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Introduction

A point p of a connected, complete riemannian manifold M is called a pole if
the conjugate locus of p is empty. When the manifold is simply connected, this
is equivalent to saying that no two distinct geodesics beginning at p meet again.
In general the distance function between two such geodesics c 1, c 2 can be quite
arbitrary. It can grow to infinity on, for example, a paraboloid of revolution or
become arbitrarily small on a surface of revolution which looks like a sphere
with a contracting tube attached. However, because of its importance in deter-
mining stability and instability properties of the geodesic flow, much research
has been devoted to investigating the behavior of d(Cl(t ), c2(t)) as t-~ o% usually
under the assumption that the manifold have no conjugate points, i.e., that every
point be a pole. See, for example [-14] and [10]. The most general result for surfaces
was proved by Green in [5]. He showed that on any simply connected surface
without conjugate points and with Gaussian curvature bounded from below,
the distance between any two geodesics rays going out from the same point
diverges to infinity. In [6], he tried to extend this to higher dimensions but his
proof was incomplete and the problem has not yet been completely solved.

In this paper we are mainly interested in the behavior of the distance function
between geodesic rays which go out from a pole of a simply connected manifold.
Following Eberlein, we first study the infinitesimal problem of finding estimates
for the growth of all Jacobi fields which vanish at the initial points of the rays.
Such Jacobi fields can be considered simultaneously by working with solutions of

a ( i )  tensor differential equation along the geodesics. We call such solutions

Jacobi tensors. Jacobi tensors from which all solutions of the Jacobi equation
can be derived are of particular interest. Such tensors exist globally on a geodesic
ray c if and only if c is a proper subset of a ray without conjugate points, and one
of the most important examples is the so called stable Jacobi tensor (Proposition 3).
The behavior of this tensor as one varies c is closely related to the growth of the
Jacobi tensors which vanish at the initial point of c (Theorem 1, Proposition 4).
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Eberlein was the first to notice this close relationship. In Remark 2.10 of [23 he
sketched a proof of Part (i) of our Theorem 1. Our proof differs somewhat from his.

The hypothesis that the sectional curvatures of a manifold be bounded from
below leads only to information about the growth of Jacobi fields along individual
geodesic rays but without uniform information about the Jacobi fields which
vanish at a pole one cannot integrate to investigate the distance function between
two rays. However, in a large number of cases one can find such uniform informa-
tion and Green's assertion about divergence of rays then holds (Proposition 6,
Corollary 1, ff). On the other hand, without uniform information, one can show
that the area of certain hypersurfaces of a simply connected manifold which are
far away from a pole must be very large (Theorem 2) and as a corollary of this
one gets the theorem of Green for surfaces.

Part of the work on this paper was done while the second author was at the
Institute for Advanced Study, Princeton, and was supported by an NSF Grant.
It was completed while both authors were at Bonn University and supported by
funds from the Sonderforschungsbereich "Theoretische Mathematik", SFB 40.

1. The Jaeobi Equation in Tensor Form

1.1. Endomorphisms of Vector Spaces

We begin by stating some general facts about endomorphisms of a finite dimensional
vector space E endowed with an inner product ( , ). Let T be such an endo-
morphism. Then II T L], the norm of T is defined by

IITII = M a x  {(Tx, Tx) ~-" (x, x)--= 1}

= M a x  {[ITxhl : LIx]k =1}.

The lower norm of T, ((T)), is defined by

((T)) = Min { I/Tx 11" [I x hi = 1}.

If T is invertible, it is easy to show that ((T))= II T-*  I1-* and if T is not invertible,
((T)) = 0. For a product of two endomorphisms T1, T2, the lower norm satisfies
the opposite inequality to the usual norm, i.e.

((T1 T2))> ((T1))((g2)).

When T is symmetric,

IIT]I = M a x  {l(Tx, x)l" IIx[I =1}

= M a x  {121: )~ is an eigenvalue of T}

and a similar statement, with Max replaced by Min, holds for ((T)).
One can define an order relation > on the set of symmetric endomorphisms

of E by writing T, > T a whenever T 1 - T 2 is a positive semi-definite endomorphism,
i.e., whenever (T,x, x )>(T2x ,  x)  for all unit vectors x~E. A sequence {T~} of
symmetric endomorphisms is said to be increasing iff T, + 1 > T, for all n, and bounded
above iff there exists a symmetric endomorphism T such that T > T, for all n.
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Since any symmetric endomorphism T is determined by {(Tx, x)" HxN=I},
it follows easily that an increasing sequence of symmetric endomorphisms of E
which is bounded above converges to a symmetric endomorphism.

1.2. (li ) Tensor Fields alongGeodesic

Now let M be a riemannian manifold of dimension m + 1, let c: [a, b] --* M be a
geodesic and let Nc be the normal bundle of c, i.e.

Nc= {x~ T~(~)M : x_l_c'(t), a<=t <=b}.
A Fermi frame field along c consists of m parallel vector fields El,  Ez, ..., E,, along
c such that, for each t, {El(t) .... , Em(t), c'(t)} is an orthonormal basis for T~(t)M.

