖0,C∗
1

)
‖u∗

h − b‖0,C∗
1
.

Given C∗
1 and the discrete control u∗

h and adjoint state p∗h, the first and third terms
in parentheses above are computable a posteriori. We therefore study ‖p∗h − p∗‖0,C∗

1

next. Since p∗h, p
∗ ∈ H1

0 (Ω) and, for n ≥ 2, H1
0 (Ω) ⊂ Ls(Ω) for some s ∈ (2,+∞),

from Hölder’s inequality we obtain

(2.28) ‖p∗h − p∗‖0,C∗
1
≤ meas(C∗

1 )r(s)|p∗ − p∗h|1,C∗
1
≤ C4 meas(C∗

1 )r(s)η4

with r(s) := 1
2 − 1

s > 0. Hence, we get

(2.29) ‖p∗h − p∗‖0,C∗
1
≤ min

(
Cp

0η0,p, C4 meas(C∗
1 )r(s)η4

)
=: Cp(C∗

1 ),

where η0,p denotes the a posteriori estimator for ‖p∗ − p∗h‖0,Ω (see Appendix A for its
derivation) and Cp

0 > 0 is a constant. This yields

|Ψ∗(C∗
1 )| ≤ 1

2

(
‖Mhp

∗
h − p∗h‖0,C∗

1
+ Cp(C∗

1 ) + α‖u∗
h − b‖0,C∗

1

)
· ‖u∗

h − b‖0,C∗
1

=: μ1(C∗
1 ).

(2.30)

(ii) In C∗
2 we use the identities λ∗

h = Mhp
∗
h − αu∗

h and p∗ = αu∗. From this, and
assuming bh ∈ Lt(Ω), 2 ≤ t ≤ s, we infer

2|Ψ∗(C∗
2 )| = |(u∗

h − u∗, λ∗
h)C∗

2
|

≤ meas(C∗
2 )r(t)‖bh − α−1p∗‖t,C∗

2
‖λ∗

h‖0,C∗
2

≤ meas(C∗
2 )r(t)

(
‖bh − α−1p∗h‖t,C∗

2
+ α−1|p∗h − p∗|1,Ω

)
‖λ∗

h‖0,C∗
2

≤ meas(C∗
2 )r(t)

(
‖bh − α−1p∗h‖t,C∗

2
+ α−1C4η4

)
‖λ∗

h‖0,C∗
2

with r(t) ≥ 0. Alternatively, we may use (2.17a) for estimating ‖u∗
h−u∗‖0,M∗

2
. Hence,

setting

Cu(C∗
2 ) := min

(
meas(C∗

2 )r(t)
(
‖bh − α−1p∗h‖t,C∗

2
+ α−1C4η4

)
, C3η3

)
,

we obtain

(2.31) |Ψ∗(C∗
2 )| ≤ 1

2
Cu(C∗

2 )‖λ∗
h‖0,C∗

2
:= μ2(C∗

2 ).

Since λ∗
h = 0 in I∗

h, we obviously have μ2(I∗
h) = 0.

In both cases above we assume μ1(∅) = 0 and μ2(∅) = 0. Summarizing, we obtain

|Ψ∗(Ω)| = |Ψ∗(A∗ ∩ A∗
h) + Ψ∗(C∗

1 ) + Ψ∗(C∗
2 )|

≤ 1

2

∣∣osc
A∗∩A∗

h

h (b;λ∗ + λ∗
h)
∣∣ + μ1(C∗

1 ) + μ2(C∗
2 ).

An alternative (and possibly coarse) estimate of Ψ∗(Ω) uses only the error esti-
mate η3 and ‖λ∗

h‖0,A∗
h

as follows:

|Ψ∗(Ω)| =
1

2
|(λ∗

h + λ∗, u∗ − u∗
h)| ≤ 1

2
C3η3(C3η3 + 2‖λ∗

h‖0,A∗
h
) =: μ3(Ω).
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If the original problem is unconstrained with respect to u, then λ∗ = 0. As a
consequence, the first order conditions yield αu∗ = p∗, i.e., u∗ inherits the regularity
of p∗ ∈ H1

0 (Ω). Then we may choose the same ansatz when discretizing p and u.
Thus, we obtain η1 = 0, since Mh becomes the identity operator, and—up to data
oscillations—η2 = η3, and further, ‖Mhp

∗
h − p∗h‖0,C∗

1
= 0 in μ1.

