

New Examples of Manifolds with Strictly Positive Curvature

J.-H. Eschenburg

Mathematisches Institut der WWU, Einsteinstraße 64, D-4400 Münster, Federal Republic of Germany

1. Introduction

Berger [3], Wallach [10] and Berard Bergery [2] have classified all simply connected smooth manifolds which allow a homogeneous Riemannian metric of strictly positive curvature. Besides the rank one symmetric spaces there exist five exceptional manifolds and an infinite series of 7-manifolds of distinct homotopy type which have been studied by Aloff and Wallach [1]. These are diffeomorphic to M_{pq} := $SU(3)/U_{pq}$, where p, q are positive integers and U_{pq} is the one-parameter subgroup of diagonal matrices

$$\{\exp(2\pi it \operatorname{diag}(p,q,-p-q)); t \in \mathbb{R}\}.$$

Looking for further spaces of positive curvature one has to consider a more general class of manifolds. If G is any Lie group, the group $G^2 := G \times G$ acts on G by right and left translations. If U is a compact subgroup of G^2 which acts without fixed points, then the orbit space G/U is a smooth manifold which is not homogeneous in general. Gromoll and Meyer [7] obtained an exotic 7-sphere of nonnegative curvature in this way. We apply this method to G = SU(3), $U \cong U(1)$ in G^2 and show that for any of the positively curved 7-manifolds $M = M_{pq}$, there exists a series of compact simply connected topologically distinct 7-manifolds M_n which are not homotopically equivalent to any compact Riemannian homogeneous space, such that the sectional curvatures of M_n converge in a certain sense to the sectional curvatures of M. This implies that M_n has strictly positive curvature for sufficiently large n.

We wish to thank Prof. W.T. Meyer and Prof. E. Heintze for several hints and useful discussions.

2. Fixed Point Free S^1 -actions on SU(3)

21. Let G = SU(3) and U a closed one-parameter subgroup of G^2 . We define an action of U on G by

$$(u,g) \mapsto u_1 g u_2^{-1}$$

for any $g \in G$, $u = (u_1, u_2) \in U$. For any conjugate subgroup $U' = aUa^{-1}$, $a = (a_1, a_2) \in G^2$, the mapping $g \mapsto a_1^{-1} g a_2$: $G \to G$ gives an equivariant diffeomorphism. Therefore, we may assume $U \subset T \times T = T^2$ where T denotes the maximal torus of diagonal matrices

$$\{\exp i \operatorname{diag}(x_1, x_2, x_3); x_i \in \mathbb{R}, \sum x_i = 0\}$$

in SU(3). Let $W \in U$ be a generator of the kernel of the exponential map of U. Then

$$W = 2\pi i(\operatorname{diag}(k, l, -k-l), \operatorname{diag}(p, q, -p-q))$$

where k, l, p, q are integers which are relatively prime. To indicate that U is determined by k, l, p, q, let us set $U = U_{klpq}$.

Proposition 21. $U = U_{klpq}$ acts on G without fixed points if and only if the following pairs of intergers are relatively prime:

$$(k-p, l-q),$$
 $(k-p, l+p+q),$ $(k+p+q, l-p),$
 $(k-q, l-p),$ $(k-q, l+p+q),$ $(k+p+q, l-q).$

Proof. U acts without fixed points if for any $1 \neq u = (u_1, u_2) \in U$ we have $u_1 \neq g u_2 g^{-1}$ for all $g \in G$. Now $u = \exp t W$, 0 < t < 1, and u_1 , u_2 are diagonal matrices. These are nonconjugate if and only if $u_1 \neq \sigma u_2$ for all permutations σ of the coordinates (which establish the Weyl group of SU(3)). Hence one has to be sure that

$$2\pi it(\operatorname{diag}(k, l, -k-l) - \sigma \operatorname{diag}(p, q, -p-q)) \notin \exp^{-1}(1)$$

which is equivalent to

$$t((k, l, -k-l) - \sigma(p, q, -p-q)) \notin \mathbb{Z}^3$$

for any $t \in (0, 1)$. Writing this down for all permutations σ , we get the result.

A quadrupel of integers (k, l, p, q) will be called admissible if the conditions of the previous proposition are satisfied.

Examples. (i) If k=l=0, then the condition is trivial; this is the case of the homogeneous spaces M_{pq} .

(ii) The quadrupel (1, 0, 2m, 2m) is admissible for arbitrary $m \in N$. This and further examples will be studied in § 5.

22. Let $H = U(2) \subset G$ be the canonical imbedding. Fix a Riemannian metric \langle , \rangle on G which is invariant under left translations of G and right translations of H, such that the induced metric on $M_{pq} = G/U_{pq}$ has strictly positive curvature for arbitrary positive integers p, q. It was shown in [1] that such a metric is given by the following scalar product on the Lie algebra G:

$$\langle X, Y \rangle := B(X, Y) + tB(X_H, Y_H)$$

for any $t \in (-1, 0) \cup (0, 1/3)$, where B is an Ad(G)-invariant scalar product and X_H denotes the orthogonal projection of X to **H**.

In particular, the group $U = U_{klpq}$ acts on G by isometries. Consequently, if (k, l, p, q) is admissible, there exists a unique metric \langle , \rangle on the orbit space M = G/U such that $\pi: G \to M$ becomes a Riemannian submersion. Its curvature is given by O'Neill's formula [9, p. 465]: If X, Y are local linearly independent vector fields on G which are orthogonal to the orbits of U ("horizontal"), and K denotes the curvature of M and G, then

(*)
$$K(\pi_* X, \pi_* Y) = K(X, Y) + 3 \| (\nabla_X Y)_v \|^2 / \| X \wedge Y \|^2$$

where the subscript v denotes the projection to the tangent space of the orbit ("vertical component").

