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Abstract 
 
 
 
 

In the TERrestrial ENvironmental Observatories (TERENO) prealpine region, the 
temporal and spatial variability of water and energy fluxes is highly influenced by the 
heterogeneity of land-surface characteristics. In this region, ecohydrometeorological 
variables and processes like soil moisture, evapotranspiration (ET), vegetation type 
and dynamics, and surface heat fluxes exhibit rapid changes within short distances. 
This is mainly due to the heterogeneity in topography, soil-landuse properties, and 
land-surface interactions. The energy –and water budgets in such environments are 
thus highly controlled by the domain characteristics. Therefore, accurate 
spatial variability of the hydrometeorological variables can be only achieved with 
a distributed physically-based high resolution hydrologic modelling approach. Such 
models take into account all domain characteristics by simultaneously solving the 
water and energy balance over complex mountain terrain. 

This PhD thesis investigates: i) the turbulent flux variability and energy balance 
closure, ii) the spatiotemporal variability and dependence structure of the coupled 
water –and energy fluxes (via forward modeling), iii) and the sensitivity and 
uncertainty pertaining to hydrological model parameters (via inverse modeling) in the 
TERENO prealpine region, southern Germany. This is achieved by i) using the Eddy 
Covariance technique (EC), ii) application of the distributed hydrological model 
GEOtop and empirical Copulas, iii) and a combination of GEOtop and the Parameter 
ESTimation tool (PEST) for this complex region. To obtain the above research 
objectives as best as possible, this thesis is structured and organized into three main-
result parts as follows: 

In the first part, the turbulent flux variability and energy balance closure (EBC) is 
characterized for the TERENO EC sites during 2013-2014. The main goals are to 
characterize the multiscale variations and derivers of the turbulent fluxes, as well as to 
quantify the EBC. The results show significant differences in the mean diurnal 
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variations of the turbulent fluxes. The radiation (29.5%) and temperature (41.3%) 
components are found as the main drivers of turbulent fluxes. A general lack of EBC 
is observed. On average, 80% of the flux footprint is emitted from a radius of 250 m 
around the EC stations. 

In the second part, the spatiotemporal variability and dependence structure patterns of 
the coupled water and energy fluxes are quantified using the GEOtop model and 
empirical Copulas for the Rott (~55 km2) and Upper-Ammer (~300 km2) catchments 
in the TERENO prealpine region over two summer episodes in 2013 and 2015. 
GEOtop is capable of quantifying the temporal and spatial variability of the water and 
energy budgets with consideration for elevation-gradient effect of this heterogeneous 
landscape, which is confirmed by the linear statistical metrics applied for the model 
performance evaluation. Furthermore, the empirical Copula-based dependence 
structures of the measured and simulated hydrometeorological variables indicate that 
the highest densities are found in the lower and upper ranks. This suggests a 
reasonable performance of the model for the low and high values, which, the model 
has poorer performance in the middle ranks of the data. 

In the third part, an inverse modeling of the streamflow and turbulent fluxes together 
with the associated parameter sensitivity and uncertainty analysis is performed using 
the developed GEOtop-PEST interface in the Rott catchment over two summer 
episodes in 2013 and 2015. Using this interface, the value added by including 
turbulent flux data in the parameter estimation process is particularly investigated, 
and the impact of the additional flux data on the uncertainty bounds is analyzed. A set 
of model parameters that allowed reproducing both observed streamflow and 
turbulent heat fluxes were identified. The majority of the estimated parameters were 
highly sensitive to the considered variables. It was found that the confidence bounds 
of estimated parameters are narrowed significantly when considering not only 
streamflow observations, but additionally turbulent flux measurements in the 
calibration process. Also, correlations between estimated parameters could be 
reduced. 

The results presented in this thesis contribute to further improve our understanding of 
the hydrometeorological impacts, land-atmosphere interactions and the hydrological 
cycle in time and space over the TERENO prealpine region. 

 



 
 
 
 
 
 
 
 
 

Zusammenfassung 
 
 
 
 
Die Region Bayerische Voralpen ist eine der Zielregionen der Observatorien des 
interdisziplinären und langfristigen Forschungsprogramms TERENO (TERrestrial 
ENvironmental Observatories). In dieser Region sind die zeitliche und räumliche 
Variabilität von Wasser- und Energieflüssen stark von der Heterogenität der 
Landoberflächenparameter abhängig. Ökohydrometeorologische Variablen und 
Prozesse, wie etwa Bodenfeuchte, Evapotranspiration (ET), Vegetationstyp und –
dynamik oder turbulente Wärmeflüsse, weisen starke Änderungen innerhalb geringer 
Distanzen auf, hauptsächlich aufgrund der Heterogenität von Topographie, Boden und 
Landnutzungseigenschaften und Land-Oberflächen-Interaktionen. Der Energie- und 
Wasserhaushalt in solchen Regionen wird folglich in besonderem Maße von den 
Gebietseigenschaften kontrolliert. Daher kann eine akkurate räumliche Vorhersage 
von hydrometeorologischen Variablen nur mit einem räumlich distributiven und 
hochaufgelösten Modellansatz erfolgen. Solche Modelle berücksichtigen alle 
Gebietseigenschaften und lösen gleichzeitig die Wasser- und die Energiebilanz.  
Diese Dissertation untersucht: i) die Variabilität der turbulenten Flüsse sowie die 
Schließung der Energiebilanz, ii) die raumzeitliche Variabilität und 
Abhängigkeitsstruktur der gekoppelten Wasser- und Energieflüsse (mittels 
Vorwärtsmodellierung), und iii) die Sensitivität und Unsicherheit in Bezug auf die 
hydrologischen Modellparameter (mittels inverser Modellierung) in der TERENO-
Region Voralpenland. Erzielt wird dies durch i) Benutzung der Eddy-Kovarianz 
Methode (EC), ii) Anwendung des distributiven hydrologischen Modell GEOtop und 
empirischen Copulas, und iii) einer Kombination von GEOtop und dem Parameter 
ESTimation tool (PEST). Diese Dissertation ist wie folgt in drei Hauptkapitel 
unterteilt: 
Im ersten Teil werden die Variabilität der turbulenten Flüsse sowie die Schließung der 
Energiebilanz (energy balance closure, EBC) für die TERENO EC Standorte 
charakterisiert (2013-2014). Die Hauptziele sind die Charakterisierung der 
mehrskaligen Variationen und Einflussfaktoren der turbulenten Flüsse, sowie die 
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Quantifizierung der EBC. Die Ergebnisse zeigen signifikante Unterschiede in den 
durchschnittlichen täglichen Variationen der turbulenten Flüsse. Als 
Haupteinflussfaktoren der turbulenten Flüsse konnten die Komponenten Strahlung 
(29,5%) und Temperatur (41,3%) festgestellt werden. Insgesamt konnte die 
Energiebilanz nur mäßig bis schlecht geschlossen werden. Durchschnittlich stammen 
80% der Flussgrundfläche (footprint) aus einem Radius von 250 m um die EC-
Stationen.  
Im zweiten Teil werden die raumzeitliche Variabilität und Muster der 
Abhängigkeitsstruktur der gekoppelten Wasser- und Energieflüsse unter Benutzung 
des GEOtop Models und empirischen Copulas für die Einzugsgebiete Rott (~ 55km2) 
und Obere Ammer (~ 300 km2) in der TERENO Voralpenlandregion über die zwei 
Sommerepisoden 2013 und 2015 quantifiziert. GEOtop ist in der Lage, die temporäre 
und räumliche Variabilität von Wasser- und Energiehaushalten unter 
Berücksichtigung von verschiedenen Höhengradienten in dieser heterogenen 
Landschaft zu quantifizieren. Dies wird durch die zur Evaluierung der 
Modellperformanz angewandten linearen statistischen Kriterien bestätigt. Darüber 
hinaus indizieren die empirischen Copula-basierten Abhängigkeitsstrukturen der 
gemessenen und simulierten hydrometeorologischen Variablen, dass die höchsten 
Copula-Abhängigkeiten in den unteren und oberen Rängen gefunden werden. Das 
spricht für eine sinnvolle Performanz des Modells für die niedrigen und hohen Werte. 
Die Modellperformanz ist für die mittleren Ränge der Daten geringer. 
Im dritten Teil wird eine inverse Modellierung des Abflusses und der turbulenten 
Flüsse zusammen mit den assoziierten Parametersensitivitäten und 
Unsicherheitsanalysen unter Anwendung des entwickelten GEOtop-PEST Interface 
für das Rott-Einzugsgebiet und für die Sommerepisoden 2013 und 2015 ausgeführt. 
Unter Benutzung dieses Interface wird der durch die Integration von turbulenten 
Flüssen in den Prozess der Parameterschätzung hinzugefügte Wert ermittelt und der 
Einfluss der zusätzlichen Fluss-Daten auf die Unsicherheitsgrenzen analysiert. Eine 
Auswahl von Modellparametern, welche das Reproduzieren des Abflusses und der 
turbulenten Wärmeflüsse erlaubt, wurde identifiziert. Der Großteil der geschätzten 
Parameter war sehr sensitiv für die betrachteten Variablen. Es konnte festgestellt 
werden, dass sich die Konfidenzintervalle der geschätzten Parameter reduzieren, 
wenn man nicht nur Abflussmessungen, sondern zusätzlich Messungen turbulenter 
Flüsse in den Kalibierprozess miteinbezieht. Weiterhin konnten Interkorrelationen 
zwischen den geschätzten Parametern reduziert werden.  
Die in dieser Dissertation präsentierten Resultate tragen zu einem besseren 
Verständnis von hydrometeorologischen Einflüssen, Land-Atmosphären Interaktionen 
sowie dem hydrologischen Kreislauf in der TERENO Voralpenregion bei.  



		

 
 
 
 
 

Chapter 1 
 
 
 

Introduction 
 
 
 
 

1.1 Motivation and objectives 

Mountain areas are characterized by steep topographically induced-climate gradients, 
enabling the study of climatic-zones in short distances. An amplified climate change 
and high variability has been notably observed in such regions. Global change has 
induced alterations in climate and environment, water resources and land productivity 
as well as hydrometeorological variables including water- and energy cycles. 
However, these changes are diverse, interlinked, exhibit complex feedback 
mechanisms, and happen in different times and spaces. In general, mountains and the 
prealpine areas take up some considerable parts of the lands in our planet Earth, and 
are recognized as water-towers. Thus, the spatiotemporal variability of the water cycle 
over mountain areas and in prealpine areas needs to be better understood. In this 
context, the importance of prealpine regions could be even more highlighted than 
highlands; as in many cases, unlike the high-mountain areas, the prealpine areas are 
typically densely populated regions. Therefore, finding solutions to the impacts of 
global change i.e., climate and land-cover change, on prealpine environments remains 
an important environmental research.  

To address these challenges specifically for prealpine areas, improved process 
understanding of water-, energy- and matter exchanges and the development of 
mitigation and adaptation strategies are required. Hence, an integrated, multi-
compartment of atmosphere-pedosphere-hydrosphere measuring infrastructure for 
environmental monitoring and research has been established in the TERrestrial 
ENvironmental Observatories (TERENO) region in southern Germany. TERENO 
prealpine aims at interdisciplinary-research studies in the region. This includes the 
analysis of the spatiotemporal variability and interaction of water-, energy- and 
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nutrient cycles and the associated exchange processes with the atmosphere and the 
hydrosphere.  

The region of the TERENO-prealpine observatory has been exposed to more intense 
warming compared to the global average trend. Also, more frequencies of extreme-
hydrological-related events like droughts and intensive rainfall have been observed in 
the region (Böhm et al., 2001, Calanca, 2007). For instance, the temperature time-
series analysis for the Mount Hohenpeissenberg station has been revealed a mean 
temperature increase of 1.5°C for the years 1880-2012. This corresponds to around 
twice the globally averaged combined land and ocean surface temperature increase of 
0.78 °C, and also clearly exceeds the average global land temperature increase of 1.17 
°C for the same period (https://www.ncdc.noaa.gov/), as described in Kiese et al. 
(2018). 

Previous studies in the TERENO-prealpine observatory and the surrounding 
areas like e.g. Bavarian Alpine foothills and low mountain-range, have mainly 
focused on how climate change impacts runoff generation (Kunstmann et al., 2004), 
runoff production processes and discharge-related analysis (Wetzel et al., 2003, 
2004a, 2005a), surface and sub-surface water balances (Kunstmann et al., 2006; Ott et 
al., 2013; Wolf et al., 2016), biosphere-atmosphere exchange and greenhouse gases 
(Unteregelsbacher et al., 2013; Wang et al., 2014; Wolf et al., 2016; Zeeman et al., 
2017), energy balance closure parameterization (Eder et al., 2014), and calibrations of 
different hydrological models against runoff measurements (Kunstmann et al., 2006) 
and water and energy fluxes (Kunstmann et al., 2013; Hingerl et al., 2016). 

An important question has not been yet fully addressed in the TERENO-
prealpine observatory, that is: what is the hydrometeorological variability and the 
hydrological processes in time and space for this region? To appropriately consider 
this issue, very comprehensive measurements are needed. With no doubt, these 
measurements are costly, and thus limited as they are only available for some selected 
points within a large area. In other words, obviously the available in-situ 
measurements do not cover the entire region. This lack of data could be even more 
challenging for the southern portion of the TERENO-prealpine region, which is 
mostly described by a  steep-gradient and heterogeneous landscape. A solution to this 
crucial problem of course is to employ a distributed process-based hydrological 
model. 

In brief, in the TERENO-prealpine region, rainfall, temperature, soil moisture, 
as well as the radiative and turbulent heat fluxes etc., exhibit rapid changes within 
short distances due to the complex orography and heterogeneity in topography, soil 
hydraulic properties, landuse, landscape, climate as well as surface-subsurface and 
atmospheric boundary layer interactions. The energy- and water budgets in such 
environments are thus highly controlled by soil type properties (Pielke et al., 1998), 
landcover characteristics (Dirmeyer et al., 2010), and vegetation structure (Pielke et 
al., 2011). Therefore, the full spatial prediction of hydrometeorological variables can 
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only be achieved with a distributed high-resolution hydrologic modeling approach. 
Such models explicitly take into account all of the domain characteristics by 
simultaneously solving the water- and energy balance over complex mountain terrain 
(Beven, 2001; Bronstert et al., 2002). To validate the performance of hydrological 
models, the outputs are compared against observation-based runoff data and, more 
recently, micrometeorological measurements derived from Eddy Covariance (EC) 
techniques (e.g. Hingerl et al., 2016). Traditionally, linear statistical metrics such as 
correlation coefficient (r) are used for model evaluation. However, using simple linear 
r-values between simulated and observed hydrometeorological variables, which 
typically exhibit nonlinear characteristics, may not be appropriate to determine these 
complex relationships (Bárdossy and Pegram, 2009). Instead, Copula-based functions 
can appropriately obtain underlying dependence structures of these variables (Genest 
et al., 2007; Laux et al., 2011).  

Furthermore, the estimation of parameters is crucial for the successful 
application of distributed hydrological models, as heterogeneity needs to be accounted 
for and large uncertainties exist in the parameter values, which usually cannot be 
measured directly at fields. Even in physically based hydrological models, some 
parameters may remain that must be calibrated to obtain a satisfactory output (Liu et 
al., 2005). Fully distributed and physically based hydrological models are usually 
much more CPU-time demanding than pure lumped models. Typically, the “trial and 
error” method is applied for model calibration, which is simple and accordingly has 
been widely used for hydrological models (e.g. Kunstmann et al., 2006; Hingerl et al., 
2016). As this approach is time consuming, automatic optimization algorithms like 
the Gauss-Marquardt-Levenberg (GML) algorithm, as realized in the Parameter 
ESTimation tool (PEST), are applied allowing to facilitate this effort (Kunstmann et 
al., 2006; Lin, 2011). GML algorithm estimates the parameters using fewer model 
runs than any other optimization technique for nonlinear models (e.g. Monte-Carlo-
based algorithms) (Doherty, 2002; Bahremand and Smedt, 2006). Thus, automatic 
calibration approach can be fast and the results are expected to be more robust than 
those obtained by the manually based calibration approach (Bahremand and Smedt, 
2008).  

 

In this dissertation, accordingly, to fully describe and analyze the 
hydrometeorological variability and the hydrological processes in the TERENO-
prealpine observatory, the following three major parts are conducted: 

§ In the first part, the observed radiative and turbulent fluxes variabilities at 
monthly- and seasonally-based scales, the energy balance closure problem 
(EBC), together with the flux footprint climatology are quantified. More 
details are given at Sect. 1.1.1.  

§ In the second part, a forward modeling with a focus on model’s variables is 
conducted using the hydrological model GEOtop and Copula-based functions, 
where the spatiotemporal variability and dependence structure of the coupled 
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water and energy variables is in turn modeled and analyzed. More details are 
given at Sect. 1.1.2.  

§ In the third part, an inverse modeling with a focus on model’s parameters is 
performed using the developed GEOtop-PEST interface, where the model 
parameter’s sensitivity and uncertainty analysis is considered. More details 
are given at Sect. 1.1.3. 

 

1.1.1 Turbulent flux variability and energy balance closure  

The energy exchange processes between the land surface and the atmosphere is one of 
the central research questions in the TERENO-prealpine observatory. The surface 
turbulent fluxes, for example, are highly influenced both by the characteristics of the 
airflow and the structures of the underlying surface. Also, the Energy Balance Ratio 
(EBR) or the relative Energy Balance Closure (EBC) (Aubinet et al., 2000) remains 
unclosed at most Eddy Covariance (EC) sites (e.g. Hendricks Franssen et al., 2010; 
Stoy et al., 2013; Imukova et al., 2016). In the literature, there are not adequate 
research studies on the surface energy and water flux variations for the TERENO 
prealpine region.  

Therefore, the objectives of the first part of the thesis are to quantify: i) the 
surface energy and water fluxes variability, i.e. the spatiotemporal variations of the 
sensible and latent heat fluxes, soil moisture contents, and the energy partitioning 
conditions, ii) the main drivers of the turbulent heat fluxes, iii) the EBC and residual 
energy, as well as the possible reasons for the lack of EBC at the TERENO-prealpine 
EC sites. 

 

1.1.2 Forward modeling: coupled water and energy variables 

In the TERENO-prealpine observatory the hydrometeorological variables and the 
hydrological processes exhibit rapid changes within short distances. This is mainly 
due to the complex orography and small-scale heterogeneity in the land-surface 
characteristics (Kunstmann et al., 2006; Hingerl et al., 2016). For this environment, 
therefore, the distributed hydrological model GEOtop is applied to accurately quantify 
the variability of the water and energy budgets in time and space. For model 
performance evaluation, unlike the traditional ways, Copula-based functions are 
employed to obtain underlying dependence structures between simulated and 
observed hydrometeorological datasets. In the literature, the hydrological models 
were only calibrated against discharge (i.e. Kunstmann et al., 2006; Hingerl et al., 
2016), and no soil moisture profile variation or turbulent flux variability have been 
accounted for in the simulation. Moreover, previous studies only attempted to 
evaluate the models’ performances using the traditional linear statistical metrics (e.g. 
R2, RMSE).  
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Therefore, in the second part of the thesis the focus is on the model’s variables 
in time and space, and the following specific objectives are addressed: i) quantifying 
the spatiotemporal variability of the hydrometeorological variables of the turbulent 
fluxes as well as the surface temperature and ET with respect to the elevation-gradient 
effect using EC-based measurements and hydrological simulations, ii) simulating the 
coupled water and energy balances at a very high spatial resolution using GEOtop, 
and iii) estimating the underlying dependence structures of the observed and modeled 
water and energy fluxes using the nonlinear-based approach bivariate empirical 
Copula in the TERENO-prealpine region. 

 

1.1.3 Inverse modeling: parameter sensitivity and uncertainty 
analysis 

The fully distributed and physically-based hydrological model GEOtop is quite 
complex, and thus its parameters need to be estimated. For model calibration, unlike 
the typical method i.e. “trial and error”, the GML automatic optimization algorithm as 
realized in PEST is used. Traditionally, only discharge data have been available for 
model calibration. However, the TERENO region is rather rich in terms of data 
availability e.g. hydrometeorological datasets of surface heat fluxes and streamflow. 
This data availability, together with the use of PEST, makes it possible to characterize 
how the additional values of observations involved in the calibration process may 
influence the uncertainty range and confidence ellipses pertaining to the model 
parameters. Thus, the hydrological model GEOtop is coupled to PEST, for an inverse 
modeling to estimate the model’s parameters and their uncertainties in the Rott 
catchment located in the northern portion of the TERENO-prealpine observatory.  

Therefore, in the third part of the thesis the focus is on the model’s 
parameters. Using the developed GEOtop-PEST interface, the main objectives are to 
quantify: i) the uncertainties pertaining to the estimated model parameters, for which 
it is particularly examined the benefit of additional heat flux observations on the 
parameter confidence bounds, and ii) the intercorrelations between the model 
estimable parameters and their contributions in the calibration process. 

In the literature, there is no attempt yet to describe and analyze the model’s 
parameters-related uncertainty and their intercorrelations for this region.   
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1.2 Innovation 

The principle innovations of this dissertation include:  
§ The first analysis on the multiscale turbulent flux variability, as well as further 

investigation on the EBC problem and the possible reasons for the energy 
imbalance in the TERENO prealpine region; 

§ Identification of the main derivers of turbulent fluxes via a Principal 
Component Analysis (PCA) technique in the TERENO-prealpine EC sites for 
the first time; 

§ The first analysis of flux footprint climatology for the study EC sites; 
§ Distributed modeling of the complete terrestrial water and energy cycle 

including most relevant physical processes using a high-resolution model in 
the TERENO-prealpine catchments; 

§ Employing new approach for the evaluation of the model’s performance based 
on empirical Copula-based functions; 

§ Inverse modeling via developing the GEOtop-PEST interface, not only for 
automatic optimization, but also for the model’s parameter sensitivity and 
uncertainty analyses; particularly to examine the added value of the additional 
hydrometeorological variables on top of runoff for the parameter estimation in 
the TERENO-prealpine observatory. 

 

The scientific findings of this dissertation, either as first-author or co-author, have 
been successfully resulted in four peer-reviewed-ISI publications as listed below: 

§ Soltani, M., Mauder, M., Laux, P., Kunstmann, H. (2017) Turbulent flux 
variability and energy balance closure in the TERENO prealpine observatory: 
A hydrometeorological data analysis. Theor Appl Climatol. DOI: 
10.1007/s00704-017-2235-1. 

§ Soltani, M., Laux, P., Mauder, M., Kunstmann, H. (2018) Spatiotemporal 
variability and empirical Copula-based dependence structure of modeled and 
observed coupled water and energy fluxes. Hydrology Research. 
DOI: 10.2166/nh.2018.163. 

§ Mauder M. S. Genzel, J. Fu, R. Kiese, M. Soltani, R. Steinbrecher, M. 
Zeeman, H. Kunstmann (2017). Evaluation of two energy balance closure 
adjustment methods by independent evapotranspiration estimates from 
lysimeters and hydrological simulations. Hydrological Processes. 2018;32:39-
50. https://doi.org/10.1002/hyp.11397. 

§ Kiese, R., B. Fersch, C. Baeßler, C. Brosy, K. Butterbach-Bahl, C. Chwala, M. 
Dannenmann, J. Fu, R. Gasche, R. Grote, C. Jahn, J. Klatt, H. Kunstmann, M. 
Mauder, T. Rödiger, G. Smiatek, M. Soltani, R. Steinbrecher, I. Völksch, J. 
Werhahn, B. Wolf, M. Zeeman, H.P. Schmid (2018). The TERENO-preAlpine 
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Observatory integrating meteorological, hydrological and biogeochemical 
measurements. Accepted in Vadose Zone Journal. 