Finally, we express μ1 and μ2 such that we obtain cell-oriented error estimates.
Let us first consider μ1(C∗

1 ). We have

μ1(C∗
1 ) =

1

2

(
Cp(C∗

1 ) + ‖Mhp
∗
h − p∗h‖0,C∗

1
+ α‖u∗

h − b‖0,C∗
1

)
‖u∗

h − b‖0,C∗
1

=
1

2

(
Ĉp(C∗

1 ) + Ĉ5(C∗
1 )‖Mhp

∗
h − p∗h‖2

0,C∗
1

+ α‖u∗
h − b‖2

0,C∗
1

)
.

Above, we use

Ĉp
0 :=

{
Cp

0

‖u∗
h−b‖0,C∗

1

η0,p
if meas(C∗

1 ) �= 0 and η0,p > 0,

0 if meas(C∗
1 ) = 0,

as well as

Ĉ4(C∗
1 ) :=

{
C4

‖u∗
h−b‖0,C∗

1

η4
if meas(C∗

1 ) �= 0 and η4 > 0,

0 if meas(C∗
1 ) = 0,

and further,

Ĉ5(C∗
1 ) :=

{ ‖u∗
h−b‖0,C∗

1

‖Mhp∗
h−p∗

h‖0,C∗
1

if meas(C∗
1 ) �= 0 and ‖Mhp

∗
h − p∗h‖0,C∗

1
> 0,

0 if meas(C∗
1 ) = 0.

We therefore have

Ĉp(C∗
1 ) = min

(
Ĉp

0η
2
0,p, Ĉ4(C∗

1 ) meas(C∗
1 )r(s)η2

4

)
.

Finally, we turn to μ2(C∗
2 ). We obtain

μ2(C∗
2 ) =

1

2
Ĉu(C∗

2 ),

with

Ĉi(C∗
2 ) :=

{
Ci

‖λ∗
h‖0,C∗

2

ηi
if meas(C∗

2 ) �= 0 and ηi > 0,

0 if meas(C∗
2 ) = 0,

for i = 3, 4, and

Ĉu(C∗
2 ) := min

(
meas(C∗

2 )r(t)
(
‖bh − α−1p∗h‖t,C∗

2
‖λ∗

h‖0,C∗
2

+ α−1Ĉ4(C∗
2 )η2

4

)
, Ĉ3(C∗

2 )η2
3

)
.

We summarize our above findings in the following proposition.
Proposition 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then

(2.32) |Ψ∗(Ω)| ≤ min

(
1

2

∣∣osc
A∗∩A∗

h

h (b;λ∗ + λ∗
h)
∣∣ + μ1(C∗

1 ) + μ2(C∗
2 ), μ3(Ω)

)
.
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We denote the right-hand side in (2.32) by ν̂. In the case where the solution of (P)
satisfies u∗ < b a.e. on Ω, we expect that ν̂ ≈ 0. Indeed, for sufficiently small h we
have λ∗

h ≈ 0 (or even λ∗
h = 0). Thus, μ2(C∗

2 ) ≈ 0 (or μ2(C∗
2 ) = 0) holds true. Further,

μ1(C∗
1 ) = 0 since A∗ = ∅. Then (2.32) yields ν̂ ≈ 0 (or ν̂ = 0). If (P) involves

no inequality constraints on u, which means that we can set b ≡ +∞ on Ω, then
we naturally obtain ν̂ = 0. Hence, we recover the error estimator for unconstrained
optimal control problems; compare [2, 14].

For deriving the full error estimate, it remains to consider the first term in paren-
theses on the right-hand side of (2.16) in Theorem 2.2. This term is independent of
the control constraints and corresponds to the usual expression obtained for (uncon-
strained) optimal control problems; see [2, 14]. A standard argument yields

|(∇y∗h,∇(iphp
∗ − p∗))0,Ω − (u∗

h + fh, i
p
hp

∗ − p∗)0,Ω|

≤
∑
T

‖−Δy∗h − u∗
h − fh‖0,T ‖p∗ − iphp

∗‖0,T(2.33)

+
∑
F

∥∥∥∥
[
∂y∗h
∂n

]∥∥∥∥
0,F

‖p∗ − iphp
∗‖0,F =: ηp2

for the primal equation,

|(y∗h − zh, i
y
hy

∗ − y∗)0,Ω + (∇(iyhy
∗ − y∗),∇p∗h)0,Ω|

≤
∑
T

‖−Δp∗h + y∗h − zh‖0,T ‖y∗ − iyhy
∗‖0,T(2.34)

+
∑
F

∥∥∥∥
[
∂p∗h
∂n

]∥∥∥∥
0,F

‖y∗ − iyhy
∗‖0,F =: ηd2

for the dual equation, and

(2.35) |(Mhp
∗
h − p∗h, i

u
hu

∗ − u∗)0,Ω| =: ηu2 .

