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1. Introduction 

Berger [-3], Wallach [10] and Berard Bergery [2] have classified all simply 
connected smooth manifolds which allow a homogeneous Riemannian metric 
of strictly positive curvature. Besides the rank one symmetric spaces there exist 
five exceptional manifolds and an infinite series of 7-manifolds of distinct 
homotopy type which have been studied by Aloft and Wallach [1]. These are 
diffeomorphic to  Mpq:=SU(3)/Upq, where p, q are positive integers and Upq is 
the one-parameter subgroup of diagonal matrices 

{exp(2~it diag(p, q, - p - q ) ) ;  teIR}. 

Looking for further spaces of positive curvature one has to consider a more 
general class of manifolds. If G is any Lie group, the group G Z : = G  x G acts on 
G by right and left translations. If U is a compact subgroup of G 2 which acts 
without fixed points, then the orbit space G/U is a smooth manifold which is 
not homogeneous in general. Gromoll  and Meyer [-7] obtained an exotic 7- 
sphere of nonnegative curvature in this way. We apply this method to G 
=SU(3), U~U(1)  in G 2 and show that for any of the positively curved 7- 
manifolds M =Mpq, there exists a series of compact simply connected topologi- 
cally distinct 7-manifolds M, which are not homotopically equivalent to any 
compact Riemannian homogeneous space, such that the sectional curvatures of 
M, converge in a certain sense to the sectional curvatures of M. This implies 
that M, has strictly positive curvature for sufficiently large n. 

We wish to thank Prof. W.T. Meyer and Prof. E. Heintze for several hints and useful discussions. 

2. Fixed Point Free Sl-actions on SU(3)  

21. Let G=SU(3) and U a closed one-parameter subgroup of G 2. We define an 
action of U on G by 
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(u, g)~-'~u 1 gu2 t 

for any  geG,  u=(ul ,u2)eU.  For  any conjugate  subgroup U ' = a U a  -1, a 
= ( a l ,  a2)eG 2, the mapp ing  g~--*a l ' ga2 :  G ~ G  gives an equivar iant  diffeomor- 
phism. Therefore,  we may  assume U c T x T =  7 ̀ 2 where T denotes the max-  
imal torus of  diagonal  matr ices 

{exp i d iag(x, ,  x2, x3); xielR , ~ x  i =0} 

in SU(3). Let W e U  be a generator  of the kernel  of  the exponential  m a p  of U. 
Then 

W = 2 ~r i(diag(k, l, - k - l), diag(p, q, - p - q)) 

where k, l, p, q are integers which are relatively prime. To  indicate that  U is 
determined by k, l, p, q, let us set U = Uk~pq. 

Proposition 21. U =  Uklpq acts on G without f ixed points if and only if the 
following pairs of intergers are relatively prime: 

( k - p , l - q ) ,  ( k - p , l + p + q ) ,  ( k + p + q , l - p ) ,  
( k - q , l - p ) ,  ( k - q , l + p + q ) ,  ( k + p + q , l - q ) .  

Proof U acts wi thout  fixed points  if for any l + u = ( u , , u 2 ) e U  we have 
u14:gu2g -a  for all geG.  N o w  u = e x p t W ,  0 < t < l ,  and u,,  u 2 are diagonal  
matrices.  These are nonconjuga te  if and only if u, 4 : au  2 for all pe rmuta t ions  ~r 
of  the coordinates  (which establish the Weyl group of SU(3)). Hence  one has to 
be sure that  

2 7z it(diag(k, l, - k - l) - (T diag(p, q, - p - q)) ~ e x p -  1 (1) 

which is equivalent  to 

t((k, l, - k - l) - if(p, q, - p - q))~7Z 3 

for any te(0, 1). Wri t ing this down for all pe rmuta t ions  or, we get the result. 
A quadrupel  of integers (k, l,p,q) will be called admissible if the condit ions 

of the previous propos i t ion  are satisfied. 

Examples. (i) I f  k = l = 0 ,  then the condi t ion is trivial; this is the case of  the 
homogeneous  spaces Mpq. 

(ii) The  quadrupel  (1,0,2m, 2m) is admissible for a rb i t rary  meN.  This and 
further examples  will be studied in w 5. 

