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Abstract

This paper presents an approach to the integration of statecharts,
temporal logic and algebraic specification within an interactive verifica-
tion environment. Currently some integrated formalisms exist [13, 7],
but there is no proof support for theses approaches. Also model check-
ers are able to prove temporal properties of statecharts [3, 10], but
they can only be used to verify properties based on a small, finite data
domain.

Our goal is to provide a uniform, interactive proof support for veri-
fying temporal properties of statecharts with algebraic data types and
functions over infinite data domains. As an implementation platform
the KIV system [2] is used. The semantics of statecharts is based on
[6], which formalizes the STATEMATE semantics of statecharts [12].

1 Introduction

We present an approach which aims to support the interactive verification
of (safety) properties for concurrent, reactive systems. For this, we use
(i) statecharts to describe the operational system behavior, (ii) temporal
logic to express properties of the complete execution trace, and (iii) alge-
braic specifications to formalize complex and possibly infinite data domains.
Furthermore (iv) sequential programs are used as action language within
stateqcharts.

We tightly integrate the different formalisms on the level of the seman-
tics, interpreting statecharts as temporal formulas. Also, we provide a uni-
form proof method based on symbolic execution and induction. Symbolic
execution is an intuitive proof method widely used for the interactive veri-
fication of sequential programs. We adapt this technique to the verification
of temporal logic and statecharts.

In this paper, we focus on statecharts, explaining how they can be in-
terpreted as temporal formulas and how to symbolically execute statechart
formulas. Details on executing temporal formulas can be found in [1]. Se-
quential programs are executed using Dynamic Logic (DL) [8]. Execution



traces are linear sequences of states. Every state is interpreted over a many-
sorted algebra allowing (generated) data types, functions and predicates. We
assume the reader to be familiar with the statechart notation and sequent
calculus.

To symbolically execute statecharts, every possible transition has to be
considered. Because of parallel statecharts, more than one transition may
be executed in one step and, if the statechart is indeterministic, all possible
steps have to be considered. The execution of a step changes the configura-
tion of a statechart. Such a step corresponds to a micro-step in STATEMATE.
Time passes in a macro-step only, which occurs if no transition takes place,
i.e. if the system is in a stable configuration. Then the system environment
may react and create new input data.

Because the specification and verification environment KIV [2] offers
strong proof support for algebraic specifications with higher order logic,
verification of sequential programs with DL, and verification of temporal
properties with interval temporal logic is currently implemented, this system
was chosen as an implementation platform for the approach.

In the following, the toy example of an automatic light control will be
used for explanation.

Example 1 (automatic light control) This light control automatically

System

Light Timer

Off

t1 t2

On

Idle

t3 t4

Cnt

transitions:
t1: pressed/set
t2: sw off
t3: set/x = 0
t4: x > 5/sw off
static reactions:
cnt : tick/x = x+ 1

switches off the light five minutes after it has been switched on. Initially the
light is Off and the timer is Idle. When the pressed event is enabled, the
event set is generated (t1) to start the timer and the light is switched on
(t3). While the timer is in state Cnt , x is incremented in every macro-step.
Therefore we generate a tick event to characterize a macro-step. When x is
greater than five, the timer leaves Cnt and generates a sw off event (t4), to
switch off the light (t2).

Sect. 2 gives the necessary foundations of Intervall Temporal Logic (ITL)
and DL and sketches an overall proof method. Sect. 3 describes, how the
operational semantics of statecharts is integrated into the ITL framework.
An example proof in Sect. 4 illustrates the approach and the paper concludes
with Sect. 5.
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2 The Temporal Logic Framework

The basis for our approach is Interval Temporal Logic (ITL) [11]. We use
a first order extension of ITL which considers finite and infinite intervals
as described in [5] (as a variation, we also consider primed variables and
Dynamic Logic operators, see below). The semantics is based on intervals
I (in the following also called traces) which are finite or infinite sequences
of states (also called valuations) I = (σ0, . . .). Every valuation σi maps un-
primed variables σi(x) and primed variables σi(x

′) to values of our domain.
In a trace, the values of the primed variables are equal to the values of the
unprimed variables in the next state σi(x

′) = σi+1(x). All variables are flex-
ible (also called dynamic), i.e. their values can be different in every state.
Function and predicate symbols are rigid and are interpreted using algebras
(see for example [14]).