 

Also, one additional article has been submitted for publication as follows:  

§ Soltani, M., Laux, P., Mauder, M., Kunstmann, H. (2018) Inverse distributed 
modeling of streamflow and turbulent fluxes: A sensitivity and uncertainty 
analysis coupled with automatic optimization. Under Review. 

 

 

1.3 Thesis structure 

This dissertation consists of three main-result parts. Each part could be independent 
and requires specific techniques and strategies. Each of these parts thus starts with an 
introduction on the particular background followed by a description of the methods 
applied and ends with a main summary. In total, this PhD dissertation has five 
chapters, as described below.  

Chapter 1 is describing the motivation and objectives of three main parts of 
the thesis and highlights the innovations. Chapter 2 characterizes the turbulent flux 
variability and EBC in the TERENO prealpine EC sites. It follows closely of the 
findings of Soltani et al. (2017). Chapter 3 quantifies the spatiotemporal variability 
and empirical Copula-based dependence structure of the coupled water and energy 
fluxes. This chapter is based on Soltani et al. (2018). Chapter 4 describes the 
combination of GEOtop with PEST for inverse modeling, and the model’s parameter 
sensitivity and uncertainty analysis. This chapter is related to Soltani et al. (2018) 
(submitted). Chapter 5 draws the synthesized-final conclusions along with the 
corresponding outlook. Figure 1.1 illustrates how the five chapters of this dissertation 
are interconnected. 
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Figure 1.1: The PhD dissertation flowchart. 
 
 
 



		

 
 
 
 
 

Chapter 2  
 
 
 
 

Turbulent flux variability and energy balance 
closure in the TERENO prealpine observatory: 
A hydrometeorological data analysis* 
 
 
  

2.1 Introduction 

The energy exchange between the land surface and the atmosphere is one of the 
crucial processes in any ecosystem (Berry and Dennison 1993). The surface turbulent 
fluxes are influenced both by the characteristics of the airflow and the structures of 
the underlying surface (Wyngaard 1990). The Eddy Covariance (EC) technique is the 
most direct way to estimate turbulent fluxes within the atmospheric boundary layer in 
any ecosystem (Swinbank 1951; Baldocchi et al., 1988; Verma 1990; Mauder and 
Foken, 2006; Mauder et al., 2006). Its main challenges include system design, 
implementation, and processing of a large volume of data (Stull 1988; Foken 2009; 
Foken et al., 2010; Burba 2013). Via the EC technique, flux footprint information can 
be assessed (Schmid 1994) and quasi continuous flux measurements can be 
aggregated across different time scales, i.e. at hourly, daily, seasonal and annual time 
scales (Wofsy et al., 1993; Baldocchi et al., 2001; Cava et al., 2008; Nakai et al., 
2006). Moreover, the general characteristics of hydrometeorological variability and 
canopy exchange processes can be identified (Foken et al., 2011).  

 A multitude of experimental research has been conducted on the 
measurements of the daily, monthly and seasonal variations of heat, water vapor and 
CO2 exchanges over heterogeneous lands in different ecosystems using the EC 
technique, such as cropland sites (e.g. Xu et al., 2011; Schmidt et al., 2011; 
Wizemann et al., 2014), forest environments (e.g. Launiainen et al., 2005; Sanchez et 

																																																								
* This chapter follows closely Soltani et al., (2017) 
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al., 2010), grasslands and paddy fields (e.g. Wang et al., 2010; Wohlfahrt et al., 2010; 
Li et al., 2013), and tropical and savanna areas (e.g. Steven et al., 2005; Mauder et al., 
2007).  

 Currently, there are not many research studies on the surface energy and water 
flux variations for the prealpine region in the literature. Here, an analysis of a two-
year dataset of the EC measurements (2013-2014) over three experimental sites, 
situated in prealpine and mountainous areas in southern Germany, is presented. 
Previous work in this region has focused on the impact of climate change on the run-
off generation and hydrological aspects of the Ammer river catchment (Kunstmann et 
al., 2004; Ott et al., 2013), greenhouse gas fluxes (Unteregelsbacher et al., 2013), 
water –and energy flux observation and modeling (Kunstmann et al., 2013; Hingerl et 
al., 2016), soil-atmosphere exchange of N2O and CH4 (Wang et al., 2014), biosphere-
atmosphere exchange of greenhouse gases (Wolf et al., 2017; Zeeman et al., 2017), 
and the evaluation purposes of semi-empirical energy balance closure (EBC) 
parameterizations (Eder et al., 2014). Since the diurnal –and daily flux variability is 
represented by the data, the focus is set on the characterization of the monthly and 
seasonal variability of the water and energy fluxes, as well as the energy balance 
closure between the study sites. Therefore, the objectives are to quantify: i) the 
surface energy and water fluxes variability, i.e. the spatiotemporal variations of the 
sensible and latent heat fluxes, soil moisture contents and the energy partitioning 
conditions, the main drivers of the turbulent heat fluxes; and ii) the EBC and residual 
energy, as well as the possible reasons for the lack of EBC at the TERENO prealpine 
EC sites. 

 

2.2 Site characterization and measurement setup 

2.2.1 Geography and climate 

The TERrestrial ENvironmental Observatories (TERENO) prealpine region is located 
in southern Germany, where three EC stations are established in the areas of Fendt, 
Rottenbuch, and Graswang. Geographically, the Fendt site is within the northern part 
of the region and it is recognized as the TERENO prealpine super site, while the 
Rottenbuch and Graswang sites are located in the middle and southern parts of the 
region, respectively (see Figure 2.1). The elevation ranges between 543 m in the north 
and 2129 m a.s.l. in the southern regions. The climate of the region is cool-temperate 
and humid. The mean annual air temperature is approximately 7-8 °C in the alpine 
foreland and approximately 4-5 °C in the southern mountainous region. The northern 
area of the region receives an annual mean precipitation of approximately 1100 mm, 
while the summits of the Ammer Alps in the southern regions receive approximately 
2000 mm. Maximum precipitation is in June and July (Kunstmann et al., 2006). 
Summer rains are characterized by convective events, causing a high variability in the 
location and intensity of rainfall. The main prevailing wind flow at individual stations 
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is shown in Figure 2.1. More details about the characteristics of the TERENO 
prealpine EC sites are provided in Table 2.1. 
 

 
Figure 2.1: Satellite images of the EC sites in the TERENO prealpine region (the 
approximate landscape area is 10 km × 40 km) in southern Germany are shown at the maps 
on the right; the pins in the maps on the left indicate the approximate location of each EC site 
(the approximate flux footprint area is 2.5 km × 5 km). The wind-rose diagrams are also 
overlaid (with the wind speed ranging from 1 to 11 m s-1 identified by the colors from blue to 
red, respectively). The prevailing background vegetation type is grassland for the three sites. 

 

2.2.2 Data processing 

Calculation of turbulent fluxes 

The calculation of turbulent fluxes was done using the TK3 eddy covariance software. 
TK3 is able to perform all of the post-processing of turbulence measurements to 
produce the turbulent fluxes (Mauder and Foken, 2015). It includes necessary 
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corrections and tests (Lee et al., 2004, Aubinet et al., 2012). The basic principle of the 
EC measurements is that the vertical flux is calculated as a covariance between the 
concentration of a scalar (e.g. air temperature, water vapor, etc.) and the vertical wind 
velocity measured at the same point in space and time (Mauder and Foken, 2015). 
 

Table 2.1: EC sites description at the TERENO prealpine region. Soil type characteristics and 
analysis of soil texture is according to Pütz et al. (2016). 

Site name Fendt Rottenbuch Graswang 
Location 47.831 °N, 11.061 °E 47.730 °N, 10.061 °E 47.571 °N, 11.032 °E 
Elevation 598 m 770 m 860 m 
Slope < 5 ° < 5 ° < 5 ° 
Climate Cool-temperate and 

humid 
Cool-temperate and 
humid 

Cool-temperate and 
humid 

Mean annual air temperature 9.3 °C 8.6 °C 7.0 °C 
Mean annual precipitation 962 mm 1047 mm 1464 mm 
Vegetation type Grassland Grassland Grassland 
Soil type  
(Texture: sand/silt/clay [%]) 

Cambic Stagnosol�  
 (27/43/30) 

Cambic Stagnosol  
(26/45/29) 

Fluvic Calcaric 
Cambisol  
 (9/39/52) 

Canopy height range 5-30 cm 5-45 cm 5-35 cm 

 
 
The turbulent fluxes of sensible heat (H) and latent heat (LE) can be calculated as 
(Kaimal and Finnigan, 1994): 

H = ρC%	w�T�																																																																																																				(2.1) 
L/ = ρL0	w�q�																																																																																																			(2.2) 

where ρ, C%	and Lv denote the density of air (kg/m3), the specific heat of air (J/kg K), 
and latent heat of evaporation (J/kg), respectively. W', T' and q' are the fluctuations in 
the vertical wind component (m/s), air temperature (°C) and specific humidity, 
respectively. For more information regarding the calculation of turbulent fluxes and 
quality control (QC) using the TK3 software, it is referred to Mauder et al. (2013) and 
Mauder and Foken (2015).  

The energy balance ratio (EBR) or the relative energy balance closure is defined as 
(Aubinet et al., 1999): 

EBR5
(LE + H)

∑(Rn − G)																																																																																															(2.3)		 

with LE denoting the latent heat flux (W/m2), H the sensible heat flux (W/m2), Rn the 
net radiation (W/m2), and G the soil heat flux (W/m2) at the surface (Harazono et al., 
1998; Burba et al., 1999). EBR remains unclosed at most EC sites (e.g. Panin et al., 
1998; Lamaud et al., 2001; Turnipseed et al., 2002; Wilson et al., 2002; Meyers and 
Hollinger, 2004; Oncley et al., 2007; Hendricks Franssen et al., 2010; Stoy et al., 
2013; Imukova et al., 2016). The energy storage change in the upper layer of the soil 
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can be as high as 40 W/m2, which can amount up to ~20% of the net radiation (Culf et 
al., 2004). In the study EC sites, the soil heat flux (G) plates were buried at 8 cm 
depth to avoid disturbances, e.g. by losing contact with underlying soil and/or water 
accumulation below the plates (Sanchez et al., 2010). Thus, the soil heat storage in the 
above 8cm depth was added to G to calculate EBR properly. The soil heat storage and 
the heat capacity were calculated according to the PlateCal approach of Liebethal et 
al. (2006) and DeVries (1963), respectively. The volumetric fraction of organic matter 
at the Fendt EC site is approximately 30%. In this thesis, a rain-free half-hourly 
dataset was collected in order to calculate the EBR. This is because open-path 
systems perform poorly during rainfall. Therefore, such periods must be excluded 
from the dataset to calculate the energy balance closure (Culf et al., 2004). The 
measurements by the enclosed-path systems may also be compromised, in general, 
when water is sucked into the sampling tube or when condensation occurs leading to 
severe damping of the humidity fluctuations (Kabat et al., 2004). However, at the 
Rottenbuch EC site, a rain-cap is used at the inlet of the enclosed-path gas analyzer in 
order to prevent this sucking of water during rain events and a heating at a rate of 5 
W/m is applied to prevent condensation. Generally, the EC measurement are less 
reliable during rainy periods, turbulence cannot develop properly under these 
conditions. Therefore, no matter what instruments are used, data recorded during 
rainfall periods do not fulfill one of the basic requirements of the EC technique. 

 

Principal component analysis 

To determine the turbulent flux drivers at the study sites, a Principal Component 
Analysis (PCA) is applied. PCA is a technique that is used to summarize the 
information (i.e. the total variation it contains) in a dataset described by multiple 
variables and can be applied to produce linear combinations of the variables that are 
mutually uncorrelated. In other words, PCA reduces the dimensionality of a 
multivariate dataset. This is achieved by transforming the initial variables into a new 
small set of variables without losing the most important information in the original 
dataset. These new variables correspond to a linear combination of the originals and 
are called principal components (PCs). The PCs are ranked in that way that PC1 
explains the largest fraction of the variance in a dataset, PC2 the second largest, etc. 
(Abdi and Williams, 2010). The main goals of the PCA include to: identify hidden 
patterns in the hydrometeorological dataset, reduce the dimensionality of the data by 
removing the noise and redundancy in the data, rank the importance of single 
variables within this multivariate dataset, and finally to identify and group correlated 
variables. In this study, the prcomp and fviz_pca functions from the built-in R stats 
and factoextra packages were used to perform and visualize the PCA, respectively (R 
Core Team, 2017). The procedure of the PCA includes the following steps:  

§ Preprocessing of the dataset: first, the data were centered by subtracting the 
mean from each variable. Second, the data were scaled in order to have a unit 
variance. 
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§ Calculation of the covariance matrix of the preprocessed data.  
§ Calculation of the eigenvectors and eigenvalues of the covariance matrix: the 

numbers on the diagonal of the diagonalized covariance matrix are the 
eigenvalues of the covariance matrix (large eigenvalues correspond to large 
variances). The directions of the new rotated axes are called the eigenvectors 
of the covariance matrix. 

§ Dimension reduction and selection of principal components: eigenvectors 
were ordered by eigenvalues from the highest to the lowest. The number of 
chosen eigenvectors is then the number of dimensions of the new dataset.  

§ Computation of the new dataset: the transpose of the selected eigenvectors 
(PCs) were multiplied by the transpose of the original dataset.  

The PCA technique followed closely the mathematical formulation as given in Jolliffe 
(2002), Dray (2008), Abdi and Williams (2010), and Lay (2012). 
 

2.2.3 Micrometeorological measurements 

The instruments for measuring the radiation components and also the turbulent fluxes 
at the surface layer were installed on three towers in the TERENO prealpine region. 
The EC instruments were installed on a station 3.5 m above the surface at all three 
sites. The turbulent fluxes were measured with a 3-D sonic anemometer (CSAT3, 
Campbell Scientific Inc, Logan, UT), oriented towards the prevailing wind direction 
along with an open-path gas analyzer.  

 

Table 2.2: Measurement devices and meteorological parameters at the Fendt site 

Variable/Parameter name  Unit Measurement height Instrument model 

Net radiation W/m2 2 m CNR4, Kipp & 
Zonen 

Relative humidity  % 2.2 m WXT520, Vaisala 
Air temperature  °C 2.2 m WXT520, Vaisala 
Barometric pressure  hPa 1.3 m CS100, Setra 
Wind speed  m/s 2.2 m WXT520, Vaisala 
Wind direction deg 2.2 m WXT520, Vaisala 
Precipitation mm 2.2 m Pluvio, Ott 
Soil volumetric water content  m3/m3 2, 6, 12, 25, 35, 50 cm depth CS616, Campbell 
Soil temperature profile °C 2, 6, 12, 25, 35, 50 cm depth T107, Campbell 
Soil heat flux plate  W/m2 8, 9 cm depth HFP01, Hukseflux 
3-D sonic anemometer�  - 3.5 m CSAT3, Campbell 
Open path CO2 and H2O gas analyzer - 3.5 m LI7500, Li-Cor 

 

All signals for the sensors were logged to a data logger (CR3000, Campbell Scientific 
Inc, Logan, UT) at a rate of 20 Hz and were averaged for a half-hourly period. All the 
required procedures for the corrections and quality control of the turbulent fluxes 
were applied (Mauder et al., 2013), such as coordinate rotation by the double rotation 
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method (Wilczak et al., 2001), sonic temperature Schotanus correction (Schotanus et 
al., 1983), frequency response corrections (Moore 1986), WPL correction (Webb et 
al., 1980), and quality control following Foken et al. (2004). Simultaneous to the flux 
measurements, environmental and hydrometeorological data were measured at a 1-
minute resolution and averaged for 10-minute intervals. The instrumentation between 
all three sites is almost identical, except for an enclosed-path infrared CO2 and H2O 
analyzer (LI7200, Licor Biosciences Inc, Licoln, NE) in Rottenbuch instead of the 
open-path instruments (LI7500, Licor Biosciences Inc, Licoln, NE) at Graswang and 
Fendt. All the measurement variables used in this study are given in Table 2.2. 

 

2.2.4 Data coverage  

Missing data in the measurements inevitably occurred. The gaps in the observed data 
make it difficult to estimate the annual latent heat (LE) and the sensible heat (H) 
fluxes and result in reduced quality of the data to validate model outputs (Hui et al., 
2004). Some data were removed during the quality control (QC) process by the TK3 
software. This was done through two tests i.e. Steady State Test (Gurjanov et al., 
1984; Foken and Wichura 1996), and the Integral Turbulence Characteristics Test 
(Foken et al., 2004). According to Table 2.3, the overall quality flags are:  

§ Flag 0: high quality data, which is used in fundamental research 
§ Flag 1: moderate quality data, which have no restrictions to be used in the 

long-term observation programs, and 
§ Flag 2: low data quality, which was removed.  

For more details see Mauder et al. (2013). 
 

Table 2.3: Overall flag system after the Spoleto agreement (2004) for CarboEurope-IP 
(Mauder and Foken, 2015) 

Steady state 
(deviation in %) 

Integral turbulence characteristics 
(deviation in %) 

Final flags 

< 30 < 30 0 
< 100 < 100 1 
> 100 >100 2 

 
 
Based on Table 2.4, the highest annual fraction of missing values for H (38%) and LE 
(44%) were observed at the Graswang site, whereas the lowest ones (H: 13% and LE: 
20%) were found at the Rottenbuch site. Meanwhile, 27% of H and 33% of LE annual 
missing values were observed at the Fendt site. The main reason for this discrepancy 
could be explained, apart from the different landscape/environmental conditions at the 
sites, by the dissimilarity in the measurement instruments. In fact, enclosed-path and 
open-path systems are used in the Rottenbuch and Graswang sites, respectively. 
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Enclosed-path gas analyzers, however, have a number of advantages, such as minimal 
data losses due to precipitation events, no surface heating problems and the possibility 
of climate control, etc. Therefore, with an enclosed-path gas analyzer installed at the 
Rottenbuch site, the highest (valid) data availability was observed during the 
examined period. Despite using the same gas analyzer (open-path system) at the Fendt 
and Graswang sites, a higher number of missing values were observed at the 
Graswang site. This could be explained by the weather/climate conditions. Compared 
to the other sites, Graswang is located in the southern part of the TERENO prealpine 
region and has more rainfall/snow days throughout the year. As a result, more 
measured data are invalid and should be removed. Correspondingly, the maximum 
number of seasonal missing values of the turbulent fluxes was found at Graswang (H-
max: 51% and LE-max: 55%) in autumn 2013 and the minimum number for 
Rottenbuch (H-min: 6% and LE-min: 7%) in summer 2014. More detailed 
information regarding the missing values of the turbulent fluxes is given in Table 2.4.  
 

Table 2.4: Percentage of the seasonal and annual missing values of the turbulent fluxes at the 
TERENO EC sites during 2013-2014. 

Sites Percentage of data gaps (%) 
  Winter Spring Summer Autumn Annual 

2013 2014 2013 2014 2013 2014 2013 2014 2013/2014 
Fendt H 27 20 22 34 26 25 34 31 27 

LE 40 22 28 40 37 30 38 35 33 
Graswang H 46 32 26 41 27 40 51 46 38 

LE 54 34 37 46 41 44 55 50 44 
Rottenbuch H 14 9 10 18 10 6 15 27 13 

LE 25 13 18 39 15 7 20 27 20 

 
 

Figure 2.2 shows the percentage of the diurnal and nocturnal missing values of the 
turbulent fluxes for each EC site. Obviously, the nighttime missing values were 
approximately more than twice the daytime values for all the sites. In addition, 
slightly more LE values were missing than those of H. This is because the LE 
measurement requires two fully functional instruments; a sonic anemometer plus gas 
analyzer, while H can be measured by the sonic anemometer alone, at least if the 
Schotanus correction is applied.  

 Furthermore, the Fendt and Graswang sites showed a similar pattern, i.e. 
distribution of missing values (due to using the same gas analyzer), meaning that the 
lowest diurnal and highest nocturnal missing values were found. The difference 
between diurnal and nocturnal missing values was much lower at the Rottenbuch than 
Fendt and Graswang. Moreover, this site had the lowest turbulent flux missing values 
(approximately 3-times less) compared to the other EC sites, due to an enclosed-path 
gas analyzer. 
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Figure 2.2: The percentage of the diurnal and nocturnal missing values of the turbulent fluxes 
(H and LE) at the TERENO prealpine EC sites for the period of January 2013 to December 
2014. 

 

2.3 Results and discussion 

2.3.1 Soil temperature and soil volumetric water content 

The near-surface soil temperature and soil moisture are the key variables that control 
the exchange of water and heat energy between the land surface and the atmosphere 
(Wei 1995; Wang et al., 2010). The seasonal variations of daily mean of the net 
radiation (Rn), soil temperature (Ts) and soil volumetric water content (θv) at depths 
of 2, 6, 12, 25, 35 and 50 cm, and 24-hour accumulated precipitation (Prec) at the 
Fendt EC site during 2013-2014 are shown in Figure 2.3. The monthly mean 24-h Rn 
showed an obvious daily variation mainly because of the clouds. Ts in shallow layers 
of 2, 6, 12 cm showed little difference in each season. It is not surprising that mean 
daily Ts at topsoil does not drop below the zero-degree due to the snow cover during 
the wintertime. The differences in seasonal Ts between the deep layers at 25, 35, 50 
cm were larger than those of measured in the layers close to surface at 2, 6, 12 cm. 
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This otherwise unusual finding can be explained by a change in soil texture from 35 
to 50 cm towards much higher clay content. The maximum Ts was measured in July 
2013 (Figs. 2.3a and 2.3b).  
 

 
Figure 2.3: Daily mean variations: (a-b) soil temperature (Ts) at depths of 2, 6, 12, 25, 35 and 
50 cm; and net radiation (Rn). (c-d) soil moisture (θv) at depths of 2, 6, 12, 25, 35 and 50 cm; 
and precipitation (Prec) at the Fendt EC site for the period of January 2013 to December 
2014. The data are averages of 24-h values. 

 

As indicated in Figures 2.3c and 2.3d, the topsoil was highly saturated (> 0.7 m3/m3) 
with the water content during the winter and autumn seasons, and only reduced to 
approximately 0.3 m3/m3 during the winter 2014. Whereas in the deep layers, the 
maximum and minimum values of θv can be found during the summer and winter 
seasons, respectively. In the summertime, despite the fact that there was a 
considerable amount of rainfall, the θv periodically decreased dramatically, mainly at 
the layers near to the surface. This can be explained by the following: Fendt as a 
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grassland site, located at the bottom of a shallow valley with a low gradient, and the 
groundwater and surface-water interactions can be an important mechanism in the 
region. Thus, the most probable reason for the sudden θv changes might be related to 
changes in the groundwater level for that site.  

 Although no groundwater-level measurements were available for this study 
period 2013-2014, the findings obtained by Wolf et al. (2017) for the ScaleX-2015 
campaign at the Fendt site confirmed that interactions between the groundwater level 
and surface-water exist. After strong rainfall events, the infiltration or� drainage of 
excess water is the dominant runoff, and during� the recession of stream flow, the 
contribution of groundwater to runoff is increased. They also conclude that the full 
mechanisms for the interactions of runoff generation and storage system for that area 
have not been fully investigated. In addition to the high influence of the groundwater 
level on the soil moisture in the region, other factors might be considered, such as 
unequally distributed summertime rainfall events, high evapotranspiration rate due to 
the high temperature and runoff generation. Therefore, for the above reasons, the 
amount of θv in some short periods was quite low, especially during the summertime. 

