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1. Introduction

Berger [3], Wallach [10] and Berard Bergery [2] have classified all simply
connected smooth manifolds which allow a homogeneous Riemannian metric
of strictly positive curvature. Besides the rank one symmetric spaces there exist
five exceptional manifolds and an infinite series of 7-manifolds of distinct
homotopy type which have been studied by Aloff and Wallach [1]. These are
diffeomorphic to M, :=SU(3)/U,,., where p, q are positive integers and U, is
the one-parameter subgroup of diagonal matrices

{exp(2rit diag(p,q, —p—q)); teR}.

Looking for further spaces of positive curvature one has to consider a more
general class of manifolds. If G is any Lie group, the group G*:=G x G acts on
G by right and left translations. If U is a compact subgroup of G* which acts
without fixed points, then the orbit space G/U is a smooth manifold which is
not homogeneous in general. Gromoll and Meyer [7] obtained an exotic 7-
sphere of nonmegative curvature in this way. We apply this method to G
=SU(3), U=U(1) in G* and show that for any of the positively curved 7-
manifolds M =M, there exists a series of compact simply connected topologi-
cally distinct 7-manifolds M, which are not homotopically equivalent to any
compact Riemannian homogeneous space, such that the sectional curvatures of
M, converge in a certain sense to the sectional curvatures of M. This implies
that M, has strictly positive curvature for sufficiently large n.

We wish to thank Prof. W.T. Meyer and Prof. E. Heintze for several hints and useful discussions.

2. Fixed Point Free S'-actions on SU(3)

21. Let G=SU(3) and U a closed one-parameter subgroup of G*. We define an
action of U on G by
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(u, g)—>u guy '

for any geG, u=(u,,u,)eU. For any conjugate subgroup U'=aUa"!, a
=(a,,a,)eG? the mapping gaj 'ga,: G—G gives an equivariant diffeomor-
phism. Therefore, we may assume UcT x T=T2 where T denotes the max-

imal torus of diagonal matrices
{expidiag(x,, x,,x;); x,€R, Y x,=0}

in SU(3). Let WeU be a generator of the kernel of the exponential map of U.
Then

W =2ni(diag(k,l, —k—1), diag(p,q, —p—q))

where k, I, p, g are integers which are relatively prime. To indicate that U is
determined by k, [, p, g, let us set U=U,

kipq:

Proposition 21. U=U,,,, acts on G without fixed points if and only if the
Sfollowing pairs of intergers are relatively prime:

Proof. U acts without fixed points if for any lsu=(u;,u,)eU we have
u, +gu,g~"! for all geG. Now u=exp (W, 0<t<1, and u,, u, are diagonal
matrices. These are nonconjugate if and only if u, ou, for all permutations ¢
of the coordinates (which establish the Weyl group of SU(3)). Hence one has to
be sure that

2rit(diag(k,l, —k—1)—o diag(p,q, —p—q))¢exp (1)

which is equivalent to

t((k7 l7 —k— l)'—O'(p, q, —p—q))¢z3

for any te(0, 1). Writing this down for all permutations o, we get the result.
A quadrupel of integers (k, 1, p,g) will be called admissible if the conditions
of the previous proposition are satisfied.

Examples. (1) If k=1=0, then the condition is trivial; this is the case of the
homogeneous spaces M.

(i) The quadrupel (1,0,2m, 2m) is admissible for arbitrary meN. This and
further examples will be studied in § 5.

22. Let H=U(2)cG be the canonical imbedding. Fix a Riemannian metric
{, > on G which is invariant under left translations of G and right translations
of H, such that the induced metric on M, =G/U,, has strictly positive curva-
ture for arbitrary positive integers p, ¢. It was shown in [1] that such a metric
is given by the following scalar product on the Lie algebra G:

(X,Y):=B(X,Y)+tB(Xy, Yy)
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for any te(—1,0)u (0, 1/3), where B is an Ad(G)-invariant scalar product and
X 4 denotes the orthogonal projection of X to H.