B y a ( 1 )  tensorfieldZalongcwewillmeanacontinuousmappingZ:t~Z(t )
for a<t<-b, where for each t, Z(t) is an endomorphism of Ntc , the fiber of Nc
over c(t). The tensor field Z can be described in terms of its coefficients (Zij) with
respect to some Fermi frame field d o along c and, i fZ is C 1, the covariant derivative

ofZis the(1)  tensorfieldZ'alongcwhosecoefficientswithrespecttodoarethe
ordinary time derivatives of the coefficients of Z. All the rules for ordinary dif-
ferentiation of time dependent matrices hold, therefore, for the covariant dif-

ferentiation of ( I )  tensor fields along c.

Wecanalsoobtainother(1) tensorfieldsalongcfromZbymeansofinte-
gration. Forexample, iftoe[a,b],thereisa (~) tensorfieldXalongcwhose
coefficients with respect to do are given by

Xij(t) = i ZiJ(t) dt.
to

For this tensor field X we write
t

X(t) = ~ Z(t) dr.
to

If Z is a symmetric tensor field, then ~Z(t)dt is also symmetric and

II~Z(t) dt I[ = Max {](~Z(t) xdt, x)l :  Hx H = 1}

= Max {[~ (Z(t) x, x) dr[: [[ x [I = 1 }

< j 'Max  {l(Z(t)x, x)l: [[x[[ =1} dt
---f [[Z(t)l [ dt.

If Z is positive definite and symmetric, the lower norm satisfies

(q z(t) d t)) > ~ ((z (t))) d t.
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1.3. Tangent Bundle and Jacobi Fields

Let M be a connected complete riemannian manifold, let TM be its tangent
bundle and let n: TM ~ M be the projection map. TTM, the tangent bundle of TM,
decomposes naturally under the Levi-Civita connection into the direct sum
WO~U of a horizontal subbundle W and a vertical subbundle ~ .  At each point
x ~ TM, the vertical part ~ consists of all vectors which are tangent to the fiber
T~xM. "~ is therefore the kernel of the mapping ~z, : TTM -+ TM. The horizontal
part at x, Jf~, consists of all vectors which are tangent at x to horizontal curves
in TM that begin at x. Such curves are obtained by parallel translation of x along
smooth curves in M. The horizontal subspace Yf is the kernel of the so called
connection map K: TTM-+ TM. If a vector w~TTM is the initial tangent vector
to a curve X( t )cTM and n,w+O, then

dX D X(O).Kw-=K (~-[-(O))=~t

At each x, ~z. is a linear isomorphism of the horizontal subspace Jfx onto T ~ M
and K is a linear isomorphism of the vertical subspace ~ onto T~xM. In view of
this we will sometimes identify, via these mappings, the horizontal and vertical
subspaces at x with T~xM, and then we will write w H = ~z. w, w v = Kw for w ~ Tx 73//.
The mapping 7~.ff)K: TTM-+Tz*(TMGTM) where 7~.OK(w)=(~z,w, Kw) maps
TTM diffeomorphically onto 7z*(TMff)TM), the pullback via 7z of TMff)TM to a
bundle over TM. For a more complete description of the connection map, see
Section 2.4 of [8]. The riemannian metric on M gives rise, via the mappings
~.  and K, to a riemannian metric on TM known as the Sasaki metric. In this
metric the inner product of two vectors v, we T~TM is given by

(v, w) = ( %  v, ~, w) + (Kv, Kw).

We will also use the term Sasaki metric to refer to the restriction of the above
metric to SM, the unit tangent bundle of M. All horizontal lifts to TM of geodesics
of M are geodesics of TM relative to the Sasaki metric. In particular, if c is a constant
speed geodesic of M, then e' is a geodesic of TM. See [16] and [17].

The geodesic flow of M is a one parameter  family {~)t}t~]R of diffeomorphisms
of TM where, for x~TM, ~b,x=c'(t), c being the constant speed geodesic whose
initial velocity vector is x. A Jacobi field Y along a geodesic c of M is a vector
field that solves the differential equation

V~,Vc, Y+R(Y,c ' )c '=O
where R is the curvature tensor of M. It is well known that Jacobi fields along c
are the variation vector fields of variations of c through geodesics. There is there-
fore a close relationship between Jacobi fields and the differential of the geodesic
flow. Indeed, if x ~ T M  and w~T~,TM, then

Yw(t) = ~, c~t,w
is a Jacobi field along the constant speed geodesic c = c~ determined by x and the
covariant derivative of Y~ along c is given by

V~, Yw(t) = KqSt, w.
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The mapping w~-~ Yw is a linear isomorphism between TxTM and the space of
Jacobi fields along c x. In what follows we will be interested only in Jacobi fields
which are perpendicular to unit speed geodesics c. These Jacobi fields correspond
under the isomorphism described above to vectors w which are tangent at c'(O)
to the unit tangent bundle of M and which are perpendicular (in the Sasaki metric)
to the vector v whose horizontal and vertical components are given by vn= c'(0),
vv=O. If Nc' is the normal bundle of the geodesic c' of SM, then the set of all
such w is the fiber, Noc', of Nc' over c'(0). See Proposition 1.7 of [2].

The riemannian metric on M gives rise to an isomorphism between 73//and
T'M, the cotangent bundle of M. Under this isomorphism an element x e  TpM is
mapped to the unique element OxeTp*M which satisfies O~(y)=(x,y) for all
yeTpM. The canonical symplectic structure on T*M pulls back, via this iso-
morphism, to a symplectic form co on TM. For v, we T~TM, we have

co(v, w)= (~z. v, Kw) - (Kv ,  re.w).

