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Summary. This is a contribution to the theory of binocular vision due to 
Luneburg and Blank. We give a short introduction to the theory and consider 
the various assumptions that have been made. Then we discuss several methods 
in order to test Luneburg's basic assumption of constant curvature empirically. 
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Richard Luneburg [10] tried to describe the geometry of binocular vision by a 
Riemannian metric. A central point of this theory (which was completed by Albert 
A. Blank [2]) is that this so called visual metric has constant Gaussian curvature K 
('Constant curvature condition', CCC) which mostly will be negative. CCC is 
assumed in the evaluation of all experiments which try to determine empirically the 
coefficients of the visual metric. There are, however, no cogent theoretical argu- 
ments in favour of CCC, and neither do we have a systematic empirical verification 
for it. The aim of this paper is to discuss mathematically some of the empirical tests 
which have been proposed. 

In Section 1, we give a short introduction to the theory and discuss the various 
assumptions which have been made. Some confusion has arisen from the fact that 
Luneburg and his successors changed their assumptions several times. In Section 2, 
we discuss the experiments mentioned above, this is the central part of the paper. 
Section 3 collects some useful facts on the geometry of constant curvature (we 
avoid any specification of K) and gives the proofs of the theorems. These are stated 
more or less precisely in the references, but without proof. The differential geo- 
metric methods which are used can be found in [4, 5, 10]. 

1. The Theory of Binocular Vision According to Luneburg and Blank 
1.1. Visual Versus Physical Geometry 

Geometry is not only a branch of mathematics, but also, in the original meaning of 
the word, a kind of experience of our environment. In this sense of the word, 
geometry consists of the metrical relations of space. We come to know these 
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relations by length measuring with solid rods. A sutticiently precise mathematical 
description of this geometry is given by the euclidean 3-space R 8 = {x = (xl, x2, 
xs); xl, x2, x8 ~ R}, equipped with the euclidan metric 

= + + d x L  

(Strictly speaking, the coordinates (xl, x2, x,) are determined by the geometry only 
up to a euclidean transformation; one has to make a suitable choice.) Let us call 
the pair (R 3, ds~hys) the physical space, and its geometry the physical one, since 
length measuring is a physical act. 

But there is also a quite different type of geometry. By means of our vision, we 
receive geometrical information about the surrounding space. Objects appear to 
be near or far, large or small, lines seem to be straight or curved. Let us use the 
term visual geometry for this kind of information. The visual geometry cannot be 
determined by length measuring like the physical one, but only by systematically 
questioning a test person. This is a task not of, physics, but of the psychology of 
perception. 

Common experience already shows that the two geometries do not agree; this 
is a source of optical illusions. Far away objects appear to be small, and depth 
perception is not so good that one could distinguish very great (e.g. astronomical) 
distances. 

Experiments show the differences between the two geometries more exactly. E.g. 
it has been pointed out already by H. v. Helmholtz, that apparently straight lines 
can be physically curved. One especially surprising example was given by A. Ames 
[8, 12]: the so called distorted rooms. These are oblique-angled rooms with curved 
walls which by means of binocular vision from a certain point of view look like a 
rectangular room with plane walls (' ordinary room'). 

R. Luneburg proposed to describe the visual geometry by some Riemannian metric 
ds~is, called visual metric, which is characterized by the following properties [12]: 

VMI. The geodesics of the metric ds~l~ appear to be the straight lines. 

VM2. Any two pairs of points appear to be equidistant if and only if their distances 
with respect to ds~i~ are the same. 

Luneburg showed that any two metrics fulfilling VM2 differ only by a constant 
positive factor (see 3.1). Call two such metrics equivalent. Given any equivalence 
class, one selects a metric by means of a certain normalization. 

Call visualfield the set of all points in the physical space which a fixed observer in a 
given situation can see without moving his head. This is some open subset V c R3. 
According to Luneburg, we assume the following fundamental hypothesis: 

//1. For any observer and any visual field V, there exists a metric ds~ on V which 
fulfills VAIl and VM2. 

The pair (V, ds~) will be called the visual space of the observer. The visual metric 
will depend on the observer and the visual field. The aim of Luneburg's theory is to 
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work out the general features of  this metric that are common to the binocular vision 
of  all normal-sighted persons. 

1.2. Bipolar Coordinates 

For  a more precise description of this metric we have to introduce suitable co- 
ordinates on the visual field V. Fix euclidean coordinates (xl, x2, x3) in the physical 
space such that  the x3-axis is vertical and the observer's eyes are fixed at the points 
L = (0, 1, 0) (left eye) and R = (0, - I, 0) (right eye). So the unit of  length is half  
the eye distance (about 3 cm). We may assume that V is a subset of  the half space 
H = {x e R 3 ; xl > 0} such that  0 = (0, 0, 0) lies in the closure V of F. 0 is called 
the egocenter of the observer. 

In the following, we restrict our attention essentially to the horizontal half plane 
E = {x e H;  x3 = 0} which most of  the investigations deal with. Call U ~ V n E 
the restricted visual field. Binocular depth perception arises f rom the parallax 
between the right and the left eye. This is described mathematically by the angle 
~?(x) = <~(L, x, R) (x E E arbitrary) called bipolar parallax. For  the second co- 
ordinate choose the bipolar latitude 9(x) = (c~(x) -/3(x))/2,  where ~ and/~ are the 
angles ~(x) = ~(x ,L ,  R), ~(x) = <~(x, R,L). The mapping (~2, 9): E--> (0, ~r) 
(-~r/2,  zr/2) is a diffeomorphism, and one has the transformation formulas 

(1) tan # = 2xl/u where u = x~ + x~ - 1 

(2) tan 29 = 2xlx2/(x~ - x~ + 1) 

(3) xl = (cos 29 + cos ~)/sin 

(4) x2 = sin 29/sin #. 