In particular, the group U=1U,,,, acts on G by isometries. Consequently, if
(k, 1, p,q) is admissible, there exists a unique metric ( , > on the orbit space M
=G/U such that n: G—>M becomes a Riemannian submersion. Its curvature is
given by O’Neill’s formula [9, p. 465]: If X, Y are local linearly independent
vector fields on G which are orthogonal to the orbits of U (“horizontal”), and
K denotes the curvature of M and G, then

(%) K(n, X, n, Y)=K(X,Y)+3[(Vy Y),[?/IX A Y]?

where the subscript v denotes the projection to the tangent space of the orbit
(“vertical component”).
The orbits of the action of U are

Fg:Ug:{u1'g'”2_1;(“1:“2)EU}~

Its tangent spaces, the vertical subspaces, are denoted by T,F={R.X,
—L,.X,: (X, X,)eU}. We translate this space back to G=T,G and get

Vi=(La) 'T,F={Ad(g" )X —X,;(X,,X,)eU}.

Now U is one-dimensional, so for any basis vector (x, y) we have V,=R-(y
—Ad(g)~'x). Put z(g)=y—Ad(g)~'x, defining a smooth mapping z: GG
—{0}. Its differential is given by z (L.w)=[w, Ad(g)~x] for any geG, weG.

Let h(g)eEnd T,G be the orthogonal projection onto the horizontal sub-
space. This can be expressed in terms of z as follows: Setting Z=2z/|z|, let
p(g)eEndG be the orthogonal projection p(g)x=x—<x,z(g)>z(g). Then h(g)
=L,.pg)L,.".

Lemma. Let U, ieN, be closed one-parameter subgroups of G* which act freely
on G. Assume that U, is generated by (x,, y)eG? where y+0 is fixed and x;—0.
Let U be the subgroup of G generated by y. Let h,, hel'(End TG) be the
horizontal projections of the Riemannian submersions n;: G—-G/U;, n: G=G/U
resp. Then the h; converge to h in the C'-topology on I'(End TM).

Proof. According to the preceding remark, it suffices to show that the map-
pings z;: G—G, z,(g)=y— Ad(g)”'x;, are C'-converging to z=y. This is true
since x;—0 and z.(L,.w)=[w, Ad(g)~ 'x,]-0 uniformely in g for any weG.

Under these assumptions, the sectional curvatures of M, =G/U, converge to
the curvature of M =G/U in the following sense:

Proposition 22. Let G, M, M, (ieN) be Riemannian manifolds, and n: G- M,
n;: G->M,; Riemannian submersions with horizontal projections h and h; resp.
Assume h—h;, in the C'-topology on I'(End TG). Then for any geG and any -
horizontal 2-plane P = T,G, we have for the sectional curvatures

KM,(ni*P)_}KM(n*PL

and the convergence is uniform in P.
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(Observe that kerm, is near to kerm, for large enough i, therefore =, is
isomorphic on the n-horizontal vectors.)

Proof. Let X, Y m-horizontal vector fields which span P at the point g. Let X;
=h,X, Y,=h;Y. Then X,—»X and Y,—>Y in the C'-sense. Since m,oh,=m,, we
have by (%)

Ky (X, 1 Y) =K o(X, Y) + 31— h) (7 YII/ 1 X A Y2
which clearly converges to K (X, Y) uniformly.

Remark. The fibre of n;: G—M,=G/U, through 1€G is the subgroup generated
by y—x; which passes through g;;=exp2nx;#1 (assume y to be chosen such
that exp2ny=1). Since g,—1, the cut locus distance of M, at m,(l) gets
arbitrarily small for large i. One easily shows the same fact at n(g} for any
g€G. Thus the spaces M; and M are geometrically very different, even locally.

3. Homotopy and Integral Cohomology of SU(3)/U,,,,
31. Let G=SU(@3), U(1)=@U =G x G a group which acts freely on G by right
and left translations. The orbit space M =G/U has the following homotopy
groups:

Proposition 31.
,(M)=0, 7w,(M)=1Z,

n{M)=n(SUQ3)) for i23,
in particular ©,(M)=2Z, n,(M)=0.

This follows from the exact homotopy sequence of the fibration G—M and
[4; 6, p. 428].

