New Examples of Manifolds with Strictly Positive Curvature

J.-H. Eschenburg
Mathematisches Institut der WWU, Einsteinstraße 64, D-4400 Münster, Federal Republic of Germany

1. Introduction

Berger [3], Wallach [10] and Berard Bergery [2] have classified all simply connected smooth manifolds which allow a homogeneous Riemannian metric of strictly positive curvature. Besides the rank one symmetric spaces there exist five exceptional manifolds and an infinite series of 7 -manifolds of distinct homotopy type which have been studied by Aloff and Wallach [1]. These are diffeomorphic to $M_{p q}:=S U(3) / U_{p q}$, where p, q are positive integers and $U_{p q}$ is the one-parameter subgroup of diagonal matrices

$$
\{\exp (2 \pi i t \operatorname{diag}(p, q,-p-q)) ; t \in \mathbb{R}\}
$$

Looking for further spaces of positive curvature one has to consider a more general class of manifolds. If G is any Lie group, the group $G^{2}:=G \times G$ acts on G by right and left translations. If U is a compact subgroup of G^{2} which acts without fixed points, then the orbit space G / U is a smooth manifold which is not homogeneous in general. Gromoll and Meyer [7] obtained an exotic 7sphere of nonnegative curvature in this way. We apply this method to G $=S U(3), U \cong U(1)$ in G^{2} and show that for any of the positively curved 7 manifolds $M=M_{p q}$, there exists a series of compact simply connected topologically distinct 7-manifolds M_{n} which are not homotopically equivalent to any compact Riemannian homogeneous space, such that the sectional curvatures of M_{n} converge in a certain sense to the sectional curvatures of M. This implies that M_{n} has strictly positive curvature for sufficiently large n.

We wish to thank Prof. W.T. Meyer and Prof. E. Heintze for several hints and useful discussions.

2. Fixed Point Free $S^{\mathbf{1}}$-actions on $S U(3)$

21. Let $G=S U(3)$ and U a closed one-parameter subgroup of G^{2}. We define an action of U on G by

$$
(u, g) \mapsto u_{1} g u_{2}^{-1}
$$

for any $g \in G, u=\left(u_{1}, u_{2}\right) \in U$. For any conjugate subgroup $U^{\prime}=a U a^{-1}, a$ $=\left(a_{1}, a_{2}\right) \in G^{2}$, the mapping $g \mapsto a_{1}^{-1} g a_{2}: G \rightarrow G$ gives an equivariant diffeomorphism. Therefore, we may assume $U \subset T \times T=T^{2}$ where T denotes the maximal torus of diagonal matrices

$$
\left\{\exp i \operatorname{diag}\left(x_{1}, x_{2}, x_{3}\right) ; x_{i} \in \mathbb{R}, \sum x_{i}=0\right\}
$$

in $S U(3)$. Let $W \in \mathbf{U}$ be a generator of the kernel of the exponential map of U. Then

$$
W=2 \pi i(\operatorname{diag}(k, l,-k-l), \operatorname{diag}(p, q,-p-q))
$$

where k, l, p, q are integers which are relatively prime. To indicate that U is determined by k, l, p, q, let us set $U=U_{k l p q}$.
Proposition 21. $U=U_{k l p q}$ acts on G without fixed points if and only if the following pairs of intergers are relatively prime:

$$
\begin{array}{lll}
(k-p, l-q), & (k-p, l+p+q), & (k+p+q, l-p) \\
(k-q, l-p), & (k-q, l+p+q), & (k+p+q, l-q)
\end{array}
$$

Proof. U acts without fixed points if for any $1 \neq u=\left(u_{1}, u_{2}\right) \in U$ we have $u_{1} \neq g u_{2} g^{-1}$ for all $g \in G$. Now $u=\exp t W, 0<t<1$, and u_{1}, u_{2} are diagonal matrices. These are nonconjugate if and only if $u_{1} \neq \sigma u_{2}$ for all permutations σ of the coordinates (which establish the Weyl group of $S U(3)$). Hence one has to be sure that

$$
2 \pi i t(\operatorname{diag}(k, l,-k-l)-\sigma \operatorname{diag}(p, q,-p-q)) \notin \exp ^{-1}(1)
$$

which is equivalent to

$$
t((k, l,-k-l)-\sigma(p, q,-p-q)) \notin \mathbb{Z}^{3}
$$

for any $t \in(0,1)$. Writing this down for all permutations σ, we get the result.
A quadrupel of integers (k, l, p, q) will be called admissible if the conditions of the previous proposition are satisfied.

Examples. (i) If $k=l=0$, then the condition is trivial; this is the case of the homogeneous spaces $M_{p q}$.
(ii) The quadrupel $(1,0,2 m, 2 m)$ is admissible for arbitrary $m \in N$. This and further examples will be studied in $\S 5$.
22. Let $H=U(2) \subset G$ be the canonical imbedding. Fix a Riemannian metric \langle,$\rangle on G$ which is invariant under left translations of G and right translations of H, such that the induced metric on $M_{p q}=G / U_{p q}$ has strictly positive curvature for arbitrary positive integers p, q. It was shown in [1] that such a metric is given by the following scalar product on the Lie algebra \mathbf{G} :

$$
\langle X, Y\rangle:=B(X, Y)+t B\left(X_{H}, Y_{H}\right)
$$

for any $t \in(-1,0) \cup(0,1 / 3)$, where B is an $\operatorname{Ad}(G)$-invariant scalar product and X_{H} denotes the orthogonal projection of X to \mathbf{H}.

In particular, the group $U=U_{k i p q}$ acts on G by isometries. Consequently, if (k, l, p, q) is admissible, there exists a unique metric \langle,$\rangle on the orbit space M$ $=G / U$ such that $\pi: G \rightarrow M$ becomes a Riemannian submersion. Its curvature is given by O'Neill's formula [9, p. 465]: If X, Y are local linearly independent vector fields on G which are orthogonal to the orbits of U ("horizontal"), and K denotes the curvature of M and G, then

$$
\begin{equation*}
K\left(\pi_{*} X, \pi_{*} Y\right)=K(X, Y)+3\left\|\left(\nabla_{X} Y\right)_{v}\right\|^{2} /\|X \wedge Y\|^{2} \tag{*}
\end{equation*}
$$

where the subscript v denotes the projection to the tangent space of the orbit ("vertical component").