These so called bipolar coordinates have been introduced by Luneburg. However, 
it is more convenient to use the coordinate 

(5) 7 ~ 2 tan (r 

7 e (0, oo), instead of  #. Then we have to replace (1) by 

Y = ((4x~ + uS) 1t2 - u)/x~. (1) 

We then have the simple formula 7((Xl, 0)) = 2/xl for all x~ > 0. On the other hand, 
for any object being farther than 15 cm, the relative error (7 - ~?)/~? will be less 
than 2~ .  Hence the change from ~ to 7 is purely technical and without empirical 
significance. We will use the notation x = (7(x), ~(x)) for any x ~ U. 

Luneburg and his successors agreed that these coordinates are related to perception 
as follows [2, 7, 11, 12]: 

/-/2. The perceived distance r(x) of some point x ~ U from the egocenter of  the 
observer (located in 0) depends only on the parallax 7(x). In other words: all 
points of  the excentric circle {x e U; 7(x) = const} (so called Vieth-Muller 
circle, VMC) seem to be equidistant f rom the observer. 
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H,. The coordinate 9(x) is the apparent angle between x and the xl-axis. The 
hyperbolas {x ~ U; 9(x) = const} (so called Hillebrand-hyperbolas) appear to 
be radial rays, and the transformations (y, 9) ~ (Y, 9 + const), called ~o-shifts, 
are visual isometries (' iseiconic transformations') .  

More precisely, we may sum up/-/1, H2,//3 by the following 

Luneburg-Hypothes is  ( L H )  
For any observer and any visual field U = E, there exist smooth (i.e. C o~) functions 
p: (0, oo) ~ (0, oo) and s: [0, oo)--~ R with the following properties: 

1) p' > 0, l imw ~o p(~,) = 0 
2) s (0)  = 0, s ' (0 )  = 1 
3) The metric 

(MO) ds z = p'(~,)z d~, 9" + s(p(~,)) ~ d9 z 

obeys the rules V M I  and VMz.  

The functions p and s have to be determined by experiment. They have the following 
geometric meaning: p(~,) denotes the perceived distance between the observer and 
some point x ~ U with parallax 9,(x) = ~,. So p relates physical and visual geometry. 
On the other hand, the function s is defined in terms of visual geometry alone: 
2~rs(r) would be the circumference of the circle of radius r centered at 0 in the visual 
space. One may replace s by the curvature function K = - s" /s  (assume s > 0); the 
functions K and s determine each other. 

1.3. Extension to 3-Space 

The bipolar coordinates defined in 1.2 can be extended to H as follows: If  x ~ H, 
define ~(x), ~(x), 9,(x) as before, but now all the angles have to be taken in the plane 
defined by the three points L, R, x. This is called the plane o f  elevation Ex, and the 
angle ~(x) between the two half planes E and Ex is called elevation. (y, ~o, t~) is a 
coordinate system on H with transformation formulas (Set d ~ (x~ + xg) 1/2): 

( l ' ) r = ( ( 4 d 2 + u 2 )  112 - u)/d, u = d 2 + x~ - 1 
(2') tan 2~0 = 2 d . x 2 / ( d  2 - x~ + 1) 
(6) tan t~ = x3/x l  

and so on (see e.g. [7]). Now Luneburg assumes the following: 

L H '  If  V = H, then the visual metric is of the form 

(MO')  ds 2 = p'(9,) 2 d~, 2 + s(p(y))(d92 + cos29 d#2), 

where p and s are the functions defined in L H .  

It follows from L H '  that the surfaces ~, = const (so called Vieth-Muller-Tori)  are 
perceived as parts of euclidean spheres of radius s(p(~,)). Luneburg notes that this 
can be only a first order approximation [12, p. 633]. The sky (9' = 0) looks more 
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like a flattened dome rather than like a sphere (moon phenomenon). Little work 
has been done in order to test LH' empirically. This is one reason why we will 
restrict our attention to the horizontal plane E. On the other hand, if LH' is a 
reasonable hypothesis, it suffices to determine the functions p and s by considering 
the visual geometry of  U. In particular, if the curvature K is constant on U and if 
LH' is valid, then K will be constant on the whole of  V. 

1.4. Various Approaches to p and s 

It is very difficult to determine the two functions p and s at once by means of  
experiments. So one has looked for further reasonable restrictions on the metric 
(M0). The most restrictive hypotheses were made by Luneburg: 

CCC (Constant Curvature Condition) [12, p. 631] 

K = const, i.e. s = sink (see 3.2) 

APC (Angle Preservation Condition) [11, p. 44, 45] 

The 7-shifts (7, 9~) -~ (~' + const, ~0) are angle-preserving, i.e. there is some constant 
> 0 and a function m: (0, oo) --~ (0, oo) such that 

(M1) ds 2 = m(7)2(q2d~ + d~). 

CCC will be discussed later. APC was introduced by Luneburg in order to explain 
the distorted rooms of  Ames (see 1.1). One constructs these by shifting the 7- 
coordinates of  the walls of  an ordinary room by a constant value. Since these rooms 
are visually indistinguishable, he first claimed that the 7-shifts should be isometrics 
(iseiconic transformations) [11, p. 19]. But this turned out to be inconsistent with 
CCC [l l, p. 47]. The best that one could do was to require the 7-shifts to be 
conformal mappings; this is APC. 

Theorem 1 (Luneburg). I f  one assumes CCC and APC, the metric (MO) is uniquely 
determined by the constants K and ~ up to equivalence. Any such metric is equivalent 
to one of  the following: 