32. Now consider the cohomology. It is well known that H*G is the exterior
Z-algebra with generators z,€H3(G) and zseH>(G). Let B, be a classifying
space for G. Then H*B;=Z[z,,%,], where Z,eH *'(B;) corresponds to z
under transgression [5, p. 171]. Let T<G be the torus of diagonal matrices.
We may identify H*B; with the ring I; of polynomials on H;T which are
invariant under the Weyl group W(G) [S5, p. 194, 199]. One can specify the
generators Z,, Z, in this representation as follows: Let L be the lattice of
integral matrices in T, i.e. L={X€T; exp2nX =1}. Note that any XeL corre-
sponds to a 1-cycle t—exptX: [0,2n]—1T, and any integral linear form xeL*:
={yeT*; wWL)c=Z} corresponds to a l-cocycle. This defines isomorphisms
which identify L with H, T and L* with H'T.

Proposition 32. Let G, T, L as above, A, =i-diag(1,0, —1) and A,=i-diag(0, 1,
—1) a base of L, a; and a, the dual base of L*. Then we have (up to sign):

+a,a,,

a,)

NI |

3a+
a,a

QI NN

2(a,
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where a,eH?B, corresponds to a,e H'T under transgression in the universal
bundle E,— B;.

Proof. Let T'=T be the set of diagonal matrices of U(3). We may extend the
linear form g; to T', this is the projection to the i-th coordinate (i=1 or 2). Let
a,€T*be the projection on the third coordinate. Since W(U(3))=W{SU(3)) is
the permutation group of the coordinates, I, is the Symmetric Algebric
Algebra S(a,, a,, a;) which is generated by the polynomials

pi=d;+a,+a,, p,=a,a,+a,as;+aza,,

P3=a,a,0a;.

Now T is the subset of T" where a, +a,+a;=0. Hence on T we have p, =0, p,
= —(a}+a3+a,a,), py=—a,a,(a,+a,). So p,ly and psly generate Iy and
the result follows from [5], Proposition 27.1: Observe that a; has degree 2,
while degree(Z,)=4, degree(z;)=6.

33. Let G be a compact Lie group and U a closed subgroup of G*=G xG
which acts on G by right and left translation. Assume that this action is free.
Then the orbit space M=G/U is a smooth manifold and the projection
n: G=»M a principal bundle with structure group U. Let n,: E,—B, be a
classifying bundle for U. Consider the following commutative diagram (com-
pare [5], p. 167, Diagram 184, and p. 168)

G— > EyxG—E,

(D1) }
M— GjU — B,

where G//U denotes the orbit space of E; x G under the product action of U.
The left horizontal arrows represent cohomology isomorphisms since the fibres
of these maps are homeomorphic to E, which is acyclic. We consider the
spectral sequence of the bundle p: G/U—-B, with fibre G. It starts with E,
=H*B,®H*G and converges to H*M. The next step is to compute its
differentials.

Let E;.— B, be a classifying bundle of G2. Since U = G?, we can choose E,
=E;, By=Eg./U. Thus we get a natural projection p: B,— Bg.. This extends
to a bundle map

G/lU=(Eg % G)/U —2— (E, x G)/G?
(D2) pl p’
BU I N BGZ

which is a homeomorphism on the fibres. The bundle p’ is well known: Let
d: G->G?* be the diagonal imbedding, and B;:=E;./6G. Then E;—Bg is a
classifying bundle for G. Moreover, the projection 4: B;— B is a bundle with
fibre G, and the mapping f: E;2/0G—(E4. x G)/G* which is well defined by

0Ger—G?(e, 1) for all ecE,., establishes a bundle isomorphism between p’ and
A.
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34. The next step is to compute the spectral sequence of the bundle
4: Bg— B, for G=SU(3). We can choose Bg.: =B x B;; as a classifying space,
hence H*(Bg:.)=H*B;®H*Bo=Z[X;,7;,%5,V5] with X:=Z,®1, J;:=1®z%,.
The spectral sequence of 4 starts with E,=H*B;.®H*G. Call k;: H*Bg,—E*°
the natural projections. It is a general fact that A*=k_: H*Bg,—E*°c H*B.
[5, p. 128].

Proposition 34. The differentials d;: E,—~E; are given by

(1) d,1®z)=0 for j<i
Q) d,, (1®z)=tk; ((x,—¥) for i=3 and i=5.