22. Let  H =  U ( 2 ) c G  be the canonical  imbedding.  Fix a R iemann ian  metr ic  
( , ) on G which is invariant  under  left t ranslat ions of G and right t ranslat ions 
of H, such that  the induced metric o n  Mpq= G/Upq has strictly positive curva- 
ture for arbi t rary  posit ive integers p, q. It was shown in 1-13 that  such a metr ic  
is given by the following scalar p roduc t  on the Lie algebra G:  

<X, Y)..=B(X, Y)+tB(X m YH) 
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for any t~ ( -1 ,0 )w(0 ,  1/3), where B is an Ad(G)-invariant scalar product and 
X n denotes the orthogonal projection of X to H. 

In particular, the group U = Ukipq acts on G by isometries. Consequently, if 
(k,l,p,q) is admissible, there exists a unique metric ( , ) on the orbit space M 
=G/U such that n: G ~ M  becomes a Riemannian submersion. Its curvature is 
given by O'Neill's formula [9, p. 465]: If X, Y are local linearly independent 
vector fields on G which are orthogonal to the orbits of U ("horizontal"), and 
K denotes the curvature of M and G, then 

(,) K(n,  X , n ,  Y )=K(X ,  Y)+3 II(Vx Y)~.ll2/llX /x YN 2 

where the subscript v denotes the projection to the tangent space of the orbit 
("vertical component"). 

The orbits of the action of U are 

Fg=Ug={u 1 -g .u2  1; (Ul, u2)E U }. 

Its tangent spaces, the vertical subspaces, are denoted by TgF={Rg, X l 
-Lg ,  X2; (X~,Xz)~U }. We translate this space back to G =  TIG and get 

Vg: = (Lg,) -~ TgF = { Ad(g- ~)X 1 - X2; (X1, X2)6U }. 

Now U is one-dimensional, so for any basis vector (x, y) we have Vg=IR.(y 
- A d ( g ) - l x ) .  Put z ( g ) = y - A d ( g ) - l x ,  defining a smooth mapping z: G ~ G  
-{0}.  Its differential is given by z,(Lg, W)= [w, Ad(g)- lx] for any g6G, w~G. 

Let h(g)~End TgG be the orthogonal projection onto the horizontal sub- 
space. This can be expressed in terms of z as follows: Setting ~=z/HzH, let 
p(g)6EndG be the orthogonal projection p(g)x=x-(x ,2(g) )2(g) .  Then h(g) 
= Lg,p(g) Lg. 1. 
Lemma. Let U~, ioN, be closed one-parameter subgroups of G 2 which act freely 
on G. Assume that U i is generated by (xi, Y)~G 2 where y4:0 is fixed and xi-~O. 
Let U be the subgroup of G generated by y. Let h~, h~F(End TG) be the 
horizontal projections of the Riemannian submersions hi: G-~G/U~, n: G-~G/U 
resp. Then the h i converge to h in the Cl-topology on F(End TM). 

Proof According to the preceding remark, it suffices to show that the map- 
pings z~: G ~ G ,  zi(g ) = y -  Ad(g)-lxi ,  are C 1-converging to z=y .  This is true 
since x i ~ 0  and zi,(Lg, W)=[w, A d ( g ) - l x i ] ~ 0  uniformely in g for any w~G. 

Under these assumptions, the sectional curvatures of Mi=G/U i converge to 
the curvature of M = G / U  in the following sense: 

Proposition 22. Let G, M, M i (i~lN) be Riemannian manifolds, and n: G-~M, 
hi: G-~M i Riemannian submersions with horizontal projections h and h i resp. 
Assume h-*h i in the Cl-topology on F(End TG). Then for any g~G and any n- 
horizontal 2-plane P ~ TgG, we have .for the sectional curvatures 

KM,(ni*P)~ KM(ZC , P), 

and the convergence is uniform in P. 
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(Observe that kerni, is near to kern ,  for large enough i, therefore zti, is 
isomorphic on the K-horizontal vectors.) 

