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Introduction

Horospheres have always been a central point of interest in hyperbolic geo-
metry. In modern language, horospheres are defined as enveloping hypersurfaces
of all riemannian spheres having a common normal vector in the hyperbolic
space. In fact, using this definition, horospheres can be defined for all riemann-
ian manifolds where the cut locus of every point is empty. These are exactly the
simply connected manifolds without conjugate points. Those generalized horo-
spheres are hypersurfaces of differentiability class C! (see Prop. 1). If the
curvature is negative, it is well known that the inner and the outer normal
vectors of the horospheres form two foliations of the sphere bundle SM which
are transversal to each other and both invariant under the geodesic flow. They
are called the stable and the unstable foliation since the geodesic flow contracts
the first and expands the second one. (See [12, 1], also Section 7 of this paper.)
In the general case it seems that the horospheres do not give rise to foliations of
SM. The reason is that the spheres may converge badly to the horospheres. In
Section 3 and 4 we look for additional properties in order to make convergence
nice enough. One important tool is the C*-differentiability of the horospheres
which has been proved by Eberlein (unpublished) and Heintze, Im Hof ([13]) in
the case of nonpositive curvature. We get this result by replacing the curvature
restriction with certain convergence properties which are fulfilled on manifold of
bounded asymptote. This is a large class of manifolds without conjugate points
containing the Anosov manifolds and the manifolds without focal points. Of
course, one may not expect the stable and unstable foliation to be transversal to
each other since for instance in the flat case these two foliations agree. So it is a
natural problem to also investigate the intersection of the foliations, correspond-
ing to the contact points of two different horospheres (Theorem 1). In Section 5,
Wwe apply our results to manifolds without focal points: If two geodesics are
asymptotic to each other in both the negative and positive directions, then they
bound a flat, totally geodesic strip of surface. This generalizes the “flat strip
theorem™ of O’Sullivan ([15]) since no curvature restriction is needed. In Section
7, we give an application to Anosov manifolds and show that there are no
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nontrivial isometries of compact Anosov manifolds which are diffeotopic to the
identity.

This paper which is essentially part of the author’s thesis ([6]) was prepared
under the programm of the SFB 40 “Theoretische Mathematik” at Bonn
University.

1. Lagrange Tensors

Let M be a riemannian manifold of dimension n+ 1. A geodesic ¢ in our context, by
assumption, will always be parametrized by arc length, i.e. the values of the tangent
field ¢’ belong to the unit sphere bundle SM of M. For each veSM, we denote the
geodesic with initial velocity v by c,. Let

Ne={xeT M; x L' (1), tel}
be the normal bundle of an arbitrary curve c: I— M, I some real interval. A normal
1
( 1) tensor field along c is a smooth bundle endomorphism of Nc. An important

example we get from the riemannian curvature tensor, namely the linear mapping
x—R(x,c () c'(t), xeN,c, tel. If ¢ is a geodesic c,, we call this tensor field R, (t) or
R(¢), if there is no danger of confusion.

1
By a Jacobi tensor along ¢, we mean a normal ( 1) tensor field Y along ¢ with

transversal derivative (i.e. ker Y(t)nker Y'(¢f)=0 for some teIR, where Y’ denotes
the covariant derivative with respect to c.), such that the following differential
equation holds:

Y’ +R, Y=0. )

Each Jacobi tensor, applied to all parallel normal vector fields along c,, gives rise to
an n-dimensional space of Jacobi fields along c,.

For two Jacobi tensors Y and Z along c, we define a new tensor field W(Y, Z)
=Y'*Z—Y*Z called the Wronskian of Y and Z, where * denotes the adjoint with
respect to the riemannian metric. By curvature identities, W turns out to be
covariantly constant (see [7]). This fact leads to an important subset of Jacobi
tensors, called Lagrange tensors, namely those Jacobi tensors 4 whose Wronskian
W(A, A) vanishes. If 4 is nowhere singular, this is equivalent to saying that the
tensors A'’A~! and A*A’ are symmetric. The importance of the Lagrange tensors
consists in the following: If we have got a nowhere singular Lagrange tensor A4, we
can compute each Jacobi tensor Z along the same geodesic from its initial or
boundary values: There exist constant tensors C,, C, and some ¢, in the closure of
the parameter domain of the geodesic such that

t
Z(t)=A() [c1 [ (A4*A)~* () du+ cZ] @)
to
where the integration is taken with respect to the identification of the spaces N, ¢ by

parallel transport along the geodesic c. Moreover, for each Lagrange tensor the
singularity points are isolated (see [6, 7]).
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Lagrange tensors can be described geometrically as follows: Let H be an
oriented C*-hypersurface in M. The normal bundle has a canonical trivialization
using the oriented unit normal vectors: NH = H x IR. There exists a neighbourhood
U of the O-section such that the mapping k =exp|,: U>M isa diffeomorphism. Let

d
Vi=k, (d—t) be the velocity field of the geodesics t+—k(h, t), he H. Consider the V-

invariant vector fields J along a fixed geodesic c(t)=k(hy, t). They are solutions of
the equation L, J =0, hence 3)