Proof. Equation (1) follows immediately since d,(1®z)eE}?"~/*! which vanishes
already in E, for j<i.

Using the fact that H*B, can be identified with the subset I; of H*B, it is
easy to seec that

A1) =A*(1®@u) =u

for every ue H* B;. Thus, the kernel of A* is the ideal (X, —¥3, Xs— V) H*Bg.
We have d,=d, =0, hence E,=E,, and

d(ES®)=kerks "E}°=kerk, nE}°=Z(X;—7,)

since E2°=E*’. Since EJ*=Z(1®z,), we get (2) for i=3. Using (1), we con-
clude
E,=E =(H*Bs:/(X3— 7)) HL-1DZL - z).

Hence ky(Xs—7s) is irreducible in EX° and E2*=Z(1®z). By the same argu-
ment as above, (2) follows for i=35.

35. Now consider the Diagram D2. Let E and E’ be the spectral sequences of
the bundles p: GJU By, and 4: B;— Bg: resp. The bundle map(g,p) sending p
to 4 induces homomorphisms of differential algebras p*: E,—E,. Note that p}
=p*®p¥, where g, is the mapping of the fibres: g.=gdlp~'(b):
p~'(b)=> A4~ Yp(b)) where beB,, is arbitrary. This is a homeomorphism, which
becomes the identity if we identify the fibres suitably with G. Using that pf
commutes with d, and p, ; is the d,-cohomology of p¥, we get by induction
from Proposition 34:

Proposition 35. Let G=SU(3), U a fixed point free closed subgroup of G2. Let
p: By— B be the map induced by the imbedding U< G>. Then the differen-
tials of the spectral sequence of p: Gj/U— B, are as follows:

d(1®z)=0 for j<i
di+1(1®zi):iktﬂp*(’_ci_)_’i)

for i=3 and i=5, where k;: H* B, —E*° denotes the natural projections in this
spectral sequence.

Remark. An analogous statement is true for G=SU(n), U(n) and Sp(n) if one
chooses a suitable set of generators z; for the exterior Z-algebra H*G.
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36. Now let U=G x G as in 31. We may assume that U=U,,,, with (k,],p,q)
admissible (see 21.). We will compute the cohomology of M=G/U by the
method indicated in 35.

Proposition 36. H*M is generated by weH*(M), ze H>(M), and the following
relations hold:
rw?=0,w3=0,zw?=0,2z2=0

with r:=|(k*+ 1>+ k)~ (p®> +4*+pq).
Proof. Let W=i be the generator of U(1)=i-R and p,: U(1)-T? the inclusion

of U. Choose the base V,=(4,,0), V,=(4,,0), V;=(0,4,), V,=(0,4,) of I?
{same notations as in 32.). Then

P (W)=kV +1V,+pV,+qV,.
If w;v,,...,0, are the dual bases, we have
P ) =kw,p*(vy)=1w,p*(v3)=pw,p*(vy) =gqw.

Call x;=2z,®1 and y,=1®z, for i=1 and 2 the generators of H*GRH*G
=H*G2 1t follows from 32. that the generators of H*B,,, corresponding
under transgression, are

Hence
p¥(X3—73)=((k* + >+ kD) —(p* +q* + pq)) W?,
p*(Es—Vs)=(kl(k+1)—pqa(p+q) W’

Now consider the spectral sequence of p: G/U—B, as in Proposition 35. It
starts with E,=E,=E,=H*B,QH*G. Since d(1®z;)=(X;—y;)=rw? we
conclude kerd,=B,;®1,z5), and imd, is the ideal in kerd, generated by

rw?®1, hence
E;=E, =(Z[W]/rw)®, z5).