The orbits of the action of U are

$$
F_{g}=U g=\left\{u_{1} \cdot g \cdot u_{2}^{-1} ;\left(u_{1}, u_{2}\right) \in U\right\}
$$

Its tangent spaces, the vertical subspaces, are denoted by $T_{g} F=\left\{R_{\mathrm{g}^{*}} X_{1}\right.$ $\left.-L_{\mathrm{g}^{*}} X_{2} ;\left(X_{1}, X_{2}\right) \in \mathbf{U}\right\}$. We translate this space back to $\mathbf{G}=T_{1} G$ and get

$$
V_{g}:=\left(L_{g^{*}}\right)^{-1} T_{g} F=\left\{\operatorname{Ad}\left(g^{-1}\right) X_{1}-X_{2} ;\left(X_{1}, X_{2}\right) \in \mathbf{U}\right\} .
$$

Now \mathbf{U} is one-dimensional, so for any basis vector (x, y) we have $V_{g}=\mathbb{R} \cdot(y$ $\left.-\operatorname{Ad}(g)^{-1} x\right)$. Put $z(g)=y-\operatorname{Ad}(g)^{-1} x$, defining a smooth mapping $z: G \rightarrow \mathbf{G}$ $-\{0\}$. Its differential is given by $z_{*}\left(L_{g^{*}} w\right)=\left[w, \operatorname{Ad}(g)^{-1} x\right]$ for any $g \in G, w \in \mathbf{G}$.

Let $h(g) \in$ End $T_{g} G$ be the orthogonal projection onto the horizontal subspace. This can be expressed in terms of z as follows: Setting $\bar{z}=z /\|z\|$, let $p(g) \in E n d G$ be the orthogonal projection $p(g) x=x-\langle x, \bar{z}(g)\rangle \bar{z}(g)$. Then $h(g)$ $=L_{\mathrm{g}^{*}} p(g) L_{\mathrm{g}^{*}}^{-1}$.
Lemma. Let $U_{i}, i \in N$, be closed one-parameter subgroups of G^{2} which act freely on G. Assume that \mathbf{U}_{i} is generated by $\left(x_{i}, y\right) \in \mathbf{G}^{2}$ where $y \neq 0$ is fixed and $x_{i} \rightarrow 0$. Let U be the subgroup of G generated by y. Let $h_{i}, h \in \Gamma($ End $T G)$ be the horizontal projections of the Riemannian submersions $\pi_{i}: G \rightarrow G / U_{i}, \pi: G \rightarrow G / U$ resp. Then the h_{i} converge to h in the C^{1}-topology on $\Gamma($ End $T M)$.

Proof. According to the preceding remark, it suffices to show that the mappings $z_{i}: G \rightarrow \mathbf{G}, z_{i}(g)=y-\operatorname{Ad}(g)^{-1} x_{i}$, are C^{1}-converging to $z \equiv y$. This is true since $x_{i} \rightarrow 0$ and $z_{i^{*}}\left(L_{g^{*}} w\right)=\left[w, \operatorname{Ad}(g)^{-1} x_{i}\right] \rightarrow 0$ uniformely in g for any $w \in \mathbf{G}$.

Under these assumptions, the sectional curvatures of $M_{i}=G / U_{i}$ converge to the curvature of $M=G / U$ in the following sense:

Proposition 22. Let $G, M, M_{i}(i \in \mathbb{N})$ be Riemannian manifolds, and $\pi: G \rightarrow M$, $\pi_{i}: G \rightarrow M_{i}$ Riemannian submersions with horizontal projections h and h_{i} resp. Assume $h \rightarrow h_{i}$ in the C^{1}-topology on $\Gamma($ End $T G)$. Then for any $g \in G$ and any π horizontal 2-plane $P \subset T_{g} G$, we have for the sectional curvatures

$$
K_{M_{1}}\left(\pi_{i^{*}} P\right) \rightarrow K_{M}\left(\pi_{*} P\right),
$$

and the convergence is uniform in P.
(Observe that $\operatorname{ker} \pi_{i^{*}}$ is near to $\operatorname{ker} \pi_{*}$ for large enough i, therefore $\pi_{i^{*}}$ is isomorphic on the π-horizontal vectors.)
Proof. Let $X, Y \pi$-horizontal vector fields which span P at the point g. Let X_{i} $=h_{i} X, Y_{i}=h_{i} Y$. Then $X_{i} \rightarrow X$ and $Y_{i} \rightarrow Y$ in the C^{1}-sense. Since $\pi_{i^{*}} \circ h_{i}=\pi_{i^{*}}$, we have by (*)

$$
K_{M_{i}}\left(\pi_{i^{*}} X, \pi_{i^{*}} Y\right)=K_{G}\left(X_{i}, Y_{i}\right)+3\left\|\left(I-h_{i}\right)\left(\nabla_{X_{t}} Y_{i}\right)\right\|^{2} /\left\|X_{i} \wedge Y_{i}\right\|^{2}
$$

which clearly converges to $K_{M}(X, Y)$ uniformly.
Remark. The fibre of $\pi_{i}: G \rightarrow M_{i}=G / U_{i}$ through $1 \in G$ is the subgroup generated by $y-x_{i}$ which passes through $g_{i}:=\exp 2 \pi x_{i} \neq 1$ (assume y to be chosen such that $\exp 2 \pi y=1$). Since $g_{i} \rightarrow 1$, the cut locus distance of M_{i} at $\pi_{i}(1)$ gets arbitrarily small for large i. One easily shows the same fact at $\pi_{i}(g)$ for any $g \in G$. Thus the spaces M_{i} and M are geometrically very different, even locally.

3. Homotopy and Integral Cohomology of $S U(3) / U_{k i p q}$

31. Let $G=S U(3), U(1) \cong U \subset G \times G$ a group which acts freely on G by right and left translations. The orbit space $M=G / U$ has the following homotopy groups:
Proposition 31.

$$
\begin{gathered}
\pi_{1}(M)=0, \quad \pi_{2}(M)=\mathbb{Z} \\
\pi_{i}(M)=\pi_{i}(S U(3)) \quad \text { for } i \geqq 3,
\end{gathered}
$$

in particular $\pi_{3}(M)=\mathbb{Z}, \pi_{4}(M)=0$.
This follows from the exact homotopy sequence of the fibration $G \rightarrow M$ and [4; 6, p. 428].
32. Now consider the cohomology. It is well known that $H^{*} G$ is the exterior \mathbb{Z}-algebra with generators $z_{3} \in H^{3}(G)$ and $z_{5} \in H^{5}(G)$. Let B_{G} be a classifying space for G. Then $H^{*} B_{G}=\mathbb{Z}\left[\bar{z}_{3}, \bar{z}_{5}\right]$, where $\bar{z}_{i} \in H^{i+1}\left(B_{G}\right)$ corresponds to z_{i} under transgression [5, p. 171]. Let $T \subset G$ be the torus of diagonal matrices. We may identify $H^{*} B_{G}$ with the ring I_{G} of polynomials on $H_{1} T$ which are invariant under the Weyl group $W(G)$ [5, p. 194, 199]. One can specify the generators \bar{z}_{3}, \bar{z}_{5} in this representation as follows: Let L be the lattice of integral matrices in T, i.e. $L=\{X \in \mathbf{T} ; \exp 2 \pi X=1\}$. Note that any $X \in L$ corresponds to a 1 -cycle $t \mapsto \exp t X:[0,2 \pi] \rightarrow T$, and any integral linear form $x \in L^{*}$: $=\left\{y \in \mathbf{T}^{*} ; y(L) \subset \mathbb{Z}\right\}$ corresponds to a 1 -cocycle. This defines isomorphisms which identify L with $H_{1} T$ and L^{*} with $H^{1} T$.