Proof Let X, Y K-horizontal vector fields which span P at the point g. Let Xi 
=h~X, Y~=hiY Then X ~ X  and Y ~ Y  in the Cl-sense. Since hi, ohm=Try,, we 
have by (*) 

KM,(n,,X, rc,, Y)= Ka(X ~, Y~)+3 [l(I-h,)(I7x. Y~)tlz/[lXi/x Y/tl 2 

which clearly converges to KM(X, Y) uniformly. 

Remark. The fibre of hi: G--*MI=G/U i through l eG  is the subgroup generated 
by y -x~  which passes through g~:=exp2nx~+l  (assume y to be chosen such 
that e x p 2 n y = l ) .  Since g ~ l ,  the cut locus distance of Mi at its(l) gets 
arbitrarily small for large i. One easily shows the same fact at rc~(g) for any 
g~G. Thus the spaces Mi and M are geometrically very different, even locally. 

3. Homotopy and Integral Cohomology of SU(3)lUktpq 

31. Let G=SU(3), U ( 1 ) ~ - U c G x G  a group which acts freely on G by right 
and left translations. The orbit space M = G / U  has the following homotopy 
groups: 

Proposition 31. 
7zi(M) =0, rt2(M) =2g, 

n,(M)=ni(SU(3)) for i>=3, 

in particular n 3 ( M  ) = 7Z, 7z4(M ) = 0. 

This follows from the exact homotopy sequence of the fibration G--+M and 
[4; 6, p. 428]. 

32. Now consider the cohomology. It is well known that H*G is the exterior 
Z-algebra with generators z3~H3(G) and zscHS(G). Let B E be a classifying 
space for G. Then H*BG=Z[~3,25], where -~iEHi+I(BG) corresponds to z i 
under transgression [5, p. 171]. Let T o G  be the torus of diagonal matrices. 
We may identify H*B G with the ring I G of polynomials on HIT  which are 
invariant under the Weyl group W(G) [5, p. 194, 199]. One can specify the 
generators 33, 25 in this representation as follows: Let L be the lattice of 
integral matrices in T, i.e. L = {X~T; exp 2reX = 1}. Note that any XEL corre- 
sponds to a 1-cycle tv--~exp tX: [0, 2rt]~T, and any integral linear form x~L*: 
={yeT*;  y(L)~Z} corresponds to a 1-cocycle. This defines isomorphisms 
which identify L with H~ T and L* with H~T. 

Proposition 32. Let G, T, L as above, A1 =i-diag(1,0 , - 1 )  and Az=i-diag(0,1, 
- 1 )  a base of L, a I and a 2 the dual base of L*. Then we have (up to sign): 

Z3 = a2 --~ a2 -}- a l  a2 ,  

z5 =ala2(a l  +a2) 
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where FIi~H2BT corresponds to a i6H1T  under transgression in the universal 
bundle E T ~  B w. 

Proof  Let T ' ~  T be the set of diagonal matrices of U(3). We may extend the 
linear form a i to T', this is the projection to the i-th coordinate (i= 1 or 2). Let 
a3~T'*be the projection on the third coordinate. Since W(U(3))= W(SU(3))  is 
the permutation group of the coordinates, Ivy31 is the Symmetric Algebric 
Algebra S(al, a2, a3) which is generated by the polynomials 

p l = a l + a 2 + a 3 ,  p 2 = a l a 2 + a 2 a 3 + a 3 a l ,  
p3=ala2a3   9 

Now T is the subset o f T '  where a l + a z + a 3 = O .  Hence on T we have p l = 0 ,  P2 
= - (a 2 +/72 + a 1 a2), P3 = - a 1 a2(a 1 + a2)- So Pz Iv and P31x generate lsv(3 ~ and 
the result follows from I-5], Proposition 27.1: Observe that 8 i has degree 2, 
while degree(~3) = 4, degree(~5) = 6. 

33. Let G be a compact Lie group and U a closed subgroup of G 2=G x G 
which acts on G by right and left translation. Assume that this action is free. 
Then the orbit space M = G / U  is a smooth manifold and the projection 
re: G ~ M  a principal bundle with structure group U. Let Try: E t , ~ B  v be a 
classifying bundle for U. Consider the following commutative diagram (com- 
pare [5], p. 167, Diagram 18.4, and p. 168) 

(D 1) 

M ' G//U , B v 

where G//U denotes the orbit space of E c, x G under the product action of U. 
The left horizontal arrows represent cohomology isomorphisms since the fibres 
of these maps are homeomorphic to E v which is acyclic. We consider the 
spectral sequence of the bundle p: G / / U ~ B  v with fibre G. It starts with E 2 
= H * B v |  and converges to H * M .  The next step is to compute its 
differentials. 