As temporal operators we use ϕ _ ψ (chop), 2 ϕ (always), 3 ϕ (even-
tually), ◦ ϕ (strong next), • ϕ (weak next) and others with their standard
semantics in ITL.

A particularity is the use of Dynamic Logic operators within the tem-
poral logic framework. Dynamic Logic (DL) [8] can be used to describe
complex relations between variables using (sequential) programs. In the fol-
lowing example we require variable x′ to be equal to the value of variable x
after a program has been executed.

〈if y = 0 then x := 1 else x := 2〉 x′ = x

Here, x′ is either 1 or 2 depending on y. (Note that this ”‘trick”’ of copy-
ing the value of variables after program execution to primed variables is
also used in the following.) We are not restricted to conditionals and sim-
ple assignments. Especially we are able to use parallel assignments within
programs

x = 1 ∧ y = 2 → 〈x := y | y := x〉 x = 2 ∧ y = 1.

Semantically, the program of a Dynamic Logic operator is used to modify
the first valuation σ0 of a trace, the following valuations σ1, . . . (if any) are
untouched.

(σ0, σ1, . . .) |= 〈α〉 ϕ :⇔ there exists τ with σ0[[α]]τ with (τ, σ1, . . .) |= ϕ

where σ0[[α]]τ is the input/output semantics of program α with input valu-
ation σ0 and output valuation τ .

We construct proofs using a sequent calculus. Proof rules for predicate
logic are standard. For Dynamic Logic we employ rules to symbolically
execute the sequential programs. For example the two rules

ϕτ
x,Γ ` ∆

〈x := τ〉 ϕ,Γ ` ∆
assign left

ε, 〈α〉 ϕ,Γ ` ∆ 〈β〉 ϕ,Γ ` ε,∆

〈if ε then α else β〉 ϕ,Γ ` ∆
if left
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are used to execute assignments and conditionals. For a full set of rules for
Dynamic Logic and their explanations, see for example [9].

The same strategy of symbolic execution is applied to temporal opera-
tors. Our first goal is to construct – for each temporal formula – separate
formulas restricting the first valuation and the rest of the trace. For example
2 ϕ in the succedent is treated as follows.

Γ ` ϕ,∆ Γ ` • 2 ϕ,∆

Γ ` 2 ϕ,∆
always right

In the first premise, we prove that ϕ holds in the first state, in the second,
we establish the property for the rest of the trace. This is what we call un-
winding of temporal operators, which is comparable to executing programs.
Unwinding 2 ϕ and 3 ϕ is straightforward, for more details on unwinding
ϕ _ ψ and others, see [1].

We unwind temporal operators until every temporal formula Γ and ∆ is
prefixed with a next operator and all other formulas γ and δ are formulas
in predicate logic involving unprimed and primed variables. Then we can
advance one step in the trace by applying rule step (which is similar to rule
next in [4]).

γ0,Γ ` δ0,∆

γ, ◦ Γ ` δ, • ∆
step

Here γ0 and δ0 are obtained from γ and δ by replacing all unprimed variables
v with new variables v0 and all primed variables v′ with their unprimed
version v. The leading next operators are removed. Thus we have stored
the values of variables in the first step in new variables v0 and advanced
one step by removing all primes and next operators. We can now continue
unwinding the remaining temporal formulas until the induction hypothesis
can be applied.