Proposition 32. Let G, T, L as above, $A_{1}=i \cdot \operatorname{diag}(1,0,-1)$ and $A_{2}=i \cdot \operatorname{diag}(0,1$, $-1) a$ base of L, a_{1} and a_{2} the dual base of L^{*}. Then we have (up to sign):

$$
\begin{aligned}
& \bar{z}_{3}=\bar{a}_{1}^{2}+\bar{a}_{2}^{2}+\bar{a}_{1} \bar{a}_{2}, \\
& \bar{z}_{5}=\bar{a}_{1} \bar{a}_{2}\left(\bar{a}_{1}+\bar{a}_{2}\right)
\end{aligned}
$$

where $\bar{a}_{i} \in H^{2} B_{T}$ corresponds to $a_{i} \in H^{1} T$ under transgression in the universal bundle $E_{T} \rightarrow B_{T}$.
Proof. Let $T^{\prime} \supset T$ be the set of diagonal matrices of $U(3)$. We may extend the linear form a_{i} to \mathbf{T}^{\prime}, this is the projection to the i-th coordinate ($i=1$ or 2). Let $a_{3} \in \mathbf{T}^{*}$ be the projection on the third coordinate. Since $W(U(3))=W(S U(3))$ is the permutation group of the coordinates, $I_{U(3)}$ is the Symmetric Algebric Algebra $S\left(a_{1}, a_{2}, a_{3}\right)$ which is generated by the polynomials

$$
\begin{aligned}
& p_{1}=a_{1}+a_{2}+a_{3}, \quad p_{2}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}, \\
& p_{3}=a_{1} a_{2} a_{3} .
\end{aligned}
$$

Now \mathbf{T} is the subset of \mathbf{T}^{\prime} where $a_{1}+a_{2}+a_{3}=0$. Hence on \mathbf{T} we have $p_{1}=0, p_{2}$ $=-\left(a_{1}^{2}+\bar{a}_{2}^{2}+a_{1} a_{2}\right), p_{3}=-a_{1} a_{2}\left(a_{1}+a_{2}\right)$. So $\left.p_{2}\right|_{\mathbf{T}}$ and $\left.p_{3}\right|_{\mathbf{T}}$ generate $I_{S U(3)}$ and the result follows from [5], Proposition 27.1: Observe that \bar{a}_{i} has degree 2, while degree $\left(\bar{z}_{3}\right)=4$, degree $\left(\bar{z}_{5}\right)=6$.
33. Let G be a compact Lie group and U a closed subgroup of $G^{2}=G \times G$ which acts on G by right and left translation. Assume that this action is free. Then the orbit space $M=G / U$ is a smooth manifold and the projection $\pi: G \rightarrow M$ a principal bundle with structure group U. Let $\pi_{U}: E_{U} \rightarrow B_{U}$ be a classifying bundle for U. Consider the following commutative diagram (compare [5], p. 167, Diagram 18.4, and p. 168)

where $G / / U$ denotes the orbit space of $E_{U} \times G$ under the product action of U. The left horizontal arrows represent cohomology isomorphisms since the fibres of these maps are homeomorphic to E_{U} which is acyclic. We consider the spectral sequence of the bundle $p: G / / U \rightarrow B_{U}$ with fibre G. It starts with E_{2} $=H^{*} B_{U} \otimes H^{*} G$ and converges to $H^{*} M$. The next step is to compute its differentials.

Let $E_{G^{2}} \rightarrow B_{G^{2}}$ be a classifying bundle of G^{2}. Since $U \subset G^{2}$, we can choose E_{U} $=E_{G^{2}}, B_{U}=E_{G^{2}} / U$. Thus we get a natural projection $\rho: B_{U} \rightarrow B_{G^{2}}$. This extends to a bundle map

which is a homeomorphism on the fibres. The bundle p^{\prime} is well known: Let $\delta: G \rightarrow G^{2}$ be the diagonal imbedding, and $B_{G}:=E_{G^{2}} / \delta G$. Then $E_{G^{2}} \rightarrow B_{G}$ is a classifying bundle for G. Moreover, the projection $\Delta: B_{G} \rightarrow B_{G^{2}}$ is a bundle with fibre G, and the mapping $f: E_{G^{2}} / \delta G \rightarrow\left(E_{G^{2}} \times G\right) / G^{2}$ which is well defined by $\delta G e \mapsto G^{2}(e, 1)$ for all $e \in E_{G^{2}}$, establishes a bundle isomorphism between p^{\prime} and Δ.
34. The next step is to compute the spectral sequence of the bundle $\Delta: B_{G} \rightarrow B_{G^{2}}$ for $G=S U(3)$. We can choose $B_{G^{2}}:=B_{G} \times B_{G}$ as a classifying space, hence $H^{*}\left(B_{G^{2}}\right)=H^{*} B_{G} \otimes H^{*} B_{G}=\mathbb{Z}\left[\bar{x}_{3}, \bar{y}_{3}, \bar{x}_{5}, \bar{y}_{5}\right]$ with $\bar{x}_{i}:=\bar{z}_{i} \otimes 1, \bar{y}_{i}:=1 \otimes \bar{z}_{i}$. The spectral sequence of Δ starts with $E_{2}=H^{*} B_{G^{2}} \otimes H^{*} G$. Call $k_{j}: H^{*} B_{G^{2}} \rightarrow E_{j}^{* 0}$ the natural projections. It is a general fact that $\Delta^{*}=k_{\infty}: H^{*} B_{G^{2}} \rightarrow E_{\infty}^{* 0} \subset H^{*} B_{G}$. [5, p. 128].