The overall residual- and complementarity-based error estimate is given in the
following theorem.

Theorem 2.3. Let the assumptions of Theorem 2.1 be satisfied. Then we have
the following error estimate:

|J(y∗, u∗) − J(y∗h, u
∗
h)| ≤ 1

2
(ηp2 + ηd2 + ηu2 ) + ν̂

+
1

2

[
Cp

0η0,p‖f − fh‖0,Ω + Cy
0 η0,y‖z − zh‖0,Ω

]
(2.36)

+ |osch(x∗
h)|

with ηp2 , ηd2 , ηu2 , and ν̂ defined by (2.33), (2.34), (2.35), and (2.32), respectively.
Further, Cy

0 > 0 is a constant and η0,y denotes an error estimate for ‖y∗h − y∗‖0,Ω.
For the definition of η0,p and η0,y see (A.10) and (A.11) in Appendix A.

The numerical evaluation of (2.36) depends on estimates of ‖iyhy∗−y∗‖0,T , ‖iyhy∗−
y∗‖0,F , and analogously, for iphp

∗ − p∗. When discretizing the state and the adjoint
state in two dimensions by continuous piecewise linear finite elements, the following
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averaging technique, replacing ηp2 and ηd2 in (2.33) and (2.34), respectively, is appro-
priate:

ηp2,h :=
1

3

∑
T

⎛
⎝hT ‖−Δy∗h − u∗

h − fh‖0,T

∑
F (T )

h
1/2
F

∥∥∥∥
[
∂p∗h
∂n

]∥∥∥∥
0,F

⎞
⎠

+
∑
F

hF

∥∥∥∥
[
∂y∗h
∂n

]∥∥∥∥
0,F

∥∥∥∥
[
∂p∗h
∂n

]∥∥∥∥
0,F

(2.37)

for the primal equation, and

ηd2,h :=
1

3

∑
T

⎛
⎝hT ‖−Δp∗h + y∗h − zh‖0,T

∑
F (T )

h
1/2
F

∥∥∥∥
[
∂y∗h
∂n

]∥∥∥∥
0,F

⎞
⎠

+
∑
F

hF

∥∥∥∥
[
∂p∗h
∂n

]∥∥∥∥
0,F

∥∥∥∥
[
∂y∗h
∂n

]∥∥∥∥
0,F

(2.38)

for the dual equation, where F (T ) denotes the edges pertinent to triangle T . Notice
that (2.37) and (2.38) yield typically sharper estimates than residual-based estimators
for our model problem; compare (2.17) and [8]. Further observe that we can only
expect boundedness of ‖iuhu∗ − u∗‖0,Ω in general. However, typically ‖Mhp

∗
h − p∗h‖0,Ω

is small, or, when using the same ansatz for discretizing u∗ as well as p∗, it is even
zero.

For the numerical evaluation of ν̂ observe that I∗
h \ A∗ ⊂ I∗, and hence λ∗

h = 0
and λ∗ = 0 on this set. Consequently, we obtain

Ψ∗(I∗
h \ A∗) = 0.

Next observe that I∗
h = C∗

1 ∪̇ (I∗
h \ A∗). Therefore, we have

(2.39) Ψ∗(C∗
1 ) = Ψ∗(I∗

h) − Ψ∗(I∗
h \ A∗) = Ψ∗(I∗

h).

If bh = b, then we obtain Ψ∗(A∗
h \ I∗) = 0, and further,

(2.40) Ψ∗(C∗
2 ) = Ψ∗(A∗

h) − Ψ∗(A∗
h \ I∗) = Ψ∗(A∗

h).

The estimates μ1(C∗
1 ) and μ1(C∗

2 ), however, do not satisfy relations analogous to
(2.39)–(2.40) even when bh = b. Hence, ν̂ is not a posteriori. In order to have a
fully a posteriori estimate, we replace ν̂ in (2.36) by

(2.41) ν̂a = min (μ1(I∗
h), μ3(Ω)) + min (μ2(A∗

h), μ3(Ω)) .

An alternative technique based on set estimation is the subject of section 3.2.

3. Extensions. Now we consider possible extensions of the concept derived in
the previous section. We focus on two aspects as follows: (i) effects due to nonlin-
ear PDEs and/or bilateral constraints; and (ii) alternative ways of making ν̂ fully
a posteriori.
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3.1. Semilinear PDEs and bilateral constraints. Next we assume that the
underlying PDE is semilinear as follows:

(3.1) A(y) = Bu + f,

where the operators A and B induce a semilinear form a(·)(·) and a bilinear form
b(·, ·), respectively. Hence, the weak form of (3.1) becomes

a(y)(v) = (f, v)0,Ω + b(u, v) ∀v ∈ Y.