The symplectic form co is invariant under the geodesic flow. To see this let Y~
and Yw be the Jacobi fields along c~ associated to v and w. Then

co(r r w) = (Yo(t), Y;(05 - (Y~(t), L( t )5

and it follows easily that the derivative of the right hand side with respect to t
vanishes.

1.4. Jacobi Tensors

When dim M = m + 1 > 2, it is often more advantageous to work with m-dimensional
spaces of perpendicular Jacobi fields along a unit speed geodesic c, rather than to
work with individual ones. This leads naturally to the concept of a Jacobi tensor.
Again let Nc be the normal bundle of c, let Nc' be the normal bundle of c' regarded
as a geodesic of SM, let f: Noc-*No c' be any injective linear mapping and let
P~: Noc---,N~c denote parallel translation from c(0) to c(t). Then we define Z~,t    co i e  o  ,,ocio e  o tob the(:ttenso   elda,o  cw  c mak s
the following diagram commutative:

No c, r , Ntc,

,T 1
No c ~-~_T- N c - - x ; - ,  N c.

When there is no danger of confusion we will identify Noc and Ntc by means of Pt.
With this identification in mind, we can say that, for each xeNoc, Yx(t)=Zi(t)x
is the Jacobi field along c which satisfies Yx(O)=rc.f(x), Yj(O)=Kf(x). The

riemanniancurvaturetensorgivesrisetoa(1) tensorfieldR=R(t)alongcwhere
R(t)y=R(y,c'(O)c'(t) for all ysNc. Since Yx=ZIx is a Jacobi field for each
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xeNoc, we can now conclude easily that Z s is a solution of the following co-
variant differential equation of tensor fields along c:

Z" + RZ=O. (1)

Conversely, given a non-degenerate solution Z of (1), i.e. a Jacobi tensor Z along c
which satisfies rank (Z(0), Z'(0))= m, then we can find an injective homomorphism
f:  Noe-~Noc' such that Z = Z  I. Indeed if x~Noc , f (x )  is the unique element of
Noc' for which 7c, ~o~,f(x)=Z(t)x holds. We sum up with the following

Proposition 1. Let c be a unit speed geodesic segment of M. Then the non-degenerate
solutions of the covariant tensor differential Equation (1) and the Jacobi tensors
along c are identical and they are in 1:1 correspondence with the injective homo-
morphisms f:  Noc ~ Noc'.

Suppose now that Z 1 and Z 2 are two Jacobi tensors along c. The tensor

w ( G ,  z2) = zi* z~ - z* z l

is called the Wronskian of Z~ and Z 2 . Since the symplectic form co is invariant
on /3 / /under  the geodesic flow, it follows that the covariant derivative of W(Z1, Z2)
along c vanishes and therefore W(Z1, Z2) is a constant tensor. A Jacobi tensor
Z = Z f  along c is called a Lagrange tensor iff W(Z, Z)=0 .  It is easy to see that Z f
is a Lagrange tensor if and only if f(Noc ) is a Lagrange subspace of T~,(o)TM,
i.e. a subspace on which the symplectic form co vanishes.

Suppose Z is a Jacobi tensor along c which is non singular for t in some
interval [a, b]. Then if Z 1 is any other Jacobi tensor along c, there exists a tensor
field X so that

Zl ( t )=Z( t )X ( t  ) for a<_t<_b.

Further, X satisfies the differential equation

X " + 2 Z - 1 Z ' X ' = O .

The tensor field X' satisfies, therefore, a first order differential equation and
when Z is a Lagrange tensor one can check by differentiation that the solutions
of this equation take the form

x'( t)  = c ( z *  z ) -  ~(t)
where C is some constant tensor. Consequently, for aN t<_b

t

x( t )=  c1 S ( z ' z )  -1 (u) du+ G
tO

whereto~[a,b]canbechosenarbi trar i lyandClandCzareconstant(11)  tensors

determined by the initial conditions on Z1. We have now established the following

Proposition 2. Let Z be a Lagrange tensor along a geodesic c and suppose that Z
is everywhere non-singular on some interval Y. Then if Z~ is any other Jacobi tensor
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along c, it follows that,
t

(I)for all t~J, where to6J is arbitrary and C~ and C z are constant tensors along c.

The initial covariant derivative Z'(0) of any Lagrange tensor Z along c which
satisfies Z(0 )=I  is symmetric since W(Z, Z)=0.  Let Z1, Z 2 be two such tensors
with Z[ (0)=< Z~ (0) and suppose that Zt is everywhere non-singular on an interval
[0, hi. It follows from the previous proposition that for te [0, b]

[ '  ]Z2(t)=Z,( t  ) C ~ (Z*Z,) - l (u)du+I
o

where C=Z'2(O)-Z'I(O ) is positive definite and symmetric. Consequently Z 2
is also non-singular at every point of [0, b]. Equivalently, the first singular 'point
of Z 1 must occur before the first singular point of Z 2 .