J=(V)J,

1
where V'V is the (1) field x>V, ¥, xe N c. Of course, J is a Jacobi field, as one sees by

differentiating once more: J” =V, V, V= —R(J, V) V since ¥, V and [J, V] vanish.
As before, we can take Equation (3') as a tensor differential equation

Y=FV)Y (3)

1 . .
for some normal (1) tensor field Y along ¢ which is uniquely determined by its

initial value Y(0). Moreover, Y is nonsingular everywhere in the interval
I:=N, HNU. Recall that —(FV)|, is the shape operator Sy of the oriented
hypersurface H since V|, is an oriented unit normal field on H. In particular, by
Equation (3), Y'Y ~!(0) =V V(h,) is a symmetric tensor and hence the Jacobi tensor
field Y is in fact Lagrange. On the other hand, each Lagrange tensor Y along any
geodesic c arises in this way: If Y(¢) is nonsingular at some point teR, and H some
hypersurface with oriented normal vector ¢'(t) and shape operator

Sulc®)=Y"Y"1(1), 4)

then the Jacobi fields Yx, x constant normal field along c, are variational fields of
geodesics normal to H, so called H-Jacobi fields. We will say that Yis related to H if
Equation (4) holds for some t. Of course, if Y is related to some hypersurface H, it is
related also to all parallel hypersurfaces H, =k((H x {r})n U) for reIR, where U is
again the regularity domain of exp|yy.

There is another characterization of Lagrange tensors which we will need.
Recall that each tangent vector of the tangent bundle, we T, TM with ve T,M, can
be represented in a unique way by a pair of vectors (w,, w,)e T,M x T, M, called the
horizontal and the vertical component; we will identify w with (wg, u,,) (see [ 7]). This
splitting leads to a metric

<Wa u>: = <WH’ uH> + <WV5 uV>

on TM and hence on SM, the so called Sasaki metric. Recall further that the
geodesic flow, by definition, is the one-parameter group of diffeomorphisms ¢,:
SM—SM, ¢,(v)=c,(t). Its differential ¢, can be described in terms of Jacobi fields
as follows: If we T, SM is the initial tangent vector of some curve U [0, &)—SM and
w(t):=¢,, w, then wy(t) is a Jacobi field along Cy(oy With covariant derivative wi, ()

=wy(t), namely the variational vector field 7 of the geodesic family cy,,. In
s=0
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particular, if H= M is any oriented C*-hypersurface with oriented unit normal field
V, then V(H) is a C*~'-submanifold of SM, and a Jacobi tensor Y along any
geodesic ¢y, peH is a Lagrange tensor related to H if and only if

{(Y(O)x, Y'(0)x); x LV(pD)} =Ty, V(H).

As an example consider a geodesic ¢: R—>M without conjugate points. The
Lagrange tensor A given by the initial values

A(0)=0, A(0)=1

(compute W(A4, A)(0)!) is nonsingular for all real t+0. Clearly A4 is related to all
riemannian spheres centered in ¢(0). Furthermore the Lagrange tensors D, which
are defined for all s+0 by the boundary values

D,(0)=1, Dy(s)=0

(compute W(D,, D )(s)!) are nonsingular for all ¢ s and related to the riemannian
spheres centered in c(s). Using Equation (2) and evaluating the equation W(4,D,)
=1 at t=s, we can compute D, in terms of A as follows for all t between 0 and s:

D,(H)=A(r) j (A*A)~ 1 (u) du.

It is well known that the fields D, converge to some Lagrange tensor D as s— oo,
called the stable Jacobi tensor (see e.g. [7]); consequently for t=0

D(t)=A(t) }) (A*A)~ ' (u) du.

Since (4* 4)~ ! is a positive definite, symmetric tensor, D is nonsingular for all t>0.
Also consider the so called antistable Jacobi tensor E:= lim D,. Jacobi fields J

§— —
which are both stable and antistable are called central, that means J =Dx = Ex for
some covariantly constant field x in Nc. In the following sections we will consider

hypersurfaces to which D and E are related.