Let E~2--*BG2 be a classifying bundle of G 2. Since U c G  2, we can choose E v 
=EG2, Bv=EG2/U. Thus we get a natural projection p: Bt,--*B~;2. This extends 
to a bundle map 

(D2) 

G/~ U = (Ea ~p]< x|G )/G 2 G)/U "o , (EG~ 

1 I p' 

B v P > BG2 

which is a homeomorphism on the fibres. The bundle p' is well known: Let 
3: G--*G 2 be the diagonal imbedding, and BG:=EG2/6G. Then EG2--*B G is a 
classifying bundle for G. Moreover, the projection A: B~---,B~2 is a bundle with 
fibre G, and the mapping f :  EG2/6G-*(EG2 x G)/G z which is well defined by 
6Ge~-*GZ(e, 1) for all e~E~2, establishes a bundle isomorphism between p' and 
A. 
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34. The next step is to compute the spectral sequence of the bundle 
A: BG~BG2 for G=SU(3). We can choose Bc,2:=B G x B~ as a classifying space, 
hence H*(BG~.)=H*B~| with ~i:=~i|  ~i:=1| 
The spectral sequence of A starts with E2=H*BG2| Call kj: H*BG2-*E *~ 
the natural projections. It is a general fact that A*=k~" H*B6~-~E*~~ 
[5, p. 1283, 

Proposition 34. The differentials d j: E/-* Ej are given by 

(1) dj(l@zi)=O for j<=i 
(2) di+ l(l |  = +_ki+ l('2i-Y:i) for i = 3  and i=5.  

Proof. Equation (1) follows immediately since di(l |  'i-~§ which vanishes 
already in E 2 for j__< i. 

Using the fact that H*Ba can be identified with the subset I a of H*BT, it is 
easy to see that 

d*(u|174 

for every ueH*B G. Thus, the kernel of A* is the ideal (x3-Y3, x s - Y s ) c H * B ~   9 
We have d 2 =d  3 =0, hence E 2 =E4, and 

d4(E ~ =ker  k 5 r~E24~ =ke r  k~ r~Ez 4~ =Z(23 -Y3) 

since ~.4o_~7~o Since E~174 we get (2) for i=3.  Using (1), we con- 
clude 

E 5 = E  6 =(H*BG~/(.~ 3 - ~3))@(7Z. l| 

Hence k6(~5-P5 ) is irreducible in E~ ~ and E~174 By the same argu- 
ment as above, (2) follows for i=  5. 

35. Now consider the Diagram D2. Let E and E' be the spectral sequences of 
the bundles p: G//U~B v and A: BG~Ba~ resp. The bundle map(d,p) sending p 
to A induces homomorphisms of differential algebras p~ '-*  9 E, E,. Note that P2* 
=p*| where /)F is the mapping of the fibres: l;e=fi[p-t(b): 
p-~(b)~A-~(p(b)) where beB v is arbitrary. This is a homeomorphism, which 
becomes the identity if we identify the fibres suitably with G. Using that p~ 
commutes with d, and P~*+I is the d~-cohomology of p f ,  we get by induction 
from Proposition 34: 

Proposition 35. Let G=SU(3), U a fixed point free closed subgroup of G 2. Let 
p: B v ~ B ~  be the map induced by the imbedding U c G  2. Then the differen- 
tials of the spectral sequence of p: G//U~B v are as follows: 

dj(l@zi)=O for j<=i, 

di + 1( 1 | zi) = +- ki + 1P*(xi - Yi) 

for i = 3  and i=5,  where k s" H*Bv--q,E *~ denotes the natural projections in this 
spectral sequence. 