( g 2 )  ds 2 = 2(e ~ + K e-~ z d~P + d~2), 

where a > 0 and K E [ -  1, oo). Any two of  these metrics are not equivalent to each 
other. We have 

p(y) = (tanrl ,)-z(2 e-~ 

where (tank)- z denotes the inverse function of  tank (see 3.2). One has 

I:-~'2tan-Z(kZ'2t) f o r k  > O 

(tank)-l(t)  = for k = 0 
I . ( -k )  -~/a tanh -z ( ( -k) l /2 t )  for k < 0 

and Itl < ( - k )  -1/z. 
(Proof: 3.3) 
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A weak version of this theorem was stated in [11, pp. 48, 56, 103, 104]. The metric 
(M2) appears again in [12, p. 636] without theoretical justification. Although the 
arguments in favour of APC are not cogent (see below), many authors use the 
metric (M2) [1, 9, 14,15]. Only the two constants K and ~ are individual charac- 
teristics which have to be specified by experiments, according to this assumption. 
After R. Luneburg's sudden death in 1949, his work was continued by his colleagues 
at Knapp Memorial Laboratories. They retained CCC, but replaced APC by the 
following hypothesis [2, 7]. For a given visual field U c E call 7o ~ inf {y(x); 
x e t]}, and p(V) ~ p(F + 70) for any F > 0. 
VFC (Visual FieM Condition) 
The functions t~ and s are the same for any visual field U c E. 
This assumption perfectly explains the distorted rooms of Ames: If  U1 is the 
interior of some distorted room which looks like the interior of an ordinary room 
U2, then the two configurations differ only by a y-shift; by VFC, this is an isometry 
from U~ onto U2. 
There are two new ideas in this theory. (i) The determination of the entire function p 
is left to the experiment (for one visual field). (ii) The visual metric depends 
explicitly on the visual field U (since 70 depends on U). However, it is not clear 
whether this dependence is always as simple as VFC states. The more extensive 
experimental tests of A. Zajaczkowska partially contradict this assumption: 
'Neither Luneburg's mapping function nor that of Hardy and Blank can be 
considered as final' [15, p. 527]. A more recent investigation of Battro et al. [1] 
states that in large open fields even the sign of the curvature can vary if the visual 
field is changed. We do not discuss the point further in this paper. 

Hardy, Blank et al. [7] also tried to justify CCC. They claimed that there are 2- 
dimensional totally geodesic submanifolds ('visual planes') in V in any given 
position and orientation (see also [2]). But this is difficult to verify by experiments. 
We believe that one should find a test of CCC which can be carried out in the 
horizontal plane E. We want to show that this is possible by means of some 
'classical' experiments. The method has been indicated by Luneburg [12, p. 639] 
and Blank [2, p. 918]. We want to specify these ideas. 

We assume in the following nothing but LH; hence the visual metric has the form 
(M0) for a fixed observer and a fixed visual field U = E c~ V, V c H. 

2. Empirical tests of  CCC 
2.1. The Alley Experiments 

These experiments are described in [7, pp. 20, 21] as follows: 'Two lights are fixed 
at the points Qi ~ = (71, ~01) and Qi- = (71, cpl), equidistant from the observer and 
symmetric to the median. Other lights are then introduced successively in pairs 
Qr at predesignated stations approaching the observer. The observer is asked to 
adjust the pair Q~ according to two different sets of instructions: (a) Adjust the 
lights Q~, Q~: . . . . .  Q~ until the two rows of lights appear to be straight, parallel 
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to each other and parallel to the median.' The word 'parallel '  is explained by 
'neither converging nor diverging in distance'. '(b) With only the two lights Q~ 
left on, set the pair Q~ to appear symmetric to the median and to have the same 
apparent separation as the two fixed lights. The result of experiment (a) is called a 
parallel alley: of experiment (b), a distance alley.' (See also [2, 3, 12, 13, 15].) 
In the visual space, the distance alley may be characterized as a locus of constant 
distance from the median ray (xl-axis). The parallel alleys are not so easy to 
interpret. Callparallel lines the 'walls'  of  these alleys. According to Luneburg, these 
are ' the visual geodesics which are sensed as being perpendicular to the subjective 
frontal plane.' [7, p. 21] The subjective frontal plane is not the x2x3-plane, since the 
metric (M0) cannot be extended to the x2-axis. It is a visual plane orthogonal to 
the median which contains the egocenter 0. Hence it is not a subset of V. In order 
to make the characterization of Luneburg precise (see PAA below), we have to 
enlarge the visual space (U, ds2), as Luneburg does for the special case of constant 
curvature. Call po ~ sup {p(7(x)); x E U}. Then we define the enlarged visual space 
(M, ds 2) to be the open disk M = {x ~ ~2; x~ + x~ < p~} together with the metric 

(MOe) ds 2 = dr 2 + s(r) 2 d92 

where (r, q0) are the ordinary polar coordinates on M (see 3.2). The visual space 
(U, ds 2) is isometrically imbedded in M by the mapping f :  U ~ M, f ( x )  = p(7(x), 
~0(x)). (We are writing x = (r(x), ~o(x)) for any x E M, x # 0.) U is a part of the 
physical space, but the embedding of U into the physical space cannot be extended 
to M. 
Now we can interpret the parallel alleys. Call g: (0, po) ---> M the median normal 
geodesic ray; hence 9(g(u)) = 0 for all u ~ (0, po)- (Normal means parametrization 
with respect to arc length.) Let h: ( -Po ,  po) ~ M be the normal geodesic with 
h(0) = 0 and (h(u)) = r for all u ~ (0, po). By identifying Uandf(U) ,  we consider 
U as a subset of M. The assumptions of Luneburg can now be stated as follows. 
UPA (Unique Perpendicular Assumption) 
There is a neighborhood G of g([0, po)) in M such that any x ~ G can be joined to h 
by a unique geodesic (up to parametrization) Px in G which is perpendicular to h. 

l 

PAA (Parallel Alley Assumption) 
For  any x ~ U n G, px n U is the parallel line through the point x. 
The first condition UPA says that the ray g has no focal points, this is equivalent to 
saying that s '  > 0 on (0, Po) which is automatically true i f K  < 0. Otherwise it says 
that the visual space is not too large, e.g. isometric to a part of a half sphere, if 
K --- const > 0. This is purely technical in nature. The second condition PAA is 
crucial. 