The orbits of the action of U are

$$F_{g} = Ug = \{u_{1} \cdot g \cdot u_{2}^{-1}; (u_{1}, u_{2}) \in U\}.$$

Its tangent spaces, the vertical subspaces, are denoted by $T_g F = \{R_{g^*}X_1 - L_{g^*}X_2; (X_1, X_2) \in \mathbf{U}\}$. We translate this space back to $\mathbf{G} = T_1 G$ and get

$$V_{g} := (L_{g^{*}})^{-1} T_{g} F = \{ \mathrm{Ad}(g^{-1}) X_{1} - X_{2}; (X_{1}, X_{2}) \in \mathbf{U} \}.$$

Now U is one-dimensional, so for any basis vector (x, y) we have $V_g = \mathbb{R} \cdot (y - \operatorname{Ad}(g)^{-1}x)$. Put $z(g) = y - \operatorname{Ad}(g)^{-1}x$, defining a smooth mapping $z: G \to \mathbf{G} - \{0\}$. Its differential is given by $z_*(L_{g^*}w) = [w, \operatorname{Ad}(g)^{-1}x]$ for any $g \in G$, $w \in \mathbf{G}$.

Let $h(g) \in \text{End } T_g G$ be the orthogonal projection onto the horizontal subspace. This can be expressed in terms of z as follows: Setting $\overline{z} = z/||z||$, let $p(g) \in \text{End } \mathbf{G}$ be the orthogonal projection $p(g)x = x - \langle x, \overline{z}(g) \rangle \overline{z}(g)$. Then $h(g) = L_{g^*} p(g) L_{g^*}^{-1}$.

Lemma. Let U_i , $i \in N$, be closed one-parameter subgroups of G^2 which act freely on G. Assume that U_i is generated by $(x_i, y) \in G^2$ where $y \neq 0$ is fixed and $x_i \rightarrow 0$. Let U be the subgroup of G generated by y. Let h_i , $h \in \Gamma(\text{End }TG)$ be the horizontal projections of the Riemannian submersions $\pi_i: G \rightarrow G/U_i, \pi: G \rightarrow G/U$ resp. Then the h_i converge to h in the C^1 -topology on $\Gamma(\text{End }TM)$.

Proof. According to the preceding remark, it suffices to show that the mappings $z_i: G \to \mathbf{G}$, $z_i(g) = y - \operatorname{Ad}(g)^{-1}x_i$, are C^1 -converging to $z \equiv y$. This is true since $x_i \to 0$ and $z_{i*}(L_{g*}w) = [w, \operatorname{Ad}(g)^{-1}x_i] \to 0$ uniformely in g for any $w \in \mathbf{G}$.

Under these assumptions, the sectional curvatures of $M_i = G/U_i$ converge to the curvature of M = G/U in the following sense:

Proposition 22. Let G, M, M_i ($i \in \mathbb{N}$) be Riemannian manifolds, and $\pi: G \to M$, $\pi_i: G \to M_i$ Riemannian submersions with horizontal projections h and h_i resp. Assume $h \to h_i$ in the C¹-topology on $\Gamma(\text{End }TG)$. Then for any $g \in G$ and any π -horizontal 2-plane $P \subset T_gG$, we have for the sectional curvatures

$$K_{M_i}(\pi_{i^*}P) \rightarrow K_M(\pi_*P),$$

and the convergence is uniform in P.

(Observe that ker π_{i^*} is near to ker π_* for large enough *i*, therefore π_{i^*} is isomorphic on the π -horizontal vectors.)

Proof. Let X, Y π -horizontal vector fields which span P at the point g. Let $X_i = h_i X$, $Y_i = h_i Y$. Then $X_i \rightarrow X$ and $Y_i \rightarrow Y$ in the C¹-sense. Since $\pi_{i*} \circ h_i = \pi_{i*}$, we have by (*)

$$K_{M_i}(\pi_{i^*}X, \pi_{i^*}Y) = K_G(X_i, Y_i) + 3 \|(I - h_i)(\nabla_{X_i}Y_i)\|^2 / \|X_i \wedge Y_i\|^2$$

which clearly converges to $K_M(X, Y)$ uniformly.

Remark. The fibre of $\pi_i: G \to M_i = G/U_i$ through $1 \in G$ is the subgroup generated by $y - x_i$ which passes through $g_i := \exp 2\pi x_i \neq 1$ (assume y to be chosen such that $\exp 2\pi y = 1$). Since $g_i \to 1$, the cut locus distance of M_i at $\pi_i(1)$ gets arbitrarily small for large *i*. One easily shows the same fact at $\pi_i(g)$ for any $g \in G$. Thus the spaces M_i and M are geometrically very different, even locally.

3. Homotopy and Integral Cohomology of $SU(3)/U_{klpg}$

31. Let G = SU(3), $U(1) \cong U \subset G \times G$ a group which acts freely on G by right and left translations. The orbit space M = G/U has the following homotopy groups:

Proposition 31.

$$\pi_1(M) = 0, \quad \pi_2(M) = \mathbb{Z},$$

 $\pi_i(M) = \pi_i(SU(3)) \quad for \ i \ge 3,$

in particular $\pi_3(M) = \mathbb{Z}, \pi_4(M) = 0.$

This follows from the exact homotopy sequence of the fibration $G \rightarrow M$ and [4; 6, p. 428].