Proposition 34. The differentials $d_{j}: E_{j} \rightarrow E_{j}$ are given by
(1) $d_{j}\left(1 \otimes z_{i}\right)=0$ for $j \leqq i$
(2) $d_{i+1}\left(1 \otimes z_{i}\right)= \pm k_{i+1}\left(\bar{x}_{i}-\bar{y}_{i}\right)$ for $i=3$ and $i=5$.

Proof. Equation (1) follows immediately since $d_{j}\left(1 \otimes z_{i}\right) \in E_{j}^{j i-j+1}$ which vanishes already in E_{2} for $j \leqq i$.

Using the fact that $H^{*} B_{G}$ can be identified with the subset I_{G} of $H^{*} B_{T}$, it is easy to see that

$$
\Delta^{*}(u \otimes 1)=A^{*}(1 \otimes u)=u
$$

for every $u \in H^{*} B_{G}$. Thus, the kernel of Δ^{*} is the ideal $\left(\bar{x}_{3}-\bar{y}_{3}, \bar{x}_{5}-\bar{y}_{5}\right) \subset H^{*} B_{G}$. We have $d_{2}=d_{3}=0$, hence $E_{2}=E_{4}$, and

$$
d_{4}\left(E_{4}^{03}\right)=\operatorname{ker} k_{5} \cap E_{2}^{40}=\operatorname{ker} k_{\infty} \cap E_{2}^{40}=\mathbb{Z}\left(\bar{x}_{3}-\bar{y}_{3}\right)
$$

since $E_{5}^{40}=E_{\infty}^{40}$. Since $E_{4}^{03}=\mathbb{Z}\left(1 \otimes z_{3}\right)$, we get (2) for $i=3$. Using (1), we conclude

$$
E_{5}=E_{6}=\left(H^{*} B_{\mathbf{G}^{2}} /\left(\bar{x}_{3}-\bar{y}_{3}\right)\right) \otimes\left(\mathbb{Z} \cdot 1 \oplus \mathbb{Z} \cdot z_{5}\right)
$$

Hence $k_{6}\left(\bar{x}_{5}-\bar{y}_{5}\right)$ is irreducible in $E_{6}^{* 0}$ and $E_{6}^{05}=\mathbb{Z}\left(1 \otimes z_{5}\right)$. By the same argument as above, (2) follows for $i=5$.
35. Now consider the Diagram $D 2$. Let E and E^{\prime} be the spectral sequences of the bundles $p: G / / U \rightarrow B_{U}$ and $\Delta: B_{G} \rightarrow B_{G^{2}}$ resp. The bundle map $(\hat{\rho}, \rho)$ sending p to Δ induces homomorphisms of differential algebras $\rho_{r}^{\#}: E_{r}^{\prime} \rightarrow E_{r}$. Note that $\rho_{2}^{\#}$ $=\rho^{*} \otimes \hat{\rho}_{F}^{*}$, where $\hat{\rho_{F}}$ is the mapping of the fibres: $\hat{\rho_{F}}=\hat{\rho} \mid p^{-1}(b)$: $p^{-1}(b) \rightarrow \Delta^{-1}(\rho(b))$ where $b \in B_{U}$ is arbitrary. This is a homeomorphism, which becomes the identity if we identify the fibres suitably with G. Using that $\rho_{r}^{\#}$ commutes with d_{r} and $\rho_{r+1}^{\#}$ is the d_{r}-cohomology of $\rho_{r}^{\#}$, we get by induction from Proposition 34:
Proposition 35. Let $G=S U(3), U$ a fixed point free closed subgroup of G^{2}. Let $\rho: B_{U} \rightarrow B_{G^{2}}$ be the map induced by the imbedding $U \subset G^{2}$. Then the differentials of the spectral sequence of $p: G / / U \rightarrow B_{U}$ are as follows:

$$
\begin{aligned}
d_{j}\left(1 \otimes z_{i}\right) & =0 \quad \text { for } j \leqq i \\
d_{i+1}\left(1 \otimes z_{i}\right) & = \pm k_{i+1} \rho^{*}\left(\bar{x}_{i}-\bar{y}_{i}\right)
\end{aligned}
$$

for $i=3$ and $i=5$, where $k_{j}: H^{*} B_{U} \rightarrow E_{j}^{* 0}$ denotes the natural projections in this spectral sequence.
Remark. An analogous statement is true for $G=S U(n), U(n)$ and $S p(n)$ if one chooses a suitable set of generators z_{i} for the exterior \mathbb{Z}-algebra $H^{*} G$.
36. Now let $U \subset G \times G$ as in 31 . We may assume that $U=U_{k l p q}$ with (k, l, p, q) admissible (see 21.). We will compute the cohomology of $M=G / U$ by the method indicated in 35.

Proposition 36. $H^{*} M$ is generated by $w \in H^{2}(M), z \in H^{5}(M)$, and the following relations hold:

$$
r w^{2}=0, w^{3}=0, z w^{2}=0, z^{2}=0
$$

with $r:=\left|\left(k^{2}+l^{2}+k l\right)-\left(p^{2}+q^{2}+p q\right)\right|$.
Proof. Let $W=i$ be the generator of $U(\mathbf{1})=i \cdot \mathbb{R}$ and $\rho_{*}: U(\mathbf{1}) \rightarrow T^{2}$ the inclusion of U. Choose the base $V_{1}=\left(A_{1}, 0\right), V_{2}=\left(A_{2}, 0\right), V_{3}=\left(0, A_{1}\right), V_{4}=\left(0, A_{2}\right)$ of L^{2} (same notations as in 32.). Then

$$
\rho_{*}(W)=k V_{1}+l V_{2}+p V_{3}+q V_{4} .
$$

If $w ; v_{1}, \ldots, v_{4}$ are the dual bases, we have

$$
\rho^{*}\left(v_{1}\right)=k w, \rho^{*}\left(v_{2}\right)=l w, \rho^{*}\left(v_{3}\right)=p w, \rho^{*}\left(v_{4}\right)=q w .
$$

Call $x_{i}=z_{i} \otimes 1$ and $y_{i}=1 \otimes z_{i}$ for $i=1$ and 2 the generators of $H^{*} G \otimes H^{*} G$ $=H^{*} G^{2}$. It follows from 32. that the generators of $H^{*} B_{G^{2}}$, corresponding under transgression, are

$$
\begin{aligned}
& \bar{x}_{3}=\bar{v}_{1}^{2}+\bar{v}_{2}^{2}+\bar{v}_{1} \bar{v}_{2}, \bar{y}_{3}=\bar{v}_{3}^{2}+\bar{v}_{4}^{2}+\bar{v}_{3} \bar{v}_{4} \\
& \bar{x}_{5}=\bar{v}_{1} \bar{v}_{2}\left(\bar{v}_{1}+\bar{v}_{2}\right), \bar{y}_{5}=\bar{v}_{3} \bar{v}_{4}\left(\bar{v}_{3}+\bar{v}_{4}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \rho^{*}\left(\bar{x}_{3}-\bar{y}_{3}\right)=\left(\left(k^{2}+l^{2}+k l\right)-\left(p^{2}+q^{2}+p q\right)\right) \bar{w}^{2}, \\
& \rho^{*}\left(\bar{x}_{5}-\bar{y}_{5}\right)=(k l(k+l)-p q(p+q)) \bar{w}^{3} .
\end{aligned}
$$