If  CCC holds and UPA and PAA are valid, the results of the alley experiments can 
be predicted as follows (see [7] for more details). If  (r, 9) E U = M is a point of 
distance d from g, we have by the sine law for rectangular triangles (Eq. (5) in 3.2): 
sink d = sin qo. sink r. Hence, if dx is the distance line (wall of the distance alley) 
through x, then for all points (r, ~0ar) on dx we have 

sin qoa, sin~: r = sin ~0(x) sintc r(x). (1) 
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On the other hand, if  (r, ~o) is a point on a parallel line Px which meets h at h(u), we 
have by the cosine law for rectangular triangles (Eq. (6) in 3.2): sin ~0 = cos 
[(zr/2) - ~0] = tanK u/tanK r. Hence it follows for all points (r, ~%,) on Px 

sin ~o,r tank r = sin ~o(x) tank r(x). (2) 

Using the equations (1) and (2) in 3.2, one can eliminate sink r and tank r f rom the 
preceding equations (1) and (2), and the result is 

sin 2 ~Oar - sin 2 ~o(x) 
= c o s  K r ( x ) .  O) sin 2 %,  - sin 2 ~0(x) 

The left-hand side of  Eq. (3) can be determined by the alley experiments for any 
r = p(~,). I f  CCC holds, this has to be the same, whatever 7 and ~o(x) arc, if  7(x) is 
fixed. Also the converse is true, as Blank states [2, p. 918]: 

Theorem 2. Assume UPA, PAA. For x ~ U n G and any small enough 7 > 7(x), 
let (7, q~ar(X)) be on the distance line d,: and (Y, ~%~(x)) on the parallel line p~. Assume 
that the quotient 

sin 2 q~a~(X) - sin 2 q~(x) 
q(x, 7) ~- sin z ~ r (x )  - sin 2 ~o(x) 

is constant with respect to 7 and ~o(x) and depends only on 7(x). Then the metric (MO) 
has constant curvature on U. 

(Proof: 3.4). 

Hence CCC can be tested by the alley experiments. I f  CCC is valid, the metric 
(M0) can be determined completely. The sign of  the curvature K is given by (3), 
since K ~ 0 iff COSK r _~ 1 for arbitrary r s (0, po), hence iff ~a ~ 9, . I f  K # 0, one 
can use equivalence to fix K = + 1, hence s = sink equals sin resp. sinh. p(7) = r 
then can be computed from (3) and (1). I f  K = 0, one has to fix r(x) arbitrarily for 
some x and to compute p(7) = r by (1). 

2.2. The Double Vieth-Mfdler circle Experiments 

(a) The Three-Point Experiment 

Consider the two Vieth-Miiller circles associated with two given values 71 < 72 of 
the bipolar parallax. Let Qo = (yl, ~%) and Q1 = (71, wl) be two points moving on 
the outer circle 7 = 71 and let Q2 = (71, ~2) be a freely adjustable point on the 
circle 7 = 72- The observer is asked to leave Q0 and Q1 fixed and to adjust the 
point Q~ so that the sensed distance from Q1 to Qo equals the sensed distance from 
Qo to Q2- (See [7], p. 25, also [2, 12].) 

Which relation holds between ~bl ~ ~i - Wo and 42 ~ 92 - Wo if CCC is valid? 
By the cosine law (see Eq. (4a), (4b) in 3.2) there are certain functions F, G, H such 
that for any geodesic triangle with side lengths a, b, c and angle C opposite to c 

F(c) = G(a, b) + H(a, b) cos C. 
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Hence  with a ~ p(71), b ~ p(72), c = IQ~, Qo] = IQ2, Qol (distance with respect  
to the visual metr ic  (M0)) we get for  the triangles (0, Qo, Q1) and (0, Qo, Q2) 

F(c) = G(a, a) + H(a, a) cos ~bl, 

F(c) = G(a, b) + H(a, b) cos ~b 2. 

Hence  the two cosines are affinely related:  

cos ~bl = M cos ~b2 + N (1) 

where  

M = H(a, b)/n(a, a) = sink b/sin~ a, (2) 

G(a, b) - G(a, a) f cosK  a(cosK b - cosK a) if  K # 0 
N = = ) K sin~ a (3) 

H(a, a) I.(1 - b2/a2)/2 if  K = 0. 

M and N can be determined by  the experiment.  I f  K = 0, we have 2N = 1 - M 2, 
hence 

N 2 / ( ( N -  1) z - M 2) = 1. (4a) 

I f  K # 0, we get f rom (2) using K sin]  = 1 - cos~ (see 3.2) 

c o s ~ b  = 1 - M2Ksin~ a 

and f rom (3) 

cos~ b = N2K 2 sin~ a/cos~ a + 2NK sin~ a + 1 - K~ sin a. 

Combin ing  these two equations,  we end up with 

N g / ( ( N -  1) 2 - M 2) = cos~ a. (4b) 

(See [7] for  more  details) 

I f  C C C  holds,  we can decide also by this exper iment  which sign K has. Call P the 
lef t-hand side of  (4a) and (4b): we have K ~ 0 iff P ~ < 1. Fo r  K # 0, we can fix 
K = + 1 again  and  compute  p(~,~) = a and P(~2) = b by means  of  (4b) and (2). I f  
K = 0, we m a y  fix P(9'1) = a arbi trar i ly and compute  p(72) = b by (2). 

I t  is not  known  whether  conversely C C C  can be derived f rom (1) alone, since this 
gives us no informat ion  abou t  the isosceles triangles. We can get the latter by 
ano ther  exper iment  which also gives a more  exact me thod  for  the determinat ion of  
the slope M in Equat ion  (1). 

(b) The Four-Point Experiment 

Let Q1 = (71, ~0~) and  Q2 = (7~, ~02) be two points  on the circle ~, = ~,~ and let 
Q3 = (~'2, q~3) and Q4 = (y2, q~4) be two other  points  which slide on the circle 
y = 72 (~'~, y2 as above).  The  observer  is asked to equate  the sensed distance f rom 
Q3 to Q4 to the sensed distance f rom Q1 to Q2. [7, p. 27; 12, 2]. 
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Again  we m a y  predict  what  happens  if  C C C  holds. Set a -- p(~l), b = P(y2) as 
before,  and call ~8 = ~1 - ~ ,  ~4 = ~8 - ~4- Call d ~ I Q~, Q21 = I Qs, Q41. Then  
by  the cosine law (see (a)) we have 

G(a, a) + H(a, a) cos ~b8 = F(d) = G(b, b) + H(b, b) cos ~b4. 