Now d(1®z5)=(Xs—Js)=sks(W?) with s=kl(k+1)—pq(p+q). Claim: r and s
are relatively prime. In fact, if there was a prime number n dividing both r and
s, we would have ok, [, —(k+1))=0,(p,q, —(p+¢q)) modn, for i=1,2,3,denoting
by o; the i-th elementary symmetric polynomial in three variables. But then
(k, I, —(k+1) and (p,q, —(p+q)) would be congruent modn up to a permu-
tation of the three variables which is excluded by the very fact that (k, [, p,q) is
an admissible quadrupel (see 21). Hence d(n(1®z5))=0 only if n is a multiple
of r. It follows that kerd, =(Z[Ww]/(rw?)®<{1,rz5), and imd, is the ideal in
kerd, generated by w*®1. So

E,=E_=(Z[W%]/(rw’,%*)®<1,rz5)=H*M.
So we have completed the proof, setting w=k_ (%) and z=r(1®z)."

! A similar proof for the homogeneous case k=I/=0 was communicated to us by W. Ziller.
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4. Homogeneous Spaces with Similar Homotopy

We call a compact topological space strongly inhomogeneous if it is not
homotopy equivalent to any compact Riemannian homogeneous space. The
goal of this section is the proof of the following

Theorem. Let G=SU(3), U(1)2 U = G? fixed point free, M=G/U. Assume that
H*M)=Z, with
r=203).

Then M is strongly inhomogeneous.

Proof. Assume that M is homotopy equivalent to a compact Riemannian
manifold M’ with transitive isometry group G. Call H the isotropy subgroup
of a fixed element me M. Then M'=G/H.

1. The first homotopy groups of M’ are given in 41. Moreover, it is known for
any compact Lie group that n,=0 and n,=2Z* where k is the number of
simple factors of the Lie algebra [4]. Thus we derive from the exact homotopy
sequence of the fibration H>G—->M':

(1) 7o(H)=74(G),

(2) 0>Z-n,(H)»n,(G)—0 is exact,

(3) my(H)=75(G) x Z.
By (1), we may assume that G, H are both connected since G,/H,=G/H. From
the sequence (2) it follows that rank(n,(H))=rank(n,(G))+1. Hence, if G=G’
xT where G’ is semisimple and T an I-torus, then H=H'xS with H' semi-
simple and § an (I+1)-torus. Moreover, by (3), G’ has k+ 1 simple factors if H’
has k.

2. Let G’ be the simply connected group with Lie algebra G'. Then G:=G' x T
is a covering group of G. Call n: G—G the covering homomorphism, H:
=n~!(H). Hence we get a covering map #: G/H—G/H which is in fact a
diffeomorphism since M'=G/H is simply connected. Thus we assume from
now on that G=G'x T, where G’ is a simply connected semisimple compact
group and T an [-torus.

3. Since the Lie algebra H'cH is semisimple, its projection to the abelian
factor of G is zero, hence H':=expH’' is a subgroup of G'. Consider the
homomorphism f=pojoi: S—T which is the composition of the inclusions
i: S>H, j: H>G and the projection p: G—T. Then f,(n(S)) has finite index in
n,(T) since j, is onto (see (2)), p,, is isomorphic and i (n,(S)) has finite index in
7,(H). Therefore the subtorus f(S) of T has the same rank as T, so f is onto.
Hence the connected component of its kernel is a circle U«S which is a
subgroup of the semisimple factor G’. Hence G'nH=H'xU. A complement
M of H xU in G’ is also a complement of H in G. Set H":=exp(H' x U)cG'.
Then the mapping gH"— (g, 1)H: G'/H"—G/H is a covering map and hence a
diffeomorphism. Replacing G and H with G’ and H”, we may assume: G is
simply connected and semisimple, and H=H' xR with semisimple factor H'.
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4. We want to determine the possible simple components of G and H'. M and
M’ are both compact, orientable and homotopically equivalent. Hence dim M’
=dim M =7. Thus the isotropy group H is a subgroup of 0(7). It follows that
rank H' =2, so H' is one of the following compact Lie algebras:

0;4,;4,; C,;G,; A, xA4,.

Since dimG=dimH'+8 and G has one simple factor more then H', the
corresponding Lie algebra G can only be out of the following ones:

Ay Ay xA ;A x A, CyxA, or AyxAyg;
G,xA,; A, xA, xA,.

Thus we have to consider seven pairs of Lie algebras (G,H xIR). A pair by
pair inspection of the possible imbeddings of H' xR in G shows that M'=G/H
is never homotopy equivalent to M. In particular, this is true for the first pair
(4,,R) since then M’ is a Wallach space M,, with H*M')=Z,,r=p*+q*
+pg=%2(3) for arbitrary p,qeZ. We will discuss the details of the remaining
pairs in the appendix.