Now consider the spectral sequence of $p: G / / U \rightarrow B_{U}$ as in Proposition 35. It starts with $E_{2}=E_{3}=E_{4}=H^{*} B_{U} \otimes H^{*} G$. Since $d_{4}\left(1 \otimes z_{3}\right)=\left(\bar{x}_{3}-\bar{y}_{3}\right)=r \bar{w}^{2}$, we conclude $\left.\operatorname{ker} d_{4}=B_{U} \otimes 1, z_{5}\right\rangle$, and $\operatorname{im} d_{4}$ is the ideal in $\operatorname{ker} d_{4}$ generated by $r \bar{w}^{2} \otimes 1$, hence

$$
E_{5}=E_{6}=\left(\mathbb{Z}[\bar{w}] /\left(r \bar{w}^{2}\right)\right) \otimes\left\langle 1, z_{5}\right\rangle
$$

Now $d_{6}\left(1 \otimes z_{5}\right)=\left(\bar{x}_{5}-\bar{y}_{5}\right)=s k_{6}\left(\bar{w}^{3}\right)$ with $s=k l(k+l)-p q(p+q)$. Claim: r and s are relatively prime. In fact, if there was a prime number n dividing both r and s, we would have $\sigma_{i}(k, l,-(k+l)) \equiv \sigma_{i}(p, q,-(p+q)) \bmod n$, for $i=1,2,3$, denoting by σ_{i} the i-th elementary symmetric polynomial in three variables. But then $(k, l,-(k+l))$ and $(p, q,-(p+q))$ would be congruent $\bmod n$ up to a permutation of the three variables which is excluded by the very fact that (k, l, p, q) is an admissible quadrupel (see 21). Hence $d_{6}\left(n\left(1 \otimes z_{5}\right)\right)=0$ only if n is a multiple of r. It follows that $\operatorname{ker} d_{6}=\left(\mathbb{Z}[\bar{w}] /\left(r \bar{w}^{2}\right)\right) \otimes\left\langle 1, r z_{5}\right\rangle$, and $\operatorname{im} d_{6}$ is the ideal in ker d_{6} generated by $\bar{w}^{3} \otimes 1$. So

$$
E_{7}=E_{\infty}=\left(\mathbb{Z}[\bar{w}] /\left(r \bar{w}^{2}, \bar{w}^{3}\right)\right) \otimes\left\langle 1, r z_{5}\right\rangle=H^{*} M
$$

So we have completed the proof, setting $w=k_{\infty}(\bar{w})$ and $z=r\left(1 \otimes z_{5}\right) .{ }^{1}$

[^0]
4. Homogeneous Spaces with Similar Homotopy

We call a compact topological space strongly inhomogeneous if it is not homotopy equivalent to any compact Riemannian homogeneous space. The goal of this section is the proof of the following
Theorem. Let $\bar{G}=S U(3), U(1) \cong U \subset \bar{G}^{2}$ fixed point free, $M=\bar{G} / U$. Assume that $H^{4}(M)=\mathbb{Z}_{r}$ with

$$
r \equiv 2(3) .
$$

Then M is strongly inhomogeneous.
Proof. Assume that M is homotopy equivalent to a compact Riemannian manifold M^{\prime} with transitive isometry group G. Call H the isotropy subgroup of a fixed element $m \in M$. Then $M^{\prime}=G / H$.

1. The first homotopy groups of M^{\prime} are given in 41 . Moreover, it is known for any compact Lie group that $\pi_{2}=0$ and $\pi_{3}=Z^{k}$ where k is the number of simple factors of the Lie algebra [4]. Thus we derive from the exact homotopy sequence of the fibration $H \rightarrow G \rightarrow M^{\prime}$:
(1) $\pi_{0}(H)=\pi_{0}(G)$,
(2) $0 \rightarrow \mathbb{Z} \rightarrow \pi_{1}(H) \rightarrow \pi_{1}(G) \rightarrow 0$ is exact,
(3) $\pi_{3}(H)=\pi_{3}(G) \times \mathbb{Z}$.

By (1), we may assume that G, H are both connected since $G_{0} / H_{0}=G / H$. From the sequence (2) it follows that $\operatorname{rank}\left(\pi_{1}(H)\right)=\operatorname{rank}\left(\pi_{1}(G)\right)+1$. Hence, if $\mathbf{G}=\mathbf{G}^{\prime}$ $\times \mathbf{T}$ where \mathbf{G}^{\prime} is semisimple and T an l-torus, then $\mathbf{H}=\mathbf{H}^{\prime} \times \mathbf{S}$ with \mathbf{H}^{\prime} semisimple and S an $(l+1)$-torus. Moreover, by (3), \mathbf{G}^{\prime} has $k+1$ simple factors if \mathbf{H}^{\prime} has k.
2. Let G^{\prime} be the simply connected group with Lie algebra \mathbf{G}^{\prime}. Then $\hat{G}:=G^{\prime} \times T$ is a covering group of G. Call π : $\hat{G} \rightarrow G$ the covering homomorphism, \hat{H} : $=\pi^{-1}(H)$. Hence we get a covering map $\bar{\pi}: \hat{G} / \hat{H} \rightarrow G / H$ which is in fact a diffeomorphism since $M^{\prime}=G / H$ is simply connected. Thus we assume from now on that $G=G^{\prime} \times T$, where G^{\prime} is a simply connected semisimple compact group and T an l-torus.
3. Since the Lie algebra $\mathbf{H}^{\prime} \subset \mathbf{H}$ is semisimple, its projection to the abelian factor of \mathbf{G} is zero, hence $H^{\prime}:=\exp \mathbf{H}^{\prime}$ is a subgroup of G^{\prime}. Consider the homomorphism $f=p \circ j \circ i: S \rightarrow T$ which is the composition of the inclusions $i: S \rightarrow H, j: H \rightarrow G$ and the projection $p: G \rightarrow T$. Then $f_{*}\left(\pi_{1}(S)\right)$ has finite index in $\pi_{1}(T)$ since j_{*} is onto (see (2)), p_{*} is isomorphic and $i_{*}\left(\pi_{1}(S)\right)$ has finite index in $\pi_{1}(H)$. Therefore the subtorus $f(S)$ of T has the same rank as T, so f is onto. Hence the connected component of its kernel is a circle $U \subset S$ which is a subgroup of the semisimple factor G^{\prime}. Hence $\mathbf{G}^{\prime} \cap \mathbf{H}=\mathbf{H}^{\prime} \times \mathbf{U}$. A complement \mathbf{M} of $\mathbf{H}^{\prime} \times \mathbf{U}$ in \mathbf{G}^{\prime} is also a complement of \mathbf{H} in \mathbf{G}. Set $H^{\prime \prime}:=\exp \left(\mathbf{H}^{\prime} \times \mathbf{U}\right) \subset G^{\prime}$. Then the mapping $g H^{\prime \prime} \mapsto(\mathrm{g}, 1) H: G^{\prime} / H^{\prime \prime} \rightarrow G / H$ is a covering map and hence a diffeomorphism. Replacing G and H with G^{\prime} and $H^{\prime \prime}$, we may assume: G is simply connected and semisimple, and $\mathbf{H}=\mathbf{H}^{\prime} \times \mathbb{R}$ with semisimple factor \mathbf{H}^{\prime}.
4. We want to determine the possible simple components of \mathbf{G} and $\mathbf{H}^{\prime} . M$ and M^{\prime} are both compact, orientable and homotopically equivalent. Hence $\operatorname{dim} M^{\prime}$ $=\operatorname{dim} M=7$. Thus the isotropy group H is a subgroup of $0(7)$. It follows that rank $\mathbf{H}^{\prime} \leqq 2$, so \mathbf{H}^{\prime} is one of the following compact Lie algebras:

$$
0 ; A_{1} ; A_{2} ; C_{2} ; G_{2} ; A_{1} \times A_{1} .
$$

Since $\operatorname{dim} G=\operatorname{dim} H^{\prime}+8$ and \mathbf{G} has one simple factor more then \mathbf{H}^{\prime}, the corresponding Lie algebra \mathbf{G} can only be out of the following ones:

$$
\begin{gathered}
A_{2} ; A_{2} \times A_{1} ; A_{2} \times A_{2} ; C_{2} \times A_{2} \quad \text { or } A_{3} \times A_{1} ; \\
G_{2} \times A_{2} ; A_{2} \times A_{1} \times A_{1} .
\end{gathered}
$$

Thus we have to consider seven pairs of Lie algebras $\left(\mathbf{G}, \mathbf{H}^{\prime} \times \mathbb{R}\right)$. A pair by pair inspection of the possible imbeddings of $\mathbf{H}^{\prime} \times \mathbb{R}$ in \mathbf{G} shows that $M^{\prime}=G / H$ is never homotopy equivalent to M. In particular, this is true for the first pair $\left(A_{2}, \mathbb{R}\right)$ since then M^{\prime} is a Wallach space $M_{p q}$ with $H^{4}\left(M^{\prime}\right)=\mathbb{Z}_{r^{\prime}}, r^{\prime}=p^{2}+q^{2}$ $+p q \neq 2$ (3) for arbitrary $p, q \in \mathbb{Z}$. We will discuss the details of the remaining pairs in the appendix.

5. Strongly Inhomogeneous Spaces Near to Wallach Spaces

Theorem. For any Wallach space $M=M_{p q}$ with $p q(p+q) \neq 0$ there exists a sequence of simply connected strongly inhomogeneous Riemannian manifolds M_{i} of distinct homotopy type the curvatures of which approach the curvatures of M in the sense of Proposition 22.

Proof. In the view of $\S 4$, all we have to show is: There are infinitely many positive integers $n=n_{i}$ such that the quadrupel ($1,0, n p, n q$) is admissible and r : $=n^{2}\left(p^{2}+q^{2}+p q\right)-1 \equiv 2(3)$. This last condition is satisfied if we choose $n \equiv 0(3)$. Moreover, the following pairs of integers have to be relatively prime (see 21.):

$$
\begin{aligned}
& (n p-1, n q),(n p-1, n s),(n s+1, n p) \\
& (n q-1, n p),(n q-1, n s),(n s+1, n q)
\end{aligned}
$$

where we have set $s:=p+q$. Let $\left\{a_{1}, \ldots, a_{k}\right\}$ be the set of all prime numbers which divide $p q s$. Then

$$
n=n_{i}=3 i a_{1} a_{2} \ldots a_{k}
$$

clearly satisfies all conditions for arbitrary $i \in \mathbb{N}$. Set $M_{i}=M_{l, 0, n_{1} p, n_{2} q}$.
Remarks. 1. By Proposition 22, the curvature of M_{i} is strictly positive if $p, q>0$ and i large, and the pinching of $M=M_{p q}$ is approximated; e.g. we have $K_{\text {min }} / K_{\text {max }}=16 / 29 \cdot 37$ for $p=q=1, t=-1 / 2$ (parameter of the metric) as was shown by Hua-Min Huang [8].
2. It can be shown that in fact M_{i} has strictly positive curvature for any positive integer i, if p and q are positive.
3. There are many spaces of type $G / U_{k l p q}$ which cannot be distinguished by cohomology, even among the homogenous ones ($k=l=0$): e.g. $M_{1,9}$ and $M_{5,6}$. It would be interesting to know whether these are topologically different.

Appendix 3 - The Remaining Homogeneous Spaces M^{\prime} which are Similar to $M=S U(3) / U_{\text {kipq }}$ (see §4)

Let (\mathbf{G}, \mathbf{H}) be one of the pairs of $\S 4$, Sect. 4 , except the first one. We denote by $\operatorname{pr}_{i}: \mathbf{H} \rightarrow \mathbf{G}_{i}$ the projection of the subalgebra \mathbf{H} of \mathbf{G} to the $i^{\text {th }}$ factor \mathbf{G}_{i} of \mathbf{G}.