For our arguments to follow, we assume that A (respectively, a) is sufficiently often
differentiable. Further, we suppose that the control is subject to bilateral constraints,
i.e.,

a ≤ u ≤ b a.e. in Ω.

The Lagrange function corresponding to the associated minimization problem has the
structure

L(x, λa, λb) = J(y, u) + a(y)(p) − (f, p)0,Ω − b(u, p) + (a− u, λa)0,Ω + (u− b, λb)0,Ω,

where λa, λb ∈ L2(Ω) represent the Lagrange multipliers pertinent to the bilateral
pointwise constraints. The first order necessary optimality conditions are given by

A(y∗) −Bu∗ = f,(3.2a)

A′(y∗)�p∗ + Jy(y
∗, u∗) = 0,(3.2b)

Ju(y∗, u∗) + λ∗
b − λ∗

a −B�p∗ = 0,(3.2c)

u∗ ≥ a, λ∗
a ≥ 0, (u∗ − a, λ∗

a)0,Ω = 0,(3.2d)

u∗ ≤ b, λ∗
b ≥ 0, (u∗ − b, λ∗

b)0,Ω = 0.(3.2e)

As the pointwise control constraints are affine, the error estimator for the nonlinear
case is similar to the linear case. This parallels the situation in [2], where the uncon-
strained case was considered. Due to essentially the same proof arguments as in [2,
Proposition 6.1], the following result holds true. In what follows, we use

L0(x) = J(y, u) + a(y)(p) − (f, p)0,Ω − b(u, p),

and use L0,h(x) for its discrete counterpart.
Theorem 3.1. For a Galerkin finite element discretization of the first order

necessary optimality conditions (3.2), the following relation holds true:

J(y∗, u∗) − Jh(y∗h, u
∗
h) =

1

2
∇xL0,h(x∗

h)(x∗ − ihx
∗)

+
1

2

[
(u∗

h − b, λ∗
b)0,Ω + (bh − u∗, λ∗

b,h)0,Ω
]

+
1

2

[
(a− u∗

h, λ
∗
a)0,Ω + (u∗ − ah, λ

∗
a,h)0,Ω

]
+

1

2
((f − fh, p

∗
h − p∗)0,Ω + (z − zh, y

∗
h − y∗)0,Ω) + osch(x∗

h)

+ r(x∗, x∗
h),

where r(x∗, x∗
h) denotes the remainder term of a Taylor expansion of L0 about x∗

h. It
is bounded by

|r(x∗, x∗
h)| ≤ sup

x̄∈[x∗
h,x

∗]

|∇3
xL0(x̄)[x∗ − x∗

h]3|.
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3.2. Alternative a posteriori estimate for ν̂. At the end of section 2 we
derived an a posteriori estimate for ν̂; recall ν̂a in (2.41), where we replaced C∗

1 by I∗
h

and C∗
2 by A∗

h, respectively. This may give rise to an overestimation of the error term
pertinent to the complementarity system. In the following we provide an alternative
approach based on set estimation.

Assuming, without loss of generality, bh = b, we focus on the unilaterally con-
strained case and start by considering μ̂1(C∗

1 ). For this purpose recall that C∗
1 =

I∗
h ∩ A∗. Similarly to [11, section 3.3] we estimate the continuous active set A∗ by

χA∗

h = 1 − b− u∗
h

γ hr + b− u∗
h

,

where γ denotes some (possibly small) positive constant, and r > 0 is fixed. Note that
χA∗

h = 1 in A∗
h. Further, let χ(S) denote the characteristic function of a set S ⊂ Ω.

We briefly argue that our approximation is useful. In fact, assume that T ⊂ A∗. Then

‖χ(A∗) − χA∗

h ‖0,T =

∥∥∥∥ b− u∗
h

γhr + b− u∗
h

∥∥∥∥
0,T

≤ min{1, γ−1h−r‖u∗ − u∗
h‖0,T },

which tends to zero whenever ‖u∗ − u∗
h‖0,T = O(hq) with q > r. If T ∈ I∗, then we

distinguish two cases as follows:
(i) T ⊂ {b− u∗

h > γhεr} for some 0 ≤ ε < 1. Then

‖χ(A∗) − χA∗

h ‖0,T =

∥∥∥∥ γhr

γhr + b− u∗
h

∥∥∥∥
0,T

≤ h(1−ε)r → 0 as h → 0.

(ii) Finally, in the case where T ∈ {b − u∗
h ≤ γhεr}, we use T ⊂ I∗ and ‖u∗ −

u∗
h‖0,Ω → 0 to conclude that the measure of this set tends to zero as h → 0.