2. Stable Jaeobi Fields

Again let M be a connected, complete riemannian manifold of dimension m + 1
and let c: [0, e)---~M be a unit speed geodesic ray without conjugate points,
i.e. no non-trivial Jacobi field along c vanishes twice. Then the Jacobi tensor A
along c which satisfies A(0)=0, A'(0)=I, where I is the identity endomorphism
of Noc, is a Lagrange tensor and A(t) is non-singular for all t>0.  Conversely,
the existence of a Jacobi tensor along a geodesic ray which vanishes initially
and is non-singular for t > 0  implies, via the Sturm separation theorem, that no
two points of that ray are conjugate. This is also clear by Proposition 2. Since
there are no conjugate points on c, there exists, for each s>0,  a unique Jacobi
tensor D s along c satisfying D~(0)=I, D~(s)=0. For t>0,  it follows from Pro-
position 2 that

Ds(t)=A(t) [C~ i (A*A)-a (u)du+ C2 ].

From D~(s)=O we obtain C 2 =0 and a calculation of the Wronskian W(A, D~)
at t =0  and t =s  yields C 1 = -  I. Therefore

s

D,(t) =A(t) J" (A'A) -1 (u)du. (2)
t

From the theory of differential equations it follows that as s ~ o% D s converges
to a Jacobi tensor D called the stable Jacobi tensor along c, if and only if lira D~(0)
exists. The following proposition gives a purely geometric answer to the question
of when this limit exists. Compare Green [-7] and Hopf [-11].
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Proposition 3. I f  c is a geodesic ray, the following are equivalent.

(i) There exists an everywhere non-singular Lagrange tensor along c.

(ii) c is a proper subset of a geodesic ray k without conjugate points.

(iii) The stable Jacobi tensor D exists along c.

Proof. ( i )~  (ii). Let Z be such a Lagrange tensor with Z(0)= I. There exists c~> 0
such that we can extend c to a unit speed geodesic k: I - e ,  o o ] - ~ M  and Z to
an everywhere non-singular Lagrange tensor along k. From Proposition 2

A ~(t)=Z(t) i ( Z * Z )  - l (u)du

defines a Jacobi tensor along k which vanishes at t = - ~  and is non-singular
for t>  - ~ .  Therefore, k has no conjugate points.

(ii) ~ (iii). Suppose c can be extended to a unit speed geodesic ray k: [ -  a, oo) ~ M
such that no two points of k are conjugate. Then if s > - c~ and s ~ 0, there exists
a unique Jacobi tensor D s along k satisfying Ds(O ) = I, Ds(s ) = 0. Since W(Ds, Ds)= O,
it follows that D's(0 ) is a symmetric endomorphism of Nok=No c. For 0 < r < s ,
it follows from (2) that

s
t ~ , - 1D  (0)  = (A A) (u) du

r

and therefore, since A*A is everywhere positive definite, D'~(0)>=D~(0). Now let
x~Noc and consider the broken Jacobi field Y where

y . .  (D ~(t)x for-c~_<t_<0
it) J

)D~(t) x for 0 < t-< s.

Let P ~  be the index form on kl[ . . . .  ]. Since there are no conjugate points on k,
the index form is positive definite on piecewise smooth vector fields along k]~ . . . .  j
which vanish at k(-ct)  and k(s). See [8], pp. 142-145. Therefore

0 < IS__,(Y,, Y) = (D'_,(0) x, x)  - (D'~(0) x, x )

and so D'~(0)>D;(0). We have now shown that the sequence {D;(0): s>0} of
symmetric endomorphisms of Noc increases with s and is bounded above by
D;,(0). Therefore by Section 1.1, lim D;(0) exists and hence, as s ---, ~ ,  D~ converges

S ~ o o

to the Jacobi tensor D along c which satisfies D(0)=I ,  D'(0)= lim D;(0).

(iii) ~ (i). If D exists, it follows from (2) that
~oO

D(t) =A(t) ~ (A'A) -1 (u)du (3)
t

and therefore D(t) is non-singular for all t>=0. Since W(D~, D~)-=0 for all s>0,
D must be a Lagrange tensor.

Since the initial covariant derivative Z'(0) of a Lagrange tensor Z which is
initially equal to the identity is symmetric, it follows that we can define an order
relation on the set of all such Lagrange tensors by writing Z~ _<_Z 2 whenever
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Z[ (0)< Z~ (0). When the stable Jacobi tensor D along c exists, it is characterized
by the following fact.

Proposition 3'. D is the smallest everywhere non-singular Lagrange tensor which
is initially equal to the identity.

Proof We must show that if Z is any everywhere non-singular Lagrange tensor
along c with Z(0)=I ,  then the symmetric endomorphism C=Z'(O)-D'(O) is
positive semi-definite. For t > 0  we have

F oo "1

= A(t) [X(t)+ C], say.

By Section 1.1 it follows (modulo parallel translation) that, for each unit vector
Y E N o c ,

(X(t) y, y> _-> ((X(t)))____ ~ IJ A(u)II  - 2 du .
t

Since A(0) = 0, A'(0) = I, it follows that for u in some neighborhood of 0, [[ A (u) [[ < 2u
and, consequently, that HA(u) l[-z > 1/4u z. Therefore <X(t) y, y) ~ oo as t ~ 0
and so the symmetric endomorphism X(t) + C is positive definite for all sufficiently
small t. Now, if C had a negative eigenvalue, there would exist a unit vector xsNoc
such that <(X(t)+ C)x , x )<O for all sufficiently large t, because lira X(t)=0.

But then, for some t o > 0, X(to)+ C would have a zero eigenvalue and therefore
zero determinant. This would contradict the fact that Z(t) is non-singular for all
t >  0. Consequently C = Z ' (0)-D' (0)  is positive semi-definite and the proposition
is established.