 

2.3.2 Energy partitioning  

The average contribution of the turbulent fluxes to the surface energy budget was 
calculated for each season (Table 2.5). The average seasonal values of H/Rn in spring, 
summer, autumn and winter was calculated as 0.12, 0.11, 0.34 and 0.64; while LE/Rn 
values were 0.53, 0.58, 0.50 and -0.20, respectively at the Fendt EC site. Meanwhile 
at the Rottenbuch site, the corresponding H/Rn values were calculated as 0.14, 0.11, 
0.37 and -0.30, and also LE/Rn values measured as 0.37, 0.51, 0.18 and 0.11, 
respectively. The seasonal value of H/Rn in the autumn and spring seasons at the 
Graswang EC site was measured as -0.09 and -0.006, respectively, which were quite 
low and close to zero. This was because of the snow cover, which caused the land 
surface to be cold and as a result, a negative sensible heat flux (downwards) occurred 
during that period.  

 Furthermore, the seasonal noontime variations of the Bowen ratio indicated 
high seasonal variations throughout the year at the EC sites. In winter, 86.0%, 90.4%, 
65.7% and in autumn 89.3%, 92.4%, 78.5% of heat was transferred (either 
positive/upwards or negative/downwards) as LE flux at the Fendt, Rottenbuch and 
Graswang EC sites, respectively. Meanwhile, the corresponding values during the 
spring and summer were 98.5%, 99.6%, 83.4% and 99.8%, 99.3%, 96.7%, 
respectively at the aforementioned EC sites. The Bowen ratio values in warm periods 
(spring and summer) were mostly positive with low magnitudes due to the high 
contribution of LE, while during the cold seasons (winter and autumn) the ratio was 
negative because of negative H values over those periods (figures not shown). 
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Table 2.5: Energy partitioning for individual seasons at the TERENO EC sites during 2013-
2014. H/Rn and LE/Rn are the ratios of the turbulent fluxes to Rn and B is the Bowen ratio 
(B=H/LE). 

Sites  Spring Summer Autumn Winter 
Fendt H/Rn 0.12 0.11 0.34 0.64 

LE/Rn 0.53 0.58 0.50 -0.20 
B 0.23 0.20 -0.29 -0.30 

Rottenbuch H/Rn 0.14 0.11 0.37 0.37 
LE/Rn 0.37 0.51 0.18 0.11 
B 0.43 0.23 -1.42 2.26 

Graswang H/Rn 0.15 0.13 -0.09 -0.006 
LE/Rn 0.62 0.60 0.34 0.24 
B 0.27 0.21 -0.57 -6.02 

 
 

2.3.3 Turbulent flux variability on different time scales 

Management of grassland at the EC sites 

The management of grassland is quite different between the southern and northern 
parts of the TERENO prealpine region (Fig. 2.4), which indicates an elevation-trend 
for that area. At the highest elevation site i.e. Graswang (860 m) one or two grass cuts 
are done per year usually starting from the early June to mid August, which indicates 
that the grass cutting is exclusively limited to months with the highest temperatures. 
Meanwhile, at the middle and low elevation sites i.e. Rottenbuch (770 m) and Fendt 
(598 m), respectively, the farmers begin to cut the grass from mid May to late 
October, leading to four to five cut times. The last grass cuts of the year are done 
almost simultaneously at these sites. Furthermore, a coincidence between the grass 
cutting events and a sudden decrease of albedo after the grass cutting was sometimes 
observed. A sudden drop of the albedo at the beginning of August 2014 at the Fendt 
EC site can demonstrate this effect.  

 The mean daily-based variation of surface albedo, which is highly influenced 
by the snow cover, soil color and moisture, vegetation cover etc., at the study sites is 
shown in Figure 2.4, as well. Overall, the highest albedo values were measured during 
the winter and autumn seasons, whereas the lowest ones observed during the summer 
and spring periods mainly due to the snow cover in cold periods and rather high soil 
moisture, as well as high vegetation fraction in the warm periods throughout the year. 
The maximum surface albedo was measured during January and April 2013 due to the 
high snow cover at the EC sites. The higher albedo values at the Graswang site (in the 
southern part) suggest an increase of snow cover in both height and duration for that 
area, which is also confirmed by the higher values of the outgoing shortwave 
radiation (OSR) at the higher-elevated sites for the same times. Therefore, the 
radiative fluxes of OSR and albedo are highly affected by the grass cut events, which 
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consequently influence the turbulent flux variability at the grassland EC sites in the 
region. 

 

 
Figure 2.4: Daily mean variations of the outgoing shortwave radiation (OSR) and albedo 
values, as well as the number of grass cuts at the TERENO prealpine EC sites for the period 
of January 2013 to December 2014. 

 

Drivers of the turbulent fluxes: PCA based analysis 

To determine the most relevant driving variables that influence the turbulent fluxes at 
the study sites, a PCA was applied. To enable comparability of the impact of the 
different variables, the data are centered and scaled before application of the PCA. 
For the sake of visualization, the focus is on the first two PCs (PC1 and PC2), which 
explain > 60% of the total variance of the original datasets (Fig. 2.5). The figure 
illustrates the cross correlation and the contribution of each variable to the PCs at 
different TERENO prealpine sites. The length (angle) of the arrows represents the 
magnitude (direction) of the correlation coefficient between the variable and the PCs, 
which the color of arrows indicates the contributions (importance) of the variables to 
the turbulent fluxes (12 variables ranked from blue (low importance) to red (high 
importance)). For Fendt, PC1 shows high positive correlations with the radiation 
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components of net radiation: Rn (r = 0.93) and photosynthetic photon flux density: 
PPFD (r = 0.91) with a total contribution of approx. 28.5% (not shown), as well as 
with the temperature variables of infrared surface temperature: SurfaceT (r = 0.92), 
air temperature: AirT (r = 0.91) and soil temperature at 2cm depth: SoilT (r = 0.89) 
accounting for approximately 42.2% of the total contribution (not shown). The 
variables of albedo (r = -0.63), soil moisture at 2cm depth: SoilM (r = -0.57) and 
relative humidity: RH (r = -0.56) are negatively correlated with PC1. Furthermore, 
PC1 shows the highest correlation with Rn, which identifies net radiation as a key 
variable for the turbulent flux measurement at the Fendt EC site.  

 The aforementioned variables also represent approximately the same 
contributions and correlations to PC1 at the Rottenbuch EC site, except for the wind 
components of wind direction: WindD (r = -0.47) and wind speed: WindS (r = -0.41), 
which show no correlation with PC1 at the Fendt site. Their influence at the 
Graswang site, however, is lower, representing a rather different pattern compared to 
the other EC sites, except for the SoilT close to the surface (r = 0.93) with the highest 
contribution of 16% (not shown) and albedo (r = -0.72). Thus, the albedo rather 
follows an elevation-trend in the TERENO region. This finding is in agreement with 
Zeeman et al. (2017) and might be explained by the lack of irradiation due to a 
mountain shadowing effect. The Graswang site possesses a mountain climate with 
high amounts of precipitation and snow events frequently occurring between October 
and April.  

 PC2 is highly correlated only with the WindS (r = 0.81 at Fendt, r = 0.79 at 
Rottenbuch and r = 0.60 at Graswang) with a mean total contribution of 50% (not 
shown) and WindD (in order of aforesaid sites: r = 0.78, r = 0.77 and r = 0.18), 
accounting for approximately 35% (not shown) of the mean total contribution. PC2 
lacks correlation with radiation and temperature components (< 5%, not shown). 
Meanwhile, the contribution of WindS (20%, not shown) was much more than 
WindD (2.5%, not shown) at Graswang. This is because the site is located in a valley, 
surrounded by high mountains and in such a way that the prevailing wind directions 
are easterly and westerly (see Fig. 2.1). This component represents the importance of 
the wind variables to the turbulent flux measurements in the region. Increased wind 
speed, for instance, also leads to an increase of the turbulence intensity and mixing, 
thereby increasing the fluxes. With respect to the precipitation: Prec and RH 
variables, they are ranked as the second and third most important variables that are 
negatively correlated with PC2. Therefore, Prec holds the highest correlation (r = -
0.60) at the Graswang site.  

 Overall, the PCA results found at the TERENO prealpine EC sites were 
consistent with findings of other studies over different ecosystems (e.g. Schmidt et al., 
2011).  
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Figure 2.5: Contribution of the meteorological variables to the turbulent fluxes (sum of H 
and LE) using a multivariate PCA analysis at the TERENO prealpine EC sites for the period 
from January 2013 to December 2014. Daily mean meteorological data include: wind 
direction (WindD [°]), wind speed (WindS [m/s]), air temperature (AirT [°C]), relative 
humidity (RH [%]), precipitation (Prec [mm]), soil temperature at 2cm depth (SoilT [°C]), 
soil moisture at 2cm depth (SoilM [m3/m3]), photosynthetic photon flux density (PPFD 
[µmol/(m2 s)]), albedo [-], net radiation (Rn [W/m2]) and infrared surface temperature 
(SurfaceT [°C]). The length (angle) of the arrows represents the magnitude (direction) of the 
correlation coefficient between the variable and the PCs. The lowest and highest contributions 
of the variables to the turbulent fluxes are ranked with colors ranging from blue to red, 
respectively. 

 

Monthly and seasonal variations of the turbulent fluxes 

To understand the monthly mean diurnal turbulent fluxes at the study sites, their 
hourly variations together with the standard deviations (σ) are shown in Figure 2.6. 
As expected, the variations of H and LE fluxes were low during the winter and 
autumn periods, whereas they were quite large during the spring and summer seasons 
in the region. During the cold periods, in winter for example, the peak values were 
55.6 W/m2 and 92.7 W/m2 for H and LE fluxes observed at the Fendt site, 
respectively. The mean diurnal values of H at the Graswang site were quite different 
from the other two sites as a result of different landscapes and topography.  
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 In February, for example, the highest measured H was -1.55 W/m2 due to a 
very cold surface in that area. Thus, the highest and lowest monthly σ values of H 
were found at the Graswang as 55.7 and 6.2 W/m2, respectively (Fig. 2.6b). The 
differences between day and night H and LE values were not very pronounced in the 
wintertime because of the low radiation variation in the study area. For the warm 
periods, the mean diurnal values of H and LE fluxes showed much larger differences 
due to the increase of solar radiation, precipitation events, as well as the high 
vegetation fraction over the experimental period, and obviously the main consumer of 
Rn was LE at the sites.  

 

 
Figure 2.6: Monthly mean diurnal variation and standard deviation (σ) of the sensible heat 
flux (H); and the latent heat flux (LE) at the TERENO prealpine EC sites for the period of 
January 2013 to December 2014. The data represent hourly averages. 

 

The lowest mean monthly LE flux in Rottenbuch can be explained by the different 
soil texture at that site, which is mostly sandy loam at the surface, as well as a gravel 
layer at about 50 cm depth (and continues to deeper layers). This causes precipitation 
to infiltrate quickly into the deep ground and thus the surface dries out rapidly soon 
after rainfall events. Moreover, the lowest mean monthly H flux occurred shortly after 
noon at Graswang, which might be explained by the shading condition in that area, 
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meaning that the sun sets rather early as the site is surrounded by high mountains. The 
highest LE fluxes occurred in July as the highest amount of precipitation takes place 
during the summertime. The magnitude of variations increased from winter to 
summer and accordingly, showed a decrease from summer to winter corresponding to 
the variation of radiation, precipitation patterns, soil moisture/types and different 
landscapes across the TERENO prealpine region. 

 

 
Figure 2.7: Diurnal cycle of seasonal mean variations and standard deviation (σ) of the 
surface energy fluxes at the Fendt EC site for the period of January 2013 to December 2014. 
The data represent hourly averages. 

 

Seasonally, all the energy fluxes of Rn, H, LE and G at the Fendt EC site showed 
distinct diurnal cycles over the experimental time (Fig. 2.7). Rn was highly variable 
between cold and warm seasons and also the range of the daytime cycle of Rn 
increased from autumn to summer and decreased vice versa. Thus, the variation of the 
diurnal cycle of Rn was strong during summer, but weak during autumn (Fig. 2.7a). 
The range of H values increased from autumn to spring. The nocturnal H value was 
significantly negative, meaning that the heat was transferred from the atmosphere to 
the land surface due to the cold surface. The seasonal variation of H was rather small 
compared to Rn, which was quite large between the cold and warm periods. LE flux 
had an obvious seasonal diurnal variation during summer with the value of 245.1 
W/m2, which became rather small in spring (179.1 W/m2) and then remarkably 
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decreased during the autumn (58.3 W/m2) and winter (50.6 W/m2) seasons (Fig. 2.7e). 
Finally, the G flux had a rather similar and less seasonal variation throughout the 
year. The nocturnal G value was significantly negative (upwards) compared to other 
energy fluxes. Interestingly, the maximum diurnal G flux (25.1 W/m2) in winter 
occurred at 13:00 pm, which indicated a shift of around one-hour. This might be 
explained by the snow cover in the region causing a short delay for the heat to be 
diffused in the soil (Fig. 2.7g). Overall, the highest seasonal diurnal variations were 
observed in Rn, followed by LE and H and G. 

 

2.3.4 Energy balance closure  

Overall and seasonal energy balance closure  

The linear regressions between the turbulent fluxes and the available energy at the 
TERENO prealpine EC sites of Fendt, Rottenbuch and Graswang are shown in Figure 
2.8. The energy balance closure (EBC) is defined as the slope of a regression analysis 
of turbulent energy transport against available energy. The EBC were 0.65, 0.56 and 
0.65 and the coefficients of determination (R2) values were 0.82, 0.85 and 0.77 at the 
Fendt, Rottenbuch and Graswang sites, respectively. The lowest R2 between measured 
and available energy was found at the Graswang site. This can be explained by the 
climatic and environmental conditions. This site is surrounded by high mountains (see 
Fig. 2.1) and the wind speed is relatively low so that the mechanically driven 
turbulence is reduced in the valley. As a result, many of the calculated H and LE 
values were removed as unreliable data during the post processing (i.e. quality 
control) by the TK3 software. Thus, the Graswang site had the lowest number of data 
(n=7969) compared to other EC sites (Fig. 2.8c). In terms of energy balance ratio 
(EBR), as defined in Eq. 2.3, the highest overall value of EBR (0.73) was calculated 
at the Graswang site indicating that the minimum heat and water vapor fluxes are lost 
for that area, which is due to the geographical location of the site.  

 Furthermore, the lowest slope (0.56) and EBR (0.56) values were found at the 
Rottenbuch site. A spectral analysis (not shown) indicated that this underestimation of 
the turbulent fluxes calculated at the Rottenbuch site was not due to the frequency 
response corrections e.g. through tube attenuation. Therefore, this finding is partially 
explained by the heterogeneity of the land-surface type around this site, meaning that 
the site itself is located closely to a town, which has a much higher temperature than 
the meadow and there is a deep canyon of the Ammer river nearby, which has a lower 
temperature. Thus, it is likely that the advection of heat and vapor had occurred in that 
area (Fig. 2.8b). Furthermore, the research done by Eder et al. (2014) show that there 
is a relationship between landscape-scale heterogeneity and energy balance closure 
for the TERENO prealpine sites. The mean EBR was 0.65 for the TERENO prealpine 
region. 
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Figure 2.8: Intercomparison of the turbulent fluxes (H + LE) against the available energy (Rn 
- G) at the TERENO prealpine EC sites for the period of January 2013 to December 2014. 
The gray horizontal dashed-line indicates the zero value. The data represent half-hourly 
averages. 

 

The seasonal differences between the values of EBR at the TERENO EC sites are 
given in Table 2.6. The highest seasonal EBR were 0.70 in summer and 0.81 in 
autumn, while the lowest corresponding values were 0.42 and 0.61 in winter at the 
Fendt and Graswang sites, respectively. The lowest seasonal EBR values were 
calculated as 0.51, 0.65, 0.47 and 0.33 in spring, summer, autumn and winter, 
respectively at the Rottenbuch site. Overall, warm seasons showed a higher EBR 
value compared to the cold ones at the study sites, except for the Rottenbuch site in 
which a considerable seasonal difference could not be found. 

 

Table 2.6: Seasonal EBR at the TERENO EC sites during 2013-2014. 

 Site Season 
 Spring Summer Autumn Winter 

EBR5 (</=>)
∑(?@AB)  

Fendt 0.68 0.70  0.69  0.42  
Rottenbuch 0.51  0.65  0.47  0.33  
Graswang 0.76  0.73  0.81  0.61  

 

Seasonal energy balance residual 

The seasonal mean of diurnal variation of the energy balance residual (Res) is shown 
in Figure 2.9. The largest maxima of the Res were 140.8 W/m2 in spring, 90.1 W/m2 
in summer and 141.9 W/m2 in summer at Fendt, Graswang and Rottenbuch sites, 
respectively. The Rottenbuch site had the highest Res in warm periods owing to the 
heterogeneity of the landscape in that area. The autumn diurnal Res sharply decreased 
from 40.5 to -30.9 W/m2 in the afternoon at the Graswang site. This might be 
explained by the lack of sunshine in the afternoon, as this tower is surrounded by high 
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mountains (see Fig. 2.1 for the location) and the sun accordingly sets earlier due to the 
elevated horizon.  

 

 
Figure 2.9: Seasonal 24-h cycle of the residual energy (Res = Rn – (H + LE + G)) at the 
TERENO prealpine EC sites for the period of January 2013 to December 2014. The data 
represent half-hourly averages. 

 

Overall, the reasons for obtaining poor energy balance closure may result from either 
measurement -or method limitations. Some of these effects include: a) net radiation 
sensors, which might perform poorly in the field; b) wind speed and temperature 
measurements e.g. vertical wind speed underestimation; c) water vapor fluctuation 
measurements, e.g. inappropriate performance of sonic anemometer during and after 
rainfall events; and d) the soil heat flux and heat storage measurements (Culf et al., 
2004). In all parts of the world, researchers have encountered energy residuals of 
magnitudes similar to our data sets (e.g. Foken and Oncley, 1995; Panin et al., 1996; 
Wicke and Bernhofer, 1996; Foken et al., 1999; Kahan et al., 2006; Oncley et al., 
2007; Su et al., 2008; Wang et al., 2010). The study of Eder et al. (2014) on the 
energy balance closure suggests that part of the imbalances might be explained by the 
mesoscale transport in relation to the heterogeneity of the landscape, which has been 
hypothesized for other sites by Mauder et al. (2007) and Panin and Bernhofer (2008), 
as well. Therefore, to quantify the possible reasons for the lack of energy balance at 
the TERENO EC sites, the diurnal and nocturnal variations of the heat fluxes, 
influence of the time of day, as well as the effect of flux measurement footprint and 
the dependence of the energy balance closure on the wind direction are analyzed in 
the following sub-sections. 

 

Influence of the diurnal and nocturnal conditions 

Figure 2.10 shows the daytime and nighttime correlations of the turbulent fluxes vs. 
the available energy. The daytime and nighttime R2 were 0.73 and 0.093, respectively 
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at the Fendt site. The highest/lowest daytime and nighttime R2 were calculated as 
0.79, 0.70 and 0.22, 0.026 at the Rottenbuch and Graswang sites, respectively. 
Furthermore, the Graswang site had the lowest diurnal and nocturnal data availability 
(i.e. N:6511 and N:2013, respectively), while the highest corresponding valid values 
were N:8046 and N:5785 that were observed at the Rottenbuch site. Other researchers 
have reported a better diurnal energy balance closure (e.g. Wilson et al., 2002). The 
large nighttime energy imbalances could be explained by weak turbulence at night. 
Aubinet et al. (1999) and Blanken et al. (1997) also came to the conclusion that when 
the friction velocity is small, the energy imbalance is usually high during the 
nocturnal periods. Lee and Hu (2002) found that a low energy balance during 
nighttime periods was due to mean vertical advection, as well.  

 

 

Figure 2.10: Turbulent fluxes (H + LE) vs. available energy (Rn - G) for daytime and 
nighttime at the TERENO prealpine EC sites for the period from January 2013 to December 
2014. The data represent half-hourly averages. The daytime-hours was defined as the 
Incoming Shortwave Radiation (ISR) > 25 W/m2.  

 

Dependence on the time of day 

The diurnal courses of the EBR and the energy balance residual, as well as with the 
mean magnitudes of the measured and available energy are shown in Figure 2.11. It 
was found that for all sites the EBR is not meaningful from 1:00 UTC to 6:00 UTC 
and after 17:00 UTC, when the available energy was close to zero. Between these two 
periods, however, a linear increase in the EBR (with a different pattern and intensity) 
was observed at the EC sites. At all three EC sites, a sharp increase in the EBR was 
observed after 15:00 UTC, indicating a better energy balance closure or even over-
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closure in the afternoon. Such an observation normally points to an unaccounted 
storage term, which is filled in the morning and depleted in the afternoon. Since it was 
included the soil heat storage in G, only the heat stored in the biomass can explain the 
finding. Thus, the best closure occurred in the afternoon, peaking shortly before the 
sunset (at approximately 18:00) at all the EC sites. Besides, the residual energy 
exhibited an almost similar diurnal pattern, but different in magnitude from the study 
sites, which is characterized by positive values from approximately 4:00 to 15:00, and 
by negative values outside this time period ranging from 100 W/m2 at the Rottenbuch 
site to -24 W/m2 at the Fendt site, where the energy balance closure peak occurred. 

 

 
Figure 2.11: The mean diurnal variation of: the available energy (Rn - G), the turbulent 
fluxes (LE + H), the energy balance ratio (EBR) and the residual energy (Rn - G - LE - H) at 
the TERENO prealpine EC sites for the period of January 2013 to December 2014. 

 

Effect of the flux footprint 

The turbulent vertical flux of a passive scalar measured upwind of the surface area 
represents the exchange between the atmosphere and the surface over a larger area is 
known as the atmospheric flux footprint or footprint (Horst 1999; Sanchez et al., 
2010). An increase in the measurement height and decrease in the surface roughness, 
as well as changing the atmospheric stability from unstable to stable would lead to an 
increase in size of the footprint and move the peak contribution away from the EC 
site. These are the main factors affecting the size and shape of the flux footprint. The 
overall flux footprint climatologies at the TERENO prealpine EC sites are shown in 
Figures. 2.12, 2.13 and 2.14. The aerial Google-Earth images in the region clearly 
show the heterogeneous surface at the EC sites in which a stronger directional surface 
inhomogeneity is observed at the Rottenbuch site (Fig. 2.13) as the site is situated 
close to a town, as well as a deep-canyon (i.e. Ammer river). Figure 2.12 shows that 
approximately 80% of the turbulent flux contribution is received by the Fendt EC site 
instruments from the grassland targets 1 (~60%) and 2 (~20%) located in a radius of 
approximately 220 m from the station and less than 10% of the flux contribution is 
emitted by target 3, which is farther away from the instruments. In addition, the 

−3
0

30
10

0
15

0
20

0
25

0
E

ne
rg

y 
flu

x 
(W

/m
²)

Rn − G − LE − H
Rn − G
LE + H
EBR

xxxxxxxxxxx xxxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

0.
0

0.
3

0.
6

0.
9

1.
2

1 3 6 9 12 15 18 21 24

E
B

R

−2
0

0
20

40
60

80
10

0

1 3 6 9 12 15 18 21 24

R
es

id
ua

l e
ne

rg
y 

(W
/m

²)

Fendt EC site
Time [hour]

−3
0

0
30

10
0

15
0

20
0

25
0

xxxxxxxxxx xxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxxxxxxx
xxxxx
xxxxx
xxxxx
xxxxx

0.
0

0.
3

0.
6

0.
9

1.
2

1 3 6 9 12 15 18 21 24

−2
0

0
20

40
60

80
10

0

1 3 6 9 12 15 18 21 24

Rottenbuch EC site
Time [hour]

−3
0

0
30

10
0

15
0

20
0

25
0

xxxxxxxxxx

xxxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

0.
0

0.
3

0.
6

0.
9

1.
2

1 3 6 9 12 15 18 21 24

−2
0

0
20

40
60

80
10

0

1 3 6 9 12 15 18 21 24

Graswang EC site
Time [hour]



2	Turbulent	flux	variability	and	EBC	 	
																																						

	 31	

overall shape of the flux footprint strongly matches the direction of the prevailing 
wind for that area (see Fig. 2.1 for the details). 