Moreover ,  i f  d = 0 we have ~b8 = r = 0, hence 

G(a, a) + H(a, a) = F(O) = G(b, b) + H(b, b). 

So we derive the relation 

1 - cos r H(b, b) sin~ b M2 
1 - cos ~b4 = H(a, a) - sin~-----~ = (5) 

for  a rb i t ra ry  K ~ ~.  

(c) Application to the CCC-Problem 

One can use a combina t ion  of  bo th  experiments  for  a test o f  CCC.  Fo r  this, one has 
to be sure tha t  there are enough isosceles triangles: 

ITA (Isosceles Triangle Assumption) 

F o r  all values a, c with c ~ a < p0, there exists an isosceles triangle (0, Q1, Q2) in 
U w i t h  side lengths a = [0, Q~I = IO, Q2I, e = [Q1, Q2I. 

T h e o r e m  3. Assume ITA.  Assume that for all ~'1, 72 with ~'2 > yl > ~'o ~ inf{y(x);  
x e U}, there exist real constants L, M, N such that in the three-point and the four- 
point experiments for any choice of  ~b~ and ~b3 (notation as above) the following 
relations hold: 
(a) cos r = M cos ~b2 + N 

(b) 1 - cos ~b8 = L(1 - cos ~b4). 

Then the metric (MO) on U fulfills CCC. 

(Proof :  3.5) 

Unfor tunate ly ,  the assumpt ion  I T A  cannot  be verified directly since the distances 
are not  measurable .  A necessary condit ion is that  the perceived ~0-domain is larger 
than  60 angular  degrees. By the Rauch  compar i son  theorem (see [4]), this is also 
sufficient if  K ~< 0. In  the general case, one m a y  replace I T A  in Theo rem 3 by the 
following two assumpt ions  which are easy to verify: 

(i) The  perceived ~-domain  is larger than  90 degrees. 

(ii) U P A  holds. 

The  a rgument  goes as follows: I f  e e (0, po) is small enough,  I T A  holds for  all 
a, c < e, by (i). This is because small triangles in M look nearly like euclidean 
triangles. Call eo the sup remum of  all such e. We have to show eo = p0. Assume tha t  
this is not  true, i.e. eo < po, then it follows by (ii) tha t  s'(eo) > 0. N o w  by Theorem 
3, C C C  holds on the subdomain  M' ~ {x e M; r(x) < eo} o f  the enlarged visual 
space M.  (Replace po by eo !) Claim: I T A  is fulfilled on M '  even for  all a, e with 
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c < a + e for some positive e. I f K  ~< 0 on M ' ,  this is clear by (i); i f K  > 0, then it 
follows because M '  is isometric to a small disk on a sphere of  radius 1/K 112, and this 
disk lies on one half sphere since s'(eo) = sin~r (e0) > 0. Therefore, by continuity 
ITA is fulfilled also for all a, c with c ~< a < e0 + 8 for some positive ~. This is a 
contradiction to the choice of  e0. 

A result similar to Theorem 3 has been conjectured by Luneburg [12, p. 639], but 
the argument he gave is only a transformation of the problem. 

2.3. Discussion 

We do not see any good reason why CCC a priori should be valid. Free movability 
of  rigid bodies cannot justify this assumption since the same body will have 
apparently different size in different positions. Also the lack of absolute localization 
proved by the distorted rooms of Ames (compare [12, p. 631]) does not give an 
argument for CCC, as we saw in 1.41. 

On the other hand, this assumption is crucial for the known empirical methods in 
order to determine the functions p and s of  the metric (M0). Hence we have to look 
for an empirical test of  CCC. For  simplicity, this should be performable in the 
horizontal plane E. 

There are several experiments which are negative tests of  CCC. By this we mean the 
following. Under the assumption of CCC certain relations between measurable 
data have to hold; these can be examined by experiments. E.g. the experiments of  
the equipartitioned geodesics [7, 2] belong to this group. As far as we know, 
however, the alley and double VMC experiments described above are the only 
performed positive tests of  CCC: they examine a set of  relations which are valid if 
and only if  CCC is true. 

The alley experiments have been reported by many authors [3, 7, 12, 13, 15], but 
only Shipley [13] specifies the variance of  the quotient q(x, ~,) in Theorem 2 with 
respect to 7 (unfortunately not with respect to ~(x), too). Most of  his results support 
CCC. However, one has to suppose always the condition PAA which is somewhat 
arbitrary and 'conspicuously absent in the instructions to the observers' ,  as Blank 
states [2, p. 919]. On the other hand, the term 'paral le l '  together with the explana- 
tion 'walls that appear  neither to converge nor to diverge' [7, p. 49] is difficult to 
understand and not unequivocal. E.g. if the visual geometry is supposed to be 
hyperbolic (constant K < 0), any two geodesics either converge or diverge. There 
are also several observers for which in Shipley's experiments the quotient q(x, y) 
does depend on ~, in a systematic (not random) way. This irregularity could arise 

1 We wish to mention Luneburg's interesting effort to justify CCC with K < 0 on planes of 
constant physical height h below the horizontal plane E by what he called Cyclopean projection 
[11, p. 51-56]. However, according to his theory developed in 1.3, these planes are not totally 
geodesic with respect to the visual metric. Moreover, he overlooked the following: If he were 
right, the curvature value would tend to - ao for h ~ 0. Hence this metric cannot be extended 
to E. 
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from the difficulties mentioned above. See [2, p. 919, 920] for a more explicit 
discussion of the point. 

Therefore, the second quite independent CCC-test by means of  the double VMC 
experiments is very important. One does not need additional assumptions, and the 
instructions to the observers are simple and clear. Moreover, one can also test by 
these experiments whether the ~0-shifts are really isometries. The reported results 
[2, 7, 9, 14] impressively agree with the predictions following from CCC. However, 
none of  these performed experiments are sufficient for a positive CCC-test. Since 
Zajaczkowska [14] and Indow et al. [9] worked with the assumption of  the Luneburg 
metric (M2), only the two constants K and a had to be determined. For  this it was 
sufficient to consider two fixed y-values yl and 72. Hardy et al. [7] only assumed 
CCC, therefore the function p had to be determined entirely by experiment. Hence 
they fixed the y~-value and only varied 72. For  a positive CCC test, we need the 
values L(71, Y2), M(71, Y2), N(y~, Y2) for arbitrary 9'1 < 72, hence both VMCs have 
to be varied. 