32. Now consider the cohomology. It is well known that H^*G is the exterior Z-algebra with generators $z_3 \in H^3(G)$ and $z_5 \in H^5(G)$. Let B_G be a classifying space for G. Then $H^*B_G = \mathbb{Z}[\overline{z}_3, \overline{z}_5]$, where $\overline{z}_i \in H^{i+1}(B_G)$ corresponds to z_i under transgression [5, p. 171]. Let $T \subset G$ be the torus of diagonal matrices. We may identify H^*B_G with the ring I_G of polynomials on H_1T which are invariant under the Weyl group W(G) [5, p. 194, 199]. One can specify the generators \overline{z}_3 , \overline{z}_5 in this representation as follows: Let L be the lattice of integral matrices in T, i.e. $L = \{X \in T; \exp 2\pi X = 1\}$. Note that any $X \in L$ corresponds to a 1-cycle $t \mapsto \exp tX : [0, 2\pi] \to T$, and any integral linear form $x \in L^*$: $= \{y \in T^*; y(L) \subset \mathbb{Z}\}$ corresponds to a 1-cocycle. This defines isomorphisms which identify L with H_1T and L^* with H^1T .

Proposition 32. Let G, T, L as above, $A_1 = i \cdot \text{diag}(1, 0, -1)$ and $A_2 = i \cdot \text{diag}(0, 1, -1)$ a base of L, a_1 and a_2 the dual base of L*. Then we have (up to sign):

$$\overline{z}_3 = \overline{a}_1^2 + \overline{a}_2^2 + \overline{a}_1 \overline{a}_2, \overline{z}_5 = \overline{a}_1 \overline{a}_2 (\overline{a}_1 + \overline{a}_2)$$

where $\bar{a}_i \in H^2 B_T$ corresponds to $a_i \in H^1 T$ under transgression in the universal bundle $E_T \rightarrow B_T$.

Proof. Let $T' \supset T$ be the set of diagonal matrices of U(3). We may extend the linear form a_i to T', this is the projection to the *i*-th coordinate (i=1 or 2). Let $a_3 \in T'^*$ be the projection on the third coordinate. Since W(U(3)) = W(SU(3)) is the permutation group of the coordinates, $I_{U(3)}$ is the Symmetric Algebric Algebra $S(a_1, a_2, a_3)$ which is generated by the polynomials

$$p_1 = a_1 + a_2 + a_3, \quad p_2 = a_1 a_2 + a_2 a_3 + a_3 a_1, \\ p_3 = a_1 a_2 a_3.$$

Now **T** is the subset of **T**' where $a_1 + a_2 + a_3 = 0$. Hence on **T** we have $p_1 = 0$, $p_2 = -(a_1^2 + \bar{a}_2^2 + a_1 a_2)$, $p_3 = -a_1 a_2 (a_1 + a_2)$. So $p_2|_{\mathbf{T}}$ and $p_3|_{\mathbf{T}}$ generate $I_{SU(3)}$ and the result follows from [5], Proposition 27.1: Observe that \bar{a}_i has degree 2, while degree(\bar{z}_3)=4, degree(\bar{z}_5)=6.

33. Let G be a compact Lie group and U a closed subgroup of $G^2 = G \times G$ which acts on G by right and left translation. Assume that this action is free. Then the orbit space M = G/U is a smooth manifold and the projection $\pi: G \to M$ a principal bundle with structure group U. Let $\pi_U: E_U \to B_U$ be a classifying bundle for U. Consider the following commutative diagram (compare [5], p. 167, Diagram 18.4, and p. 168)

where $G/\!\!/U$ denotes the orbit space of $E_U \times G$ under the product action of U. The left horizontal arrows represent cohomology isomorphisms since the fibres of these maps are homeomorphic to E_U which is acyclic. We consider the spectral sequence of the bundle $p: G/\!/U \rightarrow B_U$ with fibre G. It starts with E_2 $= H^*B_U \otimes H^*G$ and converges to H^*M . The next step is to compute its differentials.

Let $E_{G^2} \rightarrow B_{G^2}$ be a classifying bundle of G^2 . Since $U \subset G^2$, we can choose $E_U = E_{G^2}$, $B_U = E_{G^2}/U$. Thus we get a natural projection $\rho: B_U \rightarrow B_{G^2}$. This extends to a bundle map

(D2)

$$\begin{array}{c}
G/\!/U = (E_{G^2} \times G)/U \xrightarrow{\hat{\rho}} (E_{G^2} \times G)/G^2 \\
\downarrow^{p'} \qquad \qquad \downarrow^{p'} \\
B_U \xrightarrow{\rho} B_{G^2}
\end{array}$$

which is a homeomorphism on the fibres. The bundle p' is well known: Let $\delta: G \to G^2$ be the diagonal imbedding, and $B_G := E_{G^2}/\delta G$. Then $E_{G^2} \to B_G$ is a classifying bundle for G. Moreover, the projection $\Delta: B_G \to B_{G^2}$ is a bundle with fibre G, and the mapping $f: E_{G^2}/\delta G \to (E_{G^2} \times G)/G^2$ which is well defined by $\delta G e \mapsto G^2(e, 1)$ for all $e \in E_{G^2}$, establishes a bundle isomorphism between p' and Δ .