3 Embedding Statecharts in ITL

We support the STATEMATE semantics of statecharts [12] and our formaliza-
tion strongly corresponds to the operational semantics presented in [6]. We
also adopted the notations. A configuration of a statechart is represented as
a valuation of statechart variables. In addition to the data variables Xdate of
STATEMATE, boolean variables for each state Xst (we use lower case letters
for the variables to distinguish from the state names beginning with a capital
letter) and each event Xev are required, describing whether the correspond-
ing state/event is active or not. The input variables Xinp ⊂ Xdata ∪ Xev

are variables, which the systems environment may modify. A statechart SC
describes a transition system where a statechart configuration is a valuation
σ of the transition system and a statechart step is the corresponding transi-
tion relation. A trace of a statechart trace(SC) is a sequence of valuations
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(σ0, σ1, σ2, . . .) where the relation (σi, σi+1) corresponds to the transition
relation of SC. Statechart traces correspond to traces in ITL and we can
interpret statecharts as temporal formulas as follows

(σ0, σ1, . . .) |= SC :⇔ (σ0, σ1, . . .) ∈ traces(SC).

Thus, the integration of statecharts on the semantical level is straightfor-
ward.

Now we would also like to adopt the proof method of symbolic execu-
tion to statecharts. The following rule scheme describes how to unwind a
statechart SC.

(

cond(stpi), exec(stpi), SC,Γ ` ∆
)

i=1...n

SC,Γ ` ∆
sc unwind

As statecharts can be indeterministic, we need to consider n premises, one
for each possible step stpi. The activation condition cond(stpi) introduces
preconditions for executing a step. The formula SC describes the static
transition system of the statechart whereas the dynamic behavior is encoded
in the boolean variables for states and events, modified through executing
exec(stpi).

Because we define events as boolean variables, they are – as conditions
– first order formulas, and a transition t is, instead of a triple e[cnd]/act
in STATEMATE, a condition/action pair t = (e ∧ cnd, act), where act is
a sequential program. The functions src(t), trg(t), en(t), and act(t) are
computing the source state, the target state, the enabled condition src(t) =
true ∧ e ∧ cnd, and the action act, of a transition, respectively. scope(t)
computes the state representing the scope of a transition, states(SC) the
(distinct) states of a statechart SC, mode(st) ∈ {AND,OR,BASIC} the
mode, and childs(st) ∈ 2states(SC) the substates of a state. For a detailed
definition of these functions, we refer to [6].

3.1 The Initial Valuation

The function

init(SC) =
x = true, if x ∈ Xst, x is an initial state
x = false, if x ∈ Xst, x is not an initial state or x ∈ Xev

computes the initialization for a statechart SC. The initial states are active
and no event exists. To prove a property ϕ of a statechart SC, we have to
prove init(SC), SC ` ϕ in the sequent calculus.

Example 2 The initialization for the Statechart Timer is

init(Timer) = timer ∧ idle ∧ ¬ cnt ∧ ¬ set ∧ ¬ sw off
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3.2 Computing Possible Statechart Steps

This section shows, how to compute the possible steps for the current con-
figuration. The number of the indeterministic steps is reflected in the num-
ber of premises of the rule sc unwind. Basically we use the step algorithm
from [6] which we adopte to treat conditions over symbolic values from al-
gebraic specifications.

Therefore, in addition to the conflict free transition set T our step al-
gorithm has to compute the condition cnd under which a step may take
place and interactive proof steps decide, whether the condition holds. So,
steps(σ, st, cnd) ∈ 2(cnd,T ) is defined (our adoptions are highlighted) as

1. mode(st) = BASIC:

steps(σ, st, cnd) = {(cnd, ∅)}, i.e. no transitions take place.

2. mode(st) = AND:

steps(σ, st, cnd) = {
⋃

i(cndi, Ti)|(cndi, Ti) ∈ steps(σ, sti, cnd)},

where sti ∈ childs(st), (cnd, T ) ∪ (cnd′, T ′) := (cnd ∧ cnd′, T ∪ T ′)

3. mode(st) = OR:

steps(σ, st, cnd) = {(cnd1, {t1}), . . ., (cndk, {tk})} ∪

steps(σ, st′, cnd ∧ ¬ en(t1) ∧ . . . ∧ ¬ en(tk))

for (cndi, {ti}) ∈ {(cndt, {t})|scope(t) = st and cndt := cnd ∧ en(t)}

and st′ the unique active child of st in σ.