Comparing the methods 2.1 and 2.2, we note a remarkable difference. The parallel 
alley experiment uses the immediate impression of straightness, for the double VMC 
experiments, the perception of  distance is needed. If  the results of both experiments 
agree, this is a hint that the two defining axioms VM1 and VM2 are compatible. 
This was not clear at the beginning, since we saw that VM2 alone characterizes the 
visual metric. The compatibility of  both axioms means that apparently straight 
lines are shortest with respect to our intuitive distance perception. 

It was not our purpose to vote in favour or against CCC. We only believe that this 
assumption is basic for Luneburg's theory of  binocular vision, hence we want to 
propose a systematic empirical test of  CCC along the lines developed above. 

3. Mathematical Appendix 

3.1. Uniqueness of a Visual Metric 

Let ds~ and ds= = be two Riemannian metrics on Vwhich both obey to VM2. Calling 
two pairs of  points equivalent if they have the same distance, this yields the same 
equivalence relation with respect to either metric. Call T V  = V x R 3 the set of 
all tangent vectors of V. Then for any two vectors v, w E T V  we have ~ vii 1 = ~ w~ 1 
if and only if I]vl12 = Ilwl12, where Ilx[[, for any x ~ T V  denotes the length of  the 
vector x with respect to ds~, i = 1, 2. In particular, if Ilvlll = 1 and Hvl[2 = r for 
some r > 0, we have I[ wll 2 = r for all w E T V  such that I[ will = 1. Hence, by homo- 
geneity, we have ~wll2/Hwlll = r for arbitrary w ~ TV, therefore ds~ = r 2 ds~. 

3.2. Some Geometry of Constant Curvature 

Throughout this paper, we are using the following model space (M, ds 2) for the 
2-dimensional geometry of constant curvature K. Let M be the euclidean disk 

M - -  { x =  (xl, x=)eN=;x~ + x ~  < r~} 
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for a suitable number ro E (0, ~ ] .  Introduce polar coordinates (r, ~o) on M: 

r (x )  -- (x~ + x~) 112 for all x e M, 

cos 9~(x) = x l / r ( x ) ,  sin ~0(x) = x2/r (x) ,  ~o(x) E ( -~r ,  ~r] 

for x # 0. The metric is defined as follows: 

ds 2 = dr 2 + sin~ r d~# 

where sink is the solution of the initial value problem 

sin~r + K sink = O, sinK(O) = O, sin~:(O) -- 1. 

We have 

t K - l ' 2 s i n ( K l ' 2 r )  if  K > 0  
sinK r = i f K  = 0 

[ . ( - K )  -1/2 sinh ( ( - K ) l 1 2 r )  i f K  < 0 

We also introduce the functions cosK ~ sink and 

tank ~- SinK/COSK. (1) 

I f  K > 0, tank is defined on the interval ( - ~ r / 2 K  ~12, zr/2K1/2). In this case, we 
require ro <<. *r/2K ~12 which follows f rom UPA (see 2.1). Moreover, we have the 
useful relation 

K sin~: + cos~ = 1, (2) 

since (K sin~: + sin~r2) ' = 2 sin~ (K sink + sin'S) = 0. 

The tr igonometry of constant curvature is ruled by the sine and the cosine law (see 
[5]): suppose that we have a geodesic triangle in M with side lengths a, b, c and 
angles A, B, C opposite to the corresponding sides. We have the sine law 

sin A sin B sin C 
sink a = sink b = sink C (3) 

and the cosine law for the angle C 

cosK c = COSK a COSK b + K sink a sink b cos C (4a) 

if  K # 0, and 

c a = a 2 + b ~" - 2ab cos C (4b) 

if  K =  0. 
For  rectangular triangles (C = ~r/2) we have in particular 

sin A = sink a/sinK c (5) 

by (3). Moreover,  f rom the cosine laws for the angles A and C we can eliminate 
a and get for K # 0 

COSK C/COSK b = COSK b cost  c + K sin~ b sink C COS A, 
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hence 

cos A = COSK C(1 -- COS~ c)/KSinK b sink C COSK b, 

and  using (2) and  (1), we get 

cos A = tank b/tanK c 
which is also valid if K = 0. 

(6) 

3.3. Proof of  Theorem 1 

A compar i son  o f ( M 1 )  and (M0) (with s = sinK, CCC) shows tha t  one has to solve 
the ordinary  system 

p ' 2  = c#m2; (sink o p)2 = m 2. (1) 

This is equivalent  to solving the differential equat ion 

p,2 = cr2(sinK o p)2 (2) 

and setting rn 2 = p'2/cr2. According to LH, the funct ion p in (M0) has to be positive, 
its derivative negative, so We get f rom (2) 

p' = - ~ sink o p. (3) 

We are looking for  all positive solutions p of  (3) such tha t  l im~.  o~ p(7) = 0 as it was 
demanded  in LH. 

Assertion. These are the following functions PK,c : (0, 00)---> (0, 00) 

PK,c(7) = (tanK/4)-l(e e -~ (4) 

where c > 0 is an arb i t rary  constant  with c 4 2 / ( - K )  1/2 i f K  < 0. 

Proof. One has 

+ K 2  ((tanK/4)-l)'(t)= 1/(1 ~ - t  ) .  