34. The next step is to compute the spectral sequence of the bundle $\varDelta: B_G \to B_{G^2}$ for G = SU(3). We can choose $B_{G^2} := B_G \times B_G$ as a classifying space, hence $H^*(B_{G^2}) = H^*B_G \otimes H^*B_G = \mathbb{Z}[\bar{x}_3, \bar{y}_3, \bar{x}_5, \bar{y}_5]$ with $\bar{x}_i := \bar{z}_i \otimes 1$, $\bar{y}_i := 1 \otimes \bar{z}_i$. The spectral sequence of \varDelta starts with $E_2 = H^*B_{G^2} \otimes H^*G$. Call $k_j : H^*B_{G^2} \to E_j^{*0}$ the natural projections. It is a general fact that $\varDelta^* = k_\infty : H^*B_{G^2} \to E_\infty^{*0} \subset H^*B_G$. [5, p. 128].

Proposition 34. The differentials $d_i: E_i \rightarrow E_i$ are given by

- (1) $d_i(1 \otimes z_i) = 0$ for $j \leq i$
- (2) $d_{i+1}(1 \otimes z_i) = \pm k_{i+1}(\bar{x}_i \bar{y}_i)$ for i = 3 and i = 5.

Proof. Equation (1) follows immediately since $d_j(1 \otimes z_i) \in E_j^{j,i-j+1}$ which vanishes already in E_2 for $j \leq i$.

Using the fact that H^*B_G can be identified with the subset I_G of H^*B_T , it is easy to see that

$$\Delta^*(u \otimes 1) = \Delta^*(1 \otimes u) = u$$

for every $u \in H^*B_G$. Thus, the kernel of Δ^* is the ideal $(\bar{x}_3 - \bar{y}_3, \bar{x}_5 - \bar{y}_5) \subset H^*B_G$. We have $d_2 = d_3 = 0$, hence $E_2 = E_4$, and

$$d_4(E_4^{03}) = \ker k_5 \cap E_2^{40} = \ker k_\infty \cap E_2^{40} = \mathbb{Z}(\bar{x}_3 - \bar{y}_3)$$

since $E_5^{40} = E_{\infty}^{40}$. Since $E_4^{03} = \mathbb{Z}(1 \otimes z_3)$, we get (2) for i = 3. Using (1), we conclude

$$E_5 = E_6 = (H^* B_{G^2} / (\bar{x}_3 - \bar{y}_3)) \otimes (\mathbb{Z} \cdot 1 \oplus \mathbb{Z} \cdot z_5).$$

Hence $k_6(\bar{x}_5 - \bar{y}_5)$ is irreducible in E_6^{*0} and $E_6^{05} = \mathbb{Z}(1 \otimes z_5)$. By the same argument as above, (2) follows for i = 5.

35. Now consider the Diagram D2. Let *E* and *E'* be the spectral sequences of the bundles $p: G/U \to B_U$ and $\Delta: B_G \to B_{G^2}$ resp. The bundle $\operatorname{map}(\hat{\rho}, \rho)$ sending *p* to Δ induces homomorphisms of differential algebras $\rho_r^*: E'_r \to E_r$. Note that $\rho_2^* = \rho^* \otimes \hat{\rho}_F^*$, where $\hat{\rho}_F$ is the mapping of the fibres: $\hat{\rho}_F = \hat{\rho} | p^{-1}(b)$: $p^{-1}(b) \to \Delta^{-1}(\rho(b))$ where $b \in B_U$ is arbitrary. This is a homeomorphism, which becomes the identity if we identify the fibres suitably with *G*. Using that ρ_r^* commutes with d_r and ρ_{r+1}^* is the d_r -cohomology of ρ_r^* , we get by induction from Proposition 34:

Proposition 35. Let G = SU(3), U a fixed point free closed subgroup of G^2 . Let $\rho: B_U \to B_{G^2}$ be the map induced by the imbedding $U \subset G^2$. Then the differentials of the spectral sequence of $p: G/U \to B_U$ are as follows:

$$d_{j}(1 \otimes z_{i}) = 0 \quad \text{for } j \leq i,$$

$$d_{i+1}(1 \otimes z_{i}) = \pm k_{i+1} \rho^{*}(\bar{x}_{i} - \bar{y}_{i})$$

for i=3 and i=5, where $k_j: H^*B_U \to E_j^{*0}$ denotes the natural projections in this spectral sequence.

Remark. An analogous statement is true for G = SU(n), U(n) and Sp(n) if one chooses a suitable set of generators z_i for the exterior Z-algebra H^*G .

36. Now let $U \subset G \times G$ as in 31. We may assume that $U = U_{klpq}$ with (k, l, p, q) admissible (see 21.). We will compute the cohomology of M = G/U by the method indicated in 35.

Proposition 36. H^*M is generated by $w \in H^2(M)$, $z \in H^5(M)$, and the following relations hold:

$$rw^2 = 0, w^3 = 0, zw^2 = 0, z^2 = 0$$

with $r := |(k^2 + l^2 + kl) - (p^2 + q^2 + pq)|.$

Proof. Let W=i be the generator of $U(1)=i \cdot \mathbb{R}$ and $\rho_*: U(1) \to T^2$ the inclusion of U. Choose the base $V_1 = (A_1, 0), V_2 = (A_2, 0), V_3 = (0, A_1), V_4 = (0, A_2)$ of L^2 (same notations as in 32.). Then

$$\rho_*(W) = k V_1 + l V_2 + p V_3 + q V_4$$

If w; v_1, \ldots, v_4 are the dual bases, we have

$$\rho^*(v_1) = kw, \rho^*(v_2) = lw, \rho^*(v_3) = pw, \rho^*(v_4) = qw.$$

Call $x_i = z_i \otimes 1$ and $y_i = 1 \otimes z_i$ for i = 1 and 2 the generators of $H^*G \otimes H^*G = H^*G^2$. It follows from 32. that the generators of $H^*B_{G^2}$, corresponding under transgression, are

$$\begin{split} \bar{x}_3 &= \bar{v}_1^2 + \bar{v}_2^2 + \bar{v}_1 \bar{v}_2, \ \bar{y}_3 &= \bar{v}_3^2 + \bar{v}_4^2 + \bar{v}_3 \bar{v}_4, \\ \bar{x}_5 &= \bar{v}_1 \bar{v}_2 (\bar{v}_1 + \bar{v}_2), \ \bar{y}_5 &= \bar{v}_3 \bar{v}_4 (\bar{v}_3 + \bar{v}_4). \end{split}$$