Remark. We will use the same symbol for any vector xe N, ¢ and the covariantly
constant vector field along ¢ with value x at c(¢).

2, Busemann Function and Horospheres

Let M be a complete, simply connected riemannian manifold without conjugate
points. For every p,qe M call d(p, q) =:|p, q| the distance function between p and q.
For each unit vector ve SM and each s=0 define the function b, (q): =s—|c,(s), 4|,
qeM, further the ball B, : =b,'((0, s]). These functions are smooth except at c,(s)
and, by triangle inequality, increasing with s and absolutely bounded by |c,(0), g|.
So the function b;=limb,, is defined everywhere on M. Call H;:=b; *(0) the

horospher'e and B, =b; ! ((0, «0)) the horodisc of v. If v(¢): = c; (t), then clearly b,,, =b,
—t, H,q,=b;(¢). A vector weS, M, qeM arbitrary, is called asymptotic to v if
Vb, (q)—w for some sequence s;,— o0. b, is called the Busemann function of v.
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Lemma. Suppose qeH,, weS, M asymptotic to v. Then for each s=0
_b—w,sgbvgbw,s'

Proof. Let s;— 00 be a real sequence such that the gradient vectors w;=Vb,.(q)
converge to w. For an arbitrary ¢ >0and each xe M there is a number ieN such that

(@) b,(x)2b,q,(x)—¢/3,
(b) 0=b,(q)2b,,,(9) —¢/3, s0 5,2 ]c,(5), 9| —&/3,
©) lew, () e, () =e/3, 50 fe,(s), gl = 5 +]c,(5), ¢, (5)| — /3.
Therefore
b,(x)2s;—lc,(s), x| —&/3
2le,(s), gl —le,(s;) x| —2¢/3
Zs+c, (s ¢, () —le,(s;), x| —¢
2s—[c,(s), x| —¢
=b,s(x)—¢,
which proves the second inequality of the assertion.

In order to prove the first one, choose another ielN fulfilling the following
properties:

(&) b,(0)Sb,y,(x)+4/3,
(b) 0=b,(q)=b,,,(9)+¢/3, hence s, <|c,(s,), q| +¢/3,
© lew,(=9) cu(=9)e/3, 50 le,(s), gl Sley(s) (= ) — s+¢/3.
Therefore
b,(x)<s;=lc,(s), x| +¢/3
=le, (8 gl —le,(s), x] +2¢/3
= —s+]ey(s), e (=9) =lc,(s), x| +¢
< —s+|c,(—s), x| +e
=b_, (x)+e,

which proves the first part of the assertion.

Proposition 1. Let M be a complete, simply connected riemannian manifold without
conjugate points. Then the Busemann function b, is C*-differentiable with gradient

Vb,=lim Vb,

§—=

(pointwise convergence) for each unit vector veSM.

Proof. Let veSM, qgeM be arbitrary; without restriction of generality we can
assume ge H, (see above). There exists a vector weS, M asymptotic to v. Since the
difference of the upper and the lower bound of b, in the lemma, b, ,+b_,, has
vanishing gradient at the point g, it is some o(]x, ¢|?), and hence b, and b_, are
first order approximations of b, around g. Therefore b, is differentiable at q and
hence C*. Moreover, w = V'b,(g), so each unit vector which is asymptotic tovisa
gradient vector of b,. This proves the assertion.
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3. Continuous Asymptote

Let T be any linear endomorphism of an euclidean vector space E. Recall the
definition of the norm | T|| =max {|| Tx||; |x|| =1} and the so called lower norm ((T))
=min{|| Tx|; ||| =1}. If T is invertible, we have ((T))=||T~'||~!,otherwise ((T))
=0. The following properties are easy to show: If T}, T, are endomorphisms, then
(T, T)) =Z(T,))(Ty)). If T is symmetric, then

(T)=min{{Tx, x); x|l =1} =min{|A|; A eigenvalue of T'}.

Let T(t) be an integrable family of positive definite symmetric endomorphisms,
then ((j T(t) dt));j((T(t))) dt. Recall further that for symmetric endomorphisms
there is a partial order relation: T, < T, (T, £T,) if and only if T, — T, is positive
(semi-) definite. One has || T|| <r for some positive number rif and only if —k- 1T
<k-1. (See [7] for more details.)

As in the previous section, let M be a complete, simply connected manifold
without conjugate points. For each veSM let A, D,,, D, the Jacobi tensors A, D, D
along the geodesic c,, as defined in Section 1, in order to emphasize the underlying
geodesic. A Jacobi tensor Y defined for each veSM is called continuous if the initial

1
values Y,(0), Y,(0) are continuous as (1) tensors of the vector bundle

vi={(x,0)eTM xSM; x Lv}
over SM.