Call R(y) := c e -  ~ then R '  = - aR. Hence  

(pK,c)' = - ~ R / ( I + K R 2 ) .  (5) 

On the other  hand  we have for  all z ~ • the fo rmula  sin 2z = 2 sin z cos z = 2 tan 
z/(tan 2 z + 1). This fo rmula  extends also to all z ~ C where the r ight-hand side is 
defined. F r o m  this we get for  all K e R, t E R: 

( K z t ) .  sink t = tanK/4 t / \ l  + ~- tanK/4 

Using (5), one gets tha t  PK,c is a solution: 

sinKopK,c = R  1 + 2 = --(OK,c)/a. 
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The solutions o f  (3) are in 1-1-correspondence to the initial values. Fo r  K ~ 0, 
p~r,~(0) = (tan~r/4)-l(c) can be an  arbi t rary positive number,  Hence we found  all 
positive solutions in this case, and they all fulfill limy_. | P(9') = (tanK14)- 1(0) = 0. 
I f  K > 0, then the set o f  initial values o f  the solutions (4), pK,~(0) = 2K-1/s t an -1  
( 89 is the interval (0, ~r/KllS). T h e  solutions with initial values m r / K  ~/2, n ~ N,  
are constants,  and  the remaining positive solutions are o f  the type pr,~ + mr /K  ~l~'. 
But these two types o f  solutions do not  fulfill lim ~ | P(9') = 0, but  only those o f  
type (4), so the assertion is proved. 

I f  p is a solution o f  (3) with curvature value K, then p ~ kp  for  arbi trary k > 0 
solves (3) with K replaced by g = K / k L  This is because sing (kp)  = k sins p. The 
two cor responding  metrics, ds s = p'(~,)z dy s + sin~ p d~02 and dg 2 = ~'(9,) 2 d~, 2 + 
sins t~ d~ 02 are related by cl~ s = k ~" ds 2, hence equivalent. Now,  if  p = PK,e, we have 
P = p~,k~- Therefore,  one can normalize the metric by  choosing c = 2 (say). Each 
two distinct solutions PK ~ PK.Z are no t  equivalent. However ,  by the restriction 
c ~< 2 / ( - K )  1/s for  K < 0, one has to  assume K / >  - 1 .  This is no restriction: if  
K < - 1  and  PK,~ is a solution, then c < 2 / ( - K ) v L  N o w  ps.~ is equivalent to  
p~ with K7 = 4K/c  2 >>. - 1. 

The solution p_ 1 plays a part icular  role: it is the unique one with p(0) = ~ .  This 
would mean  for  a visual metric that  an impression o f  infinite distance is possible. 

3.4. Proof of Theorem 2 

1. We are working in the extended visual space M. U is considered as a subset o f  
M. Let  us write x = (r(x) ,  ~(x) )  for  all x ~ M,  where (r, ~o) are the polar  coordinates 
in t roduced in 3.2. Let K: M - +  • be the Gaussian curvature function and k = 
K o g, where g :  [0, p0) -+  M is the median ray  (~o = 0), parametr ized with respect to 
arc length. I t  is sttliicient to prove that  k is constant  since the curvature function o f  
the metric (M0e) is the same along any geodesic ray emanat ing f rom 0. Let a ~ (0, 
po) be fixed arbitrarily. We will show that  klE0,al is constant.  

2. Call x ( t )  ~ (a, t )  for  t E I = ( - e ,  ~). I f  ~ > 0 is small enough,  then x ( t )  E G for  
all such t (compare UPA).  Call dt the distance line and Pt the parallel line th rough  
x( t ) .  Parametrize bo th  curves with respect to  their r-coordinate,  i.e. a parameter  u 
is chosen such that  r(dt(u)) = r(pt(u))  = u. Fix b ~ (0, a] arbitrarily and call 

~oa(t) ~ ~o(a~(b)), 

~pp(t) ~- q~(pt(b)). 

By assumption o f  the theorem, there exists a constant  q (only dependent on a = 
r (x ( t ) ) )  such that  

sin s q~a(t) - sin 2 t = q (sin 2 ~%(t) - sin s t )  (1) 

for  all t ~ I. Differentiating twice and  taking the value at t = 0, one gets 

~ ( o )  s - 1 = q ( ~ ; ( o )  s - 1),  ( 1 ) :  
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= ' 0  because ~oa(0) ~0v(0) = 0. We will now compute the values of  ~0a( ) and ~ (0 )  in 
terms o f  the fundamental solutions of the Jacobi differential equation 

(J)  j"  + kj  = O. 

Call s, c: [0, a] --> R the solutions of  (J)  with 

s(0) = 0, s'(0) = 1; c(0) = 1, c'(0) -- 0. 

3. For  this, consider the curves e ( t ) ~  p t (b )=  (b, ~%(t)) and f ( t ) ~  a~(b)= (b, 
~oe(t)) for t ~ I. We have 

e'(O) = (d/dt)t=o (b, q~,(t)) = ~'~(O)F(b, O) 

where F(r, ~o) is the vector field (O/&p)(r, q:). Similarly, 

f ' (O)  = 9'e(O)F(b, 0). 

Now A(u) ~ F(u, O) is a Jacobi field along g with initial values A(0) = 0, A'(O) = 
h'(0); h: ( - po ,  p0) --> M was the geodesic perpendicular to g as defined in 2.1. Call 
E(u) the parallel vector field along g with E(0) = if(O). Then we have A(u) = 
s(u)E(u) for 0 ~< u ~< a, since both sides of  this equation are Jacobi fields with the 
same initial values. Hence it follows 

e'(O) = go;(O)s(b)E(b), (2) 

f '(O) = go'a(O)s(b)E(b). (3) 

4. There is a quite different description of the left-hand sides of Eq. (2) and (3). 
Reparametrize art and Pt as followS: Let a~(u) be the nearest point to g(u) on the 
curve dt for 0 ~< u ~< a, and let/3 t: [0, a] ---> M be the curve Pt parametrized with 
constant velocity (]l/3~n = const) such that/~t(0) lies on h and fit(a) = x(t). Call 
v(t, u), w(t, u) the parameter transformations: fit(u) = pt(v(t, u)), dr(u) = dt(w(t, u)). 
Then we have v(O, u) = u for all u E [0, a] and 

(O/Ot)t = o~t(u) = (8/et)t = opt(u) + ~tt (0, u)g'(u). 