5. Strongly Inhomogeneous Spaces Near to Wallach Spaces

Theorem. For any Wallach space M=M,, with pq(p+q)+0 there exists a
sequence of simply connected strongly inhomogeneous Riemannian manifolds M,
of distinct homotopy type the curvatures of which approach the curvatures of M
in the sense of Proposition 22.

Proof. In the view of §4, all we have to show is: There are infinitely many
positive integers n=n; such that the quadrupel (1,0, np, nq) is admissible and r:
=n?(p? +q%>+pq)— 1=2(3). This last condition is satisfied if we choose n=0(3).
Moreover, the following pairs of integers have to be relatively prime (see 21.):

(np—1,nq),(np—1,ns),(ns+1,np),
(nq - 17 np)’ (nq - 1’ VlS), (ns+ 13 nq)

where we have set s:=p+gq. Let {a,,...,a,} be the set of all prime numbers
which divide pgs. Then
n=nm=3ia,a,...q,

clearly satisfies all conditions for arbitrary ieIN. Set M;=M, ;, , . .-
Remarks. 1. By Proposition 22, the curvature of M, is strictly positive if p,g>0
and i large, and the pinching of M=M, is approximated; e.g. we have
K in/K e =16/29-37 for p=g=1, t=—1/2 (parameter of the metric) as was
shown by Hua-Min Huang [8].

2. It can be shown that in fact M, has strictly positive curvature for any
positive integer i, if p and g are positive.
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3. There are many spaces of type G/U,,, which cannot be distinguished by
cohomology, even among the homogenous ones (k=1=0): e.g. M, , and M; ..
It would be interesting to know whether these are topologically different.

Appendix 3 — The Remaining Homogeneous Spaces M’ which are Similar
to M=SU(3)/U,,,, (see §4)

Ipq

Let (G, H) be one of the pairs of §4, Sect. 4, except the first one. We denote by
pr;: H—G,; the projection of the subalgebra H of G to the i factor G, of G.

1. (A, xA4,,A, xR)

Either pr,A,=0 for i=1 or 2, or A4, is the diagonal subalgebra of 4, x 4,. In
the first case, it follows that pr;R=0 for j+i, hence M'=SU(3)/U(1) is a
Wallach space which is not homotopically equivalent to M as was proved

above. The second case is impossible since the diagonal subalgebra of 4, x 4,
has no centralizer.

2.(C,xA4,,C,xR)
Then pr, C,=0, pr, R=0 and hence M'=SU3)/U(1) +M.

3.(4;xA,,C, xR)

Then pr, C,=0. The homogeneous space corresponding to the pair (4,, C,)
=(D,,B,) is the S5-sphere S$°=S0(6)/SO(S). Since the isotropy group G,
=80(5) of some peS*® has no fixed vector on 7,8°=IR’, it has no centralizer
in SO(6). Therefore, pr, R =0. It follows that M'=8°%x §? ¥ M since H*(M')=0.

4.(G,xA4,, G, xR)
Then pr, G,=0, pr, R =0, hence M'=SU3)/U(1)&M.

5. (A, x Ay, A, xIR)

Up to equivalence, there are two representations of A, in A,, corresponding to
the standard imbeddings SO(3)cSU(3) and SU2)<SU(3). Call the first f},
the second f,. Consequently, there are the following imbeddings of 4, in 4,

XA ©,id), (f,, 00 (2, 0) (i, id), (i, id).

a) (0,id): Then pr,IR =0, hence M'=SU(3)/U(1) + M.

b) (f;,0): There is no centralizer of SO(3) in SU(3).

It follows pr, R =0, consequently M’'=SU(3)/SO(3)xS*4+ M since w?=0
for the generator w of H*(S*) < H*(M').