Proposition 2. Let M be complete, simply connected without conjugate points. If the
stable Jacobi tensor D is continuous, then for each veSM the convergence of the
gradients Vb, to Vb, is uniform within each compact subset of M. In particular, Vb, is
a continuous vector field on M; in fact it is C'~.

Proof. Recall that for each ¢ >r>0, the tensors

DI(0) = DI0) =] (4* A)~* () du
and ’
D'(0)—D0)= | (4*A4)~"(u) du

are symmetric and positive definite, since so is A*A4. So we have
D;(0)<D;(0)<D'(0).
Now for fixed veSM call Vy=Vb,,, V:=Vb,. For each ge M, the Lagrange tensor

D,y With t: =g, c,(s)| is related to the spheres centered in c,(s). So Equation (4) in
Section 1 implies that

VVi(q)= D;, V,(q)(o)-

Let K be a compact subset of M, r some positive number. There is some s,€IR such
that the distance d(c,(s), K) exceeds r for all s=s,. Thus for all geK and all s=s,

D, y,(0) <VV,(q) <Dy, 0).



Horospheres and the Stable Part of the Geodesic Flow 243

These bounds are depending continuously on the vector V,(g), hence on gq.
Therefore they are uniformly bounded for all geK, and hence there exists some
constant number L>0 such that [PV (q)| <L for all geK and all s>s,. This
implies that the vector fields ¥ are equicontinuous and so, by Ascoli’s theorem,
uniformly convergent (see [3], Prop. 7.5.6). Moreover, L is a Lipschitz constant for
V,so Vis C'-.

Proposition 3. Let M be complete, simply connected without conjugate points. Assume
that the stable Jacobi tensor D is continuous. Then “asymptotic” is an equivalence
relation on SM. Moreover, if weSM is asymptotic to veSM, then the Busemann
functions b, and b,, agree up to some constant.

Proof. Clearly “asymptotic” is reflexive. In order to prove transitivity assume that
ueS, M and weS, M are asymptotic to veS, M. Call u: =Vb,,(0), w: =Vb,,(g), then
u,—u, w,—w ast—oo.Since c, and ¢, meet each other at the point c,(t), we have
alsow,=Vb, , (q), where s,=|q, c,(t)|. Since s, becomes arbitrarily big for big ¢, we
get

w=lim w,=Vb,(q)

t— o0

due to the uniform convergence of the gradient fields (Prop. 2). Therefore, w is
asymptotic to u. The proof of the symmetry is given by the particular case w=v. We
proved also that Vb, =Vb, if w is asymptotic to v; that gives the second part of the
assertion.

Next we consider horospheres and Busemann functions of opposite directions.
By G, we denote for each veSM the horosphere H_, together with the opposite
orientation, in other words v is, by definition, an oriented normal vector of G,. A
vector weSM asymptotic to veSM is called bi-asymptotic if also —w is asymptotic
to—uv. Also call the geodesics ¢, and c¢,, asymptotic or bi-asymptotic if so are v and
w.

Proposition 4. Let M be as in Proposition 3. Then for each veSM
() H,nG,=B,nB_,,
(i) Vb, and—Vb_, agree at the points of H,nG,,
(iii) H,nG, is a connected set.

(iv) Exactly the geodesics intersecting H, perpendicularly at points of H,nG,
are bi-asymptotic to c,.

Proof. B, and B _, cannot have common points since intersection of some B, and
B_,, would contradict to the triangle inequality. Therefore, all intersection points
of H, and G, are contact points, which proves (i) and (ii). In order to prove (iii),
assume p and g are sitting in two different connected components of H,n G,. pand q
are minima of the function b, |, since b, is nonpositive outside B,. Now assume
that all critical points of b,|;, are of this type, that means Crit(b,|s,)=H,NG,.
According to Proposition 2, Vb, is a C*~ vector field, hence also its TG -projection
V(b,ls,) is C'~. So we can push down the whole of G, along the integral curves of
V(b,l¢,) and so the set of critical points, H,n G,, is a deformation retract of G,. But
this is impossible since G, is connected and G, H, not, according to our general
assumption.
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Hence, there exists a critical point reG, with b,(r)=:—s <0. Call Vb,(r)=:w; wis
a normal vector of G, since r is critical. It follows from Proposition 3 that b, =b,+s
and b_,,=b_,. So for instance at the point p we have b,(p)=s>0,b_ (p)=0, and
therefore pe B, n B_,,. But it has already been proved in (i) that then peH, NG, in
particular b, (p)=0, which is a contradiction.