 

 
Figure 2.12: Footprint climatology of the Fendt EC site. The left-side map: background 
filled-contours indicate the cumulative percentages of the annual mean half-hourly flux 
footprint during 2013-2014, and the overlaid colorful domains represent the different 
grassland targets, where the canopy height differs at the targets. The dark-blue arrows show 
the most dominant footprint directions. The right-side map: the domains overlaid on the 
Google earth image indicate the approximate position of the grassland targets surrounding the 
site. See Fig. 2.1 for further map details. 

 

As shown in Figure 2.13, instruments of the Rottenbuch EC site receive more than 
65% of the annual flux footprint contribution from the grassland target 1 and 
approximately 25% from the grassland target 2. Thus, the fetch is larger compared to 
other EC sites.  

 

 
Figure 2.13: Same as in Fig. 2.12, but for the Rottenbuch EC site. 
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As mentioned earlier, the lowest EBR at the Rottenbuch site could be explained by 
the combined effects of the presence of the Ammer river located about 600 m east-
southeast of the station and the nearby town situated west-north of the EC site. Both 
these factors are a source of small-scale heterogeneity (Schmid 1997; Eder et al., 
2014). The size of the flux footprint also confirms this mismatch, where some 
percentage of the footprint is emitted from those inhomogeneous areas. The grassland 
targets 1 and 2 emitted approximately 90% of the flux footprint concentration at the 
Graswang EC site (Fig. 2.14). The shape of the mean half-hourly flux footprint is 
highly similar to that of the wind-rose diagram for that area (see Fig. 2.1 for the map). 
It is worth mentioning that the mean flux footprint did not vary significantly between 
the four seasons, neither in size nor shape. Thus, the figures were excluded for further 
interpretations.  

 

 
Figure 2.14: Same as in Fig. 2.12, but for the Graswang EC site. 

 

2.4 Conclusions 

The temporal multiscale variability of the surface heat fluxes was assessed by the 
analysis of the turbulent heat and moisture fluxes using the eddy-covariance (EC) 
technique at the TERrestrial ENvironmental Observatories (TERENO) prealpine 
region for the period of 2013 to 2014.  

The PCA results revealed that, based on PC1, the turbulent flux variability is 
strongly driven by the radiation components of Rn (with an average contribution of 
approximately (15%) and PPFD (14.5%) followed by the temperature variables of 
SurfaceT (14.3%), AirT (14%) and SoilT (13%) at the study sites. For PC2, however, 
the dominant contributing variables were WindS (50%) and WindD (35%). 
Furthermore, the monthly diurnal turbulent fluxes of H and LE indicated significant 
intra-annual variability across the different environments due to the variations of the 
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radiation components, precipitation events, soil moisture and texture, as well as 
different landscapes in the region. Besides, the highest seasonal diurnal variation 
observed was for Rn, followed by LE and H, while the lowest one was found for G. 

The surface energy balance closure remained unclosed at the study EC sites. 
The EBR values were 0.68, 0.56 and 0.73 at the Fendt, Rottenbuch and Graswang 
sites, respectively. The mean imbalance was approximately 35%. The lowest EBR at 
the Rottenbuch site was partially due to the advection of heat and vapor caused by the 
heterogeneity of the land surface in that area leading to an underestimation of 
turbulent fluxes, which somehow substantiated by the flux footprint analysis. The 
EBC was poor during nighttime periods mainly due to the weak turbulence mixing at 
night. Overall, the EBC was better in the early afternoon than in the morning (due to 
the neglected storage terms) with the highest and the lowest EBC at the Graswang and 
Rottenbuch EC sites, respectively.  

On average, the annual mean energy balance residual and EBR were 60 W/m2 
and 65%, respectively, in the region. In addition, the size and shape of the flux 
footprint climatology was calculated. Approximately 80%, 75% and 90% of the 
annual mean half-hourly turbulent flux footprints received by the instruments from 
the grassland targets 1 and 2 located at a radius of approximately 250 m around the 
Fendt, Rottenbuch and Graswang stations, respectively. The overall shape of the flux 
footprints significantly matched the direction of the prevailing winds at the study EC 
sites. 

 
 
 



		

 
 
 
 

Chapter 3  
 
 

 
 

Spatiotemporal variability and empirical 
Copula-based dependence structure of modeled 
and observed coupled water and energy fluxes* 
 
 
 
  

3.1 Introduction 

In alpine and prealpine regions, eco-hydrometeorological variables and processes 
such as soil moisture, evapotranspiration (ET), vegetation type and dynamics, and 
surface heat fluxes exhibit rapid changes within short distances. This is mainly due to 
the heterogeneity in topography, soil hydraulic properties, landuse, and climate, as 
well as interactions between the earth surface and the atmospheric boundary layer 
(Kunstmann et al., 2004, 2006; Hingerl et al., 2016; Soltani et al., 2017). The energy 
and water budgets in such environments are, therefore, highly controlled by the soil 
type properties (Pielke et al., 1998), landcover characteristics (Dirmeyer et al., 2010), 
and vegetation structure (Pielke et al., 2011). The accurate spatial prediction of 
hydrometeorological variables can statistically be achieved with a distributed high-
resolution hydrologic modeling approach. Such models explicitly take into account all 
of the domain characteristics by simultaneously solving the water and energy balance 
over complex mountain terrain (Bronstert et al., 2002).  

 In recent years, sophisticated process-based hydrological models have been 
developed, i.e. ALPINE3D (Lehning et al., 2006), Distributed Hydrology-Soil-
Vegetation Model (Cuo et al., 2008) and JGRASS-NewAGE (Formetta et al., 2011). 
In these models the full system of interactions between different environments is 
usually taken into account; however, the equations are simplified and parameterized 
for the process interactions. In models like GEOtop (Rigon et al., 2006; Endrizzi et 
al., 2014), modeling the interactions between various hydrological, ecological and 
																																																								
* This chapter follows closely Soltani et al., (2018) 
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atmospheric boundary-layer processes in an interdisciplinary research area is possible, 
as the model covers a wide spectrum of factors in the terrestrial hydrological cycle 
(Endrizzi et al., 2014).  

 To validate the performance of hydrological models, the simulation outputs of 
these models are compared against observation-based runoff data and, more recently, 
micrometeorological measurements derived from Eddy Covariance (EC) techniques 
(e.g. Rigon et al., 2006; Hingerl et al., 2016). EC-based information is now 
considered as a valid source for model’s calibration and validation (e.g. Rosero et al., 
2010; Decker et al., 2012). Traditionally, linear statistical measures (e.g. correlation 
coefficient r) are used for model performance evaluation. However, using simple 
linear r-values between simulated and observed hydrometeorological datasets, which 
typically exhibit nonlinear characteristics, may not be an appropriate way to 
determine these complex relationships (Bárdossy and Pegram, 2009). Copula 
functions can appropriately obtain underlying dependence structures of 
hydrometeorological variables (Dupuis, 2007), including their complexities in time 
and space (Laux et al., 2011). Copula-based models have been used in a variety of 
experimental studies for different purposes worldwide. In the field of hydrology, 
Bárdossy (2006) described the spatial variability of the groundwater quality 
parameters using bivariate empirical copula. Using Copula functions, Sugimoto et al. 
(2016) made an attempt to detect the temporal changes of catchments independent 
from climate change by investigating the long-term discharge records. Li et al. (2016) 
estimated the bivariate flood quantiles by combinations of peak discharge and flood 
volume using Copulas in China. In a similar study, with regard to urban catchment 
applications, flood frequency curves were derived using bivariate rainfall distribution 
based on copula functions by Balistrocchi and Bacchi (2017). The following studies 
are examples for applying Copulas to hydrometeorological field: modelling the daily 
precipitation features in West Africa (Laux et al., 2009), spatial recorrelation of 
regional climate model (RCM) precipitation to generate unbiased climate change 
scenarios over Rhine basin (Bárdossy and Pegram, 2012), spatiotemporal patterns of 
precipitation extremes in China (Zhang et al., 2013), and bias correction of 
dynamically downscaled precipitation fields in Germany (Mao et al., 2015). However, 
no study has been used Copula-based models so far for evaluating the performance of 
hydrological simulations, as described and presented in this research. 

 This study is performed for two heterogeneous (ranging from small to 
mesoscale) catchments within the TERrestrial ENvironmental Observatories 
(TERENO) prealpine region located in southern Germany using GEOtop 2.0 to 
jointly simulate the water and energy budgets over two summer episodes in 2013 and 
2015. Previous studies in the region have focused on how climate change impacts 
runoff generation, surface and sub-surface water balances, biosphere-atmosphere 
exchange (greenhouse gases), and energy balance closure parameterization (Ott et al., 
2013; Kunstmann et al., 2004; Unteregelsbacher et al., 2013; Wang et al., 2014; Eder 
et al., 2014; Wolf et al., 2016; Zeeman et al., 2017; Soltani et al., 2017). Inverse 
distributed hydrological modelling has been studied by Kunstmann et al. (2006) for 
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the alpine/prealpine Ammer River catchment through coupling the Parameter 
ESTimation tool (PEST) in the WaSiM hydrological model. Hingerl et al. (2016) 
modeled the spatiotemporal variability of the water and energy flux components using 
GEOtop 1.45 for a prealpine catchment in the TERENO region. In both cases, 
however, the hydrological models were calibrated against the runoff measurements 
only, and no soil moisture profile variation and/or radiative-turbulent flux variabilities 
have been accounted for in the simulation. Moreover, previous studies only attempted 
to evaluate the models’ performances using the traditional linear statistical metrics 
(e.g. R2, RMSE).  

 Given the above described gaps, in chapter 3 the following objectives are 
addressed: i) quantifying the spatiotemporal variability of the hydrometeorological 
variables of the turbulent fluxes as well as the surface temperature and ET with 
respect to the elevation-gradient effect using high-resolution EC-based measurements 
and spatial hydrological simulations, ii) simulating the coupled water and energy 
balances at a very high spatial resolution using the physically-based  hydrological 
model GEOtop, and iii) estimating the underlying dependence structures of the 
observed and modeled water and energy fluxes using the nonlinear-based approach 
bivariate empirical Copula in the TERENO prealpine region. 
 

3.2 Study area and hydrometeorological dataset 

3.2.1 Catchments description 

The Rott catchment (~55 km2) and the Upper-Ammer catchment (~300 km2) are 
located in the TERrestrial ENvironmental Observatories (TERENO) prealpine region 
in southern Germany (Figure 3.1).  
 

 
Figure 3.1: The geographical location of the TERENO prealpine observatory in southern 
Germany, and overview on elevations, river networks and observation stations in the Rott and 
Upper-Ammer catchments. 
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The highest and lowest points in the Rott catchment are ranging from 902 m to 543 m, 
where the Raisting discharge gauge is located at the outlet of the basin. The 
corresponding values for the Upper-Ammer catchment are ranging from 2129 m to 
619 m, where the Peissenberg discharge gauge is located at the outlet. The 
micrometeorological measurements from the Fendt EC site (47.831 °N, 11.061 °E) 
and the Rottenbuch EC site (47.730 °N, 10.061 °E) are used for model validation. The 
Fendt site is placed in area characterized as a pasture landuse  (Figure 3.2a) with a 
Histosol soil type (Figure 3.2b). The Rottenbuch site is similarly located in pasture 
(Fig. 3.2a); however, has a soil profile with sandy loam soil (Figure 3.2b) at the 
surface, and a gravel layer at ~50 cm depth (Soltani et al., 2017). Additionally, the 
southern portion of each catchment, especially the Upper-Ammer, has the highest 
elevations and slopes greater than 50° in the southern TERENO region (Figure 3.2c). 

 

 
Figure 3.2: Spatial properties of the TERENO prealpine catchments: a) landuse, b) soil-type 
[in the Rott catchment] and soil texture [in the Upper-Ammer catchment], and c) terrain slope 
[in degrees]. The original vector data of landuse and soil properties taken from Hingerl et al. 
(2016) for the Rott catchment, and Kunstmann et al. (2006) for the Upper-Ammer catchment. 
They then reproduced using ArcMap GIS (ESRI, 2011) for this publication. 

 

3.2.2 Hydrometeorological data 
The meteorological dataset was obtained from three major sources for the calibration 
and validation periods in 01 May to 31 July 2013 and 2015, respectively. First, the 
EC-based turbulent fluxes and the micrometeorological measurements were obtained 
from the TERENO EC sites (Mauder et al., 2013). Second, the hourly forcing data for 
Wielenbach and Hohenpeissenberg, Kohlgrub, and Oberammergau stations were 
obtained from the Deutscher Wetterdienst (DWD) (https://werdis.dwd.de). Third, the 
hourly data of precipitation for the Diessen rain gauge and runoff for the Raisting and 
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Peissenberg discharge gauges were compiled from Bayerisches Landesamt für 
Umwelt (http://www.hnd.bayern.de). 

The experimental period was selected for the simulation due to the fact that 
there usually remain uncertainties in the measured wintertime water and energy fluxes 
over the region (e.g. Hingerl et al., 2016). Additionally, the peak runoff volume and 
the highest energy balance closure were observed during summer periods (e.g. Soltani 
et al., 2017).  
 

3.3 Methodology  

3.3.1 Hydrological modeling  

The model GEOtop V. 2.0 (Endrizzi et al., 2014) was used for the catchment-scale 
hydrologic simulation. It is a fully distributed physically-based hydrological model of 
the water and energy balance at and below the soil surface, designed for simulations 
in continuum in small and mesoscale mountain catchments over complex terrain 
(Bertoldi et al., 2004; Rigon et al., 2006). The core components of the GEOtop model 
are fully described in Endrizzi et al. (2014). However, here only a brief overview of 
the model’s capabilities is presented.  

The model solves the heat and water flow equations for temperature and 
moisture in the soil with a coupled three-dimensional numerical scheme (Bertoldi et 
al., 2014). Furthermore, the model considers radiation correction for complex 
topography. This includes the following: i) accounting for the solar incidence angle 
and the shadowing of direct solar radiation by surrounding mountains; ii) partitioning 
of radiation in direct and diffuse components according to Erbs et al. (1982); and iii) 
the effects of topography on diffuse radiation coming on the surrounding terrain 
(Iqbal, 1983), as described in Bertoldi et al. (2014). Therefore, GEOtop covers a 
variety of aspects of hydrological fluxes, from the energy balance to snow cover and 
snowmelt (Zanotti et al., 2004), the cryosphere (Endrizzi et al., 2014), the effects of 
vegetation (Endrizzi and Marsh, 2010), and ecohydrological processes (Bertoldi et al., 
2010; Della Chiesa et al., 2014; Hingerl et al., 2016). This makes it a suitable choice 
for modelling the interacting water and energy fluxes at and beneath the land surface 
in the TERENO prealpine observatory (Endrizzi et al., 2014).  

The model solves the water balance in the soil using the system of equations 
represented below (Endrizzi et al., 2014):  
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																																																																																					(3.1) 

where !"#
$% [-] is the fraction of liquid water content in soil subject to phase change, 

!"#
-. [-] the fraction of liquid water content transferred by water flux, )* [kg m-3] the 
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density of ice, )# [kg m-3] the density of liquid water in the soil, !"* [-] the fraction of 
ice in soil, t [s] time, ∇ ∙ [-] divergence operator, 1# [m s-1] the flux of liquid water, 
and also 23 [s-1] as the mass sink term. The above equation describes the water flow 
occurring below the soil surface and is referred to as the variably saturated Richards 
equation. According to Darcy’s law, 1# can be written as: 

1# = 	−:∇ ; + <- 																																																																																																(3.2)  
where, K [m s-1] is the hydraulic conductivity, ; [m] the liquid water gauge pressure 
head and <- [m] the elevation head above a reference level. Defining H [m] as the sum 
of the pressure and potential heads: > = ; + <- , the second part of Eq. (3.1), 
combined with Eq. (3.2) becomes: 

!"#
-.

!&
+	∇ ∙ (−:?>) + 23 = 0																																																																															(3.3) 

Equation (3.3) is solved in a fully three-dimensional way in order to describe the two 
gradients of H in the direction parallel and normal to the surface. When the soil is 
saturated (either because of precipitation or melting snow), normal gradients become 
very small compared to those in the parallel direction, which consequently are 
responsible for the routing of water through the soil (Endrizzi et al., 2014).  

Additionally, to fully describe the water balance in the soil and the runoff 
mechanisms, the surface (or overland) water flow needs to be taken into account. This 
process is described with the approximation proposed by Gottardi and Venutelli 
(1993), who extended to the surface flow the validity of Darcy’s law, which would 
not be valid with the flow being turbulent. Using the water conservation and Darcy’s 
law for the overland flow, the surface water balance is expressed as (Endrizzi et al., 
2014): 

∂ψ|CDE
∂t

−	∇ ∙ ψ|CDE	KHIJ∇ ψ|CDE +	z-|CDE −	PM = 	0																																				(3.4) 

where ;|ODE (m) and <-|ODE (m) are the liquid water pressure head and the elevation 
head at the soil surface, :HIJ  (m s-1) the conductance, and PQ  (m s-1) the effective 
precipitation per unit horizontal surface that reaches the soil surface, including 
snowmelt flow and deducting evaporation from the soil. The variable ;|ODE cannot be 
negative in Eq. (3.4), and is written in place of water depth above the surface. 
Following Gottardi and Venutelli (1993) the conductance is:  

:RST = 	 UR;|O
V
= 0

∂ψ|CDE
∂W

XE.Y

																																																																									(3.5) 

where,	W [m] is the length along the direction of maximum local slope, UR [m
1-y s-1] the 

surface roughness coefficient, and [ an exponent between 0 and 1varying according to 
the formulation of UR. 

It is noted that, GEOtop only describes water flow within a certain soil depth 
i.e. normally a few meters or tens of meters. Deep groundwater and water in the 
fractured rocks are not considered in the model, as it would require large amounts of 
data that typically are either not available or difficult to access. Thus, the model 
considers only a part of the soil water that is close to the surface and hydrologically 
active. Also, GEOtop uses Darcy’s law to describe water flow in a porous medium 
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(water in the saturated zone close to the surface or aquifers), normally not for water in 
the deep fractured rocks and gravels. 

The turbulent fluxes of sensible heat (H) and latent heat (LE) play a significant 
role in the surface energy balance closure (EBC). The H (LE) flux, which is 
associated with convection, driven by difference in temperature (vapour pressure) 
between land surface and the atmosphere. However, they are both largely driven by 
wind speed. Thus, it is important to consider in the model a topographically 
dependent wind field to describe the effect of topography on the surface EBC. 
According to Endrizzi et al. (2014), a full resolution of the fluid dynamic equations is 
too computationally heavy for GEOtop. The wind field is therefore parameterised 
using topography (Liston and Elder, 2006). The model calculates the turbulent fluxes 
H and LE with the flux-gradient relationship (e.g. Garratt, 1992):  

H =	ρ^c`wH

T̂ −	THIJ
r^

																																																																																												(3.6) 

LE = 	βhiLMp^c`wH

Q^ −	αhiQH
∗

r^
																																																																										(3.7) 

where )o is the air density (kg m-3), U$ the specific heat at constant pressure (J kg-1 K-

1), pR  the wind speed (m s-1), qQ  the specific heat of vaporisation (J kg-1), rR∗  the 
saturated specific humidity (kg kg-1) at the surface, ro the specific humidity of the air, 
and so the aerodynamic resistance (-). The tuv and wuv coefficients take into account 
the soil resistance to evaporation, and only depend on the liquid water pressure close 
to the soil surface. They are calculated according to the parameterisation of Ye and 
Pielke (1993), which considers evaporation as the sum of the proper evaporation from 
the surface and diffusion of water vapour in soil pores at greater depths. The 
aerodynamical resistance is obtained applying the Monin–Obukhov similarity theory 
(Monin and Obukhov, 1954), which requires that values of wind speed, air 
temperature and specific humidity are available at least at two different heights above 
the surface. In addition, the LE flux also depends on the soil moisture at the surface, 
which is a further coupling term to the water flow equations, as described above.  
 
Model setup and input data 
The following static datasets were used for simulation by the GEOtop model. The 
DEM 90 × 90 m2 (100 × 100 m2) was obtained from the Shuttle Radar Topographic 
Mission – SRTM (http://srtm.csi.cgiar.org) for the Rott (Upper-Ammer) catchment. 
The river network, as well as, terrain aspect, slope, and sky view were calculated 
using ArcMap GIS based on techniques described by Ghesla and Rigon (2006).  

 The land cover, with a resolution of 250 × 250 m2 (Rott) and 150 × 150 m2 
(Upper-Ammer), as well as, the soil type of 2 × 2 km2 for both catchments taken from 
Hingerl et al. (2016) and Kunstmann et al. (2006), respectively. Then, they were 
separately interpolated to the same resolution of the DEMs following Bertoldi et al. 
(2004). The soil is discretized in 13 layers, with thicknesses increasing from the 
surface to the deep layers. The top 8 layers starting from the surface have thicknesses 
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ranging from 0.1 to 0.5 m, with respect to the vertical gradients of water pressure and 
temperature (Endrizzi et al., 2014), while the lowest 5 layers have thicknesses ranging 
from 1.0 to 5.0 m. 

 The hourly meteorological data of precipitation, temperature, wind speed, 
wind direction, and radiation components were provided as input forcings for the 
model simulations. In the GEOtop code, air temperature and precipitation are spatially 
distributed according to Liston and Elder (2006). The integration of the model run is 
one-hour interval. Detailed information about the interpolation of the meteorological 
data in GEOtop is described in Endrizzi et al. (2014).  

 

Model sensitivity and calibration 

The GEOtop model was first applied to a summer episode starting from 01 May to 31 
July 2013. A two-week spin-up period starting from 15 April to 30 April 2013 was 
conducted, as it was found experimentally that this is sufficient for the experimental 
period. The simulation is then used for determining the parameters’ sensitivities and 
model calibration. In the simulation experiments, the key model parameters acting on 
the water and energy budgets (Table 3.1) are iteratively estimated based on the most 
sensitive parameters identified by the previous hydrological models run in the study 
area.  

A “trial-and-error” procedure was used for the model calibration within an 
accepted range of values (Table 3.1). The effect of selected parameters on the model 
outputs were individually tested and optimized until the best fit was obtained between 
the simulated and measured data. The calibration results are given in Table 3.1. It was 
found that changes in the parameter values from the northern (Fendt) to the middle 
parts (Rottenbuch) of the TERENO prealpine region are realistic and explainable 
based on changes in e.g. climatic-environmental conditions and land-surface 
properties for those regions. For example, the difference in the calibrated values of αw 
can be explained by differences in the soil properties for those two areas. In Fendt, the 
dominant soil-type is Histosol, whereas Rottenbuch is covered by a sandy-loam soil-
texture.  

The soil parameter Kv determines the highest capacity of infiltration and 
highly affects both the surface runoff generation and the magnitude of peak discharge. 
The parameter of Kh impacts the flood tail as it determines the subsurface runoff 
quantity (Rigon et al., 2006). These parameters also were reasonably calibrated (see 
Table 3.1).  