For each Jacobi tensor Z along c which is non-singular on some interval J,
the tensor U = Z 'Z - :  along c is a solution of the Riccati equation

U ' n  k U 2 + R = 0 .  (4)

If the sectional curvatures of all two planes which contain vectors tangent to c
are bounded below by - r  2 for some r >  0, i.e., if the symmetric tensor field R
along c satisfies R ( t ) > - r 2 I  for all t>0,  then Sturm comparison techniques
can be used to find upper and lower bounds for symmetric solutions of (4). In
fact, a symmetric solution U which is defined for t > 0  satisfies

- r l  < U(t)<r coth rt. I

and therefore

llU(t)lt<rcothrt for all t > 0

< 2 r  for t> T=(1/r) arcoth 2. (5)

In particular, subject to the curvature condition, the tensors A'A -~ and D'D-:
satisfy (5). If we set

oo

X(t) = ~ (A'A) -1 (u) du,
t
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then D(t)=A(t) X(t) and, using the fact that W(A, D)=I, we obtain easily that

A,A-1 _D,D-1 =(A-l)* X - 1 A  - t .

Therefore, for t >  T and xeNoc (recall that Noc and Ntc are identified via parallel
translation), we have

I((A-1) * X - l A - l x ,  x)l <4r.

On the other hand

I((A- 1) * X - I A - l x ,  x)l  = I ( X - l A - l x ,  A - l x ) l
>((X-l))  IIA-lxll2 = HXLI-1 IIA-lxll 2

�9 by Section 1.1, since X is symmetric. Consequently,

IlA-l(t)l} <(4r }]X(t)l]) 1/2 for t>  T. (6)

For a detailed proof, see Proposition 2.9 of [2].
Now let K be any compact subset of SM, the unit tangent bundle of M, and

suppose that for each z~K the stable Jacobi tensor D= exists along the geodesic
ray c~ whose initial tangent vector is z. Then c~ certainly has no conjugate points
and therefore the Jacobi tensor A= along c= satisfying A=(0)=0, A'~(0) =I ,  is non-
singular if t > 0. For t > 0, set

0z(t) = ((As(t))) = I1A;- 1(0 II-1. (7)

Any Jacobi field Y~ along c z satisfying Yz(0) =0, I[ VYz(O)H = 1 is of the form Yz(t) =
A~(t)x for some xENoc, IIxH=l. Therefore, it follows from Section 1.1 that
~bz(t)=inf ]k Yz(t)ll over all such Jacobi fields ~ .  Let

~bK(t ) = inf {qSz(t ) : z e K}.

For each z~K the stable Jacobi tensor D~ determines an m-dimensional space
of Jacobi fields along c~ which are also called stable. The limit of a convergent
sequence of such stable Jacobi fields is again a stable Jacobi field if and only if
the mapping z-,D'=(O), t~K, is continuous. Eberlein was the first to notice that
there is a close relationship between the continuity of this mapping and the growth
of the function qb K when the sectional curvatures of M are bounded from below.
In Remark 2.10 of [2] he states that lira 4)K(t) = c~ for a compact subset K of the

t ~ O D

unit tangent bundle of a manifold without conjugate points. This fact also follows
immediately from Part (i) of the following theorem.

Theorem 1. Let M be a complete riemannian manifold whose sectional curvatures
are bounded from below by - r  2 for some r > O. Let K be a compact subset of SM
and suppose that for each vector z e K  the stable Jacobi tensor D z exists along the
geodesic ray c~ whose initial tangent vector is z. Then the following is true.

(i) If  the mapping z--~D'~(O), z~K, is continuous, there exists a continuous
function f which increases monotonically to infinity such that ~aK(t ) >= f (t) for all t >= O.

(ii) If  1/4)KeL 2 [1, oo), then the mapping z--+D'=(O) is continuous.
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Proof of (i). Clearly the mapping (t, z) -+ A~- i (t) is continuous on (0, ~ ) •  K
and so is the mapping (t, z ) ~ D 2 ( t  ) since we have assumed that z-~D'2(0) is
continuous on K. Therefore, since

oo
* - - 1X~(t)= S (AzA~) (u)du=A;l ( t )D~(t )  ,

t

it follows that the mapping a: (t, z)--+ (4r [J Xz(t ) ll) -1/2 is continuous on (0, ~ )  • K.
For each fixed z~K,  the function a z defined by a~(t)=a(t,z) is continuous and
strictly monotonically increasing in t. Sin ce lira I1X~ (t) it- 1 = 0 and l im tt X~ (t))1- i = ~ ,

t ~ O  + t ~ o o

it follows that a~ has a continuous inverse which is strictly monotonically in-
creasing and which maps (0, ~ )  onto (0, o0). Thus we obtain a continuous func-
tion z : ( 0 , ~ ) •  defined by z( t , z )=a; l ( t ) .  Set ~(t )=maxz( t , z )  and

z ~ K

fl(t) = rain a(t, z). Then fi increases monotonically, is continuous, and takes on
z a K

arbitrarily large values because a~(a(t))> t for all z eK. Set f ( t ) =  fi(t) for t >  T=
(l/r) arcoth 2 and extend f to a continuous monotone increasing function on
[0, aD) such that f ( t ) <  IIA~-~(t)[I -~ for O<_t<_T and for all zeK.  Part (i) of the
theorem now follows from (6) and (7).

