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Using the relationship between Jacobi fields and the second fundamental  tensor of
hypersurfaces,  we give a  rather  explicit  formula  for the mean  curvature  of distance
spheres on irreducible symmetric spaces. We use this in order to give a new proof of the
theorem of A. J. Ledger which states that irreducible symmetric harmonic spaces are of
rank one. Our proof does not refer to the theory of harmonic spaces at all. We only use
some  well  known  facts  about  symmetric  spaces  (see  [4]).

The  author  wishes  to  thank  Professor  Willmore  and Dr. Ledger  for  hints and
discussion.

Let M be a complete connected (n + l)-dimensional Riemannian manifold. Call TM
the tangent  bundle with footpoint  map / :  TM -* M, and SM the unit sphere bundle
{x e TM:  ||x||  =  1}. Let exp: TM  -> M be the  Riemannian  exponential  map.  Fix
some  v € TM  and  call  g: U -* M  the  geodesic  g(t) =  exp tv  with  tangent  vector
v(t)  =  g'(t). Consider  the normal  bundle  of g  with  fibres

Nt =  {xeTg(t)M:(x,v(t»=O}.

It  is convenient  to identify  all fibres  by means  of the  parallel  transport  along g\  the
identification space will be called Nv. This is a real vector space with a well defined inner
product  <,  >.  We  define  a  family  of  self-adjoint  endomorphisms  Rv(t) on  Nv  by
Rv{t)x  = R(x, v(t))v(t),  where

R-.TMxTMxTM  -  ̂TM

is the Riemannian curvature tensor. Let Av(t) e End Nv be the solution  of the following
initial  value  problem:

A'; + Rv-Av  = 0,  Av(0) = 0,  A'v(O)  = I  (1)

where' denotes the derivative with respect to t and /  the identity on Nv. For any r > 0,
we have  Arv(t)  = Av{rt)/r, since  Rri(t)  = r2Rv{rt).  If v is the zero vector at some point
peM,  then  N,. = TpM and Av(t) =  tl.

For  any v e TM,  denote by exp^ (u): TVTM  -+ Tnp(v)M  the derivative  of exp at v.
Via the canonical  identification  of Tf(v)M  with  TvTf{v)M  <= TVTM, we may consider
Nv  c  Tf(v)M  as a subspace  of TVTM. Up to this identification,  exp is related to A by

for  any x e  Nv.
Let  \p,q\  denote  the  Riemannian  distance  between  any  two  points  p,qeM.

Outside  the  conjugate  locus  of  p ,  the  Riemannian  spheres  St(p) =

                           

                                              



542                 

{q e M  :  \p, q\  =  t},  t  >  0,  are  regularly  immersed  hypersurfaces.  Choose  the
orientation  with respect to the inner normal vector. The corresponding shape operator
(second  fundamental  tensor)  of S,{p) at  the point  exp tv,  v e SnM,  is given  by the  self-
adjoint  endomorphism  Ut{t):  =  A'J^AJit)'1  of  Nr  [2, 3].  Due  to  (1),  U  obeys  the
Riccati  equation

0. (2)

Denote the mean curvature  of S,(p) at exp tv by h(v, t)  =  trace  U,.(t). This  is known
to  be the  logarithmic  derivative  of  a(v, t):  =  det  Av(t),  and  hence  a'  =  Ir  a  [2, 3].

We call M  harmonic ifa(v,  t) and  hence h(v, t) do not depend  on  v e SM  [1,7].  For
the concept  of a symmetric space and related topics, we refer to [4]. Now we are ready to
state  the  theorems.

THEOREM  1.  (A.J.  Ledger  [5].)  Let  M  be  an  irreducible  Riemannian  globally
symmetric  space.  Then  M  is harmonic if and only  if it  is a symmetric space of rank one.

THEOREM  2.  Let  M  be  a  locally  symmetric  Riemannian  manifold.  Then  M  is
harmonic if and only if it is either flat  or its universal covering is isometric to a rank one
symmetric  space.

Proof of Theorem 2.  If the universal covering of M  is isometric to U" or a rank  one
symmetric space, then  M  is locally two-point-homogeneous,  hence harmonic. On  the
other  hand,  M  is  harmonic  if  and  only  if  its  universal  covering  M  is.  This  is  a
Riemannian  globally  symmetric space, hence  M  =  Mo  x M , x  ...  x Mk,  where Mo  is
flat and Mf are irreducible symmetric spaces (see [4; p. 208 and p. 310]). By a theorem of
Lichnerowicz [6], a harmonic space cannot be a product unless it is flat. Hence M  is flat
or  irreducible.  By Theorem  1, it  has  to  be  of  rank  one.