The second term of the right-hand side has to vanish: Since the boundary, curves 
of thevar ia t iont  ~--~/~t(u)foru = 0andu  = aintersectthegeodesicgperpendicularly 
and the u-parameter is proportional to arc length, all curves t ~--~t(u) for 0 g u <~ a 
have to be orthogonal to g, hence the g'-component of (O/Ot)t=o~t(u) has to vanish. 
Using the abbreviation B(u) = (~/Ot)t=o~t(u), one gets 

a ( u )  = (e/et) ,=op,(u) ,  (4) 
in particular 

B(b) = e'(0). (4a) 

I f  we define the vector field D along g by D(u) ~- (~/at)t=o ~(u), we get by a similar 
consideration 

D(u) = (O/Ot)t=o de(u), (5) 
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in particular 

D(b)  = f ' (0) .  (5a) 

This is because the curves t ~ t~(u) intersect g perpendicularly by the very definition 
of  the parameter u of  ~. 

5. It is easy to compute the vector fields B and D. B is a Jacobi field since the curves 
Pt are geodesics. We have the boundary conditions (using (4)) 

B(a)  = x'(O) = (d/dt)t=o(a, t)  = F(a,  O) = s(a)E(a)  

and 

D 8 D c~ B'(0) -~u-~ff~(u)[t=~ = ~ ~u/3t(u)[t=o = l(t)G(t)]t=o 

where l( t)  denotes the length ofpt  and G(t )  is the parallel vector field along h with 
G(0) = g'(0); D/St  is the covariant derivative of a vector field with respect to t. We 
have l'(0) = 0 since both boundary curves of the variationpt are perpendicular to g 
as we noticed in 4. So we end up with 

B'(O) = 0 

since G is parallel. There is exactly one Jacobi field with these boundary conditions 
(because of  UPA), namely 

s(a) S(u) = c(u)E(u). 

So we get by (2) and (4a) 

~o'v(O ) = s(a)e(b)/e(a)s(b).  (6) 

The vector field D along g has constant length and is orthogonal to g', by the 
definition of ~. Hence D is parallel. It suffices to compute D(a). By (5), we have 

D(a)  = (d/dt)t=o dr(a) = x'(O) = s(a)E(a).  

It follows for all u z [0, a] 

D(u)  = s(a)E(u) ,  

hence by (3) 

qda(O) = s(a)/s(b). (7) 

6. Now we insert (6) and (7) into (1)" and get for all b E (0, a] 

(q - 1)s(b) 2 = q(s(a)2/c(a)2)c(b) 2 - s(a)L 

So there are constant numbers R, S, T such that for all b ~ (0, a]  

Rs(b)  2 = Sc(b)  2 + T.  (8) 
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We differentiate this equation with respect to b. 

0 = R s s '  - Scc '  

0 = R ( s  "2 - k s  2) - S ( c  '2 - k c  2) 

= P,s ' 2 - S c  '2 + k T  

using the equations (J)  and (8). Hence with (J)  again and (8)' 

T k ' =  2 R k s s ' -  2 S k c c '  

= 2 k ( R s s '  - Scc ' )  = O. 

Since T = s(a) 2 # O, we get k' = 0, so k is constant. 

J.-H. Eschenburg 

(8)' 
(8)" 

(8)" 

3.5. Proof of  Theorem 3 

We want to show a cosine law for triangles in U c M with vertex in 0. Then CCC 
follows from [6]. 

Fix some arbitrary e E (0, po). We will show CCC on Ue ~ U n {x  ~ M ;  r ( x )  < e}. 
Let (0, P, Q) be a given triangle in Ue with a = r (P) ,  b = r (Q) ,  c = le, QI, 
C = l~o(P) - ~(Q)I. We may assume b ~< a < e and ~0(P) > ~(Q). We consider 
only those triangles with c < a. We have to construct certain functions F, G, H 
independent of  the given triangle such that 

F(c) = G(a, b) + n(a,  b) cos C. (1) 

By ITA, there are points Q1, Q2, Qs, Q4 ~ U such that r(Q1) = r(Q2) = e, r(Qa) = 
r ( a 4 )  = a, and 101, Q2I = IQa, Q,I = c. We may assume ~o(Q1) > ~o(a2) and 
~o(a3) > q~(a4). Call D = ~ o ( a l ) -  ~o(Q2) and E = ~o(aa ) -  ~0(a,). Since the 
~o-shifts are isometries, we do not restrict generality by choosing P = Q4: it suffices 
to prove (1) for arbitrarily narrow triangles (0, P, Q) in Ue. Now we apply the 
three-point experiment to Qa, Q~ = P, Q and the four-point experiment to Q1, Q2, 
Qs, Q4. By the assumptions (a) and (b) of the theorem we have 

cos E = M ( a ,  b) cos C + N(a ,  b), (2) 

- c o s  E = (1 - cos D(c,  e)) /L(a,  e) - 1. (3) 

(2) + (3) yields (1) if we set 

F(c )  = cos D(c,  e), 

G(a, b) = L(a,  e) (N(a,  b) - 1) + l, 

H(a ,  b) = L(a,  e )M(a ,  b), 

recall that e was fixed. 

It remains to prove the regularity of  F, G, H which is assumed in [6]. Consider the 
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triangles (0, P0, P,) with Pt = (e, t) for  all t e [0, ~r). These are probably  not  in U 
but  that  does not  matter  for  the definition o f F .  Let c(t) .'= IP0, Pt]; this is a smooth  
function with c '  > 0. N o w  F(c(t)) = cos t, hence F is a smooth  function with 
F'(c) < 0 for  all c e (0, 2p0). 

By similar arguments,  the angles ~1, if2, ~3, ~ in the equations (a) and (b) o f  the 
theorem are depending smoothly on the distances o f  the triangle vertices, hence 
L, M, N depend smoothly  on these distances, by (a) and (b). This is clear for L. 
N o w  consider the case ~b2 = 0, i.e. [Qo, QI[ = p(7~) - P(72) in the three-point 
experiment. Call ~0 the corresponding ~l-value, this depends smoothly on p(7~) and 
0(72). By (a), we have 

cos d/~ = M + N. 

Insert ing this in Equat ion  (a) one gets 

M = (cos ~b ~ - cos ~1)/(1 - cos ~2). 

So M depends smoothly  on the triangle data, hence also N, by (a). 
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