Further, the initial condition on water table depth was set as: InitWaterTable- 
HeightOverTopoSurface/InitWaterTableDepth = - 5,000/1,000 mm (Rott catchment) 
and = -10,000/1,500 mm (Upper-Ammer catchment). The initial condition for the soil 
pressure i.e. InitSoilPressure and InitSoilPressureBedrock were kept constant by 
default for both catchments.  
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Table 3.1 Calibrated model parameters. The estimated values of soil parameters (i.e. Kv and 
Kh and α) represent the topsoil layer. For the remaining 12-layers, the calibrated values of Kv 
range from 0.12 to 0.26 mm s-1 in Rott and 0.10 to 0.85 mm s-1 in Upper-Ammer, and Kh 
estimates vary from 1.00E-04 to 3.00E-2 mm s-1 for the Rott catchment and 1.00E-04 to 
9.000E-1 mm s-1 for the Upper-Ammer catchment. Also, the values for deeper layers of α 
were ~ 1.00E-5 to 3.0E-4 mm-1 for both catchments. 

Parameter Description Unit Range 
Calibrated values 

Fendt/Rott Rottenbuch/ 
Upper-Ammer 

Cf Canopy fraction [0: no canopy in the 
pixel, 1: pixel fully covered by canopy] 

- 0, 1 0.45 0.55 

Ch Canopy height mm 0, 
20000 

350 450 

αw Ground surface albedo without snow in 
the visible - saturated 

- 0, 1 0.15 0.25 

Vref Vegetation reflectivity in the visible - 0, 1 0.15 0.15 
ε Ground surface emissivity - 0, 1 0.96 0.99 
Kv Vertical hydraulic conductivity mm s-1  1.0 1.0 
Kh Horizontal hydraulic conductivity mm s-1  1.0 1.0 
α Van Genuchten parameter α mm-1  8.00E-04 5.00E-04 
n Van Genuchten parameter n -  1.81 1.55 
λs Thermal conductivity of the bedrock  W m-1 

K-1 
 0.01 0.01 

Cm Coefficient of the law of uniform 
motion on the surface 

m-1 s-1 0.01, 
5.0 

2.0 3.0 

ϒ Exponent of the law of uniform motion 
on the surface  

-  0.24 0.15 

Cw Fraction of channel width in the pixel 
width  

-  0.5 0.5 

 

   

Model performance evaluation and validation 

Model evaluation statistics are commonly utilized for comparing model outputs 
against measurements. There is a large variety of evaluation metrics, but no single 
metric which encapsulates all aspects of interest exists. For this reason, six statistical 
metrics were used to evaluate the performance of GEOtop in this study. They are 
described in Table 3.2. 

In addition, according to the fact that the relationships between 
hydrometeorological variables may be highly nonlinear, we employ the concept of the 
empirical Copula (described in the following section). Unlike the linear statistical 
measures, the nonparametric empirical Copula-based approach is able to describe the 
underlying joint behavior of water and energy fluxes (Genest and Favre 2007; 
Serinaldi, 2009; Laux et al., 2011). 

The calibrated GEOtop model simulated an independent period of 01 May to 
31 July 2015 for validation.  
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Table 3.2: The statistical metrics used for the model performance evaluation.  

Metrics Description References 

R2 

Coefficient of Determination: 
It measures the strength of linear relationship between two variables. It 
specifies how much of the variation in the dependent variable y is 
characterized by a variation in the independent variable x 

Carslaw 
(2015) 

MB 

Mean Bias: 
It provides a good indication of the mean over –or underestimate of 
simulations. The optimal value of MB is 0, with low-magnitude values 
indicating accurate model simulation. Positive values indicate model 
underestimation bias, and negative values indicate model 
overestimation bias 

Gupta et al. 
(1999); 
Moriasi et al. 
(2007) 

RMSE 

Root Mean Square Error: 
It provides a good overall measure of how close modelled values are to 
observed values. Lower RMSE indicates a better model performance 
(or less residual) 

Singh et al. 
(2004); 
Moriasi et al. 
(2007); 
Carslaw 
(2015) 

NSE 

Nash-Sutcliffe Efficiency: 
It determines the relative magnitude of residual variance compared to 
the measured data variance. NSE ranges between −∞ and 1, with NSE 
= 1 being the optimal value. Values between 0 and 1 are viewed as 
acceptable levels of performance, whereas values <0 indicates that the 
mean observed value is a better predictor than the simulated value, 
which indicates unacceptable performance 

Nash and 
Sutcliffe 
(1970); 
Moriasi et al. 
(2007) 

COE 

Coefficient of Efficiency: 
It is used for measuring model performance. A prefect model has a 
COE = 1. Although COE has no lower bound, a value of COE = 0 
implies that the model is no more able to predict the observed values 
than does the observed mean. Thus, such a model can have no 
predictive advantage 

Legates and 
McCabe 
(2012); 
Legates and 
McCabe Jr 
(1999); 
Carslaw 
(2015) 

IOA 

Index of Agreement: 
It is used in model evaluation. It ranges between -1 and +1 with values 
approaching +1 representing better model performance. IOA = 0 
signifies that sum of the magnitudes of the errors and the sum of the 
observed-deviation magnitudes are equivalent. Values of IOA near -1 
indicate that the model-estimated deviations are poor estimates of the 
observed deviations 

Willmott et 
al. (2011); 
Carslaw 
(2015) 

 
 

3.3.2 Bivariate density estimation using empirical Copulas 

Hydrometeorological variables usually show nonlinear behaviours and hence their 
relationships are very complex. Traditionally, the pairwise dependence between these 
variables has been described using classical families of bivariate distributions such as 
normal, log-normal, gamma, and extreme-value distributions. The main limitation of 
this approach is that the individual behaviour of the two variables or transformations 
thereof must then be characterized by the same parametric family of univariate 
distributions. Copula models, however, avoid this restriction (Genest and Favre, 
2007). 
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The Copula approach is based on the theorem of Sklar (Sklar, 1959). It states 
that any multivariate distribution function can be decomposed into the marginal 
distributions and a Copula, which captures the dependence between variables. In this 
study, the dependence structures of hourly measured and simulated water and energy 
variables of discharge, soil moisture, sensible heat flux and latent heat flux were 
estimated for the Fendt and Rottenbuch EC sites located in the Rott and Upper-
Ammer catchments, respectively (see Fig. 3.1 for further details). 

To calculate the Copula density C, first xy , xz  of the marginal distributions 
was obtained using the empirical distribution function and then the pseudo-
observations {, } = (x~ � , xu(Ä)) were defined. The Copula density was finally 
estimated as the joint density of {, } . To analyze the real underlying dependence 
structure, the empirical Copula is estimated. It is purely based on the data (Deheuvels, 
1979). When {r1(1), ..., r1(n)} and {r2(1), ..., r2(n)} denoting the rank space values that 
are derived from the marginal distributions, the empirical Copula is then as follows 
(Deheuvels, 1979): 

CÇ u, v = 1/n á

Ç

àDâ

	(
râ t

n
≤ u,

rã t

n
	≤ v)																																																			(3.8) 

with u = FX (x), v = FY (y) and 1(...) denoting the indicator function and n being the 
sample size. For more information regarding Copulas, refer to e.g. Nelson (1999) and 
Salvadori et al. (2007).  

 

3.4 Results and discussion 

3.4.1 Spatiotemporal variability of water and energy fluxes 

Figure 3.3 shows the temporal variations of surface turbulent fluxes on daily 
resolution as a calendar plot, where the wind angle scaled to the wind speed to 
highlight both the direction and the strength of the wind of a particular day for the 
Fendt and Rottenbuch EC sites. At Fendt, the highest turbulent flux with a magnitude 
of more than 250 W/m2 on the 7th of July was associated with northeasterly winds 
during the experimental period. The corresponding value for the Rottenbuch (> 140 
W/m2) was connected to northwesterly flows that occurred on the 15th of July.  

The results indicate a clear increase in the turbulent flux concentration from 
May to July at both sites due to the increase in solar radiation; however, the temporal 
variation patterns are different at the individual sites.  
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Figure 3.3: Calendar plots for the half-hourly-based mean daily concentrations of the 
turbulent fluxes (sum of H and LE) in 2013 at the TERENO prealpine EC sites with 
annotations showing wind angle scaled to wind speed i.e. the longer the arrow, the higher the 
wind speed. The wind speed ranging from 0.01 (0.04) m s-1 to 8.08 (7.44) m s-1 at Fendt 
(Rottenbuch) EC site. 

 

The spatial variability of heat and water fluxes in the TERENO prealpine 
region is significantly affected by diversity in topography, radiation and wind 
components, soil moisture properties as well as land cover and vegetation types. The 
surface temperature and ET values (Figure 3.4) range from 9 to 21 °C and 17 to 160 
mm, respectively, in the Upper-Ammer catchment. The corresponding values for the 
Rott catchment are 15 to 20 °C and 42 to 153 mm, respectively. The maximum values 
are simulated at parts of the basin with i) the lowest elevation, slope (controls the net 
radiation e.g. Dubayah et al., 1990), and wind speed (Chow et al., 2006) ii) Histosol 
or sandy-loam texture soil, and iii) in pasture or peatland vegetation cover (determines 
storage capacity (e.g. Bertoldi et al., 2010). The different forest types tend to have the 
lowest ET values across the region. The mean surface temperature reflected the 
diverse surface topography of the TERENO prealpine region by exhibiting an 
elevation-dependent temperature variation of 10C in the Upper-Ammer area and 4 °C 
in Rott. The spatial patterns obtained herein should be interpreted with care, as a soil-
type map of 2 × 2 km2 used for model input is rather coarse with respect to other 
model’s input layers and computational resolution. 
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Figure 3.4: Simulated spatial distributions of ET (mm/month) and surface temperature 
(°C/month) averaged for the period of May to July 2013 at the TERENO prealpine 
catchments. 

 

3.4.2 Joint simulation of water and energy fluxes using GEOtop 

Water balance 

The comparison of measured and simulated discharge in the TERENO prealpine 
catchments are shown in Figure 3.5. Overall, GEOtop was capable of replicating 
appropriately the river discharge dynamics with a high efficiency (see Table 3.3). The 
NSE indicates a high performance of the model to represent the temporal variability 
of discharge (NSE = 0.86 for Rott and NSE = 0.81 for Upper-Ammer) in which the 
volumes of discharges are reasonably reproduced at both catchments. That is, total 
simulated discharge volume for the 3-month period was 3886 m3 in Rott and 53884 
m3 in Upper-Ammer. This, indicates an underestimation of about 25% and 15%, 
respectively, compared to the measured discharge volumes of 5168 m3 and 62509 m3. 
This was also represented by MB values of -0.34 m3 for Rott and -2.01 m3 for Upper-
Ammer.  
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Figure 3.5: Simulated versus measured hourly river discharge hydrographs for the calibration 
(May to July 2013) and validation period (May to July 2015) in the Raisting gauge at outlet of 
Rott catchment and the Peissenberg gauge at outlet of Upper-Ammer catchment in the 
TERENO prealpine region. 

 

In both catchments, an increased runoff volume in early June peak flow highlights the 
importance of snow dynamics for runoff generation in the region. The model captures 
the peak flow well in Rott, but underestimates it in the Upper-Ammer catchment. This 
might be explained by the lack of meteorological stations, which can result in 
considerable errors in the spatial interpolation by the model. These differences may 
further be explained by the rapid climate zone changes in a small spatial area or by 
the snow dynamics effect on the behavior of surface runoff during the springtime 
(Kunstmann et al., 2006). The values of RMSE are very low (i.e. 1.29 - Rott and 7.36 
- Upper-Ammer) while R2 are high (i.e. Rott: 0.80; Upper Ammer: 0.88), indicating 
that simulated and measured discharges have low residuals and strong linear 
relationships. According to Figure 3.5, the GEOtop model, similar to the calibration 
period, indicates a good performance to replicate the river runoff by capturing the 
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peak flows at both catchments during the validation period (see Table 3.3 for detailed 
information about the statistical measures). 

 

Table 3.3: Statistical measures for the simulated vs. measured discharge and soil moisture 
during the calibration period (May to July 2013) at the TERENO prealpine region. The values 
in brackets denote the statistics of the independent validation for the period of May to July 
2015. 

 Discharge Soil moisture (-5 cm) 
Statistics Rott catchment Upper-Ammer catchment Fendt EC site Rottenbuch EC site 
MB -0.34 (-0.23) -2.01 (-1.88) 0.04 (0.12) 0.02 (-0.01) 
RMSE 1.29 (1.04) 7.32 (4.81) 0.07 (0.16) 0.06 (0.05) 
R2 0.80 (0.73) 0.88 (0.82) 0.94 (0.79) 0.84 (0.86) 
COE 0.52 (0.45) 0.54 (0.46) 0.68 (0.19) 0.48 (0.56) 
IOA 0.76 (0.72) 0.77 (0.73) 0.84 (0.59) 0.74 (0.78) 
NSE 0.86 (0.77) 0.81 (0.81) 0.75 (0.12) 0.20 (0.38) 
 

Figure 3.6 displays the time series of the site-scale, hourly measured and simulated 
soil moisture for the Fendt and Rottenbuch EC sites at three different depths from 
May to July for the calibration and validation periods. Over the calibration period, 
GEOtop indicates a strong linear relationship between the simulated and measured -5 
cm soil moistures at Fendt (R2 = 0.94) and Rottenbuch (R2 = 0.84). The daily 
fluctuation of observed soil moisture at Fendt ranges from about 25% to 75%, while it 
ranges approximately from 20% to 50% for the Rottenbuch site. The different soil 
texture and soil type could explain this discrepancy, where sandy-loam soil texture 
and Histosol type prevail. This is why the maximum soil moisture close to the surface 
layer in Rottenbuch was about 50%.  

Apart from a different soil type, which results in a high variation in the near 
surface soil water content in Fendt, the soil moisture also depends strongly on the 
variation of the groundwater table depth for that area (Wolf et al., 2016). When there 
is a deficit in rainfall, the rate of soil moisture drops quickly and reaches up to 20% at 
both sites. Due to scale differences between grid cells and point measurements it is 
not easy to compare precisely the simulated soil moisture with those of the 
measurements (Manabe et al., 2004).  

Nevertheless, it was found that GEOtop is appropriately capable of 
reproducing infiltration and daily cycle of soil moisture evaporation associated with 
the rainfall events with the lowest mean bias and error and the highest efficiency and 
agreements. The model shows a similar performance to replicate the soil moisture 
during the validation period for both EC sites (see Table 3.3 for further details). 
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Figure 3.6: Simulated versus measured hourly soil moisture values at the depths of 5cm 
(blue), 25cm (green) and 50cm (red) for the calibration period (May to July 2013) and 
validation period (May to July 2015) at the TERENO prealpine EC sites. 

 

The distributed soil moisture maps at -5 cm layer simulated by the model, as 
shown in Figure 3.7, are found to be highly influenced by the heterogeneous 
topography (terrain slope) and different landuse as well as soil texture patterns. With 
regard to topography, obviously the most (least) saturated soil water content greater 
than 70% (less than 30%) is mainly found in the low lands (steep gradients), which 
are mostly located in northern (southern) parts of the TERENO prealpine region. The 
spatial distribution of soil moisture highly follows the spatial distribution of the ET 
pattern (see Fig. 3.4), which was also confirmed by the site-scale results at both Fendt 
(70%) and Rottenbuch (45%).  

Furthermore, in Rott, 87% (89%) of precipitation leaves the basin as ET and 
only 13% (11%) is consumed for runoff generation during the calibration (validation) 
period. In Upper-Ammer, however, the water balance condition is quite different. 
Approximately 68% (56%) of the precipitation leaves the catchment as discharge and 
ET consumes around 32% (44%) during the calibration (validation) period, which 
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indicates the importance of runoff generation by increasing flooding potentials in the 
lowlands during the summertime. 

 

 
Figure 3.7: Distributed soil moisture content at 5cm depth for the calibration period (2013) at 
the TERENO prealpine catchments. The data represents monthly averages. 

 

Energy balance 

The comparison between simulated and measured site-scale diurnal surface energy 
fluxes of Rn, LE, H and G in the TERENO prealpine EC sites is illustrated in Figure 
3.8. Overall, the EC-based diurnal cycles of energy fluxes were well reproduced by 
GEOtop, which is confirmed by high values of correlation coefficients, efficiency and 
agreements between the measured and simulated Rn, H, LE and G (see Table 3.4). 
Some bias is observed in Rn (MB = -17.4 W/m2 at Fendt and MB = -20.7 W/m2 at 
Rottenbuch), which indicates that Rn is underestimated. To identify the possible 
reasons, the modeled radiation components (i.e. incoming short/longwave and 
outgoing short/longwave) were compared against the measurements. It was found that 
the modeled Incoming Shortwave Radiation (ISR) shows a considerable bias (MB = -
115.6 W/m2 at Fendt and MB = -120.9 W/m2 at Rottenbuch) and was underestimated 
by the model. 

The model slightly overestimates LE (MB = 14.3 at Fendt and MB = 24.8 at 
Rottenbuch), in particular during the first part of the day with a peak at around 11:00. 
The midday overestimation of the simulated LE flux at the EC sites might be 
explained by the lack of energy balance closure (EBC) in the EC-based 
measurements, where the imbalance (residual energy) at Fendt is 31% (Fig. 3.9c). At 
Rottenbuch, however, not only it is even higher (39%) as illustrated in Figure 3.9d, 
but also LE flux partitioning to Rn is at least twice as low as that of in Fendt. 
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Figure 3.8: Simulated versus measured diurnal cycle of the energy balance components of 
the net radiation (Rn), sensible heat (H), latent heat (LE) and soil heat (G) for the calibration 
period (2013) at the TERENO prealpine EC sites. The figure is based on hourly data. 

 

Table 3.4: Statistical measures for the simulated vs. measured net radiation (Rn), sensible 
heat (H), latent heat (LE), and soil heat (G) fluxes during the calibration period (May to July 
2013) at the TERENO prealpine EC sites. The values in brackets denote the statistics of the 
independent validation for the period of May to July 2015. 

 

A lower LE partitioning at Rottenbuch can be explained by a different soil texture for 
that area, where the sandy-loam at the surface and a gravel layer at about 50 cm depth 
is predominant, resulting in the precipitation infiltrating quickly into the deep ground, 
thus the surface dries out rapidly soon after the rainfall events (Soltani et al., 2017). 
The G flux is overestimated during early morning hours with a lower mean bias 
similar to Rn values. The main consumer of Rn is LE over the experimental period at 
the study sites. 

The intercomparison of the simulated and measured energy balance 
components in the TERENO EC sites are shown in Figures 3.9a and 3.9b. GEOtop 
overestimates LE flux at Fendt (with a slope of 1.04) and even more at Rottenbuch 

 Statistics Rn H LE G 
Fendt EC site 

 
MB -17.4 (-10.9) 0.84 (0.36) 14.3 (23.6) -0.14 (-1.92) 

RMSE 75.9 (26.5) 20.7 (18.9) 65.0 (58.4) 28.7 (19.8) 
R2 0.85 (0.98) 0.60 (0.75) 0.70 (0.82) 0.56 (0.84) 

COE 0.68 (0.87) 0.48 (0.57) 0.48 (0.58) 0.10 (0.47) 
IOA 0.84 (0.93) 0.74 (0.78) 0.74 (0.79) 0.55 (0.73) 
NSE 0.81 (0.98) 0.37 (0.45) 0.73 (0.81) 0.57 (0.83) 

Rottenbuch EC 
site 

MB -20.7 (-2.47) 7.12 (-44.7) 24.8 (77.9) -2.51 (-5.79) 
RMSE 88.4 (54.4) 38.9 (77.1) 66.5 (96.3) 24.8 (27.9) 

R2 0.79 (0.92) 0.30 (0.52) 0.56 (0.65) 0.50 (0.47) 
COE 0.61 (0.78) 0.37 (0.31) 0.28 (-1.98) 0.13 (0.29) 
IOA 0.80 (0.89) 0.68 (0.65) 0.64 (-0.32) 0.56 (0.64) 
NSE 0.66 (0.90) -0.06 (-0.67) 0.55 (-0.03) 0.47 (0.06) 



3	Forward	modeling:	coupled	water	and	energy	variables	 	
																																						

	 52	

(1.07). This could be due to the fact that the EC-baesd technique usually 
underestimates turbulent fluxes, in particular LE measurement, as reported worldwide 
(e.g. Hendricks-Franssen et al., 2010; Stoy et al., 2013; Imukova et al., 2016), also in 
the TERENO prealpine region (Eder et al., 2014; Soltani et al., 2017).  

 

 
Figure 3.9: (a, b): Intercomparison of the simulated against measured energy fluxes of the 
net radiation (Rn), sensible heat (H), latent heat (LE) and soil heat (G). (c, d): 
Intercomparison of measured sum of the turbulent fluxes (H + LE) against the available 
energy (Rn - G) for the calibration period [May to July 2013] at the TERENO prealpine EC 
sites. The energy balance ratio was calculated as: EBR = ∑(LE + H)/∑(Rn − G) . Gray 
horizontal and vertical dashed-lines indicate the zero value. The figure is based on hourly 
data. 

 

As shown in Figures 3.9c and 3.9d, the EBC is estimated 0.69 and 0.61 with R2 values 
of 0.92 and 0.88 at Fendt and Rottenbuch sites, respectively. In terms of energy 
balance ratio (EBR), a higher EBR value of 0.70 is calculated at Fendt indicating that 
the minimum heat and water vapor fluxes are lost for that area compared to the 
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Rottenbuch site, where a lower slope of 0.61 and EBR value of 0.62 are found. 
Soltani et al. (2017) suggested that this imbalance at Rottenbuch is likely due to the 
advection of heat and vapor in that area (Fig. 3.9d). Similar results were also found by 
Hingerl et al. (2016). Other studies have also shown an energy imbalance in the 
region (e.g. Eder et al., 2014). 

The spatial distributions of H and LE fluxes modeled by GEOtop are strongly 
driven by the heterogeneity of the TERENO prealpine region (Figure 3.10). In terms 
of topography and terrain slope, for example, the maximum H and minimum LE are 
found at the highest elevations at both catchments, which are in good agreement with 
the ET and surface temperature distributions (see Figure 3.4). 

 

 
Figure 3.10: Distributed surface energy fluxes of the sensible heat (H), latent heat (LE) and 
soil heat (G) for the calibration period (2013) at the TERENO prealpine catchments. The data 
represents monthly averages. 
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The energy partitioning of Rn, LE, H and G fluxes indicates that in Rott, 
approximately 78.5% (82.6%) of Rn leaves the catchment as LE, 17% (12.6%) leaves 
as H, and 4.5% (4.8%) enters the soil as G during the calibration (validation) period. 
The energy balance condition in the Upper-Ammer catchment, however, shows a 
different pattern, where the portion of H is significantly increased. Approximately 
65% (69.5%) of Rn leaves the catchment as LE, 31% (27%) leaves as H and 4% 
(3.5%) enters the soil as G during the calibration (validation) period.  

 

3.4.3 Copula-based dependence structures of water and energy fluxes 

Water fluxes 

The empirical Copula densities of the measured and simulated variables of discharge 
and soil moisture are illustrated in Figure 3.11a. For Rott, the empirical Copula 
density between the measured discharge and soil moisture indicates a strong 
symmetric dependence structure, where the highest density is found for the lower left, 
and a second maximum in the upper right. This means that the measured discharge 
and soil moisture show the highest correlations for both the low and extreme values, 
respectively. The density function for the simulated dependence structure shows 
almost a similar pattern as the measured one, but is different in terms of the lower and 
upper densities. It implies that the modeled discharge and soil moisture values 
represent lower dependencies (correlations) than those of the observed ones. In 
addition, a positive bias for the simulated discharge is observed at the low, but also at 
very high values. 