1. $\left(A_{2} \times A_{2}, A_{2} \times \mathbb{R}\right)$

Either $\mathrm{pr}_{i} A_{2}=0$ for $i=1$ or 2 , or A_{2} is the diagonal subalgebra of $A_{2} \times A_{2}$. In the first case, it follows that $\operatorname{pr}_{j} \mathbb{R}=0$ for $j \neq i$, hence $M^{\prime}=S U(3) / U(1)$ is a Wallach space which is not homotopically equivalent to M as was proved above. The second case is impossible since the diagonal subalgebra of $A_{2} \times A_{2}$ has no centralizer.
2. $\left(C_{2} \times A_{2}, C_{2} \times \mathbb{R}\right)$

Then $\mathrm{pr}_{2} C_{2}=0, \mathrm{pr}_{1} \mathbb{R}=0$ and hence $M^{\prime}=S U(3) / U(1) \nleftarrow M$.
3. $\left(A_{3} \times A_{1}, C_{2} \times \mathbb{R}\right)$

Then $\mathrm{pr}_{2} C_{2}=0$. The homogeneous space corresponding to the pair $\left(A_{3}, C_{2}\right)$ $=\left(D_{3}, B_{2}\right)$ is the 5 -sphere $S^{5}=S O(6) / S O(5)$. Since the isotropy group G_{p} $=S O(5)$ of some $p \in S^{5}$ has no fixed vector on $T_{p} S^{5}=\mathbb{R}^{5}$, it has no centralizer in $S O(6)$. Therefore, $\mathrm{pr}_{1} \mathbb{R}=0$. It follows that $M^{\prime}=S^{5} \times S^{2} \neq M$ since $H^{4}\left(M^{\prime}\right)=0$.
4. $\left(G_{2} \times A_{2}, G_{2} \times \mathbb{R}\right)$

Then $\mathrm{pr}_{2} G_{2}=0, \mathrm{pr}_{1} \mathbb{R}=0$, hence $M^{\prime}=S U(3) / U(1) \nleftarrow M$.
5. $\left(A_{2} \times A_{1}, A_{1} \times \mathbb{R}\right)$

Up to equivalence, there are two representations of A_{1} in A_{2}, corresponding to
 the second f_{2}. Consequently, there are the following imbeddings of A_{1} in A_{2} $\times A_{1}$:

$$
(0, i d),\left(f_{1}, 0\right),\left(f_{2}, 0\right),\left(f_{1}, i d\right),\left(f_{2}, i d\right)
$$

a) $(0, i d)$: Then $\operatorname{pr}_{2} \mathbb{R}=0$, hence $M^{\prime}=S U(3) / U(1) \neq M$.
b) $\left(f_{1}, 0\right)$: There is no centralizer of $\mathbf{S O (3)}$ in $\mathbf{S U (3)}$.

It follows $\mathrm{pr}_{1} \mathbb{R}=0$, consequently $M^{\prime}=S U(3) / S O(3) \times S^{2} \neq M$ since $w^{2}=0$ for the generator w of $H^{2}\left(S^{2}\right) \subset H^{2}\left(M^{\prime}\right)$.
c) $\left(f_{2}, 0\right)$: More precisely, we choose the imbedding $f_{2}: \mathbf{S U (2) \rightarrow \mathbf { S U } (\mathbf { 3 }) \text { in the }}$ first two coordinates, which has centralizer $\mathbb{R} \cdot Z, Z:=i \cdot \operatorname{diag}(1,1,-2)$. Hence the factor \mathbb{R} can be an arbitrary line with rational slope in the plane spanned by $(Z, 0)$ and $(0, Y)$ in $\mathbf{G}=\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(\mathbf{2})$, where $Y:=i \cdot \operatorname{diag}(1,-1) \in \mathbf{S U (2)}$. Up to conjugation, these are all possible imbeddings. Let $U_{1}=(Y, 0)$ and $U_{2}=(0,1)$ be a basis of the lattice $\exp _{S}^{-1}(1)=\mathrm{H}_{1}(S)$ (natural identification), where S is
the maximal torus of H. Likewise, we have the basis $V_{1}=(i \operatorname{diag}(1,0,-1), 0)$, $V_{2}=(i \operatorname{diag}(0,1,-1), 0), V_{3}=(0, Y)$ of the lattice $\exp _{T}^{-1}(1)=H_{1}(T)$ for the maximal torus T of G. Call $\rho_{*}: \mathbf{S} \rightarrow \mathbf{T}$ the imbedding $\left.\left(f_{2}, 0\right)\right|_{\mathbf{S}}$. Then we have

$$
\begin{aligned}
& \rho_{*}\left(U_{1}\right)=V_{1}-V_{2}, \\
& \rho_{*}\left(U_{2}\right)=k \cdot\left(V_{1}+V_{2}\right)+l \cdot V_{3}
\end{aligned}
$$

where k, l are the relative prime integers which correspond to the imbedding of \mathbb{R}. The transposed map $\rho^{*}: H^{1}(T) \rightarrow H^{1}(S)$ is given by

$$
\begin{aligned}
& \rho^{*}\left(v_{1}\right)=u_{1}+k \cdot u_{2}, \\
& \rho^{*}\left(v_{2}\right)=-u_{1}+k \cdot u_{2}, \\
& \rho^{*}\left(v_{3}\right)=\quad l \cdot u_{2}
\end{aligned}
$$

where u_{i}, v_{j} are the dual bases.
Call y_{3}, z_{3}, z_{5} the generators of $H^{3}(S U(2)), H^{3}(S U(3)), H^{5}(S U(3))$. The invariant polynomials which generate $H^{*}\left(B_{G}\right), G=S U(3) \times S U(2)$, are the following (see 32.):

$$
\begin{aligned}
& \bar{y}_{3}=\bar{v}_{3}^{2} \\
& \bar{z}_{3}=\bar{v}_{1}^{2}+\bar{v}_{2}^{2}+\bar{v}_{1} \bar{v}_{2}, \\
& \bar{z}_{5}=\bar{v}_{1} \bar{v}_{2}\left(\bar{v}_{1}+\bar{v}_{2}\right) .
\end{aligned}
$$

The images under the induced map $\rho^{*}: H^{*} B_{G} \rightarrow H^{*} B_{H}$ are

$$
\begin{aligned}
& \rho^{*}\left(\bar{y}_{3}\right)=l^{2} \bar{u}_{2}^{2} \\
& \rho^{*}\left(\bar{z}_{3}\right)=\bar{u}_{1}^{2}+3 k^{2} \cdot \bar{u}_{2}^{2} \\
& \rho^{*}\left(\bar{z}_{5}\right)=2 k \cdot\left(-\bar{u}_{1}^{2} \bar{u}_{2}+k^{2} \cdot \bar{u}_{2}^{3}\right) .
\end{aligned}
$$