We therefore use the following approximation of χ(C∗
1 ):

χ(C∗
1 ) ≈ χ(I∗

h)χA∗

h =: χ
C∗
1

h .

In the definition of μ1(C∗
1 ), we then use

‖χC∗
1

h (u∗
h − b)‖0,Ω instead of ‖u∗

h − b‖0,C∗
1

and analogously for ‖Mhp
∗
h − p∗h‖0,C∗

1
. Further, the measure of C∗

1 is approximated by

meas(C∗
1 ) ≈

∫
Ω

χ
C∗
1

h dx.

The definition of μ2 involves the set C∗
2 = A∗

h ∩ I∗. Here we employ the approxi-
mation

χ
C∗
2

h := χ(A∗
h)χI∗

h

with χI∗

h = 1 − χA∗

h . Then we replace ‖λ∗
h‖0,C∗

2
by ‖χC∗

2

h λ∗
h‖0,Ω, ‖b − αp∗h‖t,C∗

2
by

‖χC∗
2

h (b− α−1p∗h)‖t,Ω, and obtain

meas(C∗
2 ) ≈

∫
Ω

χ
C∗
2

h dx.

The extension of this concept to the bilaterally constrained case is straightforward.
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4. Numerics. For the practical realization of the goal-oriented dual-weighted
approach, we follow the cycle SOLVE, ESTIMATE, MARK, and REFINE known
from adaptive finite element methods. Here, SOLVE stands for the numerical solution
of the discrete optimal control problem which is taken care of by a primal-dual active
set strategy [9]. The following step, ESTIMATE, is devoted to the computation of
the edge and element residuals of the error estimator ηh, the local components of the
consistency error ν̂h, and the data oscillations. We note that

(4.1) ηh := ηp2,h + ηd2,h + ηu2,h.

Here, ηp2,h and ηd2,h are given by (2.38) and (2.37). Moreover, ηu2,h is given by (2.35)

with iuhu
∗ − u∗ replaced by u∗

h − ū∗
h, where ū∗

h|T := |T |−1
∫
T
u∗
h dx, T ∈ Th. We refer

to ηp2,T , ηd2,T , ηu2,T , T ∈ Th, as the elementwise contributions to ηp2,h, ηd2,h, and ηu2,h,
respectively, so that

ηh =
∑
T∈Th

ηT , ηT := ηp2,T + ηd2, T + ηu2,T .

Likewise, we have

(4.2) ν̂h =
∑
T∈Th

ν̂aT ,

where ν̂aT , T ∈ Th, are the elementwise contributions to ν̂a that can be easily deduced
from (2.32). Finally, we summarize the remaining terms of (2.36) in Theorem 2.3
according to

(4.3) osch :=
1

2
[Cp

0η0,p‖f − fh‖0,Ω + Cy
0 η0,y‖z − zh‖0,Ω] + |osch(x∗

h)|

and observe

osch =
∑
T∈Th

oscT ,

where again oscT , T ∈ Th, refers to the elementwise contribution to osch. In the
step MARK of the adaptive cycle, we specify constants Θi ∈ (0, 1) and select subsets
Mi ⊂ Th, 1 ≤ i ≤ 3, by means of the bulk criteria

Θ1

∑
T∈Th

ηT ≤
∑

T∈M1

ηT ,(4.4a)

Θ2

∑
T∈Th

ν̂aT ≤
∑

T∈M2

ν̂aT ,(4.4b)

Θ3

∑
T∈Th

oscT ≤
∑

T∈M3

oscT(4.4c)

known from the convergence analysis of adaptive finite element methods (cf., e.g.,
[6, 15]). The bulk criteria can be realized by a greedy algorithm (cf., e.g., [8]). The
final step REFINE of the adaptive loop is devoted to the creation of a new refined
mesh based on longest edge bisection of any element T ∈ Th that has been marked,
i.e., T ∈

⋃3
i=1 Mi.
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Fig. 4.1. Example 1: Optimal state (left) and optimal control (right).

Fig. 4.2. Example 1: Adaptively refined grid after 6 (left) and 10 (right) refinement steps
(Θi = 0.6, 1 ≤ i ≤ 3).

Finally, we provide documentation of numerical results illustrating the perfor-
mance of the goal-oriented dual-weighted approach for two representative distributed
optimal control problems that have been considered in [8] in the framework of an error
analysis of residual-type a posteriori error estimators for control constrained optimal
control problems.

Example 1 (constant obstacle). This first example features a constant obstacle.
The data are as follows:

Ω := (0, 1)2, z :=

{
200x1x2(x1 − 0.5)2(1 − x2) if 0 ≤ x1 ≤ 0.5,

200(x1 − 1)x2(x1 − 0.5)2(1 − x2) if 0.5 < x1 ≤ 1,

α := 0.01, b := 1, f := 0.