Proof of (iv): Unit vectors which are orthogonal to both H, and G, and well
oriented, are gradient vectors of both b, and —b _, and hence bi-asymptotic. On the
other hand, a bi-asymptotic geodesic cuts both H, and G, perpendicularly. By the
same argument as in the proof of (iii) these two intersection points must coincide.

It is an open question whether the stable Jacobi tensor is continuous on each
manifold without conjugate points. Necessary and sufficient conditions for this
property are given in [7]. In the next section, we are going to discuss one sufficient
condition and give examples.

4. Uniform Convergence and Bounded Asymptote

Theorem 1. Let M be a complete, simply connected, m-dimensional riemannian
manifold without conjugate points. Assume that the convergence D, (0)—D/(0) is
uniform for all v in an arbitrary compact set L<SM. Then

() Busemann functions and horospheres are of differentiability class C2. The
shape operator of the horosphere H, is given by — V2 b_. If weSM is asymptotic to v,
then D, is related to H,.

(ii) The classes of asymptotic vectors form a continuous, m-dimensional foliation
X of SM. The leaves X, ve SM, are C! vector fields on M which are invariant under
the geodesic flow ¢.

(iii) If Y isthe foliation of SM with leafs Y,:= — X _, then the leaves of X and Y
have connected, ¢-invariant intersection sets, namely the classes of biasymptotic
vectors.

(iv) If wis biasymptotic to v and w= @, v for all teR, then there exists a central
Jacobi field along c,,.

Proof. For fixed veSM let V,=Vb,,, V=VFb, as above. The uniform convergence of
the D, implies the continuity of the limit D, with respect to v. So, by Proposition 2,
V;—V uniformly in each compact set K =M. Hence V,(q)=D, v@(0) with
=|q, c,(s)| converges uniformly to Dy, ,,(0) for all ge K. Therefore the vector field V
is C! with derivative VV(q) =Dy, (0). Thus, the Busemann function b, is C? and
leads to a C? structure of the hypersurface H, with shape operator §= — VVig,=
—V2b,|y . This proves (i). The equivalence classes of asymptotic vectors are given
by the ! vector fields V= V'b,. These are solutions of the differential equation

VV(p)=Dy,(0)

with continuous coefficients given by D'(0), so they depend continuously on their
initial values v, and (ii) is proved. (iii) is clear from Proposition 4.
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In order to prove (iv) assume (without restriction of generality) that wis oriented
normal vector of H, and also of G, (see Prop.4). Hence the corresponding C!-
submanifolds of SM, H;=Vb,(H,) and G,;=Vb,(G,) intersect each other at w. If
this intersection was transversal, the intersection point w would be isolated. But this
is impossible since H,n G, and hence V'b,(H,NG,) are connected and contain at
least two points. So there exists a common tangent vector

0%ueT H,NT,G,

which gives rise to a central Jacobi field along c,,.

Call X the stable and Y the unstable foliation of SM.

We want to describe next a rather large class of riemannian manifolds where all
previous assumptions are satisfied. M is called manifold with bounded asymptote if it
is complete, connected, without conjugate points, and if there exists a uniform
bound p =1 for the stable Jacobi tensor D such that

ID,()l<p for all veSM, t=0.

For example all manifolds without focal points are of this type since then || D, (¢)| is
monotonely decreasing for each veSM, so p=1 (Section 5). Another important
class of examples is given by the manifolds with geodesic flow of Anosov type as we
will see in Section 7. Gulliver ([11]) showed that these manifolds may have focal
points.

Proposition 5. Let M be a manifold with bounded asymptote || D| |sps vg, < p. Then the
convergence D,(0)—D’'(0) is uniform in SM :

|D,(0)—D;,(0)| <p%/s for all veSM, s>0.
Proof. Using Equation (2) in Section 1 we get on the interval (0, o)
D=A-[(A*4)~', A=D-[(D*D)-'.
0
Call X:=A"1D, then
X(t)=[ (4*4)~' =D'(0)—D/(0),
! t
X‘l(t)z(D‘1A)(t)=j(D*D)".
0o
Compute the lower norm of X ~1:
t t
IX@I=" =X ' @)z [ ((D*D)~")=[ID*D|~ ' 2 t/p?,
0 0
since [D*D||=|ID|*<p> So |D'(0)—Dy(0)] = | X(s)|| < p*/s.
Clearly asymptotic rays have bounded distance on manifolds with bounded
asymptote as one sees by integration along the horospheres orthogonal to both

rays. The opposite statement is not necessarily true without curvature assumptions
(see Section 6).
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5. No Focal Points