Remark. An analogous statement is true for G=SU(n), U(n) and Sp(n) if one 
chooses a suitable set of generators z~ for the exterior Z-algebra H* G. 
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36. Now let U c G x G  as in 31. We may assume that U=Uktp~ with (k,l,p,q) 
admissible (see 21.). We will compute the cohomology of M = G / U  by the 
method indicated in 35. 

Proposition 36. H* M is generated by weH2(M), zeHS(M), and the following 
relations hold: 

rw2 =O, w3 =O, zw2 =O, z2 =O 

with r: = [(k 2 d- l 2 -[- k 1) - (p2 q_ q2 -k p q)[. 

Proof Let W = i  be the generator of U ( 1 ) = i . ~  and p . :  U(1)--~T 2 the inclusion 
of U. Choose the base VI=(A1,0), V2=(A2,0), Va=(0, AI), V4=(0, A2) of L 2 
(same notations as in 32.). Then 

p , ( W ) = k V  1 +IV2 + PV3 +qV4. 

If w; vl, . . . ,v 4 are the dual bases, we have 

p*(vO=kw, p*(Vz)=lw, p*(v3) =pw, p*(v4) =qw. 

Call x i = z i |  and y i = l |  for i = 1  and 2 the generators of H * G Q H * G  
= H * G  2. It follows from 32. that the generators of H*BG2, corresponding 
under transgression, are 

"~5 =UI~2(U1 -~-~2)' .~5 =U3~4(~3 "~U4)" 
Hence 

P* (-'Y 3 --  Y3) = (( k2 "[" 12 + k l) --  (p2 ..1.. q2 + pq)) ~2, 

P*(x5 - Y s) = (k l(k + l) - pq(p + q)) if;3. 

Now consider the spectral sequence of p: G/ /U~B v as in Proposition 35. It 
starts with E 2 = E 3 = E 4 = H * B v |  Since d 4 ( l @ z a ) = ( ~ 3 - ~ 3 ) = r f f  2, we  
conclude k e r d 4 = B v |  zs),  and imd 4 is the ideal in kerd  4 generated by 
r # 2 |  1, hence 

E 5 = E 6 = (Z [ff]/(r~2)) |  zs). 

Now d~( l |  3) with s = k l ( k + l ) - p q ( p + q ) .  Claim: r and s 
are relatively prime. In fact, if there was a prime number n dividing both r and 
s, we would have ai(k, l, - (k + l)) = ai(p, q, - (p + q)) mod n, for i = 1, 2, 3, denoting 
by a i the i-th elementary symmetric polynomial in three variables. But then 
(k,l, - ( k  +l)) and (p, q, - ( p  + q)) would be congruent mod n up to a permu- 
tation of the three variables which is excluded by the very fact that (k, l,p, q) is 
an admissible quadrupel (see 21). Hence d6(n(l| only if n is a multiple 
of r. It follows that kerd~,=(Z[f f] /(r~Z))|  and imd 6 is the ideal in 
kerd 6 generated by ff3@l. So 

E v = E ~ = (7/[-~]/(r ~ 2, ,~3)) |  (1, rz 5) = H* M. 

So we have completed the proof, setting w = k ~ ( ~ )  and z=r( l |  1 

1 A similar proof for the homogeneous case k = l = 0  was communicated to us by W. Ziller. 
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4. Homogeneous Spaces with Similar Homotopy 

We call a compact topological space strongly inhomogeneous if it is not 
homotopy equivalent to any compact Riemannian homogeneous space. The 
goal of this section is the proof of the following 

Theorem. Let G=S U(3), U ( 1 ) - U c G  2 fixed point free, M=G/U. Assume that 
H4(M) =7/r with 

r -2 (3) .  

Then M is strongly inhomogeneous. 
Proof Assume that M is homotopy equivalent to a compact Riemannian 
manifold M' with transitive isometry group G. Call H the isotropy subgroup 
of a fixed element meM. Then M'=G/H. 

1. The first homotopy groups of M' are given in 41. Moreover, it is known for 
any compact Lie group that n 2 = 0  and n3=Z k where k is the number of 
simple factors of the Lie algebra [4]. Thus we derive from the exact homotopy 
sequence of the fibration H--*G~M': 

(1) no(H)=no(G), 
(2) O~2g--,nl(H)~nl(G)~O is exact, 
(3) n3(H)=n3(G ) x 7Z. 