All possible steps for a statechart SC and a valuation σ are computed with
Steps(σ) = steps(σ, SC, true) . The major difference between this algorithm
and the original one is the third case. Because the enabled condition of a
transition cannot be decided, every transition of the corresponding scope
has to be considered and, under the condition that none of these transitions
is enabled, also the transitions from the active subchart.

In addition to the transitions, for every state neither entered nor exited
the corresponding static reactions have to be added to the action set. For
the Ex. 1 the result for the first step is as follows:

Example 3 (conflict free transition sets)

steps(σ, Light, true) = {(pressed , {t1}), (¬ pressed , ∅)}

steps(σ, T imer, true) = {(set , {t3}), (¬ set , ∅)}

steps(σ, System, true) = {(press ∧ set , {t1, t3}), (press ∧ ¬ set , {t1}),

(¬ press ∧ set , {t3}), (¬ press ∧ ¬ set , ∅)}
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3.3 A Statechart Step

Statecharts are unwound by executing the different steps computed by the
step algorithm. Executing one step stpi consists of four tasks. First, the
events are reset with prgreset(stpi), because they are only active for a single
step. Thereafter the actions of the corresponding transitions are executed
by prgact(stpi) and the derived events – we consider entering (enter) and
exiting (exit) of states – are generated with prgset(stpi). Finally the active
states for the next step are computed with prgnxt(stpi).

Because the underlying logic already supports execution of DL programs
(see Sect. 2), they are used for executing STATEMATE actions. Setting and
resetting of events e is expressed by the assignment e := true resp. e :=
false. The program 〈prgreset(stpi); prgact(stpi); prgset(stpi); prgnxt(stpi)〉 ϕ
encodes a step execution for the step stpi = (cndi, Ti)

1. If the statechart
has reached a stable configuration (T = ∅), no transitions take place. The
systems environment assigns arbitrary values to the input variables and
generates the tick event, characterizing a macro-step. This is reflected by
the DL program 〈prgreset(stp); prgenv(stp)〉 ϕ. The DL programs are defined
as

prgreset(stpi) = e1 := false | . . . | en := false, where ei ∈ Xev

prgact(stpi) = act(t1) | . . . | act(tm), where Ti = {t1, . . ., tm}

prgset(stpi) = y1 := true | . . . | yl := true, where

yi ∈ {e | e = exit(src(t) or e = enter(trg(t)) and t ∈ Ti}

prgnxt(stpi) = |i sti := true |j stj := false, where sti,j ∈ Xst,

sti active, stj not active in the next step

prgenv(stpi) = tick := true | z1 :=? | . . . | zk :=?,

where zi ∈ Xinp and zi :=? assigns any value to zi

ϕ =
∧

i

x′i = xi, for every xi ∈ X.

The DL program computes the new valuation for the variables and the
formula ϕ copies this valuation to the next configuration.

In addition to the transitions we get for every step a condition cond(stpi)
under which this step may take place. This condition consists of the different
activation conditions of the transitions and is added to the antecedent of the
sequent. If this precondition is not fulfilled, the antecedent is contradictory
and the proof for this case is finished (i.e. this step cannot take place).
The whole step execution is implemented in the rule scheme sc unwind (see
above) and will be exemplified in the following.