Proof of (ii). For each z e K  let D~i be the Jacobi tensor along c~ which satisfies
D~i(0)=I, Dzi(1)=0. Since the mapping z~O'~i(0  ) is continuous, we are done
if we can show that the mapping z--+ D'~(0)- D'~ (0) is continuous. From (2) and (3)
we have

O's(O) - D'~ (0) = ~ (A*~AJ-1 (u) du
1

Let {z,} be a sequence in K which converges to z, let {x,} be a sequence of unit
vectors, x, eNo(Q),  which converges to a unit vector xeNo(cj ,  and set A , = A ~ .
Then ( (A 'A , )  -1 (u) x,,  x , )  converges to ((A*A~) -1 (u) x, x)  for each u>  1. By
assumption IJAj i (u)ll < 1/qS~(u) for all zeK,  and so it follows that

oo co

A , - 1  f ( ( , A , )  (u)x,. x,> du<_
1 1

Therefore by the Lebesgue convergence theorem for integrals,
00

* - - 1lira ~ ((A'A,,) -a (u) x,,  x , )  du = ~ ((A~ A J  (u) x, x )  du
n + o o  1 1

and, since (A*AJ -~ is symmetric for all zeK ,  it follows that the mapping
z -+ D'~(0) - D'=I (0) is continuous. This completes the proof.

In the next proposition we obtain a more explicit lower bound for q5 K in the
case where the norms of the stable Jacobi tensors along geodesic rays going out
from K are uniformly bounded.

Proposition 4. Let M and K be as in the previous theorem. Suppose there exists
a constant p > 0 such that II D~(t)II <= P for all z e K  and for all t >= O. Then the mapping
z--~ D'~(O) is continuous and, further, there exists a number T>O such that (bK(t)>=
(const.) t ~ for t >= T.
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Proof. As before we have, for each z e K ,
oo

X~(t)=~(A~A~) (u) du=A;l ( t )D~(t ) .
t

Since the stable Jacobi tensor D r is a Lagrange tensor, we can use Proposition 2
and the initial conditions on A z and D~ to get

t

As(t ) = Dr(t ) ~ (D*Dz) -1 (u) du
0

Using the methods of Sections 1.1 and 1.2, we obtain from the latter equation and
the fact that ]1D~(t)II <=P

[I X~(t)I[- 1 = ((XZ 1(0)) = ((D~- t(t) A:(t))) >= p-  2 t.

Since the above inequality does not depend on z, it now follows from (6) and (7) that

~)K(t)>=(4rp2)-~ t ~ for t>=(1/r) arcoth 2.

For z eK and s > 0, let D~s be the Jacobi tensor along the geodesic ray determined
by z which satisfies D~s(0)= I, D~(s)=0. From (2) and (3) we have

t rI[ Dz(O) - D~(O)II <= I[ X~(s)I1 < P2/s.
Since the tensors D'~s(0 ) depend continuously (in fact, Smoothly) on z, it now
follows easily that the mapping z -~ D'~(0) is continuous. This completes the proof.

An immediate consequence of this proposition is that if the norms of the stable
Jacobi tensors are uniformly bounded on a complete manifold without conjugate
points whose sectional curvatures are bounded from below, then there exist
positive numbers a and T such that, for t>_ T, the inequality

II Y(t)ll >_c~t~
is satisfied uniformly by all Jacobi fields which vanish initially and have initial
covariant derivative of length 1. An interesting class of riemannian manifolds for
which [I D(t)II < 1 for all stable Jacobi tensors D is the class of manifolds without
focal points. These manifolds are characterized by the fact that the length of any
Jacobi field which vanishes initially is an increasing function. See Proposition 4
of [15]. Berger recently showed, without any curvature assumptions, that; on
surfaces without focal points Y(t)>=  89 t for all J acobi fields Y which satisfy Y (0)= 0,
II VY(0)i[ = 1. See Section 3 of [1].

3. Divergence of Geodesics

Throughout this section M will be a connected, complete, simply connected
riemannian manifold and We will be mainly interested in the behavior of the
geodesic rays going out from a pole p of M. We recall that a pole of a riemannian
manifold is a point whose conjugate locus is empty. On M this is equivalent to
saying that no two distinct geodesics rays going out from p meet again. In [6]
Green introduced the following concept of uniform divergence of geodesic rays.
A sequence {p,} of points of M is said to be divergent it it has no limit point and
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a geodesic ray going out from p is said to be a limit ray of such a sequence if the
geodesic segments c, joining p to p, converges to c, i.e., if c'(0)= lira c',(0). The

n - * o o

geodesic rays going out from a pole p of M are said to diverge uniformly if each
geodesic ray c going out from p having bounded distance from a divergent se-
quence {p,} (i.e., d(p,, c) is bounded) is a limit ray of that sequence. Uniform
divergence at p clearly implies that any two geodesic rays c 1 and c 2 going out
from p diverge, i.e., that lim d(q(t), C2(t))= 00. For surfaces the converse is an

t ~ o O

easy consequence of the Jordan curve theorem. In general, for manifolds of
higher dimension there is no reason to believe that divergence of the geodesic
rays going out from p implies their uniform divergence, although in special cases
this is so, e.g., on the universal riemannian covering of a compact manifold which
admits a metric of strictly negative curvature. This latter fact follows from the
lemma on page 71 of [12-]. The concept of uniform divergence of geodesic rays
seems, when compared with divergence, to be rather complicated. As an example
of it's usefulness we prove the following proposition which can not be deduced
as a consequence of divergence alone.