Proof  of  Theorem  1.  We may  assume  M  =  G/K,  where  G is some  real  analytic
semisimple  Lie group  and  K  a compact  subgroup.  Call  G,  K the corresponding  Lie
algebras, P the orthogonal complement  of K with respect to the Killing form  B on  G.
Via the projection  n : G  ->  G/K  =  M, we may identify  P with  TeM,  where e  =  n(l),  1
being the unit element in G. Since M is irreducible, we may assume that M is of compact
(respectively noncompact)  type and  the Riemannian  metric on  TeM  is given  by  — B|P
(respectively  B\P).

Now  choose  some  maximal  abelian  subalgebra  A  of  P;  call  Ax  the  orthogonal
complement  of A in P. Hence A1  c  Nv  for all  t; e A. Let r :  =  dim A be the rank  of  M.
The  mappings  ad  (v),  v e A,  are  commuting  semisimple  endomorphisms  of  G  with
purely  imaginary  or  zero  (respectively  purely  real)  eigenvalues,  so  they  are
simultaneously  diagonizable  on  the  complexification  Gc .  A  nonzero  linear  form
a:  A  ->  IR  is  called  a  root  of  M  if  there  exists  a  non-zero  x e G c  such  that
ad(y)x  =  iot(v)x (respectively ad (v)x  =  a(u)x) for any  v e A. Denote the set  of roots by
Rt.

The  Riemannian  curvature  tensor  at  e  of  the  symmetric  space  M  is  given  by
R{x,y)z  =  - [ [ x , y ] , z ]  for  any  x,y,  z e P  [4;  p. 180].  In  particular,
Rv(0)  =  — ad  (v)2\Nf.  Recall that  R is covariantly constant  since M  is symmetric. Hence
Rv(t)  =  :RV=  - ad(y) 2  for  all  teU.  By  the  foregoing,  {j?t,|Al: v e  A}  is  a  set  of
commuting self-adjoint  endomorphisms of A1. The eigenvalues are among the  ±  <x{u)2.
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Let Rt'  c  Rt be the set of those roots a such that there exists some non-zero x e A 1  with
Rvx  =  <x{v)2x  (respectively  Rvx  =  — <x{v)2x)  for  all  i; e A. It  can  be shown  but  is  not
used  here that  Rt'  =  Rt.  Now  R,.,ve  A,  is zero  on  N,. n  A and  diagonizable  on  A1

with  eigenvalues  <x(v)2  (respectively  — OL(V)2), cte  Rt'.
Denote the cotangent  (respectively hyperbolic cotangent) function  by ct.  Equation

(2)  shows  that  the  set  of  eigenvalues  of  Uv(t) is  {ct(v) • ct(a{v)t):  a e Rt'}  on  A1  and
{t'1}  on A n  Nv.  Hence  we get  for  the  trace

X  kaa(v)ct(oL(v)t)
aeRt'

with  suitable  nonnegative  integers  kx.

1st case:  M  is of compact type. For any v e A let X{v) be the maximum of all a{v) for
ae  Rt'.  Then  h(v, t) depends  smoothly  on  t  for  0  <  t  <  n/X(v), and  h(v, t)  -*  —  oo  if
t  ->  n/X{v). Therefore,  harmonicity  implies  that  X  is  constant  on  SA:  =  A n  SeM.
Assume  that  r — 1  =  dim  SA  ^  1.  For  any  a e Rt'  let  ha e A  be  the  vector  with
(ha,  x>  =  a(x) for  all  x e A. Choose  /i e  Rt'  such that  | | /ij |  ^  \\ha\\  for  all  aeRt'.  Call

fe  SA. Then  ^w)  =  <h,f ^> / | | ^ | |  =  ||fcj|,  and  for  all  a € Rt'  we  have

Ifa£  Iffy, then </ia,w>  <  p j . l f a  =  kfi,k  >  0,then||fca||  =  /c||y|, hence k  ^  1 by the
choice of/i.  If a  =  -fc/i,  /c >  0, then  </ia, w>  <  0. It  follows that  a(w)  <  ^(w) for  any
a  j=  V • By continuity, there is a neighbourhood  U of w in SA such that a(v) <  fi{v) for all
v e  U. Hence n\u  =  X. But the linear form /i is nowhere constant on a sphere of positive
dimension.  Hence  we have  r  =  1.

2nd case:  M  is of noncompact type. Then  h(v, t)  ->  ]T  /eaa(t;) for  t  ->  oo. But the
aeRt'

linear  form  J]  /caa cannot  be constant  on  SA  if  r  >  1.
aeRt'
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