 The Copula densities of both measured and simulated discharges and soil 
moistures in Upper-Ammer indicate a significant symmetric dependence structure 
with the highest densities in the lower left for the measured, and in the upper right for 
the simulated. In other words, the highest correlation between the measured discharge 
and soil moisture is found at the very low values, whereas the corresponding 
correlation for the simulated ones is observed at the high values. The empirical 
density between discharge and rainfall intensity was analyzed, as well. Here, no clear 
pattern of the dependence structure was found (not shown). As shown in Figure 
3.11b, the distribution of measured against simulated discharge is asymmetrical, with 
the highest density in the upper-right corner. This indicates that measured and 
simulated discharges are strongly concordant in the higher ranks of the distribution. 
The concordance is weaker in the lower ranks in both catchments. This conveys that 
the calibrated model is more capable of replicating the high (peak) streamflow values 
than those of very low values at both Rott and Upper-Ammer catchments. However, 
GEOtop captured the low flow values for Upper-Ammer better than it did for the Rott 
(see Fig. 3.5). This can be seen in Figure 3.11b, where a second density maximum is 
found at the lower-left corner, indicating a reasonable performance of the model to 
simulate the low discharge at the Upper-Ammer catchment. However, the dependence 
structure between the measured versus simulated soil moisture is different. This 
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means that the modeled low values show the highest agreements with those of the 
observed ones at both Fendt and Rottenbuch EC sites. Also, the model shows a good 
performance to replicate the higher values (especially in Fendt), as a second density 
maximum can be found at the upper-right corners at both sites. See Figure 3.6 for 
clarification, where the soil moisture time-series are plotted. 

 

Energy fluxes 

Figure 3.12a shows the empirical Copula densities of the measured and simulated 
turbulent fluxes. A nonlinear structure of the joint relationship for both measured and 
simulated latent and sensible heat flux is observed, with strongly varying densities in 
the different percentiles. The highest density is found for the high turbulent flux 
values in the upper-right corner, whereas the lower tails do not show a significant 
dependence structure in both Fendt and Rottenbuch. Hence, the modeled latent and 
sensible heat fluxes represent the highest correlations at the high values, whereas the 
observed ones show a lower correlation for the corresponding values.   

The empirical Copula densities for the measured against simulated latent and 
sensible heat fluxes, according to Figure 3.12b, are almost asymmetrical for both 
sites. This implies that the highest density function between the measured and 
simulated latent (sensible) heat flux is seen in the upper-right (lower-left) corner, 
where the extreme (very low) values are found. In other words, GEOtop shows a 
better performance to replicate the high (low) values of LE (H) at both Fendt and 
Rottenbuch EC sites.  

The empirical Copula density functions for further hydrometeorological 
variables were estimated, as well. No clear dependence structures between the 
discharge – soil moisture and sensible heat flux – latent heat flux was identified (not 
shown). 
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Figure 3.11: Empirical Copula densities: a) for the measured (left panels) and simulated 
(right panels) variables of the discharge (v) and soil moisture at 5 cm depth (u) for the Fendt 
EC site in the Rott catchment (top row) and for the Rottenbuch EC site in the Upper-Ammer 
catchment (bottom row); b) for the simulated (u) against measured (v) variables of the 
discharge and soil moisture at 5 cm depth for the Fendt EC site in the Rott catchment (top 
row) and for the Rottenbuch EC site in the Upper-Ammer catchment (bottom row) during the 
calibration period of May to July 2013. The sample size is 1369 data tuples for all the 
variables. 



3	Forward	modeling:	coupled	water	and	energy	variables	 	
																																						

	 57	

 
Figure 3.12: Empirical Copula densities: a) for the measured (left panels) and simulated 
(right panels) variables of the latent heat flux (v) and sensible heat flux (u) for the Fendt EC 
site (top row) and for the Rottenbuch EC site (bottom row); b) for the simulated (u) against 
measured (v) variables of the latent heat flux and sensible heat flux for the Fendt EC site (top 
row) and for the Rottenbuch EC site (bottom row) during the calibration period of May to 
July 2013. The sample size is 1369 data tuples for all the variables. 
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3.5 Conclusions 

The spatiotemporal variability and dependence structure patterns of the coupled water 
and energy fluxes along an elevation-gradient were investigated. The analysis was 
based on the application of the GEOtop model and empirical Copulas. It was 
performed for the Rott and the Upper-Ammer catchments in the TERrestrial 
ENvironmental Observatories (TERENO) prealpine region over two summer episodes 
in 2013 and 2015. 

It was found that using GEOtop, the coupled water and energy fluxes could be 
replicated with a high performance and low biases. The model reasonably captured 
the peak discharge observed in early June for the Rott catchment but it underestimated 
discharge in the Upper-Ammer catchment. Simulated streamflow was characterized 
by high values of R2 and low residuals (RMSE) when compared to observations. The 
model also appropriately described the daily cycle of multiple-layer soil moisture 
variations. The EC-based diurnal cycles of energy fluxes were well reproduced by 
GEOtop; however, the model slightly overestimated LE, especially during the early 
morning due to the lack of EBC in the EC-based measurements (imbalance of 31% at 
Fendt and 39% at Rottenbuch). The spatial distributions of water and energy fluxes 
revealed that in the Upper-Ammer catchment around 70% of precipitation leaves the 
catchment as discharge, compared to ~10% in Rott. Around 30% of Rn leaves the 
catchment as H, while only ~15% in Rott. The model results obtained for the 
validation period were satisfying, indicating that the estimated parameters are 
reasonably calibrated.  

The linear statistical measures applied are assumed to not be capable of 
representing the interaction between the hydrometeorological variables, and therefore, 
it was employed a bivariate empirical Copula-based dependence structure analysis. 
First, it was found that the bivariate dependence structure patterns of both measured 
and simulated hydrometeorological variables considered in this study are very similar, 
representing a reasonable calibration of the GEOtop model. These non-linear features 
in dependence structure of measured and simulated individual hydrometeorological 
variables are observed with the highest densities (or best fit between the modeled and 
observed values) either in the lower or upper ranks i.e. in the low or high values, 
exhibit a worse model calibration for the middle ranks of the data.  

Finally, the Copula-based model performance analysis applied can be 
considered for model evaluation in the hydrological model community in addition to 
traditional model performance analyses. 

 

 



		

 
 
 
 
 

Chapter 4  
 

Soltani et al. (2018) Submitted 
 

Inverse distributed modeling of streamflow and 
turbulent fluxes: A sensitivity and uncertainty 
analysis coupled with automatic optimization 
 
 
 
  

4.1 Introduction 

The estimation of parameters is crucial for the successful application of distributed 
hydrological models, as heterogeneity needs to be accounted for and large 
uncertainties exist in the parameter values, which usually cannot be measured directly 
at field scale. Even in high-resolution physically-based hydrological models, some 
parameters may remain that must be calibrated to obtain a satisfactory output (Liu et 
al., 2005). Fully distributed and physically-based hydrological models are usually 
much more CPU-time demanding than pure lumped models. This is particularly true 
for the hydrological model GEOtop used exemplarily in this study here, as it solves 
for example the nonlinear equations of three-dimensional subsurface water flow and 
accounts for the full energy balance. 

 Typically, the “trial and error” method is applied for model calibration, which 
is simple and accordingly has been widely used for hydrological models (e.g. 
Refsgaard, 1997; Senarath et al., 2000; Kunstmann et al., 2006; Hingerl et al., 2016; 
Soltani et al., 2018). As this approach is time consuming, automatic optimization 
algorithms are applied allowing to facilitate this effort (Eckhardt and Arnold, 2001; 
Kunstmann et al., 2006; Lin, 2011). Automatic calibration can be fast on modern 
computer architectures, and since it allows an efficient and extensive search within 
possible parameter ranges, the results are expected to be more robust than those 
obtained by the manually based calibration approach (Bahremand and Smedt, 2008).  

 Different algorithms have been investigated in hydrological modeling for the 
automatic optimization process, e.g. the Simulated Annealing Method (Aarts and 
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Korst, 1989) and the Multiobjective Complex Evolution Algorithm (Yapo et al., 
1997). These techniques, however, require a large number of model calls (in order of 
several thousands), which limits their application to fast conceptual or one-
dimensional models (Kunstmann et al., 2006). The Gauss-Marquardt-Levenberg 
(GML) algorithm estimates the parameters using fewer model runs than any other 
optimization technique for nonlinear models (e.g. Monte-Carlo-based algorithms) 
(Doherty, 2002; Doherty and Johnston, 2003; Bahremand and Smedt, 2006). 
However, GML is based on a local search algorithm, whose results might be affected 
by the initial value of the parameters (e.g. Kunstmann et al., 2006; Lin, 2011). 

 In this chapter, the hydrologic model GEOtop 2.0 is coupled to PEST for an 
inverse hydrological modeling over two summer episodes of calibration (2013) and 
validation (2015) for the Rott catchment located in the TERrestrial ENvironmental 
Observatories (TERENO) prealpine region, southern Germany. In the TERENO 
prealpine observatory, eco-hydrometeorological variables such as evapotranspiration 
(ET) and surface heat fluxes exhibit rapid changes within short distances (Soltani et 
al., 2018). This is mainly because of the heterogeneity in topography, landuse and soil 
type, as well as interactions between the earth surface and the atmospheric boundary 
layer (Kunstmann et al., 2004, 2006; Hingerl et al., 2016; Soltani et al., 2017). Thus, 
the energy and water budgets in such environments are mainly controlled by the soil 
type properties (Pielke et al., 1998), landcover characteristics (Dirmeyer et al., 2010), 
and vegetation structure (Pielke et al., 2011).  

Previous studies in the TERENO observatory and the surrounding areas e.g. 
Bavarian Alpine foothills and low mountain-range, have mainly focused on how 
climate change impacts runoff generation (Kunstmann et al., 2004), runoff production 
processes and discharge-related analysis (Wetzel et al., 2003, 2004a, 2005a), surface 
and sub-surface water balances (Kunstmann et al., 2006; Wolf et al., 2016), 
biosphere-atmosphere exchange and greenhouse gases (Unteregelsbacher et al., 2013; 
Wang et al., 2014; Wolf et al., 2016; Zeeman et al., 2017), energy balance closure 
(EBC) parameterization and EBC problem analysis (Ott et al., 2013; Eder et al., 2014; 
Soltani et al., 2017). 

In addition to the studies listed above, a limited number of studies have been 
carried out with regard to the calibration of hydrological models in this region (i.e. 
Kunstmann et al., 2006 and Hingerl et al., 2016), which the models were only 
calibrated against streamflow data. However, recently the coupled water and energy 
fluxes at high spatial resolution have been just modelled using the GEOtop model 
over two different-sized heterogeneous catchments (i.e. Rott and Upper-Ammer) in 
the TERENO prealpine observatory by Soltani et al. (2018). They mainly focused to 
quantify the spatiotemporal variability of the hydrometeorological variables and to 
describe their underlying-dependencies using the empirical Copula functions. 

Their results showed that, the spatial variability of heat and water fluxes is 
significantly affected by diversity in topography, radiation and wind components, soil 
moisture properties as well as land cover and vegetation types across the region. As a 
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result, in terms of water balance, in the Upper-Ammer catchment around 70% of 
precipitation leaves the catchment as discharge, compared to ~10% in Rott catchment. 
In terms of energy balance, around 30% of the net radiation (Rn) leaves the Upper-
Ammer catchment as sensible heat flux (H), while only ~15% in Rott catchment. 
However, in general the latent heat flux (LE) is the main consumer of Rn across the 
observatory. Furthermore, the empirical Copula-based function revealed that the 
dependence structures between the modelled and observed hydrometeorological 
variables are similar either at upper -or lower density maxima. This suggested a 
reasonable performance of the model, as the interaction of variables was properly 
described; however, the model showed poorer performance in the middle ranks of the 
data. 

So, the main focus was conducted on the analysis of the model’s variables, in 
which both temporal and spatial variability of the coupled water and energy fluxes 
were adequately described and presented in Soltani et al. (2018) for the TERENO 
prealpine observatory. However, still no attempt has been made to focus on the 
model’s parameters for this region. Therefore, to bridge this gap, in this chapter the 
GEOtop-PEST interface was developed to achieve the following main objectives: i) to 
quantify the uncertainties pertaining to the estimated model parameters, for which we 
particularly examine the benefit of additional heat flux observations on the parameter 
confidence bounds; and ii) to characterize the intercorrelations between the model 
estimable parameters and their contributions to the calibration process. 

 

4.2 Catchment characterization and available datasets 

Geography and climate 

The Rott catchment (~55 km2) is situated in the northern part of the TERrestrial 
ENvironmental Observatories (TERENO) prealpine region in Southern Germany 
(Figs. 1a and 1b), which drains into Lake Ammer, with 46.6 km2 is the sixth largest 
lake in Germany. The Fendt eddy covariance (EC) site (47.831° N, 11.061° E) is 
within the southern part of the catchment at 598 m�height (Fig. 1b) and it is 
recognized as the TERENO prealpine super EC site (Soltani et al., 2017). The 
elevation of the catchment ranges from 902 m to 543 m a.s.l. The outlet is at the 
discharge-gauge Raisting, where it measures only the surface water flow at the 
catchment, and no groundwater flow is considered. The region is characterized by a 
cool-temperate and humid climate. The mean annual precipitation (temperature) is 
1130 mm (6.9 °C) in the Rott catchment (Kunstmann et al., 2006; Hingerl et al., 
2016). The highest amount of precipitation is received during summertime. The 
dominant soil types in the catchment are (Fig. 1c): Lessive (76%), Cambisol (13%) 
and Histosol (9%). Also, the primary land cover is (Fig. 1d): pasture (44%), 
coniferous (37%) and mixed forests (18%) followed by villages (2%) as well as some 
peat (0.8%) and marsh lands (0.5%), as described in Hingerl et al. (2016). 
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Figure 4.1: a) Overview of the study area showing a) the approximate location of the study 
area in southern Germany; b) the Rott catchment with the elevation and its river network as 
well as the locations of the Fendt EC-site, and the Wielenbach and HohenPeissenberg 
climate-stations together with the Diessen rain-gauge station; c) the soil type; and d) the 
landuse classifications for the Rott catchment. 

 

Observational datasets 
The required hydrometeorological measurements were obtained from three sources 
for the calibration and validation periods in 01 May to 31 July 2013 and 2015, 
respectively as follows: 

1. EC-based turbulent fluxes and the micrometeorological measurements are 
gathered from the Fendt EC site (DE-Fen); 

2. Hourly meteorological forcing data for the Wielenbach and HohenPeissenberg 
stations are received from the Deutscher Wetterdienst (DWD) 
(https://werdis.dwd.de); 

3. Hourly data of precipitation for the Diessen rain gauge and streamflow for the 
Raisting discharge gauge are compiled from Bayerisches Landesamt für 
Umwelt (http://www.hnd.bayern.de). 

The model was applied for the experimental period mentioned above, because the 
computational costs of the inverse modelling with the developed GEOtop-PEST 
interface restricted the length of the simulation period. Moreover, in the wintertime, 
hydrometeorological fluxes are characterized by large uncertainties (e.g. Hingerl et 
al., 2016), and the peak streamflow and the EC-based measurements are of higher 
quality during summer periods in the TERENO observatory (Soltani et al., 2017; 
2018). 



4	Inverse	modeling:	parameter	sensitivity	and	uncertainty	analysis	 	
																																						

	 63	

4.3 Methods 

4.3.1 Hydrological modeling 

The hydrological model GEOtop applied here for the Rott catchment was already 
described technically in the methodology of Chapter 3 of this thesis. See Sect. 3.3.1., 
for GEOtop description and the related mathematical equations employed by the 
model. 
 

Model setup and input dataset 

The model input data (both forcing and static dataset), model setup and integration, 
and the initial condition applied here are identical to the methodology described in 
Chapter 3 of this thesis at Sect. 3.3.1.  

However, as mentioned before, in the model setup the soil is discretized in 13 
layers, with thicknesses increasing from the surface to the deep layers. The top 8 
layers starting from the surface have thicknesses ranging from 0.1 to 0.5m, while the 
lowest 5 layers have thicknesses ranging from 1.0 to 5.0 m. However, in this 
simulation experiment only the first two layers of the soils i.e. 0.1 and 0.2m were 
actively involved in the optimization process, and the rest of the layers were kept 
constant. Because, it was found that these two layers show the highest influence on 
the model’s outputs (Soltani et al., 2018); and also, due to decreasing the insignificant 
parameters in the optimization process to reduce the number of model calls. 

Two types of measurements involved in the model calibration here, that is, the 
hydrometeorological variable of discharge, and the turbulent fluxes of H and LE. The 
simulation was run first for a summer episode starting from 01 May to 31 July 2013 
as calibration, and then the performance of the calibrated model was validated for the 
period of 01 May to 30 July 2015 as validation. A two-week spin-up period starting 
from 15 April to 30 April 2013 was conducted, as it was found experimentally that 
this is sufficient for this experimental period (Soltani et al., 2018).  

 

Model performance evaluation and validation 

Typically, a variety of linear statistical metrics are used to evaluate the model 
performance, as no single metric encapsulates all aspects of interest. Hence, in this 
research six statistical metrics are employed to evaluate the performance of GEOtop. 
They are already described in Chapter 3 of this thesis in Table 3.2.  

 The estimated GEOtop parameters were performed for an independent period 
of 01 May to 31 July 2015 for the validation episode. 
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Post-processing analysis of the model parameters 

To characterize the model parameter intercorrelation and their contributions in the 
calibration process, a Principal Component Analysis (PCA) is performed on the 
parameter covariance matrix. PCA reduces the dimensionality of a multivariate 
dataset. This is achieved by transforming the initial variables into a new small set of 
variables without losing the most important information in the original dataset. These 
new variables are called Principal Components (PCs). The PCs are ranked in that way 
that PC1 explains the largest fraction of the variance in a dataset, PC2 the second 
largest, etc. (Abdi and Williams 2010). For further details on how the PCA was 
performed it is referred to Soltani et al. (2017). 

 

4.3.2 Parameter estimation strategy 

For parameter estimation, the GML-method and its technical realization within the 
Parameter ESTimation tool (PEST) (Doherty, 2002) was applied. PEST also was used 
for a sensitivity and uncertainty analysis of the model parameters. PEST is model-
independent in the way that it communicates with the model through the model’s 
input and output files (Doherty et al., 2010). It minimizes a least-squares objective 
function (Φ), which is the sum of squared weighted residuals (Doherty, 2016a): 

Φ = ($ − &'))	+ $ − &' 																																																																																							(4.1a) 

or, 

Φ = (w1r1)
3
	

4

567

																																																																																																									(4.1b) 

where, 	&  and '  denote in turn the model’s inputs, parameters, and $  is the 
observations, respectively; the “t” superscript indicates the matrix transpose 
operation;	+ is a diagonal matrix of the squared observation weights (w5); r5 (the i’th 
residual) expresses the differences between the model output and the field 
measurement for the i’th observation. To improve the performance of Φ, the residuals 
are given different weights. The weights effectively normalize the components of Φ. 
It may be that some of the field data are more important to the model results than 
other data and thus receive greater weight.  Thus, to make ensure that no observation 
group dominates (or is invisible in) Φ, the PWTADJ1 utility of PEST was used herein 
to automate the weights-adjustment procedure to the values of the discharge, H and 
LE observation groups. By doing so, the reference variance or standard error of 
weighted residuals becomes equal to 1.0 meaning that the contribution made to Φ by 
each aforesaid observation group is equal. For more details, it is referred to Doherty 
(2016b). Optimization of simple linear models can be achieved in one step. However, 
for nonlinear models like GEOtop, the relationships between the model parameters 
and observations must be linearized to achieve the parameter estimation through an 
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iterative process (Doherty, 2016a). For the optimization iterations, PEST applies a 
robust algorithm called the Gauss-Marquardt-Levenberg (GML) method, which is 
defined as (Doherty, 2015): 

9 = (:)+:+<=)>7:)+?																																																																																														 4.2  
where, 9  is the parameter upgrade vector and ?  is the vector of residuals for the 
current parameter set; the Jacobian : is the sensitivity matrix, as it indicates the partial 
derivative of the model simulations with respect to the model parameters; = is the 
A	×	A	identity matrix;	< is the Marquardt lambda, named after Marquardt (1963) who 
employed this strategy although the use of this parameter was originally pioneered by 
Levenberg (1944).  
 Even after calibration the model parameters remain uncertain. This is because 
of i) incomplete information regarding the input data e.g. the temporal and spatial 
variability of parameters, initial and boundary conditions, ii) simplification of the 
reality by models, and iii) the measurements for model calibration and validation 
(Muleta and Nicklow, 2004; Bahremand and Smedt, 2006, 2008; Makowski, 2013). 
Therefore, the parameter uncertainty using the Generalized Linear Predictive 
Uncertainty/Error Analyzer (GENLINPRED) utility of PEST is analyzed. Before 
parameter optimization, it was additionally performed a sensitivity analysis using the 
SENSAN utility of PEST to identify the key model parameters. These utilities are 
described in the following subsections. 

 

Parameter sensitivity calculation  

The SENSAN utility of PEST was applied to assess the relative sensitivity of the 
GEOtop outputs with respect to the changing parameters. SENSAN adopts a local 
sensitivity analysis method, which takes a one-at-a-time approach (Doherty, 2016a). 
In this approach, the impact of changing values of each model parameter on the model 
outputs is evaluated one at a time. That is, model output responses are determined by 
sequentially varying each of the model parameters and by fixing all other parameters 
to their nominal values (Helton, 1993; Lin, 2011). These nominal values represent a 
specific point of the parameter space. Results of such a local method are dependent on 
the choice of this point, and the model behavior is identified only locally in the 
parameter space (Hill, 1998). Therefore, the results of such analysis need to be 
interpreted with care. To measure the magnitude of the sensitivity, the Normalized 
Sensitivity Coefficient (NSC) index was applied (Lin, 2011):  

NSC =
(O − OG)
(P − PG)

×
(PG)
(OG)

																																																																																								(4.3) 

where, JK and LK are model outcome and parameter base values, and J and L are the 
model outcome and parameter values pertaining to a particular model run. NSC is a 
dimensionless positive number, whose value indicates the relative importance of 
parameter on the model output. 
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Parameter uncertainty estimation 

The Generalized Linear Predictive Uncertainty/Error Analyzer (GENLINPRED) 
utility of PEST was used to compute the parameter uncertainty. The calculations of 
GENLINPRED are made on the basis of sensitivities (i.e. the Jacobian matrix and the 
PEST control file are required), and no parameter adjustment takes place (Doherty, 
2016b). This utility does not require the model to be calibrated before uncertainty 
analysis. However, in this study it was performed on the calibrated GEOtop model. 
GENLINPRED is a driver utility, which runs a set of PEST programs. Here, the 
PREDUNC (“PREDictive UNCertainty”) approach was used to compute: i) the 
uncertainty variance reduction of the parameters and ii) the contributions to 
uncertainty variance of the nominated parameter made by different parameter groups.  

The following equation is employed (Doherty, 2015): 

σ3N = O)C P O − O)C(P)Q)[QC(P)Q) + C S ]>7QC P O)																														(4.4) 

where, σ3N is the uncertainty variance of a parameter N;	O is the sensitivity of this 
parameter to model predictions; C(P) is the prior parameter covariance matrix (P 
represents parameters employed by the model); Q is a matrix represents the linearized 
action of the model under calibration conditions, which is represented by the Jacobian 
matrix; 	C(S)  is the covariance matrix of measurement noise (error). For further 
information regarding this program and its computational statistics, it is referred to 
Doherty (2015). 