By (1), we may assume that G,H are both connected since Go/Ho=G/H. From 
the sequence (2) it follows that rank(nl(H))=rank(nl(G))+ 1. Hence, if G = G '  
x T where G' is semisimple and T an l-torus, then H = H ' x  S with H' semi- 

simple and S an (l + 1)-torus. Moreover, by (3), G' has k + 1 simple factors if H' 
has k. 

2. Let G' be the simply connected group with Lie algebra G'. Then G." =G'  x T 
is a covering group of G. Call n: G---,G the covering homomorphism, /4: 
= n - l ( H ) .  Hence we get a covering map ~: G/I4--,G/H which is in fact a 
diffeomorphism since M'=G/H is simply connected. Thus we assume from 
now on that G = G ' x  T, where G' is a simply connected semisimple compact 
group and T an/- toms.  

3. Since the Lie algebra H ' c H  is semisimple, its projection to the abelian 
factor of G is zero, hence H ' : = e x p H '  is a subgroup of G'. Consider the 
homomorphism f=po jo i :  S ~ T  which is the composition of the inclusions 
i: S--*H, j: H--*G and the projection p: G~T.  Then f,(nl(S)) has finite index in 
nl(T ) since j ,  is onto (see (2)), p ,  is isomorphic and i,(nl(S)) has finite index in 
nl(H ). Therefore the subtorus f(S) of T has the same rank as T, so f is onto. 
Hence the connected component of its kernel is a circle U c S  which is a 
subgroup of the semisimple factor G'. Hence G ' c ~ H = H ' x  U. A complement 
M of H ' x  U in G' is also a complement of H in G. Set H": = exp(H' x U ) c  G'. 
Then the mapping gH"~--~(g, 1)H: G'/H"~G/H is a covering map and hence a 
diffeomorphism. Replacing G and H with G' and H", we may assume: G is 
simply connected and semisimple, and H = H' x ~ with semisimple factor H'. 
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4. We want to determine the possible simple components of G and H'. M and 
M' are both compact, orientable and homotopically equivalent. Hence dim M' 
= d i m M  =7. Thus the isotropy group H is a subgroup of 0(7). It follows that 
rank H ' <  2, so H' is one of the following compact Lie algebras: 

0 ; A 1 ; A 2 ;  C 2 ; G 2 ; A  I •  1. 

Since dim G = d i m H ' + 8  and G has one simple factor more then H', the 
corresponding Lie algebra G can only be out of the following ones: 

A 2 ; A 2 • 2 1 5 2 1 5  2 or A3•  

G 2 x A 2 ;  A 2 •  •  1. 

Thus we have to consider seven pairs of Lie algebras (G ,H ' •  ~). A pair by 
pair inspection of the possible imbeddings of H' • IR in G shows that M' = G/H 
is never homotopy equivalent to M. In particular, this is true for the first pair 
(Az,]R) since then M' is a Wallach space Mpq with H4(M')=Zr , , r '=pZ+q z 
+ p q ~ 2 ( 3 )  for arbitrary p,q~2~. We will discuss the details of the remaining 
pairs in the appendix. 

5. Strongly Inhomogeneous Spaces Near to WaUach Spaces 

Theorem. For any Wallach space M=Mpq with pq(p+q)+O there exists a 
sequence of simply connected strongly inhomogeneous Riemannian manifolds M i 
of distinct homotopy type the curvatures of which approach the curvatures of M 
in the sense of Proposition 22. 

Proof. In the view of w all we have to show is: There are infinitely many 
positive integers n =n i such that the quadrupel (1,0, np, nq) is admissible and r.- 
=n2(p2 +q2 + p q ) _  1 =2(3). This last condition is satisfied if we choose n-=0(3). 
Moreover, the following pairs of integers have to be relatively prime (see 21.): 

( n p -  1, nq), ( n p -  1, ns), (ns + 1, np), 
(nq - 1, np), (nq - 1, ns), (ns + 1, nq) 

where we have set s :=p+q.  Let {al,. . . ,ak} be the set of all prime numbers 
which divide pqs. Then 

n=ni= 3i ala 2 ... a k 

clearly satisfies all conditions for arbitrary i~N. Set M~ = Mr, 0,n,p.n,q  9 

Remarks. 1. By Proposition 22, the curvature of M~ is strictly positive if p, q > 0 
and i large, and the pinching of M=Mpq is approximated; e.g. we have 
K,,i,/Kmax=16/29" 37 for p = q = l ,  t = -  1/2 (parameter of the metric) as was 
shown by Hua-Min Huang [8]. 