By definition, a complete riemannian manifold M has no focal points if each Jacobi
field J(t) with J(0) =0 has monotonely increasing length ||J(¢)|| for all t=0. Clearly
such manifold cannot have conjugate points, so the Jacobi tensors A4, D,, D are
defined everywhere on SM. ||A(#)|| is monotonely increasing for >0, |D,(t)|
monotonely decreasing for ¢ < s and hence also || D(¢)| is monotonely decreasing for
all teR. In particular || D(t)|| =1 for t 20, so M has bounded asymptote. Since for all
veSM, all parallel vector fields x normal to ¢, (notation: x L v) and t<s>0

2:<D, (1) x, Dy, (8) x) =(IID,, (1) x[*) <0,

the symmetric tensors D¥ (t) D;,(¢) are negative semi-definite for all t <s>0, hence
passing to the limit

(D¥D;)(1)<0  for all veSM, teR.

Clearly then for the antistable Jacobi tensor E we have E* E' >0 everywhere on SM
x R, since, by definition, E, (t)=D _,(—1).

Lemma (Eberlein [4]). Each central Jacobi field on a manifold without conjugate
points is parallel.

Proof. Let J be a central Jacobi field along c,, veSM, that means Dx=J =Ex for
some x L v. From 0<<{E'x, Ex)={D’x, Dx) <0 it follows that (D* D’ x, x> =0,
hence D* D'x=0 due to D*D'<0. Since for t>0 the tensor D*(t) is an
isomorphism, one has J'(t)=D'(t) x=0, and the same is valid for negative t-values
using E instead of D.

Call a subset S<= M convex if for all p, geS the geodesic segment from p to q lies
completely in S. A C*-function f: M — R is called concave if its Hessean 2 f is
negative semi-definite. The sets f ~*((t, c0)) are convex for each concave function f
teR.

Theorem 2. Let M be a simply connected manifold without focal points. Then
(i) The Busemann functions b, are C*-differentiable and concave for all veSM,
and the horodiscs are convex.
(ii) The sets H,N G, are convex.
(iii) If some geodesic is bi-asymptotic to some other geodesic cy =+ c, then c and c,

have constant distance a>0 and there is a totally geodesic, isometric imbedding F:
[0,a] x R =M with c=F| g, co=F o) xg-

Proof. According to Theorem 1, V2b,(q)=D, »o@(0) =0, s0 b, is concave. Hence B,
and also H,n G,=B,n B_, are convex sets. This proves (i) and (ii). Now suppose
that c is biasymptotic to c,. Let v be the initial velocity ¢, (0) and reparametrize c so
that q:=c(0)eH,. By Proposition4, (iv) we know that geH, ~ G,. This set is
convex, so the geodesic segment d, connecting p: = c,(0) with g liesin H, G,. Leta
be the length of d, and for each 0 <s<a call ¢, the geodesic with initial vector v,:
=V b,(do(s)). Then the mapping F: [0,a] x R — M, F(s,t):=c,(t) is an isometric
imbedding since the Jacobi fields

(502D, (0 d()=E, 0
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are orthogonal to the geodesic ¢, and, due to the lemma, parallel, hence of unit
length. From this it follows that the curve d,: = F| 0, a1x 3 has length a for all te R. If
d, was not the shortest curve connecting ¢o(t) with c(2), then |c(t), ¢o(t)| <a, and
repeating the construction starting with the points c,(¢) and ¢(¢) instead of pand q
we would get a curve d,, of length |c(?), co(t)|<a between p and g which is

. . . . . . .. DOF
impossible. So also d, is a geodesic segment. Hence all covariant derivatives —

s ds’
D OF D OF . . .
ai 75 and of course it ot vanish. Therefore F is totally geodesic.

6. Bounded Curvature

Let M be an arbitrary riemannian manifold and c: I - M some geodesic, Y a
nowhere singular Jacobi tensor along c. Then the tensor field U= Y’ Y~! which is
symmetric in the Lagrange case is a solution of the Riccati equation

U+U?+R=0. %)

If U is symmetric and defined on I=(0, co0) and the sectional curvatures of all 2-
planes containing ¢’ are bounded from below by some constant — r2, in other words
R> —r?-1, then due to Eberlein [4] the following estimate is known for all t>0:

—r-1=U(t)<r-coth(rt)- 1.