Hence

$$\rho^*(\bar{x}_3 - \bar{y}_3) = ((k^2 + l^2 + kl) - (p^2 + q^2 + pq))\bar{w}^2,$$

$$\rho^*(\bar{x}_5 - \bar{y}_5) = (kl(k+l) - pq(p+q))\bar{w}^3.$$

Now consider the spectral sequence of $p: G//U \to B_U$ as in Proposition 35. It starts with $E_2 = E_3 = E_4 = H^*B_U \otimes H^*G$. Since $d_4(1 \otimes z_3) = (\bar{x}_3 - \bar{y}_3) = r\bar{w}^2$, we conclude ker $d_4 = B_U \otimes 1, z_5$, and im d_4 is the ideal in ker d_4 generated by $r\bar{w}^2 \otimes 1$, hence

$$E_5 = E_6 = (\mathbb{Z}[\bar{w}]/(r\bar{w}^2)) \otimes \langle 1, z_5 \rangle.$$

Now $d_6(1 \otimes z_5) = (\bar{x}_5 - \bar{y}_5) = sk_6(\bar{w}^3)$ with s = kl(k+l) - pq(p+q). Claim: r and s are relatively prime. In fact, if there was a prime number n dividing both r and s, we would have $\sigma_i(k, l, -(k+l)) \equiv \sigma_i(p, q, -(p+q)) \mod n$, for i = 1, 2, 3, denoting by σ_i the *i*-th elementary symmetric polynomial in three variables. But then (k, l, -(k+l)) and (p, q, -(p+q)) would be congruent mod n up to a permutation of the three variables which is excluded by the very fact that (k, l, p, q) is an admissible quadrupel (see 21). Hence $d_6(n(1 \otimes z_5)) = 0$ only if n is a multiple of r. It follows that ker $d_6 = (\mathbb{Z}[\bar{w}]/(r\bar{w}^2)) \otimes \langle 1, rz_5 \rangle$, and im d_6 is the ideal in ker d_6 generated by $\bar{w}^3 \otimes 1$. So

$$E_7 = E_{\infty} = (\mathbb{Z}[\bar{w}]/(r\bar{w}^2, \bar{w}^3)) \otimes \langle 1, rz_5 \rangle = H^*M.$$

So we have completed the proof, setting $w = k_{\infty}(\bar{w})$ and $z = r(1 \otimes z_5)$.¹

¹ A similar proof for the homogeneous case k = l = 0 was communicated to us by W. Ziller.

4. Homogeneous Spaces with Similar Homotopy

We call a compact topological space strongly inhomogeneous if it is not homotopy equivalent to any compact Riemannian homogeneous space. The goal of this section is the proof of the following

Theorem. Let $\overline{G} = SU(3)$, $U(1) \cong U \subset \overline{G}^2$ fixed point free, $M = \overline{G}/U$. Assume that $H^4(M) = \mathbb{Z}_r$ with

 $r \equiv 2(3)$.

Then M is strongly inhomogeneous.

Proof. Assume that M is homotopy equivalent to a compact Riemannian manifold M' with transitive isometry group G. Call H the isotropy subgroup of a fixed element $m \in M$. Then M' = G/H.

1. The first homotopy groups of M' are given in 41. Moreover, it is known for any compact Lie group that $\pi_2=0$ and $\pi_3=Z^k$ where k is the number of simple factors of the Lie algebra [4]. Thus we derive from the exact homotopy sequence of the fibration $H \rightarrow G \rightarrow M'$:

(1)
$$\pi_0(H) = \pi_0(G),$$

- (2) $0 \rightarrow \mathbb{Z} \rightarrow \pi_1(H) \rightarrow \pi_1(G) \rightarrow 0$ is exact,
- (3) $\pi_3(H) = \pi_3(G) \times \mathbb{Z}$.

By (1), we may assume that G, H are both connected since $G_0/H_0 = G/H$. From the sequence (2) it follows that $\operatorname{rank}(\pi_1(H)) = \operatorname{rank}(\pi_1(G)) + 1$. Hence, if $\mathbf{G} = \mathbf{G}' \times \mathbf{T}$ where \mathbf{G}' is semisimple and T an *l*-torus, then $\mathbf{H} = \mathbf{H}' \times \mathbf{S}$ with \mathbf{H}' semisimple and S an (l+1)-torus. Moreover, by (3), \mathbf{G}' has k+1 simple factors if \mathbf{H}' has k.

2. Let G' be the simply connected group with Lie algebra G'. Then $\hat{G}:=G' \times T$ is a covering group of G. Call $\pi: \hat{G} \to G$ the covering homomorphism, $\hat{H}:=\pi^{-1}(H)$. Hence we get a covering map $\bar{\pi}:\hat{G}/\hat{H}\to G/H$ which is in fact a diffeomorphism since M'=G/H is simply connected. Thus we assume from now on that $G=G' \times T$, where G' is a simply connected semisimple compact group and T an *l*-torus.