1Remember, that ; in DL is the sequential operator and not a parallel operator as in

STATEMATE. DL supports the | operator for parallel assignments.
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Example 4 (unwinding) Considering the (macro) step stp = (¬ set, ∅)
for the statechart Timer (see Ex. 3), we get cond(stp) = ¬ set,

prgreset(stp) = sw off := false | set := false,

prgact(env) = tick := true | set :=?,

prgnxt(stp) = timer := true | idle := true | cnt := false,

ϕ = (sw off ′ = sw off ∧ set ′ = set ∧ x′ = x ∧

timer ′ = timer ∧ idle ′ = idle ∧ cnt ′ = cnt)

4 An Example Proof

Symbolically executing statecharts will be explained by proving the property
2 cnt → x ≤ 6 for the subchart Timer of the chart System (see Ex. 1),
i.e. init(Timer), T imer ` 2 cnt → x ≤ 6. This states that the lamp never
lights up for more than 6 time units. Because the statechart Timer is
cyclic, induction over the length of the infinite trace is needed to prove that
property.

First of all, the property has to be proven for the first step. Therefore
the temporal operator has to be unwound with the rule always right.

init(Timer), T imer
` cnt → x ≤ 6

init(Timer), T imer
` • 2 cnt → x ≤ 6

init(Timer), T imer ` 2 cnt → x ≤ 6 ,

resulting in the properties for the first step on the left. This case is trivial,
because cnt is initially false (see init(Timer) in Ex. 2). The proof continues
with the right case which states cnt → x ≤ 6 from the next step on. To
prove this, the statechart has to be unwound by computing the next state-
chart steps {(set, t1), (¬ set, ∅)}, and executing the transitions. Because two
different steps are possible, the rule sc unwind branches into two cases:

set ,
. . .

¬ set ,
exec((¬ set, ∅)), init(Timer), T imer ` • 2 cnt → x ≤ 6

init(Timer), T imer ` • 2 cnt → x ≤ 6

The left step – only sketched – is possible, if the event set is active, which
contradicts the initialization init(Timer), so this case is simple. The right
case corresponds to a macro-step, because the transition set is empty. There-
fore the tick event is generated and the input variables get random values
from the environment. The execution of the DL program (event reset and
reaction of the environment, see Ex. 4) results in

¬ sw off , x = 0, tick , timer , idle,¬ cnt , sw off ′ = sw off , set ′ = set ,
x′ = x, tick ′ = tick , timer ′ = timer , idle ′ = idle, cnt ′ = cnt ,

T imer ` • 2 cnt → x ≤ 6

Now, every temporal formula talks about the next state, because it is pre-
ceded with a next operator and we can advance one temporal step (unnec-
essary variables are omitted here) resulting in

timer , idle,¬ cnt ,¬ sw off , x = 0, T imer ` 2 cnt → x ≤ 6.

8



Now, it cannot be determined, if the environment has assigned set to true
or false. When set is false, the statechart is in the same configuration as
after initialization and this case can be proven with the trace induction
argument. For the second case, additional steps, following the presented
proof scheme, are necessary. We will omit them here and note, that the
strategy of unwinding tl operators, unwinding statecharts, executing actions,
and advancing in the trace until the induction hypothesis completes the
proof can be automated. The example is proven fully automatic in the KIV
system.

5 Conclusion

In this paper we presented an integration of STATEMATE statecharts into
the framework of ITL. Symbolic execution is used for proving temporal
properties of statecharts. By using DL programs, the action language of
STATEMATE statecharts was for free and even enriched by the possibility of
using arbitrary algebraic data types and functions.

Example proofs have shown, that symbolic execution is an intuitive way
to prove properties, because the proof follows the execution paths of the
statechart. Also this proof strategy may easily be mapped to heuristics
to automate proofs. In addition, the proof strategy of symbolic execution
allows simple integration into the existing ITL framework. Beside the im-
plementation of the step algorithm, only the two proof rules sc init and sc
unwind were needed.

Currently we are working on a generalization of the presented approach,
where it is not necessary to fully specify, whether a state is active or not.
This approach is helpful for generalizing induction hypothesis. If, e.g. the
property 2 cnt → x ≤ 6 has to be proven for the statechart System, it is not
necessary to know, if the subchart Light is in state Off or On, so we may
abstract from this state. Examples have shown, that this approach shortens
proofs.
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