As in 33., we consider the spectral sequence of $p: G / / H \rightarrow B_{H}$ which starts with $E_{2}=H^{*} B_{H} \otimes H^{*} G$. It was shown by Borel [5, p. 180] that $1 \otimes y_{3}, 1 \otimes z_{3} \in E_{4}$ and $1 \otimes z_{5} \in E_{6}$ with

$$
\begin{aligned}
& d_{4}\left(1 \otimes y_{3}\right)=k_{4} \rho^{*} \bar{y}_{3}, \\
& d_{4}\left(1 \otimes z_{3}\right)=k_{4} \rho^{*} \bar{z}_{3} \\
& d_{6}\left(1 \otimes z_{5}\right)=k_{5} \rho^{*} \bar{z}_{5}
\end{aligned}
$$

where d_{i} are the differentials and $k_{i}: H^{*} B_{H} \rightarrow E_{i}^{* 0}$ the natural projections. From this we derive the cohomology of M^{\prime}, in particular:

$$
H^{4}\left(M^{\prime}\right)=\mathbb{Z} \bar{u}_{1}^{2} \otimes \mathbb{Z} \bar{u}_{2}^{2} / L
$$

where L is the sublattice generated by $\bar{u}_{1}^{2}+3 k \bar{u}_{2}^{2}$ and $l^{2} \bar{u}_{2}^{2}$. Since the determinant of these two vectors is $l^{2}, H^{4}\left(M^{\prime}\right)$ is a finite group of order l^{2}. But it was assumed for the order r of $H^{4}(M)$ that $r \equiv 2 \bmod 3$ which fails for l^{2}. Hence $M \neq M^{\prime}$.
d) $\left(f_{1}, i d\right)$ This is impossible since $\mathrm{pr}_{2} \mathbb{R}=0$ and, by b), also $\mathrm{pr}_{1} \mathbb{R}=0$.
e) $\left(f_{2}, i d\right)$ Again we have $\operatorname{pr}_{2} \mathbb{R}=0$. Hence the mapping $\rho_{*}=\left.\left(f_{2}, i d\right)\right|_{\mathbf{s}}: \mathbf{S} \rightarrow \mathbf{T}$ is as follows (same notation as in c):

$$
\begin{aligned}
& \rho_{*}\left(U_{1}\right)=V_{1}-V_{2}+V_{3}, \\
& \rho_{*}\left(U_{2}\right)=V_{1}+V_{2} .
\end{aligned}
$$

It follows for the induced map $\rho^{*}: H^{*} B_{G} \rightarrow H^{*} B_{H}$:

$$
\begin{aligned}
& \rho^{*}\left(\bar{y}_{3}\right)=\bar{u}_{1}, \\
& \rho^{*}\left(\bar{z}_{3}\right)=\bar{u}_{1}^{2}+3 \bar{u}_{2}^{2}, \\
& \rho^{*}\left(\bar{z}_{5}\right)=-2 \bar{u}_{1}^{2} \bar{u}_{2}+2 \bar{u}_{2}^{3}
\end{aligned}
$$

(compare c)). In particular, $H^{4}\left(M^{\prime}\right)$ is generated by $k_{4}\left(\bar{u}_{2}^{2}\right)$ with $3 k_{4}\left(\bar{u}_{2}^{2}\right)=0$. But $r=\operatorname{ord}\left(H^{4} M\right) \neq 3$, hence $M \neq M^{\prime}$.
6. $\left(A_{2} \times A_{1} \times A_{1}, A_{1} \times A_{1} \times \mathbb{R}\right)$

The imbeddings of $\mathbf{H}^{\prime}=A_{1} \times A_{1}$ into $\mathbf{G}=A_{2} \times A_{1} \times A_{1}$ are given by 2×3 matrices of homomorphisms $a_{i j}: \mathbf{H}_{i} \rightarrow \mathbf{G}_{j} \quad(i=1,2 ; j=1,2,3)$. Observe that $a_{1 j} \neq 0$ implies $a_{2 j}=0$ and vice versa. Then, up to conjugation and permutation of isomorphic factors, the following imbeddings exist:
a) $\binom{f_{k}, 0}{,0, i d, i d}$,
b) $\binom{f_{k}}{,0, i d, 0}$,
c) $\left(\begin{array}{l}f_{k}, i d, \\ 0 \\ 0,\end{array} 0, i d\right)$,
d) $\left(\begin{array}{ll}0, i d, & 0 \\ 0, & 0, i d\end{array}\right)$
where $f_{k}: A_{1} \rightarrow A_{2}(k=1,2)$ are the representations used in 5.
a) \mathbf{H}_{2} is diagonally imbedded in $A_{1} \times A_{1}$. This is the canonical imbedding $\mathbf{S O}(3) \subset \mathbf{S O}(4)$ which has no centralizer since $S O(3)$ has no fixed vector on the tangent space of $S O(4) / S O(3)=S^{3}$. Hence $\mathbf{H}_{3}=\mathbb{R}$ is mapped into the first factor. It follows from 5c) that only $k=2$ is possible. Thus $M^{\prime}=S U(3)$ / $U(2) \times S^{3}=\mathbb{C} P^{2} \times S^{3} \not \ddagger M$ since $H^{4}\left(M^{\prime}\right) \neq \mathbb{Z}$.
b) $\mathbf{H}_{3}=\mathbb{R}$ is mapped to $\mathbf{G}_{1} \times \mathbf{G}_{3}$, and the pair can be reduced to (A_{2} $\times A_{1}, A_{1} \times \mathbb{R}$) which was treated in 5 .
c) Same argument as in b).
d) $\mathbf{H}_{3}=\mathbb{R}$ is mapped to $\mathbf{G}_{1}=A_{2}$, and $M^{\prime}=S U(3) / U(1) \neq M$.

References

1. Aloff, S., Wallach, N.R.: An infinite family of distinct 7-manifolds admitting positively curved Riemanninan structures. Bull. Amer. Math. Soc. 81, 93-97 (1975)
2. Berard Bergery, L.: Les Variétés Riemanniennes homogènes simplement connexes de dimension impair à courbure stictement positive. J. Math. Pures Appl. 55, 47-68 (1976)
3. Berger, M.: Les Variétés Riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa 15, 179-246 (1961)
4. Bott, R.: An application of the Morse Theory to the topology of Lie groups. Bull. Soc. Math. France 84, 251-281 (1956)
5. Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math. 57, 115-207 (1953)
6. Borel, A.: Topology of Lie groups and characteristic classes. Bull. Amer. Math. Soc. 61, 397432 (1955)
7. Gromoll, D., Meyer, W.: An exotic sphere with nonnegative sectional curvature. Ann. of Math. 100, 401-406 (1974)
8. Huang, H.-M.: Thesis. Stony Brook 1976
9. O'Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 23, 459-469 (1966)
10. Wallach, N.R.: Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. of Math. 96, 277-295 (1972)

[^0]: 1 A similar proof for the homogeneous case $k=l=0$ was communicated to us by W. Ziller.