3. Since the Lie algebra $\mathbf{H}' \subset \mathbf{H}$ is semisimple, its projection to the abelian factor of **G** is zero, hence $H' := \exp \mathbf{H}'$ is a subgroup of G'. Consider the homomorphism $f = p \circ j \circ i$: $S \to T$ which is the composition of the inclusions $i: S \to H, j: H \to G$ and the projection $p: G \to T$. Then $f_*(\pi_1(S))$ has finite index in $\pi_1(T)$ since j_* is onto (see (2)), p_* is isomorphic and $i_*(\pi_1(S))$ has finite index in $\pi_1(H)$. Therefore the subtorus f(S) of T has the same rank as T, so f is onto. Hence the connected component of its kernel is a circle $U \subset S$ which is a subgroup of the semisimple factor G'. Hence $\mathbf{G}' \cap \mathbf{H} = \mathbf{H}' \times \mathbf{U}$. A complement **M** of $\mathbf{H}' \times \mathbf{U}$ in \mathbf{G}' is also a complement of **H** in **G**. Set $H'' := \exp(\mathbf{H}' \times \mathbf{U}) \subset G'$. Then the mapping $gH'' \mapsto (g, 1)H: G'/H'' \to G/H$ is a covering map and hence a diffeomorphism. Replacing G and H with G' and H'', we may assume: G is simply connected and semisimple, and $\mathbf{H} = \mathbf{H}' \times \mathbf{R}$ with semisimple factor \mathbf{H}' . 4. We want to determine the possible simple components of G and H'. M and M' are both compact, orientable and homotopically equivalent. Hence dim $M' = \dim M = 7$. Thus the isotropy group H is a subgroup of 0(7). It follows that rank $H' \leq 2$, so H' is one of the following compact Lie algebras:

$$0; A_1; A_2; C_2; G_2; A_1 \times A_1.$$

Since dim $G = \dim H' + 8$ and G has one simple factor more then H', the corresponding Lie algebra G can only be out of the following ones:

$$\begin{array}{rl} A_2;\,A_2\times A_1;\,A_2\times A_2;\,C_2\times A_2 & \text{or} & A_3\times A_1;\\ & G_2\times A_2;\,A_2\times A_1\times A_1. \end{array}$$

Thus we have to consider seven pairs of Lie algebras $(\mathbf{G}, \mathbf{H}' \times \mathbb{R})$. A pair by pair inspection of the possible imbeddings of $\mathbf{H}' \times \mathbb{R}$ in \mathbf{G} shows that M' = G/H is never homotopy equivalent to M. In particular, this is true for the first pair (A_2, \mathbb{R}) since then M' is a Wallach space M_{pq} with $H^4(M') = \mathbb{Z}_{r'}, r' = p^2 + q^2 + pq \ddagger 2(3)$ for arbitrary $p, q \in \mathbb{Z}$. We will discuss the details of the remaining pairs in the appendix.

5. Strongly Inhomogeneous Spaces Near to Wallach Spaces

Theorem. For any Wallach space $M = M_{pq}$ with $pq(p+q) \neq 0$ there exists a sequence of simply connected strongly inhomogeneous Riemannian manifolds M_i of distinct homotopy type the curvatures of which approach the curvatures of M in the sense of Proposition 22.

Proof. In the view of §4, all we have to show is: There are infinitely many positive integers $n = n_i$ such that the quadrupel (1, 0, np, nq) is admissible and r: = $n^2(p^2 + q^2 + pq) - 1 \equiv 2(3)$. This last condition is satisfied if we choose $n \equiv 0(3)$. Moreover, the following pairs of integers have to be relatively prime (see 21.):

$$(np-1, nq), (np-1, ns), (ns+1, np), (nq-1, ns), (ns+1, nq)$$

where we have set s:=p+q. Let $\{a_1, ..., a_k\}$ be the set of all prime numbers which divide pqs. Then

$$n = n_i = 3i a_1 a_2 \dots a_k$$

clearly satisfies all conditions for arbitrary $i \in \mathbb{N}$. Set $M_i = M_{l_1, 0, n_1, p, n_2, q}$.

Remarks. 1. By Proposition 22, the curvature of M_i is strictly positive if p, q > 0 and *i* large, and the pinching of $M = M_{pq}$ is approximated; e.g. we have $K_{\min}/K_{\max} = 16/29 \cdot 37$ for p = q = 1, t = -1/2 (parameter of the metric) as was shown by Hua-Min Huang [8].

2. It can be shown that in fact M_i has strictly positive curvature for any positive integer *i*, if *p* and *q* are positive.

3. There are many spaces of type G/U_{klpq} which cannot be distinguished by cohomology, even among the homogenous ones (k=l=0): e.g. $M_{1,9}$ and $M_{5,6}$. It would be interesting to know whether these are topologically different.

Appendix 3 – The Remaining Homogeneous Spaces M' which are Similar to $M = SU(3)/U_{kipq}$ (see §4)

Let (G, H) be one of the pairs of §4, Sect. 4, except the first one. We denote by $pr_i: H \rightarrow G_i$ the projection of the subalgebra H of G to the *i*th factor G_i of G.

1.
$$(A_2 \times A_2, A_2 \times \mathbb{R})$$

Either $\operatorname{pr}_i A_2 = 0$ for i = 1 or 2, or A_2 is the diagonal subalgebra of $A_2 \times A_2$. In the first case, it follows that $\operatorname{pr}_j \mathbb{R} = 0$ for $j \neq i$, hence M' = SU(3)/U(1) is a Wallach space which is not homotopically equivalent to M as was proved above. The second case is impossible since the diagonal subalgebra of $A_2 \times A_2$ has no centralizer.