 

4.3.3 The GEOtop-PEST interface 

In general, PEST requires the following input files for automatic parameter estimation 
and inverse modeling: i) template files, to identify the model parameters; ii) 
instruction files, to identify the model outputs; and iii) one input control file, which 
supplies PEST with the names of all template and instruction files, the names of 
model input and output files, initial parameter values, measurement values and 
weights, etc. (Doherty, 2010). In the developed GEOtop-PEST interface, it was 
prepared four template files (one for the GEOtop input file and three for the different 
soil types of Lessive, Histosol and Cambisol) and three instruction files (for the model 
outputs of streamflow, H and LE fluxes) together with a control file to run the 
GEOtop model coupled with PEST. Figure 4.2 illustrates the different steps and 
procedures of the developed GEOtop-PEST interface. 
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Figure 4.2: The inverse modeling flowchart for the developed GEOtop-PEST interface.  

 

4.4 Results and discussion 

4.4.1 Sensitivity analysis 

Sensitivity analysis is capable of identifying the dominant parameters, and hence 
enhance the model optimization efficiency. The GEOtop parameters used for the 
discharge and turbulent fluxes were selected based on the literature (Kunstmann et al., 
2006; Hingerl et al., 2016). These are shown in Table 4.1. The initial simulation to 
determine the sensitivity of these parameters to the model’s outputs was performed 
using the parameter values obtained via trial and error procedure by Soltani et al. 
(2018). Then, the key parameters acting on variability of the discharge and turbulent 
fluxes were identified and quantified using the approach described in Sect. 3.3.2. of 
this chapter. 
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Table 4.1: The GEOtop model input parameters selected for the sensitivity analysis (Endrizzi 
et al., 2011).  

 Parameter Description Unit Range 
Landuse 
parameters 

Cf Canopy fraction [0: no canopy in the pixel, 1: pixel 
fully covered by canopy] 

- 0, 1 

Ch Canopy height mm 0, 20000 
Cd Surface density of canopy Kg m-2  - 
Cc Decay coefficient of the eddy diffusivity profile in 

the canopy 
- - 

αw Ground surface albedo without snow in the visible 
- saturated 

- 0, 1 

αd Ground surface albedo without snow in the visible 
- dry 

- 0, 1 

ε Ground surface emissivity - 0, 1 
Soil 
parameters 

Kv Vertical hydraulic conductivity mm s-1 - 
Kh Horizontal hydraulic conductivity mm s-1 - 
α Van Genuchten parameter α mm-1 - 
n Van Genuchten parameter n - - 
λs Thermal conductivity of the bedrock  W m-1 

K-1 
- 

Surface 
water flow 
parameters 

Cm Coefficient of the law of uniform motion on the 
surface  

m-1 s-1 0.01, 5.0 

ϒ Exponent of the law of uniform motion on the 
surface  

- 0.25, 
0.34 

Cw Fraction of channel width in the pixel width  - - 

 

Figure 4.3 illustrates the result of the parameter sensitivity analysis. The NSC values 
of these parameters for the discharge and turbulent fluxes varies within the range of 
0.0 [.] to 0.7 [.]. Overall, α, Cf  and ε, which together control evapotranspiration from 
soil and runoff generation on the land surface, have the highest sensitivities. It is not 
surprising to see that the soil parameters of Kv and Kh affect merely discharge with no 
influence on the turbulent fluxes. The hydraulic conductivity in general controls how 
the precipitated water can percolate vertically into the ground. Depending on this 
property, during intense precipitation, water might be unable to infiltrate into the soil 
leading to surface discharge. However, ε only indicates a strong sensitivity on the 
turbulent fluxes in particular on H flux (> 0.7 NSC). This could be due to the fact that 
the model overestimates the outgoing longwave radiation, indicating a warmer 
surface. Ch shows some degree of relative sensitivity on the considered variables in 
particular on H. Since, in this approach the sensitivities are calculated by changing the 
parameters one by one, they are not influenced by parameter correlations (Bahremand 
and Smedt, 2006). The SENSAN-based parameter sensitivity identification resulted in 
the reduction of 8 categories of the adjustable GEOtop parameters, which were used 
for the automatic calibration.  
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Figure 4.3: The parameter sensitivity results for the discharge, sensible heat flux (H) and 
latent heat flux (LE). A higher NSC indicates greater sensitivity for a given parameter. For 
detailed description of the model parameters see Table 4.2.  

 

4.4.2 Inverse modeling using the developed GEOtop-PEST interface 

Parameter estimation 

PEST calculates the objective function (Φ) arising out of the initial parameter values. 
The progress of Φ and Marquardt lambda (λ) achieved during the optimization 
iterations is shown in Figure 4.4. PEST performed the total number of ten 
optimization iterations with 538 model forward integrations. As described in Doherty 
(2016a), PEST attempts parameter improvement using a number of λ (e.g. 10.0 is 
recommended for nonlinear models) during individual iteration. In this case, the first 
iteration process was started with an initial λ value of 10.0, and then was terminated at 
the end of the tenth iteration with the lowest λ 2.00E-04. However, the behavior of Φ 
is different throughout the optimization process, as shown in Figure 4.4. Φ was started 
with the highest value of 3.10 in the first iteration (with 30 model forward 
integrations) and the lowest Φ value of 2.92E+00 was achieved in the seventh 
iteration (with 368 model forward integrations). Thereafter, Φ was rising untill the 
end of the tenth iteration, where PEST stopped the optimization (with 538 model 
forward integrations), as it was not worth undertaking more optimization iterations 
due to an increase of the residuals. Finally, PEST used the best parameter values with 
the lowest Φ (which achieved in the seventh iteration) to run the model one final-time 
to obtain the best model outputs. 

 The GEOtop model indicates a nonlinear behavior, thus the parameter upgrade 
vector is “overshooting” the objective function minimum. Consequently, the new 
value of Φ becomes worse than that of achieved in the previous iterations. This is 
because, as described in Doherty (2016a), the equations employed for calculation of 
the upgrade vector are all based on a local quasi-linearity assumption that may not 
extend as far into parameter space from current parameter estimates as the magnitude 
of the upgrade vector itself.  
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Figure 4.4: Development of the objective function (Φ) and the Marquardt lambda (λ) during 
the PEST optimization iteration process.  

 

Optimized parameter values and confidence intervals  

The optimization results are given in Table 4.2. It is observed that the calibrated land 
cover parameters in general do not indicate large differences compared to their initial 
values. The maximum change is observed for the value of Ch with the highest 
standard deviation (SD: 0.4336) in comparison with other land cover parameters. 
However, the calibrated values of the soil types show comparatively large changes. 
The highest change is observed for the top layer of Kv and Kh, whereas the lowest one 
is seen in α. Accordingly, the highest and lowest SD is observed for the aforesaid 
parameters, respectively. On average, the Cambisol soil type indicates the highest 
change between the initial and estimated values of all soil parameters.  

PEST also calculates the 95% confidence limits of the calibrated parameters 
(see Table 4.2). It is noted that the confidence limits provide only an indication of the 
parameter uncertainty. As described in Doherty (2016a), these limits rely on a 
linearity assumption, and also the upper-lower parameter bounds are not accounted 
for the calculation of 95% confidence intervals, which may result in these limits lie 
outside the parameter’s allowed domain. For instance, the upper confidence limits for 
Kv and Kh in the Histosol and Cambisol soil types at 0.1 m depth exceed their allowed 
upper bounds (i.e. > 1.00E+00). Conversely, the lower confidence limits for α in the 
Lessive and Cambisol soil types in order at 0.1 and 0.2 m depths are below their 
allowed lower bounds (i.e. < 3.50E-04 and 1.50E-04).  
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Table 4.2: Summary of the calibrated parameters with their Standard Deviations (SD) and 
confidence levels. Here, “Les.”, “His.” and “Cam.” stand for the soil types of “Lessive”, 
“Histosol” and “Cambisol”, respectively at the soil depths of 0.1 [m] and 0.2 [m]. It is noted 
that these specific soil layers were lumped into three main groups of the soil types mentioned 
above, when calculating their derivatives in this analysis. According to Doherty (2016a and 
2016b), in many cases such parameters fall neatly into their source groups which can be 
treated similarly in terms of calculating derivatives. For detailed information on the parameter 
description refer to Table 4.1. 

Parameters	 Initial	
values	

Estimated	
values	

SD	 95%	confidence	intervals	
Lower	limit	 Upper	limit	

Cf	 0.5500	 0.5503	 0.0005	 0.5493	 0.5513	
Ch	 350.00	 352.09	 0.4336	 351.28	 352.90	
Cc	 0.0100	 0.0010	 0.0001	 0.0008	 0.0011	
ε	 0.9600	 0.9612	 0.0007	 0.9598	 0.9626	
ϒ	 0.2500	 0.2482	 0.0012	 0.2455	 0.2508	
Kh.Les.1	 0.5000	 0.3281	 0.0583	 0.2507	 0.4056	
Kh.Les.2	 0.0520	 0.0763	 0.0045	 0.0351	 0.1175	
Kh.His.1	 0.5000	 0.5074	 0.0025	 0.5011	 0.5138	
Kh.His.2	 0.0330	 0.0409	 0.0003	 0.0403	 0.0415	
Kh.Cam.1	 0.5000	 1.0000	 0.0422	 0.8798	 1.1201	
Kh.Cam.2	 0.0540	 0.1220	 0.0133	 0.1106	 0.1333	
Kv.Les.1	 0.5000	 0.3725	 0.2892	 0.1754	 0.5696	
Kv.Les.2	 0.2500	 0.3623	 0.1755	 0.2556	 0.4690	
Kv.His.1	 0.5000	 1.0000	 0.2580	 0.8429	 1.1570	
Kv.His.2	 0.1410	 0.1000	 0.0097	 0.0818	 0.1181	
Kv.Cam.1	 0.5000	 1.0000	 0.1252	 0.8209	 1.1790	
Kv.Cam.2	 0.2600	 0.1000	 0.0154	 0.0797	 0.1202	
α.Les.1	 0.0009	 0.0003	 0.0001	 0.0003	 0.0004	
α.Les.2	 0.0002	 0.0004	 0.0001	 0.0002	 0.0006	
α.His.1	 0.0009	 0.0009	 0.0000	 0.0009	 0.0009	
α.His.2	 0.0002	 0.0002	 0.0000	 0.0002	 0.0002	
α.Cam.1	 0.0009	 0.0010	 0.0000	 0.0009	 0.0010	
α.Cam.2	 0.0003	 0.0001	 0.0012	 0.0001	 0.0001	

 

Analysis of residuals  

Residual analysis is an essential component of each calibration practice. Thus, the 
statistics pertaining to the residuals of discharge, H and LE observation groups are 
briefly discussed. Ideally, after the parameter estimation process is complete, 
weighted residuals should have a mean of zero (Doherty, 2015). As shown in Table 
4.3, the mean value of non-zero weighted residuals is close to zero for all 
observations (i.e. discharge: 0.00470, H: -0.0064, and LE: -0.0069).  

Also, a quite low variance of weighted residual is observed, which is almost 
identical between the observation groups. Further, no outlier is found, as the 
maximum weighted residuals are not unusually high in the observations. The 
residuals are statistically insignificant for all observation groups, which indicates a 
good performance of Φ in the calibration process. 
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Table 4.3: Summary of the weighted residuals calculated for the observation groups. 

 Discharge [m3/s] H [W/m2] LE [W/m2] 
Number of residuals with non-zero weight 2592 2592 2592 
Mean value of non-zero weighted residuals 0.00470 -0.0064 -0.0069 
Maximum weighted residual 0.21500 0.00002 0.00005 
Minimum weighted residual -0.0424 0.09221 -0.0918 
Variance of weighted residuals 0.00039 0.00035 0.00039 

 

Results of calibration and validation episodes 

The comparison of measured versus modeled discharge and turbulent fluxes of H and 
LE is illustrated in Figure 4.5. The respective statistical metrics are given in Table 
4.4. For discharge, as shown in Figure 4.5a, reasonable improvement achieved in the 
simulation by the developed GEOtop-PEST interface (e.g. low error: RMSE = 1.16, 
and high efficiency: NSE = 0.87 and COE = 0.54) compared to the manual-based 
calibration efforts performed by the GEOtop model for the same catchment (Soltani et 
al., 2018; Hingerl et al., 2016) or worldwide (e.g. Rigon et al., 2006; Bertoldi et al., 
2006). 

The model captures the peak flow reasonably well in the catchment, and also 
an increased runoff volume in early June highlights the importance of snow dynamics 
for runoff generation in the basin. However, the base flow is rather underestimated. 
This, could be due to the fact that GEOtop, as a hydrologic model, does not describe 
the hydrogeological processes e.g. contribution of the underground water (aquifers) to 
the surface stream flows. Additionally, the post-calibration parameters verified that 
the model-distributed streamflow are satisfactory and reliable. This was confirmed by 
e.g. the strong linear relationship (R2: 0.78) and very low residual (RMSE: 0.98) and 
high Nash-Sutcliff efficiency (NSE: 0.78) values for the simulated discharge during 
the validation episode (Fig. 4.5b). 

The study conducted by Hingerl et al. (2016) attempted to calibrate the 
hydrological model GEOtop V. 1.45 for discharge only in the Rott catchment. 
Moreover, using the lasted version of GEOtop V. 2.0 in the same catchment, Soltani 
et al. (2018) modelled the spatiotemporal variability of the coupled water and energy 
fluxes via a trial and error procedure. However, in this chapter, using the developed 
GEOtop-PEST interface, the model parameters for the discharge coupled to the heat 
fluxes were jointly optimized. The automatic optimization effort achieved reasonably 
better results when compared to Hingerl et al. (2016) and Soltani et al. (2018) for the 
simulated turbulent fluxes during the calibration episode (Fig. 4.5c). This can be seen 
not only by the strong linear relationship between the measured and simulated fluxes 
(H: R2 value of 0.65 and LE: R2 value of 0.76), but also with low error (H: RMSE 
value of 20.54 and LE: RMSE value of 63.30) as well as high efficiency (H: 
NSE/COE values of 0.37/0.48 and LE: NSE/COE values of 0.74/0.50).  
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Figure 4.5: Graphical comparison between measurements and the GEOtop-PEST achieved 
simulation results: a, b the hourly time-series of discharges; and c, d the monthly diurnal 
turbulent fluxes of sensible heat and latent heat. 

 

Table 4.4: Summary of the statistical metrics for the calibration (validation) episode of May 
to July 2013 (May to July 2015).  

 MB RMSE R2 COE IOA NSE 
Discharge [m3/s] -0.29 (-0.22) 1.16 (0.98) 0.88 (0.78) 0.54 (0.45) 0.77 (0.72) 0.87 (0.78) 
LE [W/m2] 15.16 (22.11) 63.30 (56.85) 0.76 (0.87) 0.50 (0.60) 0.75 (0.80) 0.74 (0.80) 
H [W/m2] -0.32 (1.15) 20.54 (19.17) 0.65 (0.78) 0.48 (0.56) 0.74 (0.78) 0.37 (0.46) 

 

However, GEOtop slightly overestimates LE flux (MB = 15.16), in particular during 
the first part of the day with a peak at around 10:00 or 11:00 am. The midday 
overestimation of the simulated LE flux could be due to the fact that the EC-based 
technique usually underestimates turbulent fluxes, in particular LE measurement, as 
reported worldwide (e.g. Hendricks-Franssen et al., 2010; Stoy et al., 2013; Imukova 
et al., 2016), also in the TERENO prealpine observatory (Eder et al., 2014; Soltani et 
al., 2017). As a result, there is a lack of energy balance closure (EBC) in the EC-
based measurements, where the imbalance (residual energy) at Fendt is 31% (Soltani 
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et al., 2018). According to Table 4.4, the simulation results for the turbulent fluxes 
show in general a better performance (Fig. 4.5d) over the validation episode, 
compared to the results obtained in the calibration episode. 

 

4.4.3 Uncertainty analysis pertaining to the model parameters  

Pre- and post calibration uncertainty 

The model parameter’s pre- and post-calibration uncertainty variance together with 
their standard deviation (SD) is given in Table 4.5. It can be seen that the range of 
uncertainty reduction varies between different groups of parameters. Among the 
landuse parameters, for example, the uncertainty variance for the parameter Ch was 
significantly decreased from 25.0 to 2.73E-05. Similarly, Cc indicates a high decrease 
in the uncertainty ranging from 0.0249 to 5.83E-13.  
 
Table 4.5: Summary of the model parameter’s uncertainty analysis. The parameter lower-
upper bounds are used to measure the pre-calibration uncertainty. For detailed information on 
the parameter description refer to Tables 4.1 and 4.2. 
Parameters Total uncertainty variance 

Pre-calibration Post-calibration 
Cf 0.150 4.18E-11 
Ch 25.0 2.73E-05 
Cc 0.024974998 5.83E-13 
ε 0.01 8.21E-11 
ϒ 0.037500013 2.82E-10 
Kh.Les.1 0.225 2.50E-07 
Kh.Les.2 0.052500007 7.04E-08 
Kh.His.1 0.225 1.68E-09 
Kh.His.2 0.083500020 1.52E-11 
Kh.Cam.1 0.225 5.98E-07 
Kh.Cam.2 0.028749983 5.38E-09 
Kv.Les.1 0.225 1.61E-06 
Kv.Les.2 0.075000012 4.72E-07 
Kv.His.1 0.225 1.02E-06 
Kv.His.2 0.050000001 1.36E-08 
Kv.Cam.1 0.225 1.33E-06 
Kv.Cam.2 0.050000001 1.70E-08 
α.Les.1 0.00017274999 1.03E-13 
α.Les.2 0.00014775001 1.12E-12 
α.His.1 0.00016224999 2.74E-16 
α.His.2 0.00015000001 2.17E-16 
α.Cam.1 0.00016025 1.30E-13 
α.Cam.2 0.00013524999 1.79E-14 
 
 
In general, all the considered landuse parameters show a significant reduction of 
uncertainty variance pertaining to the model parameters. With regards to the soil 
parameters of Kh and Kv, it was found that a noticeable decrease in the magnitude of 
uncertainty is also observed for all soil types of Lessive, Histosol and Cambisol, 
especially at top layer of 0.1 m depth. However, the highest reduction in the 
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uncertainty range is seen for Kh.Les.1 and Kh.Cam.1 with the values ranging from 0.225 to 
2.50E-07 and from 0.225 to 5.98E-07, respectively. The soil parameter of α shows 
insignificant change in the uncertainty variance for the pre- and post-calibration 
parameters. However, α.His.1 (0.000162 to 2.74E-16) and α.His.2 (0.000150 to 2.17E-16) 
show a considerable decrease in the magnitude of uncertainty. Overall, this analysis 
indicates that the uncertainty ranges were highly decreased for the calibrated 
parameters. This denotes a robust parameter estimation by PEST. 

 

Parameters	contributions	to	reduction	of	uncertainty		
Having the considered model parameters uncertainty calculated (see Table 4.5), the 
contribution to decrease in uncertainty made by different parameter groups is 
investigated. Overall, it was found that the contribution of the parameter groups is 
quite different for each nominated parameter, as shown in Figure 4.6. For example, 
the parameter group of Cf made the highest contribution to reduce the uncertainty of 
Ch. The soil parameter group of α plays a significant role in uncertainty reduction, not 
only for the soil parameters of Kv and Kh, but also for the landuse parameters of Cf 
and ε.  

Also, Kh is the only parameter group that highly contributed to the uncertainty 
reduction of the surface water flow parameter of ϒ. Furthermore, Kv, α, Kh and Cc 

were found the parameter groups that largely contributed to the uncertainty reduction 
of the soil parameters (not shown). To see the post-calibration uncertainty values of 
all parameters, it is referred to Table 4.5. 

 

Additional observations effect on the parameter confidence ellipses 

To quantify the influence of additional values of the observation groups (i.e. H and 
LE) on the confidence ellipses (uncertainty range) of the estimated parameters, those 
observations were consecutively added to the base observation dataset (i.e. discharge) 
in the calibration process. Then, the confidence bounds of the estimated parameters 
were obtained by covariance analysis. The square roots of the diagonals of the 
parameter covariance matrix result in SD of the estimated parameters, and therefore, 
the uncertainty of the estimated parameter values is robustly quantified (Kunstmann et 
al., 2006). For detailed information on the analysis of confidence ellipses, it is 
referred to Carrera and Neumann (1986), and Friendly et al. (2013).  

Here, the probabilities of 68.3% (equivalent to 1 SD), 95.4% (~ 2 SD) and 
99.7% (~ 3 SD) was derived to show the corresponding confidence ellipses of the 
considered parameters. It is noted that in total 23 parameters are considered in this 
research. To show all these parameters with respect to their uncertainty ranges 
(confidence ellipses) influenced by additional values of observations, a range of 
hundreds to thousands of graphs was needed to plot, considering a matrix of 23 ´ 23 
parameters. This is not practical, and it is beyond the scope of this research to show 
all combinations of confidence ellipses. Therefore, the parameters were randomly 
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selected; however, it was tried to include a variety of the model parameters (i.e. 
landuse, soil, as well as a combination of landuse and soil/surface water flow 
parameters) for this analysis to get the results more robust.  

 

 
Figure 4.6: The parameter group’s contribution analysis: Red bar-plots indicate contributions 
of the post-calibration uncertainty variance of the nominated parameters (represented by 
individual panel) made by different parameter groups (listed in x-axes of the graphs). The soil 
parameters Kh.Les.1, Kv.Les.1, and a.Les.1 belong to the soil-type “Lessive” at the top layer 0.1 m. 
For detailed information on the parameter description refer to Tables 4.1 and 4.2. 

 

The results revealed a novel achievement from an uncertainty-based point of view. It 
was found that in general the uncertainty ranges and correlations of the post-
calibration parameters were significantly decreased and improved by adding the H 
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and LE fluxes to the base observation, i.e. discharge. However, the magnitude of 
changes in reduction of uncertainty varies not only for the different parameter groups 
of landuse, soil and surface water flow, but also between the H and LE fluxes.  

Figure 4.7 shows confidence regions for the estimated landuse parameters ε 
and Cc (top panels) as well as ε and Cf (bottom panels). The uncertainty for ε is 
comparatively large, while uncertainty of Cc is smaller. Having the turbulent fluxes 
added to the calibration dataset, the confidence ellipses at multiple significance levels 
were significantly improved and decreased. This, however has no effect on their 
intercorrelations. It implies that these parameters were independently calibrated 
during the optimization process (top panels in Fig. 4.7). A considerable correlation 
between the model parameters ε and Cf is revealed. But, this correlation was 
eliminated when LE flux was added to the calibration dataset (bottom panels in Fig. 
4.7). 
 

 
Figure 4.7: The worth of observation groups analysis on the multiple levels of the confidence 
ellipses for the estimated landuse parameters: a) in the left panels discharge [colored in 
black]; b) in the middle panels discharge and sensible heat flux (H) [colored in red]; and c) in 
the right panels discharge, H and latent heat flux (LE) [colored in blue], have been added to 
the calibration dataset, respectively. For detailed information on the parameter description 
and their units refer to Tables 4.1 and 4.2. Note that the ellipses of each parameter for adding 
additional data (columns a, b, c) cannot be visualized in single figures due to the different 
value range. 

 
Figure 4.8 shows confidence regions for the estimated soil parameters Kv.His.2 and 
Kh.His.2 (top panels) as well as α.His.1 and Kh.His.1 (bottom panels). The parameters of 
hydraulic conductivities Kh and Kv show a larger uncertainty than the Van Genuchten 
parameter α. In this case, a slight correlation between the soil parameters Kv.His.2 and 
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Kh.His.2 is revealed, it was then eliminated by add of additional heat observations (top 
panels in Fig. 4.8). However, α.His.1 and Kh.His.1 indicate a different behaviour when the 
surface heat fluxes are added. It means that the uncertainty was highly reduced, but a 
slight correlation is then revealed between these parameters (bottom panels in Fig. 
4.8). Overall, the soil parameters show less reduction in the uncertainty range than 
those of the landuse parameters.   

 

 
Figure 4.8: Same as in Fig. 4.7, but for the estimated soil parameters. 