Figures 4.1 and 4.2 show a visualization of the optimal state and the optimal control
as well as the adaptively refined grids after 6 and 10 refinement steps in the case
when Θi = 0.6, 1 ≤ i ≤ 3 in the bulk criteria (4.4). The active region is an ellipse
(cf. the plateau in Figure 4.1 (right)). The convergence history of the adaptive loop
is displayed in Table 4.1, containing the total number of degrees of freedom NDOF ,
the error δh := |J(y∗, u∗)−Jh(y∗h, u

∗
h)| in the objective functional, the error estimator

ηh, the consistency error ν̂ah, and the data oscillations osch. Finally, Figure 4.3 shows
the error δh as a function of the total number of degrees of freedom in the case of
adaptive refinement (solid line) and uniform refinement (dotted line). Since in this
example the optimal state and adjoint state are smooth, there is only a slight benefit
gained when using the adaptive process.
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Table 4.1

Example 1: Convergence history of the goal-oriented dual-weighted approach.

� Ndof δh ηh ν̂ah osch
0 12 2.73e-03 1.47e-02 0.00e+00 1.17e-01
1 25 8.57e-04 2.03e-02 2.04e-03 6.23e-02
2 42 5.09e-04 1.42e-02 4.86e-03 3.44e-02
3 80 2.54e-04 7.63e-03 3.13e-03 2.17e-02
4 138 1.52e-04 4.61e-03 1.66e-04 1.27e-02
5 282 7.32e-05 2.30e-03 1.62e-05 7.26e-03
6 478 4.24e-05 1.35e-03 3.67e-05 4.20e-03
7 928 1.77e-05 6.45e-04 1.43e-05 5.24e-03
8 1706 9.91e-06 3.67e-04 4.27e-06 2.08e-03
9 3236 5.13e-06 1.85e-04 1.54e-06 1.20e-03

10 6237 2.52e-06 9.95e-05 3.82e-07 6.60e-04
11 11292 1.42e-06 5.25e-05 1.56e-07 3.73e-04
12 22639 5.92e-07 2.74e-05 1.63e-07 1.63e-04
13 38549 4.20e-07 1.53e-05 4.41e-08 1.12e-04
14 81325 1.57e-07 7.57e-06 7.60e-09 5.05e-05
15 136571 1.17e-07 4.38e-06 6.78e-09 3.24e-05
16 299028 4.65e-08 2.05e-06 1.32e-09 1.58e-05

Fig. 4.3. Example 1: Adaptive refinement (solid line) versus uniform refinement (dotted line).

Example 2 (variable obstacle). This example is constructed in such a way that
there is a lack of strict complementarity. It differs from the general setting insofar
as the term containing the control in the objective functional additionally includes a
fixed shift control w ∈ L2(Ω) as follows:

J(y, u) :=
1

2
‖y − z‖2

0,Ω +
α

2
‖u− w‖2

0,Ω.

The data are as follows:

Ω := (0, 1)2, z := 0, w := û + α−1 (σ̂ + Δ−2û) ,

b :=

{
(x1 − 0.5)8 if (x1, x2) ∈ Ω1,
(x1 − 0.5)2 otherwise,

α := 0.1, f := 0.

Here, û and σ̂ are given by

û :=

{
b(x1, x2) if (x1, x2) ∈ Ω1 ∪ Ω2,

−1.01 b(x1, x2) otherwise
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Fig. 4.4. Example 2: Optimal state (left) and optimal control (right).

Fig. 4.5. Example 2: Adaptively refined grid after 6 (left) and 10 (right) refinement steps
(Θi = 0.6, 1 ≤ i ≤ 3).

and

σ̂ :=

{
2.25 (x1 − 0.75) · 10−4 if (x1, x2) ∈ Ω2,

0 otherwise

with Ω1 and Ω2 specified as follows:

Ω1 := {(x1, x2) ∈ Ω | ((x1 − 0.5)2 + (x2 − 0.5)2)1/2 ≤ 0.15},
Ω2 := {(x1, x2) ∈ Ω | x1 ≥ 0.75}.

We note that Ω2 corresponds to the strongly active set (where strict complementarity
holds true, i.e., λ∗ > 0 a.e. in Ω2), whereas the set Ω1 ∪ {(x1, x2) ∈ Ω | x1 = 0.5}
represents the weakly active set, where strict complementarity does not hold true,
i.e., λ∗ = 0 a.e. in this set.