2.
$$(C_2 \times A_2, C_2 \times \mathbb{R})$$

Then $\operatorname{pr}_2 C_2 = 0$, $\operatorname{pr}_1 \mathbb{R} = 0$ and hence $M' = SU(3)/U(1) \neq M$.

3. $(A_3 \times A_1, C_2 \times \mathbb{R})$

Then $\operatorname{pr}_2 C_2 = 0$. The homogeneous space corresponding to the pair $(A_3, C_2) = (D_3, B_2)$ is the 5-sphere $S^5 = SO(6)/SO(5)$. Since the isotropy group $G_p = SO(5)$ of some $p \in S^5$ has no fixed vector on $T_p S^5 = \mathbb{R}^5$, it has no centralizer in SO(6). Therefore, $\operatorname{pr}_1 \mathbb{R} = 0$. It follows that $M' = S^5 \times S^2 \ddagger M$ since $H^4(M') = 0$.

4.
$$(G_2 \times A_2, G_2 \times \mathbb{R})$$

Then $\operatorname{pr}_2 G_2 = 0$, $\operatorname{pr}_1 \mathbb{R} = 0$, hence $M' = SU(3)/U(1) \neq M$.

5.
$$(A_2 \times A_1, A_1 \times \mathbb{R})$$

Up to equivalence, there are two representations of A_1 in A_2 , corresponding to the standard imbeddings $SO(3) \subset SU(3)$ and $SU(2) \subset SU(3)$. Call the first f_1 , the second f_2 . Consequently, there are the following imbeddings of A_1 in $A_2 \times A_1$:

$$(0, id), (f_1, 0), (f_2, 0), (f_1, id), (f_2, id).$$

a) (0, *id*): Then $\operatorname{pr}_2 \mathbb{R} = 0$, hence $M' = SU(3)/U(1) \neq M$.

b) $(f_1, 0)$: There is no centralizer of SO(3) in SU(3).

It follows $\operatorname{pr}_1 \mathbb{R} = 0$, consequently $M' = SU(3)/SO(3) \times S^2 \neq M$ since $w^2 = 0$ for the generator w of $H^2(S^2) \subset H^2(M')$.

c) $(f_2, 0)$: More precisely, we choose the imbedding $f_2: SU(2) \rightarrow SU(3)$ in the first two coordinates, which has centralizer $\mathbb{R} \cdot Z$, $Z := i \cdot \text{diag}(1, 1, -2)$. Hence the factor \mathbb{R} can be an arbitrary line with rational slope in the plane spanned by (Z, 0) and (0, Y) in $\mathbf{G} = SU(3) \times SU(2)$, where $Y := i \cdot \text{diag}(1, -1) \in SU(2)$. Up to conjugation, these are all possible imbeddings. Let $U_1 = (Y, 0)$ and $U_2 = (0, 1)$ be a basis of the lattice $\exp_S^{-1}(1) = H_1(S)$ (natural identification), where S is

the maximal torus of *H*. Likewise, we have the basis $V_1 = (i \operatorname{diag}(1, 0, -1), 0)$, $V_2 = (i \operatorname{diag}(0, 1, -1), 0)$, $V_3 = (0, Y)$ of the lattice $\exp_T^{-1}(1) = H_1(T)$ for the maximal torus *T* of *G*. Call $\rho_*: \mathbf{S} \to \mathbf{T}$ the imbedding $(f_2, 0)|_{\mathbf{S}}$. Then we have

$$\rho_*(U_1) = V_1 - V_2, \rho_*(U_2) = k \cdot (V_1 + V_2) + l \cdot V_3$$

where k, l are the relative prime integers which correspond to the imbedding of \mathbb{R} . The transposed map ρ^* : $H^1(T) \rightarrow H^1(S)$ is given by

$$\begin{split} \rho^*(v_1) &= u_1 + k \cdot u_2, \\ \rho^*(v_2) &= -u_1 + k \cdot u_2, \\ \rho^*(v_3) &= l \cdot u_2 \end{split}$$

where u_i , v_i are the dual bases.

Call y_3 , z_3 , z_5 the generators of $H^3(SU(2))$, $H^3(SU(3))$, $H^5(SU(3))$. The invariant polynomials which generate $H^*(B_G)$, $G = SU(3) \times SU(2)$, are the following (see 32.): $\overline{y}_2 = \overline{y}_2^2$

$$\bar{z}_3 = \bar{v}_1^2 + \bar{v}_2^2 + \bar{v}_1 \bar{v}_2,$$

$$\bar{z}_5 = \bar{v}_1 \bar{v}_2 (\bar{v}_1 + \bar{v}_2).$$

The images under the induced map ρ^* : $H^*B_G \rightarrow H^*B_H$ are

$$\rho^*(\bar{y}_3) = l^2 \bar{u}_2^2,$$

$$\rho^*(\bar{z}_3) = \bar{u}_1^2 + 3k^2 \cdot \bar{u}_2^2,$$

$$\rho^*(\bar{z}_5) = 2k \cdot (-\bar{u}_1^2 \bar{u}_2 + k^2 \cdot \bar{u}_3^2).$$