2. It can be shown that in fact M i has strictly positive curvature for any 
positive integer i, if p and q are positive. 
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3. There are many spaces of type G/Uktpq which cannot be distinguished by 
cohomology, even among the homogenous ones (k= /=0) :  e.g. m i ,  9 and M5, 6. 
It would be interesting to know whether these are topologically different. 

Appendix 3 - The Remaining Homogeneous Spaces M' which are Similar 
to M =S U (3)/Uk,,, ~ (see w 4) 

Let (G, H) be one of the pairs of w 4, Sect. 4, except the first one. We denote by 
pr i : H ~ G i  the projection of the subalgebra H of G to the ith factor Gi of G. 

1. (A 2 xA2,A 2 xN)  

Either priA2=0 for i=1 or 2, or A 2 is the diagonal subalgebra of A 2 •  2. In 
the first case, it follows that pr j lR=0 for j4:i, hence M'=SU(3) /U(1)  is a 
Wallach space which is not homotopically equivalent to M as was proved 
above. The second case is impossible since the diagonal subalgebra of A 2 • A 2 
has no centralizer. 

2. (C 2 x A2, C 2 x ~-~) 

Then pr 2 C2=0 , pr 11R=0 and hence M ' = S U ( 3 ) / U ( 1 ) + M .  

3. (A 3 x A1,  C 2 •  

Then pr 2 C2=0. The homogeneous space corresponding to the pair (A3, C2) 
=(D3,B2) is the 5-sphere $5=S0(6) /S0(5) .  Since the isotropy group G v 
=S0(5)  of some psS  5 has no fixed vector on T p S S = R  5, it has no centralizer 
in S0(6). Therefore, pq IR=0. It follows that M ' = S  5 x S 2 q~M since H4(M')=0. 

4. (G 2 x A 2 ,  G 2 • 

Then pr 2 G 2 = 0, pr~ IR = 0, hence M' = S U ( 3)/U (1) + M. 

5. (A 2 • A1 ,A  1 x ~ )  

Up to equivalence, there are two representations of A 1 in A2, corresponding to 
the standard imbeddings SO(3)cSU(3)  and SU(2)cSU(3) .  Call the first f l ,  
the second f2. Consequently, there are the following imbeddings of A 1 in A 2 
x A l :  

(0, id), (f l ,  0), (f2,0), (f~, id), (f2, id). 

a) (0, id): Then pr 2 P, =0, hence M' =S U(3)/U(1) ~ M .  
b) (f l ,  0): There is no centralizer of SO(3) in SU(3). 
It follows prl~(---0, consequently M ' = S U ( 3 ) / S O ( 3 ) x S 2 ~ M  since w2=0 

for the generator w of H2(S 2) c H2(M'). 
c) (f2,0): More precisely, we choose the imbedding f2: SU(2)-,SU(3) in the 

first two coordinates, which has centralizer ~ . Z ,  Z: - - i .d iag(1 ,1 , -2) .  Hence 
the factor N can be an arbitrary line with rational slope in the plane spanned 
by (Z,0) and (0, Y) in G--SU(3)xSU(2),  where Y:-- i .d iag(1, -  1)eSU(2). Up 
to conjugation, these are all possible imbeddings. Let UI=(Y,0 ) and U2=(0, 1) 
be a basis of the lattice expsl(1)=Hl(S) (natural identification), where S is 
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the maximal torus of H. Likewise, we have the basis Vl=(idiag(1,0 , -1),0),  
Vz=(idiag(0,1,-1) ,0) ,  1/3=(0, Y) of the lattice exPTl(1)=Hl(T)  for the maxi- 
mal torus T of G. Call p , :  S ~ T  the imbedding (fz,0)ls. Then we have 