Proposition 5. Let M be the universal riemannian covering of a compact manifold N
and let re: M - ~  N be the projection map. Then if the geodesic rays going out from
a point p of M are uniformly divergent, the initial tangent vectors to the (not nec-
essarily smoothly) closed unit speed geodesic loops at p form a dense subset of S~vN.

Proof Let F be a compact fundamental domain in M of diameter d containing the
point p and let z~SpM. To prove the proposition it clearly suffices to show that
we can approximate z arbitrarily closely by the initial tangent vectors of unit
speed geodesics joining p to points congruent to p by deck transformations.
Let {%} be a divergent sequence of points lying on the geodesic ray c z whose
initial tangent vector is z. For each n there exists a deck transformation g, such
that q,~g~F. So

d(g,p, Cz) <=d(g,p, qn) <=d.

and therefore, since the geodesic rays going out from p diverge uniformly, it
follows that the geodesic segments joining p to g,p converge to c z. This completes
the proof.

We now proceed to use the infinitesimal tools developed in the previous
section to derive some facts about uniform divergence of geodesic rays. Our
notation is the same as in Section 2. In particular, if p is a pole of M, then for t > 0,

Or(t) = inf {((Az(t))): z ~ SpM} = inf II Y(t)rl

where the latter infimum is taken over all Jacobi fields which vanish at p and have
initial covariant derivative of length 1.

Proposition 6. Let p be a pole of a complete, connected and simply connected
riemannian manifold M. I f  lim Op(t) = 00, then the geodesic rays going out from p
diverge uniformly.

Proof Let {p,}, {q,} be two divergent sequences of points of M with d(p,, q,)
bounded above by some constant c~. Let c,, k, be the unit speed geodesic segments
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which join p to p, and p to qn, respectively. We will prove the slightly s tronger
result that  the angle 0, = (c'n(0), k'n(0)) between G and k, tends to zero as n - ~  oo,
Since p is a pole, the mapp ing  ~:  SpMxlR+-- - ,M-{p}  where tp(z , t )=exptz
is a diffeomorphism. If w=(w 1 , w2)e T(~,t)(SpM x IR+), it follows f rom the Leibniz
formula  that

~ ttp.w = (exp.)t~ tw 1 +dt(w2) G( )

where G is the geodesic ray going out f rom p with initial velocity vector  z. For
the first te rm on the right hand  side above we get, using the canonical  identification
between Tv(Tpm) and Tp(M),

(exp,)t ~ tw 1 = A~(t) . w 1 = Y (t)

where Y is the Jacobi  field along c z satisfying Y(0)=0, V Y(0)=w 1. See [8], page 132.
Moreover ,  by the Gauss  lemma,  the two terms are mutual ly  o r thogona l  and so
we obta in

I1 g,, w II >- II g(t)I1 > G ( t )  II wl II. (8)
Now let a n : [0, 1] ~ M be a minimizing geodesic segment joining p, to q,. If  n
is sufficiently large, p cannot  lie on a n and s'o for all such n there exist curves z, :
[0, 1-1 ~ S p M  and t,:  [0, 1] ~ I R  + such that  a,=tp(zn, tn). If u denotes are length
on the curve z,,  we can paramet r ize  a, by writing

a,(u) = 4,(z.(u), t.(u)).
The pa rame te r  u will lie in some interval [0, bn- 1 and b, must  be greater  than or
equal to 0 n because the minimizing geodesic on the unit sphere SpM joining
c',(0) to k',(0) has length 0,. Since z',(u) has length 1, it follows f rom (8) that

II a'.(u) II >= G(t~
Set

q~n = inf {~bp(t,(u)): u e [0, b j  }.

F r o m  our assumpt ions  on {p,} and {G}, it follows that  d(p, G) --' oo as n --* oo.
Therefore,  since lira ~bp(t) = 0% we have lim 4 ,  = oo. F r o m

t ~ o o n ~ c o

b,,

~_-->L(an)>_-- ~ Ifa'o(u)ll du>=6.O.,
0

we obtain  0, < e/qS, and therefore 0~ --* 0 as n --+ oo. This completes  the proof.
If we combine  Theo rem 1 with the above proposi t ion,  we obtain  immediate ly

the following corol lary:

Corollary 1. Let p be a pole of a complete, connected, simply connected manifold M
whose sectional curvatures are bounded from below. I f  the stable Jacobi tensors D~
exist for each zeSpM and depend continuously on z then the geodesic rays going
out from p diverge uniformly.

F r o m  the above corol lary it follows that  the assert ion of Green (Theorem 1
of [6-1), that  the geodesic rays going out f rom each point  of a simply connected,
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complete riemannian manifold without conjugate points whose sectional curva-
tures are bounded from below diverge uniformly, is true for a large class of such
manifolds; namely, those for which the stable Jacobi tensors vary continuously
with the geodesic rays. In particular, uniform divergence holds, subject to the
curvature condition, on simply connected manifolds without conjugate points for
which D ( t ) < p ,  p constant, for all stable Jacobi tensors D and for all t > 0  (Pro-
position 4). For more details on these manifolds, see [3] and [4]. One interesting
class of such manifolds, where I[D(t)pI is actually =<1, consists of the universal
coverings of manifolds without focal points. By Proposition 4 and the result
of Berger (3.5 of [1]), uniform divergence holds without curvature assumptions
on surfaces without focal points. Another interesting class consists of universal
coverings of compact manifolds with geodesic flow of Anosov type. Klingenberg
[13] showed that these manifolds cannot have conjugate points. They may,
however, have focal points (Gulliver [9]).