¢) (f;,0): More precisely, we choose the imbedding f,: SU(2)—»SU(3) in the
first two coordinates, which has centralizer R-Z, Z:=i-diag(1,1, —2). Hence
the factor IR can be an arbitrary line with rational slope in the plane spanned
by (Z,0) and (0,Y) in G=SU(3)xSU(2), where Y:=i-diag(l, —1)eSU(2). Up
to conjugation, these are all possible imbeddings. Let U, =(Y,0) and U,=(0,1)
be a basis of the lattice expg'(1)=H,(S) (natural identification), where S is
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the maximal torus of H. Likewise, we have the basis ¥V, =(idiag(1,0, —1),0),
V, =(idiag(0,1, —1),0), V,=(0,Y) of the lattice exp;'*(1)=H,(T) for the maxi-
mal torus T of G. Call p,: S—T the imbedding (f,0)ls. Then we have

P (U)=V, =V,
puUp)=k-(Vy + Vo) +1-V,
where k, [ are the relative prime integers which correspond to the imbedding of
R. The transposed map p*: H'(T)-H'(S) is given by
p*v)= u,+k-u,,
p*vy)=—u, +k-u,,

p*(vy)= lu,

where u;, v; are the dual bases.
Call y,, z,, z5 the generators of H*(SU(2)), H*(SU(3)), H(SU(3)). The
invariant polynomials which generate H*(B;), G=SU(3)xSU(2), are the fol-

lowing (see 32.):

N
i

=2
3=U3,
3=0]+03;+0,0,,

Zs

I

U,70,(0, +7,).
The images under the induced map p*: H*B,—H* By, are
p*(ys):lz ﬁ%,
p*(Es) =01 +3k* 13,
p*(Zs) =2k - (—u?i,+ k> 73).
As in 33, we consider the spectral sequence of p: G/H — B, which starts with
E,=H*B,®H*G. It was shown by Borel [5, p. 180] that 1®y,, 1®z;€E,
and 1®z.cE, with _
e d(1®y3)=k,p*Vs,

d(1®z3) =k, p*z;,
do(1®z5)=k,p*Z

where d; are the differentials and k;: H* B, —E*° the natural projections. From
this we derive the cohomology of M’, in particular:

HYM)=Z#®Za%/L

where L is the sublattice generated by #%+3kus and [?#%. Since the de-
terminant of these two vectors is [2, H*(M’) is a finite group of order [2. But it
was assumed for the order r of H*(M) that r=2mod 3 which fails for /2. Hence
M4M.

d) (f,,id) This is impossible since pr, R =0 and, by b), also pr, R =0.

e) (f;,id) Again we have pr, IR =0. Hence the mapping p,=(f,,id)ls: S-T
is as follows (same notation as in c):

pU)=V, =V, + V3,
p(Uy) =V, +V,.
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It follows for the induced map p*: H*B;—H*By;:
p*(¥3)=1u,,
p*(z;)=u; +3u3,
p*(Zs)= — 2070, +23
(compare c)). In particular, H*(M’) is generated by k,(#3) with 3k,(@3)=0. But
r=ord(H*M)=3, hence M3 M.
6. (A, xA xA,, A xA; xR)

The imbeddings of H'=A4,x A4, into G=A4,xA4, xA, are given by 2x3-
matrices of homomorphisms a;;: H;(>G; (i=1,2;j=1,2,3). Observe that
a,;#0 implies a, ;=0 and vice versa. Then, up to conjugation and permutation
of isomorphic factors, the following imbeddings exist:

2) (fk, 0, 0)’ b) (fk, 0,0)’

\0,id,id 0,id,0
f,id, 0) 0,id, 0)
Qﬁam’®Qam

where f,: A, A, (k=1,2) are the representations used in 5.

a) H, is diagonally imbedded in 4, x A,. This is the canonical imbedding
SO(3)=S0(4) which has no centralizer since SO(3) has no fixed vector on
the tangent space of SO(4)/SO(3)=S> Hence H,=WR is mapped into the first
factor. It follows from 5c¢) that only k=2 is possible. Thus M'=SU(3)/
U(2)x §3=CP? x S34 M since H*(M')&Z.

b) H,=R is mapped to G, xG,, and the pair can be reduced to (A4,
x A{,A; xR) which was treated in 5.

¢) Same argument as in b).

d) H,=R is mapped to G,=4,, and M'=SU3)/U(1)+M.
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