 
Figure 4.9 shows confidence regions for the combinations of the estimated parameters 
α.Les.1 and Cf (top panels) as well as ϒ  and Cf (bottom panels). The uncertainty for Cf 
is comparatively larger than the uncertainty of α.Les.1 and ϒ. The uncertainty ranges for 
these parameters, however, were significantly reduced by additional values of 
turbulent fluxes to the calibration dataset. This also resulted in an elimination of the 
correlation between the parameters α.Les.1 and Cf (top panels in Fig. 4.9). Whereas 
additional values do not show any effects on the correlation between ϒ and Cf (bottom 
panels in Fig. 4.9). It implies that they were independently calibrated. 

Furthermore, it was found that additional values of H flux to the base 
observation of discharge in the calibration dataset, as shown in Figures 4.7b, 4.8b and 
4.9b, resulted in not only a significant decrease of uncertainty range in the considered 
model parameters, but also eliminating the intercorrelation between the parameters 
(e.g. between Cf and α.Les.1). However, the addition of LE to discharge and H, as 
shown in Figures 4.7c, 4.8c and 4.9c, insignificantly improved the confidence bounds, 
or in some cases makes it even slightly worse (e.g. between ε and Cf as well as α.His.1 
and Kh.His.1).  
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Figure 4.9: Same as in Fig. 4.7, but for combination of the estimated landuse and soil/surface 
water flow parameters. 

 

In summary, since almost no or only little correlation is seen between the estimated 
parameters by PEST (Figures 4.7c, 4.8c and 4.9c), lowering in the uncertainty range 
of these parameters is considered to be reliable. Also, it indicates that these 
parameters contributed equally and none of the parameters were dominated by others 
in the calibration process.  
 

4.4.4 Correlation and contribution of model parameters: PCA-based 
analysis 

To identify the intercorrelation of the model parameters as well as to quantify the 
extent to which these parameters are sensitive to the calibration process, a PCA 
analysis on the post-calibration parameter covariance matrix was performed. As 
shown in Figure 4.10, the intercorrelation between the model parameters is not strong. 
This means that the calibrated parameters are not- or insignificantly correlated. In 
case of high parameter correlation, the objective function minimum will be difficult to 
obtain and the ability of PEST will be limited (Doherty, 2015). However, most 
parameters show low intercorrelations. This also was confirmed by the analysis of the 
post-calibration parameter correlation coefficient matrix (not shown). 

 More importantly, it can be seen that the majority of the parameters with the 
longest arrows contain the highest contributions to the eigenvectors (i.e. both PC1 and 
PC2). Therefore, these are the parameters whose values were quite sensitive in the 
calibration process. In another word, these parameters are highly estimable, as they lie 
in the calibration solution space. This indicates a successful sensitivity analysis that 
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carried out to identify the key model parameters (see Fig. 4.3). However, a few of the 
parameters show low contributions to the calibration process (with the lowest arrows) 
such as Kv.Cam.1 and a.Cam.1. These are mostly insensitive and less estimable 
parameters, as they lie in the calibration null space. This could be explained by either 
a rather high negative correlation coefficient between these parameters (see Fig. 
4.10), or the fact that the Cambisol soil-type covers only a limited part of the Rott 
catchment (see Fig. 4.1c). It is noted that the results obtained from the PCA analysis 
for the parameter contribution/importance in the calibration process is in good 
agreement with the outcomes of parameter identifiability analysis (not shown). 

 

 
Figure 4.10: PCA-based analysis: The intercorrelations between the model parameters and 
their contributions to the calibration process via normalized eigenvectors and eigenvalues of 
the post-calibration parameter covariance matrix. The length (angle) of the arrows represents 
the magnitude (direction) of the correlation coefficient between the parameters and the PCs. 
The lowest and highest contributions of the parameters to the calibration process are 
identified with the shortest and longest arrows, respectively. For detailed information on the 
parameter description refer to Tables 4.1 and 4.2. 
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Additionally, the posedness condition of the inverse problem was examined by: 
correlation analysis, eigenvalues analysis, and) the condition numbers. The 
correlation analysis shows whether immoderate correlation with other parameters 
results in high error variance of a particular parameter. If so, the inverse problem is 
ill-posed i.e. Φ contours does not close. It is noted that when the number of 
parameters are high, the likelihood of an ill-posed inverse problem is also increased 
(Doherty, 2015). However, the PCA-based correlation analysis shows low 
correlations between the parameters, indicating a well-posed inverse problem. 

 Also, if the ratio of highest to lowest eigenvalues of the parameter covariance 
matrix exceeds 10.E-7, the problem is considered to be ill-posed (Doherty, 2016a). 
However, a ratio of 4.49E-12 was obtained, which is far less than the recommended 
value. Finally, the “condition number” of the covariance matrix must be inverted to 
estimate the parameter values. In fact, this is recorded for every Marquardt lambda 
tested during every PEST iteration. The square root of the ratio mentioned above is 
related to the condition number of the covariance matrix. Matrices that have a high 
condition number are difficult to invert, as numerical errors are amplified in their 
inversion (Doherty, 2015). However, the well-posedness of the inverse problem was 
also confirmed by the achieved low condition number i.e. 15.8 (out of 7297.8). 

 

4.5 Conclusions 

The joint simulation of the water –and energy fluxes and the potential benefit of flux 
measurements in the parameter estimation process were investigated. For this 
purpose, the hydrological model GEOtop was exemplarily applied to the Rott 
catchment in southern Germany over two summer episodes in 2013 (calibration) and 
2015 (validation). Due to its complexity, the model is highly CPU-time demanding 
and only a limited number of model runs can be afforded in parameter estimation. To 
facilitate this, the gradient-based nonlinear Gauss-Marquardt-Levenberg (GML) 
parameter estimation method was applied and linked the GEOtop model to the 
Parameter ESTimation tool (PEST).  

The results revealed that the quality of the modeled streamflow and the 
turbulent fluxes of the calibrated model was satisfying, both in the calibration 
episode, and the validation episode. This was confirmed by the linear statistical 
metrics applied for the model performance evaluation. The PCA-based analysis of the 
model parameters showed a low- and insignificant cross correlation between the 
GEOtop parameters. As a result, most of the estimated parameters were highly 
sensitive to the calibration process, as lay in the solution space of the inverse problem. 
This indicates the successful application of sensitivity analysis for the key parameters 
identification.  

Because of the robust parameter estimation technique applied by PEST, the 
uncertainty variance of most calibrated parameters was significantly reduced. In 
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addition, it was found that the soil parameter groups of α and Kv highly contributed to 
this uncertainty reduction. More importantly, the benefit of adding the turbulent 
fluxes to the calibration dataset in order to improve the parameter confidence ellipses 
was determined using a covariance analysis. It was particularity found that the 
additional values of H and LE fluxes resulted in both lowering the uncertainty ranges 
and eliminating the correlation of most model parameters. However, the magnitude of 
reduction in uncertainty ranges, and also the effect on their intercorrelations varied 
not only for the different considered parameters, but also between the heat fluxes of H 
and LE.  

Therefore, the Gauss-Marquardt-Levenberg algorithm realized in PEST 
proved to be highly suitable not only for a robust nonlinear parameter estimation, but 
also for the uncertainty estimates of the CPU-time intensive physically based model 
applied. 

 

 



		

 
 
 
 
 

Chapter 5  
 
 
 

Conclusions and outlook 
 
 
 
  

5.1 Conclusions 

A wide range of dataset from in-situ measurements such as micrometeorological and 
climate stations, precipitation and discharge gauges, Lysimeter and soil-moisture 
networks to remotely-sensed data such as X-band rainfall radar and commercial 
microwave-link networks are observed and measured in the Bavarian TERENO-
prealpine observatory. For this dissertation, required datasets were not all available in 
a concerted and organized manner in an open-data repository at the Institute of 
Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin. A 
comprehensive data collation was thus first necessary to be done for carrying out this 
PhD-project. This implies that, it was necessary not only to compile and collect these 
datasets from various sources, but also to harmonize them with different formats and 
time-steps.  

The results achieved in this thesis revealed that the variations of the turbulent 
fluxes were low during the winter and autumn periods, whereas they were quite large 
during the spring and summer seasons. The differences between diurnal and nocturnal 
values of the sensible heat (H) and latent heat (LE) fluxes were not very pronounced 
in the wintertime, because of the low radiation variation in the region. For the warm 
periods, however, the mean diurnal values of H and LE fluxes showed much larger 
differences due to the increase of solar radiation, precipitation events and high 
vegetation fraction, and obviously, the main consumer of net radiation (Rn) was LE 
flux. As a result, a clear increasing trend towards the warm periods was observed in 
the surface turbulent fluxes; however, the temporal variation patterns were different at 
individual Eddy Covariance (EC) sites across the TERENO-prealpine observatory. 
This suggests, for example, for model applications, a high-resolution spatially-based 



5	Conclusions	and	outlook	 	
																																						

	 84	

modeling approach is needed to be considered for this region in order to describe the 
variations of surface heat fluxes in time and space appropriately.  

The Principal Component Analysis (PCA) results revealed that, based on PC1, 
the turbulent flux variability was strongly driven by the radiation components 
followed by the temperature variables at the study sites. For PC2, however, the 
dominant contributing variables were the wind components. Albedo negatively 
affected the turbulent flux variability. It rather followed an elevation trend in the 
TERENO region. This finding was in agreement with Zeeman et al. (2017) and might 
be explained by the lack of irradiation due to a mountain shadowing effect. In terms 
of site-scale Energy Balance Closure (EBC), among the TERENO-prealpine EC sites, 
the lowest correlation coefficient (R2) between the measured and available energy was 
found at Graswang. This can be explained by the climatic and environmental 
conditions. This site is surrounded by high mountains and the wind speed is relatively 
low so that the mechanically driven turbulence is reduced in the valley. As a result, 
many of the calculated heat flux values were removed as unreliable data during the 
post-processing analysis. However, in terms of Energy Balance Ratio (EBR), the 
highest overall value of EBR was also achieved at the aforesaid site indicating that the 
minimum heat and water vapour fluxes are lost for that area. Furthermore, analysis of 
the flux footprint climatology revealed that the majority of the flux footprints received 
by the instruments at a radius of approximately 250 m around the stations; and the 
overall shape of the flux footprints significantly matched the direction of the 
prevailing winds at the study EC sites. 

The distributed hydrological model GEOtop showed a high capability of 
quantifying the spatiotemporal variability of the water- and energy budgets with 
consideration for the elevation-gradient effect of the heterogeneous landscapes of the 
Rott and Upper-Ammer catchments in the TERENO-prealpine observatory. It was 
also revealed that the spatial variability of the hydrometeorological variables is 
significantly affected by diversity in topography, radiation and wind components, soil 
moisture properties as well as land cover and vegetation types in the region. In terms 
of water balance, GEOtop was appropriately capable of representing the temporal 
variability of surface streamflow and reproducing infiltration and daily cycle of soil 
moisture evaporation associated with the rainfall events. In the study catchments, an 
increased runoff volume in early June peak flow highlighted the importance of snow 
dynamics for runoff generation. The peak flow underestimation in the Upper-Ammer 
catchment could be explained by the lack of meteorological stations, which can result 
in considerable errors in the spatial interpolation by the model. Also, it may further be 
explained by the rapid climate zone changes in a small spatial area or by the snow 
dynamics effect on the behavior of surface runoff during the springtime. Also, in 
terms of energy balance, the EC-based diurnal cycles of energy budget were well 
reproduced by the model. GEOtop, however, slightly overstimated LE flux at the 
study sites. This could be mainly due to the fact that the EC baesd technique usually 
underestimates turbulent fluxes.  
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Furthermore, the bivariate empirical Copula-based functions revealed that the 
dependence structure patterns of both modelled and observed water- and energy 
variables were similar, representing a reasonable calibration of the GEOtop model. 
These non-linear features in the dependence structures of hydrometeorological 
variables were observed with the highest densities (or best fit between the modeled 
and observed values) either in the lower or upper ranks, i.e. in the low or high values, 
exhibit a worse model calibration for the middle ranks of the data. Thus, it was 
concluded that the Copula-based model performance analysis applied herein can be 
considered for model evaluation in the hydrological model community in addition to 
traditional model performance analyses. 

Using the developed GEOtop-PEST interface enabled an “automatic 
parameter estimation” procedure that allowed to improve modelled streamflow and 
turbulent fluxes reasonably compared to the manual-based calibration efforts 
performed by the GEOtop model for the Rott catchment (Soltani et al., 2018; Hingerl 
et al., 2016) or worldwide (e.g. Rigon et al., 2006; Bertoldi et al., 2006). For 
discharge, however, the baseflow was somewhat underestimated. This could be due to 
the fact that GEOtop, as a hydrologic model, does not describe the detailed 3-dim 
hydrogeological processes e.g. contribution of the underground water (aquifers) to the 
surface stream flows. Further, the PCA-based analysis of the model’s parameters 
showed a low- and insignificant cross-correlation between the GEOtop parameters. 
As a result, most of the estimated parameters were highly sensitive to the calibration 
process. But this also indicates the successful application of the sensitivity analysis 
for the key parameters’ identification.  

This dissertation also found that the model parameter’s post-calibration 
uncertainty ranges for almost all types of the considered parameters were highly 
decreased. Particularly, the uncertainty range for the landuse parameter of the canopy 
height was significantly decreased. With regards to the soil parameters, the hydraulic 
conductivities revealed a noticeable decrease in the magnitude of uncertainty. This, 
denotes, a robust parameter estimation by PEST. In this context, the importance of 
additional measurements on top of discharge for both the parameter estimation and 
the uncertainty-related analysis was determined and quantified. The results revealed a 
novel achievement from an uncertainty-based point of view. It was found that the 
uncertainty ranges of the post-calibration parameters were not only significantly 
decreased and improved by adding the heat fluxes to the discharge observation, but 
also the intercorrelation between the parameters was eliminated in many cases.  

Further, the most sensitive soil- and vegetation-related parameters were 
identified and fitted. These parameters possess a high importance not only for 
hydrologists and hydrometeorologists, and in the GEOtop model, but also for the soil 
physicists and biologists, and in other land-surface models. So, the improved 
estimation of unknown parameters has also benefits for interdisciplinary-research 
groups. Thus, it could be concluded that the Gauss-Marquardt-Levenberg algorithm 
realized in PEST proved to be highly suitable not only for a robust nonlinear 
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parameter estimation, but also for the uncertainty estimates of the CPU-time intensive 
physically based model applied. 

Finally, the spatial variability of the hydrometeorological variables and the 
hydrological processes were comprehensively quantified, modeled and presented in 
this PhD dissertation in the TERENO prealpine observatory; however, it was 
temporally focused on the summer-episode. Thus, researches with a longer period of 
time seems to be essential. 

 

 

5.2 Outlook 

In this dissertation, both the fast-response and slow-response micrometeorological 
measurements from three EC sites were utilized to quantify the spatiotemporal 
variability of the water- and energy fluxes in the TERENO-prealpine observatory. To 
further understand both the spatial and temporal variability of the 
hydrometeorological variables, other available- and new observations could be 
considered in the observatory. For example, Lysimeter network, which aims to study 
the impact of climate and management changes on the components of water- and 
carbon budgets, biosphere-atmosphere-hydrosphere exchanges as well as yields and 
biodiversity in the observatory. Furthermore, Cosmic Ray Neutron Sensing (CRNS), 
as a completely new type of measurements recently operated in the TERENO-
prealpine observatory, can be used to investigate the soil-moisture and snow-water 
variations with multi-hectar footprint sizes. In particular, on the observation side, 
CRNS could complement in future studies the analysis of the spatiotemporal 
variability, especially on the snow-related studies over the highlands of the 
observatory. 

At the Fendt area, located in the northern part of the TERENO-prealpine 
observatory, the spatially distributed measurements of soil moisture and temperature 
profiles are carried out with the wireless underground sensor network SoilNet, 
developed specifically for the near real-time monitoring of the spatiotemporal 
dynamics of soil water content at field and headwater catchment scales. The SoilNet 
at Fendt comprises 55 measurement profiles distributed over a total area of about 300 
m x 300 m. This redundant setup with several sensors per depth allows the 
examination of the data for small-scale heterogeneity, which is better to be taken into 
account in future studies in the region.  

In the observatory, the ScaleX campaigns were operated in 2015 and 2016. It 
is a series of collaborative, intensive research campaigns that aim to assess spatially 
distributed patterns and gradients in land surface-atmosphere exchange processes 
within the TERENO-prealpine region, and specifically surrounding the Fendt site. For 
instance, the hexacopter-based measurement was conducted by Brosy et al. (2017) in 
ScaleX-2015 campaign. While, traditional ground-based observations include towers 
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that only cover a few measurement heights at a fixed location, and also most remote 
sensing techniques and aircraft measurements show limitations to achieve sufficient 
detail close to the ground (up to 50 m), the vertical and horizontal transects of the 
planetary boundary layer can be complemented by the Unmanned Aerial Vehicles 
(UAV). To conclude, the hexacopter- and UAV-based soundings could be carried out 
to study of the surface exchange processes not only in campaigns, but also in a regular 
operational manner. 

In-depth analysis of the satellite-derived modes with respect to soil moisture 
could be also considered. For example, the Global Precipitation Measurement (GPM) 
satellite missions, particularly for a comparatively small-scale area in the observatory 
for which the in-situ observations available on the ground. Further, in this thesis the 
knowledge of turbulent flux variability and energy balance closure (EBC) problem at 
the TERENO-prealpine observatory need to be further significantly strengthened. 
However, improving the EBC over the region needs further investigation, e.g. by high 
resolution Large-Eddy Simulations (LES), for a better understanding of the small-
scale weather circulation processes and the environmental conditions over the 
individual EC sites. While a first analysis on the mean annual of the flux footprint 
climatology was conducted for the study EC sites. Further investigation is needed to 
consider the diurnal-nocturnal as well as the atmospheric stable-unstable conditions 
for different seasons of the year.  

In this PhD-study, focus was set on the spatiotemporal variability of coupled 
water and energy fluxes for the Rott and Upper-Ammer catchments for two recent 
summer episodes in the TERENO-prealpine observatory. However, to better 
understand the hydrological cycle and impacts, it is advised to consider the climate 
change-related impacts on the coupled water- and energy balances for a longer period 
of time, especially in other locations. Therefore, it could be considered to transfer the 
GEOtop setup to other observatories like the WASCAL observatory in West Africa to 
find out how the model works in completely different climate conditions. In fact, 
WASCAL is a large-scale research-focused climate service centre designed to help 
tackle the challenges and thereby enhance the resilience of human and environmental 
systems to climate change and increased variability. The three EC sites in the 
TERENO-prealpine observatory have been established with the elevation-gradient; in 
the WASCAL, however, there are three EC sites with the landuse-gradient (Berger et 
al., 2018; Bliefernicht et al., 2018). Thus, the performance of GEOtop can be 
evaluated in different latitudes with having various landscapes. 
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Appendix A 
 
 
 

PEST control file 
 
 
  
 
The role of the PEST control file is to compile the template and instruction files, as 
well as to supply the corresponding model input and output files, initial parameter 
values, measurement values and weights, etc. The following is a sample control file 
used herein for the inverse modeling via GEOtop-PEST interface. For this particular 
case, for example, PEST was assigned in parameter “estimation” mode, with total 
number of 23 parameters and 7776 observations. Also, 4 template files and 3 
instruction files were provided for informing the PEST to access the considered 
model parameters and outputs, respectively. 
 
 
 
pcf 
* Control data 
restart  estimation 
23 7776 8 0 3 
4 3 single point 1 0 0 
10 2 0.3 0.03 10 
0.9 3.0 0.001 
0.1 
30 0.005 4 3 0.01 3 
1 1 1 
* Parameter groups 
Cf relative  0.01 0.0 switch  2.0 parabolic 
Kh relative  0.0 0.0 switch  2.0 parabolic 
Kv relative  0.01 0.0 switch  2.0 parabolic 
α relative  0.01 0.0 switch  2.0 parabolic 
ϒ relative  0.01 0.0 switch  2.0 parabolic 
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Cc relative  0.01 0.0 switch  2.0 parabolic 
ε relative  0.01 0.0 switch  2.0 parabolic 
Ch relative  0.01 0.0 switch  2.0 parabolic 
* Parameter data 
Cf none relative  0.55 0.45 0.70  Cf 1.0 0.0 1 
Cc none relative  0.01 0.001 0.1  Cc 1.0 0.0 1 
ε none relative  0.96 0.85 0.99  ε 1.0 0.0 1 
Ch none relative  350 300 400  Ch 1.0 0.0 1 
Kh.Les.1 none relative  0.5 0.1 1  Kh 1.0 0.0 1 
Kh.Les.2 none relative  0.052 0.0012 0.22  Kh 1.0 0.0 1 
Kh.His.1 none relative  0.5 0.1 1  Kh 1.0 0.0 1 
Kh.His.2 none relative  0.033 0.0015 0.344  Kh 1.0 0.0 1 
Kh.Cam.1 none relative  0.5 0.1 1  Kh 1.0 0.0 1 
Kh.Cam.2 none relative  0.054 0.0018 0.122  Kh 1.0 0.0 1 
Kv.Les.1 none relative  0.5 0.1 1  Kv 1.0 0.0 1 
Kv.Les.2 none relative  0.25 0.1 0.4  Kv 1.0 0.0 1 
Kv.His.1 none relative  0.5 0.1 1  Kv 1.0 0.0 1 
Kv.His.2 none relative  0.141 0.1 0.3  Kv 1.0 0.0 1 
Kv.Cam.1 none relative  0.5 0.1 1  Kv 1.0 0.0 1 
Kv.Cam.2 none relative  0.26 0.1 0.3  Kv 1.0 0.0 1 
α.Les.1 none relative  0.00093 0.00035 0.000991 α 1.0 0.0 1 
α.Les.2 none relative  0.000215 0.000150 0.00074 α 1.0 0.0 1 
α.His.1 none relative  0.000995 0.000350 0.000999 α 1.0 0.0 1 
α.His.2 none relative  0.000250 0.000150 0.000750 α 1.0 0.0 1 
α.Cam.1 none relative  0.000941 0.000350 0.000991 α  1.0  0.0  1 
α.Cam.2 none relative  0.000310 0.000150 0.000641 α  1.0  0.0  1 
ϒ  none relative  0.25 0.15 0.35  ϒ  1.0 0.0 1 
* Observation groups 
Discharge 
SensibleHeat 
LatentHeat 
* Observation data 
Dis1  0.5190000 6.167202E-03 Discharge 
Dis2  0.5190000 6.167202E-03 Discharge 
... 
Dis2592 0.1670000 6.167202E-03 Discharge 
H1  0.000000 9.229004E-08 SensibleHeat 
H2  3.136565 9.229004E-08 SensibleHeat 
... 
H2592  0.000000 9.229004E-08 SensibleHeat 
LE1  0.000000 9.202160E-08 LatentHeat 
LE2  0.000000 9.202160E-08 LatentHeat 
... 
LE2592 0.000000 9.202160E-08 LatentHeat 
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* Model command line 
/home/.../.../.../geotop-2.0.0 /home/.../.../.../ 
* Model input/output 
/home/.../.../.../GEOtop.tpl /home/.../.../.../GEOtop.inpts 
/home/.../.../.../Lessive.tpl /home/.../.../.../ Lessive.txt 
/home/.../.../.../Histosol.tpl /home/.../.../.../ Histosol.txt 
/home/.../.../.../Cambisol.tpl /home/.../.../.../ Cambisol.txt 
/home/.../.../.../Discharge.ins /home/.../.../.../.../Discharge.txt 
/home/.../.../.../H.ins  /home/.../.../.../.../H.txt 
/home/.../.../.../LE.ins  /home/.../.../.../.../LE.txt 
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