The main obstacle to proving Green's assertion in dimension higher than 2
is the following: The assumption that the sectional curvatures of a manifold
without conjugate points are bounded from below gives, a priori, no uniform
information about the growth of the lower norms of Jacobi tensors which vanish
initially. Since the stable Jacobi tensor exists along each geodesic ray of a manifold
without conjugate points, lira X~(t)=0, and therefore, from (6) and (7), one has
lim ((A~(t)))=oe for each fixed z e S M .  However, in order to establish uniform
divergence of the geodesic rays going out from p, one would need such information
uniformly for all unit tangent vectors at p. Nevertheless, with only non-uniform
information at hand, one can say something about the area of hypersurfaces
of a simply connected manifold M which are far away from a pole p.

Suppose M has dimension m + 1. Since p is a pole, the exponential mapping
exp: S v M  x IR + -+ M -  {p} where (z, t) --. exp t z  is a diffeomorphism. Contraction
of the riemannian volume d V  of M relative to the radial vector field D/& gives
rise to an m-form r/on M - {p} where, if Xl, x2, ..., x,, are elements of 73//,

t l(xl , x2 ,  . . . ,  x , ~ ) = d V  (~/~t,  x 1 , x 2 . . . .  , x,,).

Let U be an open subset of SpM.  A n  imbedding a: U ~ M - { p }  of the form
o-(z)=exp t ( z ) z  gives rise to a hypersurface Z on M which we will call a cap
shaped hypersur face  over U. Let dV~ be the riemannian volume element induced
on ~ by the metric on M. If we restrict the form t/to g and pull back to U via the
imbedding map a, we have the following inequality:

a* dV~> la*rl I.

For ze U, we T= U, the Leibniz formula yields

(~r.)~ w = (exp.)t(~ z t(z) w + d t(w) c'z(t(z))

where c~ is the unit speed geodesic ray in M determined by z. As in Proposition 6,
we identify the first term on the right hand side above as

(exp.)t(~) ~ t(z) w = A~(t(z)) .  w = Y( t )
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where Y is the Jacobi field along c~ satisfying Y(0)=0, Y(0)=w. Therefore, if
{wl, w2, ..., win} is an orthonormal basis for T~ U, it follows that

t a* ~ (wl, w2, ..., w,.)l = det az(t(z)) > ((A~(t(z)))) m.

In other words, ifdz is the Euclidean volume element on SpM and a(z) = ((Az(t(z)))) m,
we have

I~*tll > a(z) dz.

By combining inequalities we get therefore,

Area S dV  =  o*dV >= a(z)dz.
U U

We are now in a position to prove the following:

Theorem 2. Let M "+t be a complete, connected, simply connected riemannian
manifold. Let p be a pole of M and suppose that for each zeSpM, lira ((Az(t)))= oo,

t - -+  c~O

Let X, be a sequence of cap shaped hypersurfaces over open subsets U, of SpM with
G O

lira d(p, ~,,)= oo. Then if lira Area ~ , #  oe, ~ U, must have measure zero.
~t ~ ct3 rt ~ ct3 n = ].

Proof Let O= (~ U,. Let a, be the function a of the previous paragraph defined
n = l

for the hypersurface s  Then we have

Area ~, > 5 a,(z) dz > ~ a.(z) dz.
Un 0

If lira inf Area ~, is finite, then there exists a real number ~ > 0 such that
n ~ o o

>= lim inf I a,(z) d z > ~ lira inf a,(z) d z
t l ~ c O  O O n ~ o o

where the right hand inequality is, of course, Fatou's lemma. Consequently,
lira inf a, is finite on O except, perhaps, on a set of measure zero. So then, if O had
positive measure, there would exist at least one x~O with lira infa,(x) finite. Since

lira d(p, ~ , )=  o% this would imply the existence of a positive sequence si-+ co
n ~ o o

with {((A~(si))) } bounded and this would contradict our hypothesis. This completes
the proof.

An immediate corollary of the above theorem is the result of Green about
uniform divergence of geodesic rays on surfaces ([5], Theorem 3.1).

Corollary 2. Let M be as in the previous theorem. I f  M is a surface, then the geodesic
rays going out from p diverge uniformly.

Proof. Let z s  SpM, let c be the geodesic ray determined by z, let {p,} be a divergent
sequence of points in M and let k, be the unit speed geodesic segment joining p
to p,. Suppose that d(p,, c) remains bounded but that lira k',(0)=x =#z and let k
be the geodesic ray determined by x. Then, for each n, we can find a minimizing
geodesic segment e. connecting p, to c such that {L(c,)} is bounded. For sufficiently
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large n, c, is a cap shaped hypersurface over a segment 7, of the unit circle SpM
which begins at z. By passing to a subsequence, if necessary, we can assume that
all the c, lie in one of the two wedges into which c divides M. Let 0 =d(x, z) =~z (x, z).
Since lim U,(0)=x, it follows that there exists an integer N such that ~ 7,

n~oo n>N
is a segment with length greater or equal to  89 0. By the theorem this is impossible
and, therefore, the geodesic rays going out from p deverge uniformly.
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