p , ( v O  = Vl  - v2 ,  

p,(U2)=k.(V, + V2) + l. V 3 

where k, l are the relative prime integers which correspond to the imbedding of 
IR. The transposed map p*: HX(T)-*HI(S) is given by 

p* (v0=  ul +k 'u  2, 
p*(V2) = --b/1 +k.u2, 
p*(v3) = l./'/2 

where ui, vy are the dual bases. 
Call Y3, z3, z5 the generators of H3(SU(2)), H3(SU(3)), Hs(SU(3)). The 

invariant polynomials which generate H*(Bc,), G=SU(3)x S U(2), are the fol- 
lowing (see 32.): Y3-~2- 3, 

Z3 = V2 d- V2 -1-/)1U2, 

zs =VlVz(Vl +v2). 

The images under the induced map p*: H * B ~ H * B  n are 
, - 12 - 2  P (Y3)= U2, 

P*(23) = U~ + 3 k 2. ~2, 

P*(Zs) = 2k. ( -u~u2  + k2' u~). 

As in 33, we consider the spectral sequence of p: G//H~Bn which starts with 
E2=H*Bn@H*G. It was shown by Borel [5, p. 180] that l |  l |  4 
and l |  6 with 

d4(1 @Y3) = k4P*.Y3, 

d4(l @z3)=k4p*-23, 
d6( l | s 

where dl are the differentials and k~" H*Bn~E *~ the natural projections. From 
this we derive the cohomology of M', in particular: 

H4(M ') = Z ~2 | 

where L is the sublattice generated by 0 2 + 3 k ~  2 and 12~ 2. Since the de- 
terminant of these two vectors is 12, H4(M ') is a finite group of order 12. But it 
was assumed for the order r of H4(M) that r - 2  mod 3 which fails for 12. Hence 
M ~ M ' .  

d) (fl, id) This is impossible since pr 2 IR=0 and, by b), also pr 1 JR=0. 
e) (f2, id) Again we have pr21R =0. Hence the mapping p ,  =(f2,  id)[s: S ~ T  

is as follows (same notation as in c): 

p , ( V l )  = v, - v~ + v~, 
p , ( v 9  = v, + v~. 
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It follows for the induced  map  p*: H * B a ~ H * B H :  

p*(.~3) = Ul, 
+ 

= - + 

(compare  c)). In par t icular ,  H4(M ') is genera ted  by k4(~ 2) with 3k4(~ 2) =0 .  But 
r=ord(H4 M) +- 3, hence M ~ M'. 

6. (A 2 x A  t •  t x A  1 •  

The imbeddings  of  H ' = A ~ x A  l into G = A 2 • 2 1 5  1 are given by 2 •  
matr ices  of  h o m o m o r p h i s m s  a ~ j : H ~ G j  ( i = 1 , 2 ; j = 1 , 2 , 3 ) .  Observe  that  
a t  j 4 :0  implies  a 2 j = 0  and  vice versa. Then,  up to con juga t ion  and p e r m u t a t i o n  
of  i somorph ic  factors, the fol lowing imbeddings  exist:  

a){f~' O, 0 ] ,  b) t fk '  O, 
, 

c) [ fk'id'  0 , 

where fk: A I->A2 (k = 1, 2) are the represen ta t ions  used in 5. 
a) H 2 is d iagona l ly  imbedded  in A I x A 1. This is the canonica l  imbedd ing  

S O ( 3 ) c S O ( 4 )  which has  no centra l izer  since SO(3) has no fixed vector  on 
the tangent  space of  S 0 ( 4 ) / S 0 ( 3 ) = S  3. Hence  H 3 = I R  is m a p p e d  into the first 
factor. I t  follows from 5c) that  only  k = 2  is possible.  Thus M'=SU(3) /  
U(2) • 8 3 = ~ p 2  • S 3 ~ M since H g ( M  ') g 7],,. 

b) H 3 = R  is m a p p e d  to G I •  3, and the pair  can be reduced to (A 2 
x A l ,  A 1 • IR) which was t rea ted  in 5. 

c) Same  a rgument  as in b). 
d) H 3 = ~  is m a p p e d  to G I = A  z, and  M'=SU(3)/U(1)+-M. 
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