In particular [|U(¢)| <2r for all t= T:=(1/r)- arcoth(2/r), and if U() is defined
for all teR, then we get || U(t)|| Sr for all te R since we can shift the parameter of ¢
arbitrarily. For the corresponding Jacobi fields it follows that the derivative cannot
differ too much from the value of the Jacobi field:

1Y’ x| =YY= Yx|<|U||Yx|

for all parallel fields x L ¢'.

Assume that c: R —» M is a complete geodesic without conjugate points with the
curvature restriction made above: R= —r?-1. Call X:=A~'D=(4* 4)~!, apply
the above estimates of solutions of the Riccati equation (5) to the tensors A’ A~ ! and
D’D~" and use the fact that W(A4, D) =1, then the result will give a lower bound for
the Jacobi tensor A: For all =T

(AO)z@r Xl

(see [4, 6, 7] for details). In particular, each Ax, x L ¢, is unbounded, since X t)-0
for t— 0.

Using Proposition 4, we get immediately

Proposition 6. Let M be a manifold with p-bounded asymptote and all sectional
curvatures bounded from below by —r?. Then

(A, 0)2(p-Y/4r) "1/t
Jor all veSM, t= T =(1/r) arcoth (2/r).
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Two geodesic rays c,, ¢,: [0, 0)—> M, by definition, are of the same type if
[cy(8), c,(#)] is uniformly bounded for all t>0. If M is like in the proposition, the
uniform estimate of A implies that no two geodesic rays starting at the same point
can be of the same type (see [7]). Hence geodesic rays are asymptotic if and only if
they are of the same type. From this Remark and Theorem 2 one gets immediately
the “flat strip theorem” of O’Sullivan [15].

More important in our context is that the curvature bound leads to an estimate
of a part of the geodesic flow:

Theorem 3. Let M be a complete, connected riemannian manifold of dimension n+ 1
without conjugate points and sectional curvature bounded from below. Then the
following statements are equivalent :

(i) M is a manifold of bounded asymptote.

(ii) There are two n-dimensional subbundles & and % of TSM which are invariant
under the geodesic flow ¢ and orthogonal to its tangent vectors such that for some
constant >0

@y xI<Blix|| for all t20, xeZ,
@y YISBIYI  forall t£0, yed.

(iii) Thereis a continuous foliation X of SM whole leaves are (n+ 1)-dimensional
C'-manifolds which are invariant and stable under the geodesic flow in the Sfollowing
sense: There is a constant >0 such that for all t=0

1®cslrxll B.

Proof. (i)=>(iii). Suppose || Dlsy (0, )| Sp. First assume that M is simply
connected. Then we have the foliation X of Theorem 1 on M, with leaves X,
=Vb,(M) for all veSM. D, is related to H, and X, contains the oriented normal
vectors of H,, so for each xeT, X, we have

ey x=(D,(1) x5, Di(t) x,) for all teR.
Due to the curvature bound we know that || D'(¢) y|| <r|D(?) y|, so

Ibes X112 =11D,(#) xgll> + | D,(t) x> < p? 1 xgl|* + p? 17 | x4 2,
SO

by xll=B x| with B:=py/1+r*> for all ¢20.

If M is not simply connected, we do the same business on the universal covering and
project back to M. The projections of the leaves are regularly imbedded sub-
manifolds of SM with empty intersection, since the tangent space at each veSM is
uniquely prescribed by {(x, D,(0)x)eT, SM; x L v}.

(iii) = (ii) with ' =TX, % =TY, where Y,:={yeSM;—yeX _,}.

(ii) = (i). We claim that each Jacobi field of the form J()=(¢,, x)y, xeZ, has to be
stable: J(t)=D(t) x,. The reason is its bounded length. Consider the difference
Jacobi fields J,(t): =J(t) — D(t) x, which converge to J(t)—D(t) x;. Suppose ||(J
—DxyY (0)| >26 for some §>0, then ||J.(0)]| >4 for sufficiently big s. Since J,
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vanishes initially, it can be expressed by A -J4(0), and so we get on one hand for all
t>0

I95@)1 =1 4() J;0)[| = ((A(®))) IT,0)]| = ((A(2)))- 6.
On the other hand for all s>0
1T =TI =B

which is a contradiction, since {((A(s))); s>0} is unbounded. So J O =D(t) x.
A dimension argument now shows that all double tangent vectors of the form
(» D'(0) y) ly in &. Therefore, for =0,

1Dyl = (D) y, D'(t) Il =l b1 (v, D'(0) y)I| B (v, D'(0) y)|
SBY1+r% |yl

So M has p-bounded asymptote with p:=p-1/1+r2.