The shift control w ∈ L2(Ω) is approximated by wh ∈ Lh, giving rise to an
additional term in the data oscillations osch(x∗

h).
Figure 4.4 displays the computed optimal state and optimal control. Figure 4.5

shows the adaptively refined grids after 6 and 10 refinements steps, where we have
chosen Θi = 0.6, 1 ≤ i ≤ 3 in the bulk criteria (4.4). Table 4.2 reflects the convergence
history of the refinement process in terms of the same data as in the first example,
and Figure 4.6 shows the comparison between adaptive and uniform refinement. In
this example, the benefits of adaptive refinement are more pronounced than in the
previous one.
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Table 4.2

Example 2: Convergence history of the goal-oriented dual-weighted approach.

� Ndof δh ηh ν̂ah osch
0 5 2.41e-04 2.58e-06 0.00e+00 1.07e-01
1 12 1.61e-04 5.26e-06 2.71e-07 8.11e-02
2 26 7.62e-05 4.78e-06 4.19e-07 5.25e-02
3 43 3.50e-05 3.69e-06 5.82e-07 3.71e-02
4 73 1.54e-05 2.08e-06 0.00e+00 2.89e-02
5 133 8.59e-06 1.29e-06 0.00e+00 2.22e-02
6 253 4.09e-06 6.45e-07 0.00e+00 1.59e-02
7 475 2.38e-06 3.78e-07 8.08e-11 1.17e-02
8 953 1.16e-06 1.79e-07 9.86e-12 8.39e-03
9 1776 6.44e-07 9.86e-08 1.79e-12 6.05e-03

10 3507 3.41e-07 4.87e-08 2.66e-13 4.70e-03
11 6645 1.82e-07 2.64e-08 7.94e-14 3.34e-03
12 12684 1.03e-07 1.33e-08 3.08e-14 2.59e-03
13 24746 5.36e-08 7.06e-09 1.25e-14 1.91e-03
14 45486 2.99e-08 3.71e-09 2.23e-15 1.52e-03
15 90991 1.57e-08 1.91e-09 1.75e-15 1.13e-03
16 165366 8.12e-09 1.05e-09 2.65e-16 9.06e-04

Fig. 4.6. Example 2: Adaptive refinement (solid line) versus uniform refinement (dotted line).

It should be noted that in both examples there is comparably less refinement
than in the case of the residual-type a posteriori error estimator from [8]. This does
not come as a surprise. As we noted before, the error estimation derived from the
goal-oriented dual-weighted approach provides a finer estimate, since the residual-type
upper bound can be derived from it by further estimation. On the other hand, the
residual-type estimator from [8] has been designed for an estimation of the errors in
the state, the adjoint state, the control, and the adjoint control. Therefore, a more
pronounced refinement has to be expected.

Appendix A. A posteriori estimates in the L2-norm. In this section we
derive a posteriori error estimates for ‖p∗ − p∗h‖0,Ω and ‖y∗ − y∗h‖0,Ω. The subsequent
proof technique is based on a combination of the approaches in [8] and [17].

In what follows, we assume that Ω is convex and that b = bh a.e. in Ω, and we
use a(y, w) = (∇y,∇w)0,Ω. Given u∗

h ∈ Lh, by y(u∗
h), p(u∗

h) ∈ H1
0 (Ω) we denote the

solutions to

a(y(u∗
h), v) = (f + u∗

h, v)0,Ω,

a(p(u∗
h), v) = (z − y(u∗

h), v)0,Ω

 
  

  
  

  
  

  
  

  
  

   
  

  
  

  
  

  
  

  
   

  
   

   
  

  
  

  
  

  
   

  
  

 
 

   
  

  
  

  
  

  
  

  
  

   
  

  
   

   
  

  
  

   
  

  
  

   
  

  
  

  
  

 



                                                                              

GOAL-ORIENTED ADAPTIVITY 1741

for all v ∈ H1
0 (Ω). The Poincaré–Friedrichs inequality yields

‖p(u∗
h) − p∗‖0,Ω ≤ c(Ω)‖y(u∗

h) − y∗‖0,Ω,(A.1)

‖y(u∗
h) − y∗‖0,Ω ≤ c(Ω)‖u∗

h − u∗‖0,Ω,(A.2)

where we assume that y∗ ∈ H1
0 (Ω) satisfies a(y∗, v) = (f +u∗, v)0,Ω for all v ∈ H1

0 (Ω),
and c(Ω) is a constant depending only on the domain Ω. Hence, for p∗ ∈ H1

0 (Ω)
satisfying a(p∗, v) = (z − y∗, v)0,Ω for all v ∈ H1

0 (Ω), we get

(A.3) ‖p∗ − p∗h‖0,Ω ≤ ‖p(u∗
h) − p∗h‖0,Ω + c(Ω)2‖u∗

h − u∗‖0,Ω.