As in 33., we consider the spectral sequence of $p: G//H \to B_H$ which starts with $E_2 = H^*B_H \otimes H^*G$. It was shown by Borel [5, p. 180] that $1 \otimes y_3$, $1 \otimes z_3 \in E_4$ and $1 \otimes z_5 \in E_6$ with

$$d_4(1 \otimes y_3) = k_4 \rho^* \bar{y}_3,$$

$$d_4(1 \otimes z_3) = k_4 \rho^* \bar{z}_3,$$

$$d_6(1 \otimes z_5) = k_5 \rho^* \bar{z}_5$$

where d_i are the differentials and k_i : $H^*B_H \rightarrow E_i^{*0}$ the natural projections. From this we derive the cohomology of M', in particular:

$$H^4(M') = \mathbb{Z} \,\overline{u}_1^2 \otimes \mathbb{Z} \,\overline{u}_2^2/L$$

where L is the sublattice generated by $\bar{u}_1^2 + 3k \bar{u}_2^2$ and $l^2 \bar{u}_2^2$. Since the determinant of these two vectors is l^2 , $H^4(M')$ is a finite group of order l^2 . But it was assumed for the order r of $H^4(M)$ that $r \equiv 2 \mod 3$ which fails for l^2 . Hence $M \rightleftharpoons M'$.

d) (f_1, id) This is impossible since $pr_2 \mathbb{R} = 0$ and, by b), also $pr_1 \mathbb{R} = 0$.

e) (f_2, id) Again we have $\operatorname{pr}_2 \mathbb{R} = 0$. Hence the mapping $\rho_* = (f_2, id)|_{\mathbf{S}} : \mathbf{S} \to \mathbf{T}$ is as follows (same notation as in c):

$$\rho_*(U_1) = V_1 - V_2 + V_3,$$

$$\rho_*(U_2) = V_1 + V_2.$$

It follows for the induced map ρ^* : $H^*B_G \rightarrow H^*B_H$:

$$\rho^{*}(\bar{y}_{3}) = \bar{u}_{1},$$

$$\rho^{*}(\bar{z}_{3}) = \bar{u}_{1}^{2} + 3\bar{u}_{2}^{2},$$

$$\rho^{*}(\bar{z}_{5}) = -2\bar{u}_{1}^{2}\bar{u}_{2} + 2\bar{u}_{2}^{2}$$

(compare c)). In particular, $H^4(M')$ is generated by $k_4(\bar{u}_2^2)$ with $3k_4(\bar{u}_2^2) = 0$. But $r = \operatorname{ord}(H^4M) \neq 3$, hence $M \neq M'$.

6. $(A_2 \times A_1 \times A_1, A_1 \times A_1 \times \mathbb{R})$

The imbeddings of $\mathbf{H}' = A_1 \times A_1$ into $\mathbf{G} = A_2 \times A_1 \times A_1$ are given by 2×3matrices of homomorphisms $a_{ij}: \mathbf{H}_i \rightarrow \mathbf{G}_j$ (i=1,2; j=1,2,3). Observe that $a_{1j} \neq 0$ implies $a_{2j} = 0$ and vice versa. Then, up to conjugation and permutation of isomorphic factors, the following imbeddings exist:

a)
$$\begin{pmatrix} f_k, 0, 0\\ 0, id, id \end{pmatrix}$$
, b) $\begin{pmatrix} f_k, 0, 0\\ 0, id, 0 \end{pmatrix}$,
c) $\begin{pmatrix} f_k, id, 0\\ 0, 0, id \end{pmatrix}$, d) $\begin{pmatrix} 0, id, 0\\ 0, 0, id \end{pmatrix}$

where $f_k: A_1 \rightarrow A_2$ (k = 1, 2) are the representations used in 5.

a) \mathbf{H}_2 is diagonally imbedded in $A_1 \times A_1$. This is the canonical imbedding $\mathbf{SO}(3) \subset \mathbf{SO}(4)$ which has no centralizer since SO(3) has no fixed vector on the tangent space of $SO(4)/SO(3) = S^3$. Hence $\mathbf{H}_3 = \mathbb{R}$ is mapped into the first factor. It follows from 5c) that only k=2 is possible. Thus $M' = SU(3)/U(2) \times S^3 = \mathbb{C}P^2 \times S^3 \neq M$ since $H^4(M') \not\cong \mathbb{Z}$.

b) $\mathbf{H}_3 = \mathbb{R}$ is mapped to $\mathbf{G}_1 \times \mathbf{G}_3$, and the pair can be reduced to $(A_2 \times A_1, A_1 \times \mathbb{R})$ which was treated in 5.

c) Same argument as in b).

d) $\mathbf{H}_3 = \mathbb{R}$ is mapped to $\mathbf{G}_1 = A_2$, and $M' = SU(3)/U(1) \neq M$.

References

- Aloff, S., Wallach, N.R.: An infinite family of distinct 7-manifolds admitting positively curved Riemanninan structures. Bull. Amer. Math. Soc. 81, 93-97 (1975)
- 2. Berard Bergery, L.: Les Variétés Riemanniennes homogènes simplement connexes de dimension impair à courbure stictement positive. J. Math. Pures Appl. 55, 47-68 (1976)
- 3. Berger, M.: Les Variétés Riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa 15, 179-246 (1961)
- 4. Bott, R.: An application of the Morse Theory to the topology of Lie groups. Bull. Soc. Math. France 84, 251-281 (1956)
- 5. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math. 57, 115-207 (1953)
- 6. Borel, A.: Topology of Lie groups and characteristic classes. Bull. Amer. Math. Soc. 61, 397-432 (1955)
- 7. Gromoll, D., Meyer, W.: An exotic sphere with nonnegative sectional curvature. Ann. of Math. 100, 401-406 (1974)
- 8. Huang, H.-M.: Thesis. Stony Brook 1976
- 9. O'Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 23, 459-469 (1966)
- Wallach, N.R.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. of Math. 96, 277-295 (1972)