7. Anosov Manifolds

A closed riemannian manifold M of dimension n + 1 is called Anosov if its geodesic
flow ¢ is of Anosov type (in other notation a C- or U -system, see [1,2]). That
means that the bundle TS M splits into three subbundle ,% and & ; & and % have
fibre dimension n and are orthogonal to the geodesic flow ¢, and £ is a line bundle
which is tangent to ¢, and there are constants §, k >0 such that for all t=0

IbexxISBlIx] e, ¢_ x2B"-|x] & for xeZ,
Ibea VIZB MY, @7y y<B-lyle™ for ye%.

For this it is sufficient that there exists a ¢-invariant subbundle & of fibre
dimension n such that there are constants B=1, k>0 such that for all t =0, xeZ

IBes x| < B llxI| =¥

The relation for negative t we get from the ¢-invariance, and the bundle % is given
by “looking into the opposite direction”, that means ¥,;:=%_, for each veSM.
Here we use the canonical identification of T,SM and T_,SM. Klingenberg [14]
showed that closed Anosov manifolds don’t admit conjugate points, so it follows
from Theorem 3 that they have bounded asymptote. The Anosov estimates show
that the bundles & and % are transversal to each other. Therefore there are no
central Jacobi fields, and the intersection of the foliations X and Y are given exactly
by the integral curves of the geodesic flow on SM. Eberlein [4] proved also the
inverse statement: A closed riemannian manifold without conjugate points and
without any central Jacobi field is Anosov.

It is well known (see [1]) that compact manifolds of negative sectional
Curvature are Anosov. That can be easily seen as follows: If—k? is the upper
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curvature bound, it follows from the Rauch theorem (see [8], p 178) that for s >0,

0Zt<s
sinh (k(s—1))
D)l ém-

Passing to the limit s — 0o, we get | D(¢)|| < e~*' for t 2 0. If there is a lower curvature
bound —r?, too (which clearly exists for compact manifolds), we can estimate also
the derivative |D'(t)| <r-e~*, so M is Anosov with & as in Theorem 3 and
B=11+r%

The following theorem has been shown by Grove [10] for manifolds with
negative curvature using completely different methods.

Theorem 4. Let M be a compact Anosov manifold, D(M) the diffeomorphism group of
M with identity component D(M)°, and 1(M) the isometry group. Then

D(M)° n I(M)={1},

in other words, there exists no nontrivial isometry of M which is diffeotopic to the
identity.

Proof. Let {f,; 0=t <1} be a differentiable family of diffeomorphisms such that f,
=id, f,eI(M). The length of the path w,: [0, 11— M, w,(t): = f,(p) which leads from
p to f,(p), depends continuously on p. Therefore it is bounded above on the compact
manifold M, say by some constant L>0.

Now call M the universal covermg of M with pI‘O]CCthn map n: M - M. For
each point p in the fibre 7~ !(p)c M, peM letw,:[0,1] - M be the unique lift ofw,
starting at p. The mapping fl M- M, ﬁ(p) =w,(1) is an isometry of M, smce
lifting preserves all local properties. Since W, has the same length as w,, the
displacement function |p, fl(p)| is bounded above by L for all peM

In particular, if c: R — M is any geodesic, then the geodesic flo ¢ has bounded
distance from c and is thus biasymptotic to ¢ (see Section 6). If ¢ is different from
f Lo c up to reparametrization, then Theorem 1, (iv), shows the existence of a central
Jacobi field J along c. Hence also =, J is central on M which is impossible as we
mentioned above. So fl can only translate each geodesic, hence f;=idg and
therefore f; =id,,.

It is well known that the Anosov flows are structural stable, so the Anosov
metrics on a closed differentiable manifold form an open subset of the space .# of
all riemannian metrics on M (see [1, 2]). A similar statement is not true in general
for metrics with bounded asymptote as the following proposition shows:

Proposition 7. Let M be a closed differentiable manifold, g, a metric on M with
vanishing Ricci curvature. Then in the space # of all riemannian metrics on M each
neighbourhood of g, contains metrics with conjugate points.

Proof. For each ge.# let r, be the scalar curvature and A(g): = | r,d, M (integration
M

w.r.t. the volume element of g) the total scalar curvature. Ehrlich proved in [5] that
in each neighbourhood U of g, there exist metrics ge U with A(g)>0. This implies
the existence of conjugate points for g as Green showed in [9].

Therefore at least on Ricci-flat manifolds there are no open conditions that
imply “no conjugate points”.
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