Next let us assume that u∗, respectively, u∗
h, satisfies the system

αu∗ − p∗ + λ∗ = 0 and αu∗
h −Mhp

∗
h + λ∗

h = 0.

Then we obtain

α‖u∗ − u∗
h‖2

0,Ω ≤ (λ∗
h − λ∗, u∗ − u∗

h)0,Ω + (p∗ − p∗h, u
∗ − u∗

h)0,Ω

+
α

4
‖u∗ − u∗

h‖2
0,Ω +

1

α
‖p∗h −Mhp

∗
h‖2

0,Ω

≤ (p∗ − p∗h, u
∗ − u∗

h)0,Ω +
α

4
‖u∗ − u∗

h‖2
0,Ω

+
1

α
‖p∗h −Mhp

∗
h‖2

0,Ω

(A.4)

since (λ∗
h − λ∗, u∗ − u∗

h)0,Ω ≤ 0. One also has

(p∗ − p(u∗
h), u∗ − u∗

h)0,Ω ≤ 0.

Hence, we have

(p∗ − p∗h, u
∗ − u∗

h)0,Ω ≤ (p(u∗
h) − p∗h, u

∗ − u∗
h)0,Ω

≤ α

4
‖u∗ − u∗

h‖2
0,Ω +

1

α
‖p∗h − p(u∗

h)‖2
0,Ω.

This allows us to continue (A.4) as follows:

(A.5) ‖u∗ − u∗
h‖2

0,Ω ≤ 2

α2
‖p∗h − p(u∗

h)‖2
0,Ω +

2

α2
‖p∗h −Mhp

∗
h‖2

0,Ω.

Combining the above estimates results in

‖p∗ − p∗h‖0,Ω ≤
(

1 +

√
2

α
c(Ω)2

)
‖p∗h − p(u∗

h)‖0,Ω(A.6)

+

√
2

α
c(Ω)2‖p∗h −Mhp

∗
h‖0,Ω,

‖y∗ − y∗h‖0,Ω ≤ ‖y(u∗
h) − y∗h‖0,Ω +

√
2

α
c(Ω)

(
‖p∗h − p(u∗

h)‖0,Ω(A.7)

+ ‖p∗h −Mhp
∗
h‖0,Ω

)
.

Utilizing standard L2-estimates (see, e.g., [17, Proposition 3.8]) we infer

‖y(u∗
h) − y∗h‖2

0,Ω ≤ C

(∑
T

h2
T η

2
y,T +

∑
F

h2
F η

2
y,F

)
=: Cη̃2

0,y,(A.8)

‖p(u∗
h) − p∗h‖2

0,Ω ≤ C

(∑
T

h2
T η̃

2
p,T +

∑
F

h2
F η

2
p,F

)
=: Cη̃2

0,p,(A.9)
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where the element and edge residuals are given by

ηy,T := hT ‖f + u∗
h‖0,T ,

ηy,F := h
1/2
F ‖nF · [∇y∗h]‖0,F ,

η̃p,T := hT ‖z − y(u∗
h)‖0,T ,

ηp,F := h
1/2
F ‖nF · [∇p∗h]‖0,F

with nF denoting the exterior unit normal of T . The triangle inequality yields∑
T

h4
T ‖z − y(u∗

h)‖2
0,T ≤ C h2η̃2

0,y + 2
∑
T

h2
T η

2
p,T

with the element residual

ηp,T := h2
T ‖z − y∗h‖0,T .

Finally, we derive the estimate

‖p∗ − p∗h‖0,Ω ≤ C

(
h2η̃2

0,y +
∑
T

h2
T η

2
p,T +

∑
F

h2
F η

2
p,F

)1/2

+

√
2

α
c(Ω)2‖p∗h −Mhp

∗
h‖0,Ω + osc0,h(z) + osc0,h(f)(A.10)

=: Cp
0η0,p + osc0,h(z) + osc0,h(f),

where the data oscillations are given by

osc0,h(z) =

(∑
T

h2
T oscT (z)2

)1/2

,

oscT (z) = hT ‖z − zh‖0,T

and analogously for osc0,h(f).
The error in the state is estimated a posteriori by

‖y∗ − y∗h‖0,Ω ≤ Cη̃0,y +

√
2

α
c(Ω) (η̃0,p + ‖p∗h −Mhp

∗
h‖0,Ω)

+ osc0,h(f) + osc0,h(z)(A.11)

=: Cy
0 η0,y + osc0,h(f) + osc0,h(z).
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